FastChem 2.1

User and Reference Guide

Daniel Kitzmann
Joachim Stock

Contents 2

Contents

1 Introduction to FastChem 4
1.1 Overview e e e e e e e e e 4

1.2 Licence e e 4
1.3 About this guide e 5

I Installation of FastChem and pyFastChem 6
2 Installation 7
2.1 Obtaining the code 7
2.2 Prerequisites e e e e e e 7
2.2.1 Prerequisites for installation via CMake 7

2.2.2 Prerequisites for Python installation via setup.py or PyPi 8

2.2.3 Supported C++ compilers 8

2.2.4 PyBindll Library e 8

2.3 Configuration and compilation of FastChem with CMake 9
2.3.1 Notes on MacOS e 9

2.3.2 Noteson Windows oo o 10

2.4 Installation of pyFastChem with Python 10

Il Running FastChem and pyFastChem 12
3 Standard FastChem input and output files 14
3.1 Element abundance file 14
3.2 Species file e 16
3.3 Basic element data file (optional) Lo L 18
3.4 FastChem parameter file (optional) 19
3.5 Output files e e e 19

4 The FastChem C++ stand-alone executable 21
4.1 Starting the FastChem executable oL oL 21
4.2 Configfile e 21
4.3 Benchmark input and output files. oo oo 23

5 Running pyFastChem 24
5.1 Provided Python examples e 24

5.2 Detailed steps for running FastChem with pyFastChem 24

Contents 3

5.3 Output functions of pyFastChem 26
5.3.1 Chemistry output scripts oL 26

5.3.2 Monitor output scripts 28

IIl Detailed C++ object class and Python module description 31
6 FastChem class 32
6.1 Some comments on coding conventions 32
6.2 FastChem object class L 33
6.3 FastChem constants 33
6.4 FastChem constructor 34
6.5 Input and output structureso 35
6.5.1 Input structure 35

6.5.2 Output structure 36

6.6 Public methods of the fastchem::FastChem object class. 37

7 pyFastChem: The Python module of FastChem 40
7.1 The pyFastChem module 40
7.2 pyFastChem constants L e e 41
7.3 pyFastChem constructor e 41
7.4 pyFastChem input and output structures oo 42

7.5 pyFastChem functions L L 44

1 Introduction to FastChem 4

1 Introduction to FastChem

1.1 Overview

FastChem is an open-source computer program that can calculate the gas phase chemical equilibrium
composition of general systems for a given temperature pressure and element abundances.
equilibrium chemistry model that can calculate the gas phase chemical composition of general sys-
tems. It uses a semi-analytical approach to solve the non-linear system of mass action law equations,
which results in a massive increase in computational performance over other approaches like Gibbs
minimisation. The general concept and the original version 1.0 is described by Stock et al. (2018)
(Paper I). Version 1.0, however, is restricted to systems that are dominated by hydrogen and helium
and required an additional iteration to account for the pressure of the system. The current version
2.0 can now be applied to arbitrary element compositions. This version will be described by Stock
et al. (2020), from here on referred to as Paper II.

FastChem has already been applied to numerous different systems, from brown dwarfs (Kitzmann
et al., 2020), to mini-Neptunes, hot-Jupiters (Bourrier et al., 2020), to ultra-hot Jupiters (Hoeijmakers
et al., 2019). It is directly coupled to the retrieval model Helios-r2 (Kitzmann et al., 2020), to the
general atmospheric model HELIOS (Malik et al., 2019), and the non-equilibrium chemistry VULCAN
(Tsai et al., 2018), all of which are available under https://github.com/exoclime.

1.2 Licence

FastChen is released under the GNU Public Licence (GPL) 3.0. That means, it can be freely copied,
edited, and re-distributed. If the code is re-distributed it has to be released under at least a GPL 3.0
licence as well. The full licence of FastChem can be found in the repository (LICENSE file) or under
https://www.gnu.org/licenses/gpl-3.0.html.

This user guide is released under the Creative Commons Licence (CC BY SA). Licensees may copy
and distribute the work and make derivative works based on it only if they give the authors the credits
by providing a reference to the original guide and the corresponding GitHub repository. Licensees
may also distribute derivative works only under a license identical to ("not more restrictive than")
the license that governs the original work.

The FastChen repository also links to an additional open source code, the PyBind11 library (https:
//github.com/pybind/pybind11) that converts C++ code into a module callable from Python. This
library is licensed under the BSD licence, see https://github.com/pybind/pybindl1/blob/master/
LICENSE for details.

https://github.com/exoclime
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11/blob/master/LICENSE
https://github.com/pybind/pybind11/blob/master/LICENSE

1 Introduction to FastChem 5

1.3 About this guide

This guide provides basic information on the FastChem code and how to use it. It is structured into
three different parts:

e Part I contains the basic descriptions on how to obtain and compile FastChem and its Python
module pyFastChem.

e Part II describes on how to run FastChem as a stand-alone application as well as through its
Python interface pyFastChem.

o Part [II is a more in-depth description of the code itself. It provides information on the interface
methods and variables used by FastChem and pyFastChem.

Part |

Installation of FastChem and pyFastChem

2 Installation 7

2 Installation

FastChem can be installed in two different ways: either using CMake or by calling a Python setup
function setup.py. The former will install the C++ stand-alone executable and optionally the Python
module, while the latter one will only provide the pyFastChem Python module. The Python module
created by CMake will only be available locally in the python directory, while the one produced by
setup.py will be integrated in your standard Python library and, thus, work as a normal Python
package. Additionally, we also support a Python installation via PyPI, the Python Package Index.

2.1 Obtaining the code

FastChem is hosted on the Exoclime GitHub page: https://github.com/exoclime/fastchem. If
git is available on a computer, the repository can be simply cloned with

git clone https://github.com/exoclime/fastchen

2.2 Prerequisites

FastChem is written in C++. It uses features of the C++11 standard and, therefore, requires a compiler
that implements this standard. We also provide an optional Python interface, allowing FastChem
to be called directly from within a Python script. The interface is based on the Python package
PyBind11.

2.2.1 Prerequisites for installation via CMake

The complete list of prerequisites for a basic CMake installation is:
e a C++ compiler (e.g. g++ or Clang on MacOS)
e CMake, at least version 3.10

The C++ compiler will be detected by the CMake script when it generates the makefiles. For some of
its optional components FastChem will need:

o an OpenMP library (to run FastChem in parallel)

o a Python 3.x interpreter (for the Python interface)

https://github.com/exoclime/fastchem

2 Installation 8

2.2.2 Prerequisites for Python installation via setup.py or PyPi
An installation of pyFastChem with the setup.py script orPyPI requires
e a Python 3.x interpreter
e a C++ compiler (e.g. g++ or Clang on MacOS)
o an OpenMP library (optional, required to run FastChem in parallel)
o pip (when using PyPI)
as well as the following Python modules:
« PyBindl1
e setuptools
o distutils
o glob

o tempfile

2.2.3 Supported C++ compilers

The compilation of FastChem has been tested on a variety of different compilers and platforms. In
particular, it was verified that FastChem can be compiled with:

e« GCC 7.5 or newer
o Clang 12.0 (including Apple’s Clang 12.0)

Since FastChem just uses plain C++ without any external library, any compiler that supports the
C++11 standard should be able to compile the code successfully.

2.2.4 PyBind11 Library

For its Python interface, FastChem requires the PyBind11 library that translates the Python calls
into C++. While PyBind11 can in theory be installed via pip, conda, or brew (on MacOS), CMake
isn’t always able to properly locate the installed library.

For the installation via CMake, we therefore chose to include PyBind11 as a submodule in the FastChem
repository. CMake will take header files and Python scripts provided by the submodule to create the
PyFastChem module. No separate compilation or installation of PyBind11 is required. During the
setup stage, CMake will download the PyBind11 library automatically. This code will be placed into
a separate _deps folder.

If you choose to install pyFastChem via the setup.py function, then the PyBind11 library has to
already present in your local Python installation.

2 Installation 9

2.3 Configuration and compilation of FastChem with CMake

Before FastChem can be compiled, CMake is required to configure the compilation files, locate
libraries, and write the makefiles that will perform the actual compilations. If required libraries
are missing, CMake will report a corresponding error message. In this case, the missing libraries or
compilers need to be installed before the configuration can be completed.

To run the CMake configuration, first create the build folder inside the FastChem source code folder
and switch to the folder:

mkdir build
cd build

For a basic installation, within the folder run CMake':

cmake

If the Python interface should be installed as well, run

cmake -DUSE_PYTHON=0N

CMake will also try to locate an OpenMP library to allow FastChem to be run in parallel. If it cannot
detect the library, only the single-core version of FastChem will be compiled. If FastChem is to be run
on MacOS, using OpenMP might be difficult since Apple’s Clang compiler does not directly support
OpenMP, even if the corresponding library has been installed. It might be possible, though, to install
an alternative compiler, for example g++, that supports the use of OpenMP.

After CMake successfully configured the compilation files, FastChem can be compiled by running;:

make

Upon successful compilation, the executable fastchem should be present in the main FastChem folder.
If the optional Python interface is used, FastChem will be automatically compiled twice because the
Python version requires different compiler options.

2.3.1 Notes on MacOS

FastChem can be compiled and run on MacOS, but requires some libraries and apps that are not
installed by default. This especially includes CMake. In order to compile FastChem on MacOS, the
the prerequisites listed above need to be installed. This can be easily achieved by, for example, using
brew.

In a standard installation of MacOS, no compiler is available. The Apple version of the Clang compiler
can be installed through Xcode and the command line tools by running

xcode-select --install

'Remember the .. after the cmake command

2 Installation

in the terminal.

Alternatives (e.g. g++) to the default Clang shipped with MacOS can also be installed via brew.
However, CMake is not always able to detect these compilers and will still use Clang. This also applies
to the optional OpenMP library that allows FastChem to be run in parallel. The Clang compiler does
not directly support the library, even if it has been installed via brew.

If the Python interface of FastChem is used, a corresponding Python 3 installation is also required.
By default, MacOS ships only with an outdated Python 2 version that cannot be used for FastChem.
A more up-to-date version can also be installed by, for example, brew. However, one has to make
sure that the python3 executable and things like pip3 (to install other required Python modules)
actually link to that version. An alternative way to install and manage different versions of Python
without interference from MacOS’ internal Python version is pyenv, which can be found under https:
//github.com/pyenv/pyenv.

2.3.2 Notes on Windows

While in theory FastChem could be run on Windows if meeting all the prerequisites, we have never
tested the compilation and execution of FastChem on such a system. In principle, this should be
possible under a virtual Linux environment, such as cygwin, or with the Windows Subsystem for
Linux (WSL) shipped with the newer versions of Windows 10. However, due to the lack of a Windows
system, we are unable to test this and, therefore, officially at least we cannot support FastChem
running on Windows.

2.4 Installation of pyFastChem with Python

When setting up pyFastChem with PyPI, it is installed via pip:

pip install pyfastchem

Depending on the Python installation, pip might need to be replaced by pip3 in case pip is linked
to Python 2.x.

This command will download and compile the pyFastChem package and resolve potential dependen-
cies. It is important to note, though, that one still has to download the chemistry input data and
other Python scripts from the FastChem repository in order to use the package properly.

As an alternative, pyFastChem can also be directly installed from source via the setup.py script
located in the root directory of FastChem. The setup is started by

python setup.py install
assuming that python points to your Python 3.x executable. Otherwise, replace python with

python3. As discussed above, using setup.py will only create the Python module of FastChem, not
the stand-alone executable.

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv

2 Installation 11

In both cases, the pyFastChem module itself will be installed in your local Python package library
path and, thus, be available throughout your system like any other normal Python package. The
module’s location and additional module information can be obtained via

pip show pyfastchem

The setup script will also try to detect the presence of compiler support for OpenMP to run FastChem
calculations in parallel. This is currently likely to fail in case of MacOS since Apple’s Clang compiler
officially does not support this library. We might adapt the setup.py script in the future to allow
for alternative compilers under MacOS.

Part 1|

Running FastChem and pyFastChem

In this part, we describe how FastChem can be run directly via the included C++ stand-alone version or
via Python scripts. In chapter 3, we also describe the format of the input files with the thermochemical
and element abundance data. A complete overview of all available functions and output from the
FastChem code can be found in part III for both, the C++ object class and its Python interface.

3 Standard FastChem input and output files

3 Standard FastChem input and output files

Besides optional other parameter files that are used within the C++ stand-alone version or the Python
version, FastChem requires two special input files, one for the element abundances and a second
describing the mass action law constant parametrisations. Both are described in the following.

3.1 Element abundance file

This file should contain the element abundances for all chemical elements that are used in FastChem.
The location of this file is usually supplied either within a separate parameter file or directly in the
constructor of the FastChem object class.

A note on element abundances It is important to note that there are two different ways to define
an element abundance. Both variants, denoted by x; and ¢;, are related via:

¢j = 10% 12 (3.1)

or
xj =log () + 12 . (3.2)

In the x; version, widely used in the astronomical literature, hydrogen has a value of 12 for solar
element abundances, such that its ¢; is unity.

In its input file, FastChem uses the x; notation, also employed in the usual standard abundance
compilations (e.g. Asplund et al. (2009)). For example, in the z; notation, the solar element
abundance for oxygen is zo = 8.69, whereas its value for e would be 0.00048978.

Internally, FastChem converts the x; from the input file to the computationally more appropriate ;.
This also refers to all methods of the FastChem object class that are used to interact with the element
abundances: these will always refer to ¢;.

Thus, if one wants to change the oxygen element abundance in the input file (which refers to x;) to
ten times its solar value, one would need to use a value of xg = 1 + 8.69 = 9.69. If one, on the other
hand, uses one of the internal FastChem methods to change element abundances on the fly, one would
need to set it to a value of eg = 10 - 0.00048978 = 0.0048978.

3 Standard FastChem input and output files

File structure The element abundance file should have the following structure to be readable by

FastChem:
#Solar element abundances based on Asplund et al. (2009), ARA&A, 47, 481
e- 0.00
Al 6.45
Ar 6.40
C 8.43
Ca 6.34
Cl 5.50
Co 4.99
Cr b5.64
Cu 4.19
F 4.56
Fe 7.50
Ge 3.65
H 12.00
He 10.93
K 5.03
Mg 7.60
Mn 5.43
N 7.83
Na 6.24
Ne 7.93
Ni 6.22
0 8.69
P 5.41
S 7.12
Si 7.51
Ti 4.95
\' 3.93
Zn 4.56

The first line is always a header line that provides important information for the user and is ignored
by FastChem. All subsequent lines contain each the symbol for an element and its element abundance.
Molecules that contain elements not present in this file are ignored. The element abundance for the
electron has an arbitrary value. It is only present in the file to inform FastChem that the electrons
(and thus ions) should be included in the chemistry calculations. Its element abundance e, will
internally be set to 0 because its number density is determined by charge balance. The elements are
not required to be in any particular order.

Standard files Together with FastChem, we provide two different element abundance files, located in
the input/ folder. The file element_abundances_solar.dat provides the solar element abundances
for species that are at least as abundant as germanium. This set of element abundances is used as
our standard input file and is based on Asplund et al. (2009).

As an alternative version, we also also include an additional file element_abundances_solar_ext.dat
that includes more elements, up to uranium. This file can be used for the extended set of ion species
described in the next section. These element abundances are also based on the Asplund et al. (2009)
compilation.

3 Standard FastChem input and output files

3.2 Species file

Another important input is the thermochemical data for all molecules and ions. This includes in
particular their stoichiometric information as well as a parametrisation for their mass action constants.
As described in the first FastChem publication (Stock et al., 2018), we use the natural logarithm of
the dimensionless mass action constant of species 7
_ AG?(T)
InK;(T)= ———F——+, 3.3

where G (T') is the Gibbs free energy of dissociation. For FastChem, these mass action constants are
fitted with the expression

IDKZ'(T):%—FGQ 1HT—|—b0—|—b1T—|—b2T2, (34)

where ag, a1, by, b1, and by are the fit coefficients.

It is in principle possible to use your own parametrisation. For that, you need to edit the
source code that performs the calculation of the mass action constants, located in the source file
mass_action_constant.cpp.

File structure For FastChem, the species information file should have the following structure:

#logK = al/T + a2 1In T + a3 + a4 T + ab T2 for FastChem:

#includes elements with eps >= eps_Ge

#fit coefficients calculated from indicated data source.

A11C1l1 Aluminum_Chloride : A1 1 Cl1l 1 # Chase, M. et al., JANAF tables, 1998.
6.01726e+04 -9.82181e-01 -5.80778e+00 1.65774e-04 -6.11197e-09

A11C11F1 Aluminum_Chloride_Fluoride : A1 1 Cl1l 1 F 1 # Chase, M. et al., JANAF tables, 1998.
1.22295e+05 -1.60844e+00 -1.43675e+01 3.72486e-04 -1.98493e-08

A11C11F2 Aluminum_Chloride_Fluoride : A1 1 Cl1 1 F 2 # Chase, M. et al., JANAF tables, 1998.
1.93126e+05 -1.90100e+00 -3.00531e+01 6.68640e-04 -3.72957e-08

The first three lines of the file are treated as header lines and discarded when reading in the file.

The data for each species consists of two lines, while different species are separated by a blank
line. The first line starts with the species’ sum formula. In the standard FastChen files, we use the
modified Hill notation for the formulas. Isomeric species would in principle have the same formula in
the Hill notation. For example, the two species HCN and HNC would both be referred to as C1H1N1.
To distinguish the two in the standard set of FastChem, underscores are used, such that C1HIN1_1
refers to HCN, while C1H1N1_2 represents HNC. The use of the Hill notation is not a requirement.
In a custom version of the species file, a different chemical notation could be used.

The sum formula is followed by an optional name for the species. This name should be contained
within a single string. Thus, if the species name is a compound noun, the separating white

3 Standard FastChem input and output files

spaces should be replaced by other characters, for example underscores _ as shown above (e.g.
Aluminum_Chloride instead of Aluminum Chloride).

After a seperator :, FastChem expects the stoichiometric information of the species, i.e. the elements
and their stoichiometric coefficients. The elements need to be present in the element abundance file
as well, otherwise the species will be discarded. They don’t need to be in any specific order.

The stoichiometric information is followed by an optional reference for the data. If a reference is
used, a separator # is required between the stoichiometry and the reference.

The second line contains the fit coefficients for the mass action constants. FastChem will read in as
many coefficients as it can find in that line but for its own parametrisation in Eq. (3.4) it will only
use the first five.

Standard files Together with FastChem, we provide two different species files, located in the input/
folder. The file 1ogK.dat provides the standard set, discussed in Stock et al. (2018). This includes
species for all elements at least as abundant as germanium.

As an alternative version, we also provide an additional file logK_ext.dat that includes more ions
for elements up to uranium. The data for this file is discussed in Hoeijmakers et al. (2019).

3 Standard FastChem input and output files

3.3 Basic element data file (optional)

In addition to the element abundances, FastChem also needs to have additional basic data for the
elements, such as their atomic weight to calculate the molecular weights of molecules, for example.
For most elements up to uranium, this data is hard-coded in a standard set located in the header file
chemical_element_data.h. If you want to change this standard set by removing or adding elements
or add isotopes, you can change it directly in the header file and re-compile FastChem.
Alternatively, FastChem also has the option to read an external file with the required information.

File structure The optional file has the following, simple structure, starting with a header line that
is ignored when reading in the file:

#Basic element data based on Meija et al. (2016), IUPAC Technical Report
e- Electron 5.4857990907e-4
H Hydrogen 1.008

He Helium 4.002602

Li Lithium 6.94

Be Beryllium 9.0121831

B Boron 10.81

C Carbon 12.011

N Nitrogen 14.007

0 Oxygen 15.999

F Fluorine 18.998403163
Ne Neon 20.1797

Na Sodium 22.98976928
Mg Magnesium 24.305

Al Aluminium 26.9815385
Si Silicon 28.085

P Phosphorus 30.973761998
S Sulfur 32.06

Cl Chlorine 35.45

Ar Argon 39.948

K Potassium 39.0983

Ca Calcium 40.078

Sc Scandium 44.955908

Ti Titanium 47 .867

Mn Manganese 54.938044

Fe Iron 55.845

Co Cobalt 58.933194

Ni Nickel 58.6934

Cu Copper 63.546

Zn Zinc 65.38

Ga Gallium 69.723

Ge Germanium 72.630

As Arsenic 74.921595

Se Selenium 78.971

Br Bromine 79.904

It contains three columns, where the first one lists the elements’ symbols, the second their
names, and the third their atomic weights. An example of this file can be found in the folder
fastchem_src/chem_input/.

3 Standard FastChem input and output files

3.4 FastChem parameter file (optional)

FastChemn is able to load a specific parameter file when one of its instances is created through the
object class constructor. This parameter file includes the most important parameters and options
used within FastChem. All of these quantities can also be changed during runtime by using the
appropriate methods listed in Sect. 6.6 for the C++ object class and Sect. 7.5 for the Python module.
Using the parameter file in principle allows changing these options and parameters outside of the code
and, therefore, does not require the code to be recompiled.

File structure The optional parameter file has the following structure:

#element abundance file
input/element_abundances_solar.dat

#species data file
input/logK.dat

#accuracy of chemistry iteration
1.0e-4

#max number of chemistry iterations
80000

#max number internal solver iterations
20000

#element data file (optional)
input/basic_element_data.dat

The first two entries are the locations of the element abundance and species data files. The next
parameter determines the convergence criterion of the chemistry iteration. This value is also used for
the internal Newton’s method. The latter one can be adjusted within in the code by the methods
listed in Sects. 6.6 & 7.5.

The next parameter sets the maximum numbers of iterations for the different internal numerical
methods employed within FastChem. This includes the Newton, Nelder-Mead, and bisection methods.
Using the corresponding functions of the FastChem object class (Sects. 6.6 & 7.5), this number can
be adjusted for each of these numerical methods individually. The last parameter is optional and
does not need to be present in the file. It contains the path to the file for an alternative basic element
data file. If this parameter is not present, FastChem will use the standard set that is directly located
in the FastChem source code (see previous section).

3.5 Output files

The C++ stand-alone version will produce two output files: a detailed chemistry output and a monitor
file with diagnostic information. The file names of both files can be chosen in the config file discussed
in the previous section.

3 Standard FastChem input and output files 20

Chemistry output The chemistry output is organised in columns. The first line of the file is a header
that describes the content of each column.

The first and second column contain the pressure in bar and the temperature in K, respectively. The
third column lists the total number density of all atoms 4, i.e. ngt = >; (nz + Zj njuz-j), summed
over their atomic number densities, as well as the ones contained in all other molecules/ions j. This
is usually only a diagnostic quantity and rarely used in other applications.

The fourth column is the number density of the gas in units of cm™3, derived from the ideal gas
law. This is followed by a column of mean molecular weights of the mixture of species in units of the
unified atomic mass unit. For all practical purposes, this can also be converted into units of g/mol.
All subsequent columns contain the number densities (in cm™3) or the mixing ratios of all species,
depending on the choice of output made in the config file. By default, elements will be placed in the
beginning, followed by molecules and ions. Note that in its species data files, FastChem employs the
modified Hill notation as used in the JANAF thermochemical tables (Chase, 1986) for the formulas
of all non-element species. If, for example, you are looking for the abundance of carbon dioxide, you
need to locate the C102 column rather than C02, whereas NH3 would be listed as H3N1.

Monitor file The monitor output file is a very important diagnostic output that provides crucial
details on the outcome of the chemistry calculations. You should further investigate any chemistry
calculations that shows problems in this file. It is, therefore, advisable to check this file after each
calculation to verify that everything went fine. The first line of the file is a header that describes the
content of each column.

The monitor output is organised in columns, where the first column contains a simple integer that
refers to index of the input temperature-pressure structure. The second column lists the number
of chemistry iterations that were required to solve the system. If the number corresponds to the
maximum number of allowed iteration steps, then this points to potential convergence issues.

The next columns contain information on the convergence of the chemistry and on the status of overall
element conservation. If the chemistry did converge properly ok will be listed as output, whereas fail
is used when the chemistry failed to converge in the maximum allowed number of steps. The same
keywords are used for the element conservation status: ok if all elements were conserved, fail if any
element was not conserved.

The next four columns contain basic chemistry output, that is also found in the chemistry output file:
the pressure, temperature, total element density, gas number density, and mean molecular weight.
All remaining columns list the status of the element conservation for each element separately. The
same keywords as for the overall element conservation status are used again in these columns. For
the electrons, this status refers to the charge balance rather than element conservation.

4 The FastChem C++ stand-alone executable

4 The FastChem C++ stand-alone executable

The FastChem object class is designed to be easily coupled to other models. In addition to the object
class itself, we also provide a stand-alone executable that can call the module with some simple input
scripts. This stand-alone version, however, only provides a very basic functionality, such as reading in
a specific temperature-pressure profile that FastChem will be run for. The stand-alone version does,
for example, not provide more advanced capabilities, such as looping over different metallicity values
or C/O ratios. If you intend to use FastChem for such purposes, you need to adapt the code that
calls FastChem.

The source code that is responsible for calling the actual FastChem chemistry is located in the folder
model_src/. It is split across three different files: model_src/model_main.cpp, the actual main
program, model_src/read_config.h for reading in the config file, and model_src/save_output.h
for managing the output. Thus, if you want to add another parameter to the config file, you would
need to edit model_src/read_config.h, while changes to the format of the output files can be made
in model_src/save_output.h. Changing the contents of these files obviously require a re-compilation
of the code.

4.1 Starting the FastChem executable

Following a successful configuration and compilation via CMake, the FastChem executable fastchem
should be present in the root directory. The executable is started via

./fastchem input/config.input

where the second argument is the location of the config file that is explained in the next section.
FastChem will read in a pre-defined pressure-temperature structures, the location of which is also
specified in the config file. After a successful calculation, FastChem will produce two output files
with a detailed chemistry output and one with diagnostic output. The location of these files is also
contained in the config file and its contents are discussed in Sect. 3.5.

4.2 Config file

The config file that FastChem will read in at the beginning contains all important parameters and
file locations necessary to initialise the chemistry and to perform the calculations. The numerical
methods that these parameters refer to are described in Paper II. An example of such an input file
is located in the input folder: input/config.input. While this config file allows to set the most
important FastChem parameters, some more advanced ones are not contained in this file and can
only be set by invoking special FastChem functions during runtime. This, in particular, refers to the
use of the optional scaling factors as described in the appendix of Paper II. More information on

4 The FastChem C++ stand-alone executable

activating these scaling factors can be found in the description of the object class in Sect. 6.6.

The config file used for the C++ stand-alone executable has the following structure:

#Atmospheric profile input file
input/Late_M-dwarf.dat

#Chemistry output file
output/chemistry.dat

#Monitor output file
output/monitor.dat

#FastChem console verbose level (1 - 4); 1 = almost silent, 4 = detailed console output
1

#0utput mixing ratios (MR) or particle number densities (ND, default)
MR

#Element abundance file
input/element_abundances_solar.dat

#Species data file
input/logK.dat

#Accuracy of chemistry iteration
1.0e-4

#Max number of chemistry iterations
80000

#Max number internal solver iterations
20000

It contains the required parameters in the following order:

e Location of the file with the pressure-temperature structure the chemistry should be calculated
for. The file should contain two columns, where the first one is the pressure in units of bar and
the second one the temperature in K. Header lines will be ignored.

¢ Desired location and file name for the chemistry output
¢ Desired location and file name for the diagnostic output

e Verbose level, where a level of 1 is almost silent and 4 produces a lot of diagnostic output on
the terminal. Increase this level if you encounter issues to identify the source of the problems.

e The output format for the species’ abundances. By default, FastChem will use number densities
in units of cm™3. If you use the keyword MR, mixing ratios will be used instead. Any keyword
other than MR will result in the default option of using number densities.

e Location of the file with the element abundances, see Sect. 3 for details

4 The FastChem C++ stand-alone executable 23

e Location of the file with the thermochemical and stoichiometric data for all species, see Sect. 3
for details

« Relative accuracy of the chemistry iterations, used as convergence criterion (also for Newton’s
method)

e Maximum number of chemistry iterations

o Maximum number of internal solver method iterations (Newton, Nelder-Mead & bisection meth-
ods)

In the input file, the number of iterations for the Newton, Nelder-Mead, and bisection methods are
assumed to be the same. This number can be adjusted individually for each of these internal solvers
by using the corresponding methods of the FastChem object class listed in Sect. 6.6. The convergence
criterion for Newton’s method is also set to the accuracy of the chemistry iteration by default. This
convergence criterion can also be changed by the FastChen.setNewtonAccuracy method (see Sect. 6.6).

4.3 Benchmark input and output files

The input folder contains a selected sample of atmospheric structures of various objects, from AGB
stars to exoplanets. These files have the same format as the one expected by the C++ stand-alone
version. The pre-computed chemistry output of these benchmark structures can be found in the folder
output_benchmarks. This chemistry output has been generated with the standard FastChem options
and the standard solar element abundance and equilibrium constants files. These benchmarks can be
used to validate if the FastChem installation works correctly.

5 Running pyFastChem

5 Running pyFastChem

In addition to the C++ executable, we provide several Python scripts that can run the FastChem
code through its Python interface pyFastChem. The sample scripts can be found within the python/
folder. These sample scripts show different use cases and can be used as a basis for your own FastChem
Python scripts.

5.1 Provided Python examples

Currently, we provide the following examples:

fastchem.py
Runs a simple FastChem calculation on a temperature-pressure structure defined within the
script, writes output files, and creates a plot with selected species.

fastchem_c_o.py
Runs a FastChem calculation on a temperature-pressure structure defined within the script and
for a range of different C/O ratios. It will write output files, and create a plot with selected
species.

fastchem_metallicity.py
Runs a FastChem calculation on a temperature-pressure structure defined within the script and
for a range of different metallicity factors. It will write output files, and create a plot with
selected species.

Note that the scripts should be executed from within the PYTHON folder since all file paths in the
scripts are given relative to this directory. These files can be used as templates to create your own
special Python scripts to run pyFastChem. The following section provides some details on the steps
required to run FastChem from within Python. A more detailed overview of all the methods and
variables available within pyFastChem can be found in Chapter 7.

5.2 Detailed steps for running FastChem with pyFastChem

As a first step, we need to import the pyFastChem module:

import pyfastchem

5 Running pyFastChem 25

This will import the module compiled by PyBind11l. Next, we have to create a FastChem object
(here named fastchem) with the constructor pyfastchem.FastChem provided by pyFastChem:

fastchem = pyfastchem.FastChem(’input/element_abundances.dat’, ’input/logK.dat’, 1)

The constructor requires three different arguments: the location of the element abundance file, the
location of the file with the equilibrium constants, and the verbose level. Alternatively, a FastChem
object can also be created via

fastchem = pyfastchem.FastChem(’input/parameters.dat’, 1)

where the first argument is the location of the parameter file and the second one the initial verbose
level. The latter one will later be replaced by the corresponding value read in from the parameter
file. The structure of this parameter file is discussed in Section 3.4.

Creating a FastChem object with the first method will set internal parameters to their default values.
The maximum number of chemistry iterations will be 1000, the number of Newton, bisection and
Nelder-Mead method iterations is 3000, and the accuracy of the of Newton method and the chemistry
iterations is set to 1074, All of these values can, however, be adjusted during runtime by using the
methods listed in Section 7.5.

Next, we need to create the input and output structures used by pyFastChem:

input_data = pyfastchem.FastChemInput ()
output_data = pyfastchem.FastChemOutput()

Details on these structures can be found in Section 7.4. The input structure basically contains the
temperature (in K) and pressure (in bar) arrays that the chemistry should be calculated for. They

can be set, for example, by:

input_data.temperature = temperature

input_data.pressure = pressure

where temperature and pressure are standard Python lists or NumPy arrays. Both arrays need to have
the same length. With the input structure properly set up, we can now run the actual FastChem
calculation by calling the calcDensities method:

fastchem_flag = fastchem.calcDensities(input_data, output_data)

This method returns an integer flag that describes the overall outcome of the calculation. A

5 Running pyFastChem 26

description of the different flags can be found in Section 7.2. After calling the calcDensity method,
the output structure will be filled with the corresponding output data. For example,
output_data.number_densities will contain the number densities of the chemical species. This is a 2D
list, where the first dimension refers to the temperature and pressure input arrays and the second
dimension refers to the different chemical species. The list can be easily converted into a NumPy
array via:

number_densities = np.array(output_data.number_densities)

The Python directory of the FastChem repository also contains functions that save the output into
files, identical to those from the C++ version. They can be called by:

saveChemistryOutput (output_dir + ’/chemistry.dat’, temperature, pressure, <
output_data.total_element_density, output_data.mean_molecular_weight, <«

output_data.number_densities, fastchem)

saveMonitorOutput (output_dir + ’/monitor.dat’, temperature, pressure, <
output_data.element_conserved, output_data.fastchem_flag, output_data.nb_chemistry_iterations, <«

output_data.total_element_density, output_data.mean_molecular_weight, fastchem)

A more detailed description of the output functions can be found in the next section.

5.3 Output functions of pyFastChem

The Python directory includes several scripts that can save the FastChem chemistry and monitor out-
put in either text or binary data files. All these functions are located within the file save_output.py.
Examples of their usage can be found in the three Python scripts discussed above.

5.3.1 Chemistry output scripts

save_output.py contains two functions for the general chemistry output. The first,
saveChemistryOutput, saves the results in a text file that is identical to the one of the C++ version.
If the chemistry is calculated for a larger number of pressure and temperature points, the output can
become quite large. Saving these results into a simple text file can, therefore, take a very long time -
in extreme cases even longer than the calculation itself.

Therefore, we provide an alternative function saveChemistryOutputPandas that saves the output in a
pandas DataFrame format into a pickle file. Since this is a binary format, saving a large output is
substantially faster than the corresponding ASCII text version.

5 Running pyFastChem

The function for saving the output as a normal text file is

saveChemistryOutput (file_path, temperature, pressure, total_element_density, <
mean_molecular_weight, number_densities, fastchem, output_species=None, additional_columns=None, <>

additional _columns_desc=None)
with the following arguments:

file_path
Contains the path to the output file as a str variable.

temperature, pressure
Arrays of float values with the temperature and pressure structure the chemistry has been
calculated for.

total_element_density
float array of the total number density of all atoms ¢, i.e. ngot = > ; (nl + Zj njyij), summed
over their atomic number densities, as well as the ones contained in all other molecules/ions j.
This quantity is usually only a diagnostic output and not relevant for other calculations. The
dimension of the array is equal to that of the temperature and pressure vectors.

mean_molecular_weight
float array of the computed mean molecular weight. The dimension of the array is equal to that
of the temperature and pressure vectors.

number_densities
Two-dimensional float array of the number densities. The first dimension of the array refers to
the temperature and pressure input arrays, while the second dimension describes the different
chemical species.

fastchem

An object of the pyFastChem class that has been used to calculate the chemistry.

output_species=None
Optional parameter. Is an array of str values that contains the chemical symbols of species the
chemistry output file should be saved for. Without this optional parameter, the output function
will by default save all species. The symbols have to match the ones used in the FastChem
input file for the equilibrium constants. For the standard files supplied with FastChem, the Hill
notation, therefore, needs to be used here.

5 Running pyFastChem

additional_columns=None, additional_columns_desc=None

Optional parameters. Sometimes, FastChem calculations are not iterated only over temperature
or pressure but also other variables, such as the metallicity or C/O ratio. The output function
therefore contains these optional parameters that allow to print additional columns in the output
file. The first parameter additional_columns is an N X Nyp-dimensional array of f1oat values, where
the first dimension refers to the number of additional columns and the second dimension has to
be equal to the dimensions of the temperature and pressure arrays.

The second optional parameter additional_columns_desc contains an array of str values with the
header descriptions of the additional columns. The dimension has to be equal to number of
additional columns. If this is not the case, or if the parameter is missing entirely, the columns
will be labelled unk instead.

All of these function arguments, except for the optional parameters, are contained within the input
and output structures of pyFastChem, discussed in Sect. 7.4

Saving the chemistry output with the panda DataFrame format in a pickle file is possible via the
function:

saveChemistryOutputPandas(file_path, temperature, pressure, total_element_density, <
mean_molecular_weight, number_densities, fastchem, output_species=None, additional_columns=None, <

additional_columns_desc=None)

All arguments are identical to those of the previous ASCII output function. The saved panda
DataFrame contains the same columns and headers as the simple text output.

5.3.2 Monitor output scripts

save_output.py also contains two functions for the FastChem monitor output. The first,
savMonitorOutput, saves the debug output in a text file that is identical to the one of the C++ ver-
sion. Just like for the chemistry output, saving the results for a large number of calculations can be
quite slow. Therefore, we also provide an alternative function saveMonitorOutputPandas that saves the
output as a pandas DataFrame format into a pickle file.

The function for saving the output as a normal text file is

saveMonitorOutput (file_path, temperature, pressure, element_conserved, fastchem_flags, <
nb_chemistry_iterations, total_element_density, mean_molecular_weight, fastchem, <>

additional _columns=None, additional_columns_desc=None)
with the following arguments:

file_path
Contains the path to the output file as a str variable.

5 Running pyFastChem

temperature, pressure
Arrays of float values with the temperature and pressure structure the chemistry has been
calculated for.

element_conserved
The two-dimensional array of int numbers contains information on the state of element conserva-
tion. A value of 0 indicates that element conservation is not fulfilled, whereas a value of 1 means
that the element has been conserved. The first dimension refers to the temperature-pressure
grid and has the same size as the temperature and pressure vectors of the input structure. The
second dimension refers to the number of elements and has a length of getElementNumber() (see
Sect. 7.5).

fastchem_flag
One-dimensional array of int numbers. Contains flags that give information on potential issues
of the chemistry calculation for each temperature-pressure point. The set of potential values
is stated in Sect. 7.2. A string message for each corresponding flag can also be obtained from
the constant pyfastchem.FASTCHEM_MSG vector of strings, via pyfastchem.FASTCHEM_MSG[flagl. The
dimension of the array is equal to that of the input temperature and pressure vectors.

nb_chemistry_iterations
One-dimensional array of int numbers. Contains the number of chemistry iterations that were
required to solve the system for each temperature-pressure point. The dimension of the array is
equal to that of the input temperature and pressure vectors.

total_element_density
One-dimensional array of float numbers that contains the total number density of all atoms 4,
ie. Nt =, (nl + E]- njuij), summed over their atomic number densities, as well as the ones
contained in all other molecules/ions j. This quantity is usually only a diagnostic output and
not relevant for other calculations. The dimension of the array is equal to that of the input
temperature and pressure vectors.

mean_molecular_weight
One-dimensional array of float numbers. Contains the mean molecular weight of the mixture
in units of the unified atomic mass unit. For all practical purposes, this can also be converted
into units of g/mol. The dimension of the array is equal to that of the input temperature and
pressure vectors.

fastchem

An object of the pyFastChem class that has been used to calculate the chemistry.

5 Running pyFastChem

additional_columns=None, additional_columns_desc=None

Optional parameters. Sometimes, FastChem calculations are not iterated only over temperature
or pressure but also other variables, such as the metallicity or C/O ratio. The output function
therefore contains these optional parameters that allow to print additional columns in the output
file. The first parameter additional_columns is an N X Nyp-dimensional array of f1oat values, where
the first dimension refers to the number of additional columns and the second dimension has to
be equal to the dimensions of the temperature and pressure arrays.

The second optional parameter additional_columns_desc contains an array of str values with the
header descriptions of the additional columns. The dimension has to be equal to number of
additional columns. If this is not the case, or if the parameter is missing entirely, the columns
will be labelled unk instead.

The monitor output file has the same format as the one produced by the C++ version discussed in
Sect. 3.5. Saving the chemistry output with the panda DataFrame format in a pickle file is possible via
the function:

saveMonitorOutputPandas(file_path, temperature, pressure, element_conserved, fastchem_flags, <
nb_chemistry_iterations, total_element_density, mean_molecular_weight, fastchem, <>

additional _columns=None, additional_columns_desc=None)

All arguments are identical to those of the previous ASCII output function. The saved panda DataFrame
contains the same columns and headers as the simple text output. The only difference between
the outputs is that for the DataFrame format, the element conservation and FastChem flags are not
converted to strings (i.e. to fail or ok) but rather have their original integer values that are returned
by FastChem. Their values are discussed in Sect. 7.4 & 7.2.

Part 1l

Detailed C++ object class and Python
module description

6 FastChem class

6 FastChem class

FastChem has been written in an object oriented way, split across several different object classes. The
entire source code of FastChem is contained in the folder fastchem_src/. For including FastChem in
another C++ project, only adding the main fastchem header file fastchem.h is required. All FastChem
code is encapsulated in its own namespace called fastchem to avoid clashing with other libraries.

6.1 Some comments on coding conventions

The entire FastChem code has been programmed using specific conventions that make it easy to
recognise and differentiate class, method and variable names.
Class and structure names are always capitalised, for example

class FastChem{...

or
struct Molecule{...

If the name is a compound noun, each noun is capitalised separately, e.g.
struct ChemicalElementDataf{...

No separators like _ are used for class or structure names.

Class methods and functions in general always start with a lowercase letter. If the name is a compound
noun, the start of every other noun is capitalised and no separator is used, for example:

FastChem.setElementAbundances(...)
or
Molecule.calcMassActionConstant(...)

Variable names are always written in lowercase and compound nouns are separated by a _. For
example:

FastChem.element_calculation_order

or

6 FastChem class

Element.molecule_list

The only exceptions are global constants. They contain only capitalised letters, e.g.:
constexpr unsigned int FASTCHEM_UNKNOWN_SPECIES

or

constexpr double CONST_AMU

6.2 FastChem object class

The entire FastChem model is encapsulated in an object class called FastChem that is defined in
the header file fastchem.h. The object class is programmed as a template that be used in either
double or long double precision. When creating an object of this class by calling a corresponding
constructor, one therefore has to specify which of the two versions should be used:

FastChem<long double> fastchem("model_parameter_file.dat", 1);
FastChem<double> fastchem("model_parameter_file.dat", 1);

The long double version has a slightly higher computational overhead and larger memory require-
ments than the double one. On the other hand, it offers a higher numerical precision which is espe-
cially important when dealing with chemical systems where the mass action constants and number
densities can vary by many orders of magnitudes. We strongly suggest to always use the long double
version despite the additional computational overhead. In fact, in our experience the increased nu-
merical precision of long double can effectively lead to a smaller number of iterations.

6.3 FastChem constants

The FastChem namespace fastchem contains a number of constants that are all defined in the file
fastchem_constants.h.

This includes the constant constexpr unsigned int fastchem::FASTCHEM_UNKNOWN_SPECIES that is returned
by some FastChem methods when a chemical species is not found.

The chemistry calculation will return several output flags that are also defined in this file. This
includes the following constants:
constexpr unsigned int fastchem::FASTCHEM_SUCCESS

Indicates that the calculation has been successful, i.e. that the chemistry iterations converged.

6 FastChem class

constexpr unsigned int fastchem::FASTCHEM_NO_CONVERGENCE
Indicates that the calculation was not successful, i.e. that the chemistry did not converge within
the allowed maximum number of iterations steps given in the config file or set manually via
FastChem.setMaxChemistryIter (see Sect. 6.6). One way to solve such a problem is to increase the
maximum number of iteration steps.

constexpr unsigned int fastchem::FASTCHEM_INITIALIZATION_FAILED
Indicates that something went wrong during reading one of the input files. To find the
source of the problem, one can set the verbose level in the config file or manually via
FastChem.setVerboseLevel (see Sect. 6.6) to a higher value and look at the terminal output.

constexpr unsigned int fastchem::FASTCHEM_IS_BUSY
The chemistry calculations of FastChem can only be called once for each object class instance.
Attempting to start a new calculation while another is still running, for example via OpenMP,
will result in FastChem returning this flag.

constexpr unsigned int fastchem::FASTCHEM_WRONG_INPUT_VALUES
FastChem returns this flag if some input values are wrong. Currently, this refers to the
temperature and pressure vectors in the input structure not having the same size (see Sect.
6.5.1 for details on the input structure).

In addition to these flags, fastchem_constants.h also includes a constant string vector
const std::vector<std::string> fastchem::FASTCHEM_MSG that contains string expressions for each of
these flags. Using this vector with any of the aforementioned flags fastchem::FASTCHEM_MSG[flag]
returns a string with a description of the corresponding flag’s meaning. For example,
fastchem: : FASTCHEM_MSG[fastchem: : FASTCHEM_NO_CONVERGENCE] will return the strhng "convergence failed".

6.4 FastChem constructor

Since FastChem is written as an object class, an instance of that class (i.e. an object) needs to be
created before FastChem can be used. This is done by calling the constructor of the FastChem class.
There are two primary ways to call the constructor and create an object.

FastChem(const std::string& model_parameter_file, const unsigned int verbose_level_init)
This constructor requires two parameters: the location of the parameter file, described in Sect.
3.4, as well as the initial verbose, i.e. the amount of debug output in the terminal window. All
main options and parameters will be read from the parameter file, but can be changed later by
using the appropriate methods described in Sect. 6.6.

6 FastChem class

FastChem(const std::string &element_abundances_file, const std::string &species_data_file, const <

unsigned int verbose_level)
This constructor requires three parameters: the locations of the element abundance and species
data files, as well as the verbose level. All other options and parameters within FastChem will be
set to their default values but can be later changed by using the appropriate methods described
in Sect. 6.6. The default maximum number of chemistry iterations is 1000, the number of
Newton, bisection and Nelder-Mead method iterations is 3000, and the default accuracy of the
of Newton method and the chemistry iterations is set to 107%.

A third way to create a FastChem object is to make a copy of an existing one. FastChem contains an
internal copy constructor that manages the copy of all the object class’ data structures. Assuming
that fastchem_a is a valid object instance of the FastChem class, a second object, say fastchem_b, can
simply be created by using

fastchem::FastChem fastchem_b(fastchem_a);

In this example, fastchem_b is a direct copy of fastchem_a, i.e. all parameters, options, and species
& element data structures are identical. After the creation of fastchem_b, both objects can be used
independently from each other and can even be run at the same time.

6.5 Input and output structures

When the chemistry calculation of FastChem, FastChem.calcDensities(FastChemInput, FastChemOutput)
is called, input and output structures are required. Their definitions can be found in the source file
fastchem_src/input_output_struct.h

6.5.1 Input structure

The input structure is defined as follows:

struct FastChemInput
{

std::vector<double> temperature;
std::vector<double> pressure;
};

It contains vectors for the temperatures (in K) and pressures (in bar) that the chemical composition
should be calculated for. Both vectors need to have the same length. Otherwise, FastChem.calcDensities
will return the constant fastchem: :FASTCHEM_WRONG_INPUT_VALUES. Note that even if you want to run the
chemistry for only a single temperature and pressure point, you still need to provide the input in
vectorial form.

6 FastChem class

6.5.2 Qutput structure

The outout structure is defined as

struct FastChemOutput

{

};

std::vector<std::vector<double>> number_densities;
std::vector<double> total_element_density;
std::vector<double> mean_molecular_weight;

std::vector<std::vector<unsigned int>> element_conserved;
std::vector<unsigned int> nb_chemistry_iterations;
std::vector<unsigned int> fastchem_flag;

It has the following variables:

std:

std:

std:

std:

std:

:vector<std::vector<double>> number_densities

The two-dimensional array contains the number densities in cm ™ of all species (elements,
molecules, ions). The first dimension refers to the temperature-pressure grid and has the same
size as the temperature and pressure vectors of the input structure. The second dimension refers
to the number of species and has a length of FastChem.getSpeciesNumber() (see Sect. 6.6).

:vector<double> total_element_density

Contains the total number density of all atoms ¢, i.e. ngt = > ; (nz +2; njyij), summed
over their atomic number densities, as well as the ones contained in all other molecules/ions j.
This quantity is usually only a diagnostic output and not relevant for other calculations. The
dimension of the vector is equal to that of the input temperature and pressure vectors.

:vector<double> mean_molecular_weight

Contains the mean molecular weight of the mixture in units of the unified atomic mass unit.
For all practical purposes, this can also be converted into units of g/mol. The dimension of the
vector is equal to that of the input temperature and pressure vectors.

:vector<std::vector<unsigned int>> element_conserved

The two-dimensional array contains information on the state of element conservation. A value
of 0 indicates that element conservation is violated, whereas a value of 1 means that the element
has been conserved. The first dimension refers to the temperature-pressure grid and has the
same size as the temperature and pressure vectors of the input structure. The second dimension
refers to the number of elements and has a length of FastChen.getElementNumber () (see Sect. 6.6).

:vector<unsigned int> nb_chemistry_iterations

Contains the number of chemistry iterations that were required to solve the system for each
temperature-pressure point. The dimension of the vector is equal to that of the input tempera-
ture and pressure vectors.

6 FastChem class

std::vector<unsigned int> fastchem_flag

Contains flags that give information on potential issues of the chemistry calculation for each
temperature-pressure point. The set of potential values is stated in Sect. 6.3. A string message
for each corresponding flag can also be obtained from the constant fastchem: :FASTCHEM_MSG vector
of strings, via fastchem::FASTCHEM_MSG[flag]. The dimension of the vector is equal to that of the
input temperature and pressure vectors.

The vectors of the output structure don’t need to be pre-allocated. This will be done internally
within FastChem when running the chemistry calculations. If the vectors already contain data, their
contents will be overwritten.

6.6 Public methods of the fastchem::FastChem object class

unsigned int FastChem.calcDensities(FastChemInput input, FastChemOutput output)

Starts a chemistry calculation with the provided FastChemInput and FastChemOutput structs.
Returns an unsigned int that represents the highest value from the flag vector within the
FastChemQOutput struct.

unsigned int FastChem.getSpeciesNumber ()

Returns the total number of chemical species (atoms, ions, molecules) as unsigned int

unsigned int FastChem.getElementNumber ()

Returns the total number of elements as unsigned int

unsigned int FastChem.getMoleculeNumber ()

std:

std:

Returns the total number of molecules and ions (anything other than elements) as unsigned int

:string FastChem.getSpeciesName(unsigned int species_index)

Returns the name of a chemical species with index species_index as std::string; returns empty
string if species does not exist

:string FastChem.getSpeciesSymbol (unsigned int species_index)

Returns the symbol of an element or the formula of a molecule/ion with index species_index as
std: :string; returns empty string if species does not exist

unsigned int FastChem.getSpeciesIndex(std::string symbol)

Returns the index of a species (element/molecule/ion) with symbol/formula symbol as
unsigned int; returns the constant fastchem::FASTCHEM_UNKOWN_SPECIES if species does not exist

double FastChem.getElementAbundance (unsigned int species_index)

Returns the abundance of an element with index species_index as double; returns O if element
does not exist

6 FastChem class

std::

vector<double> FastChem.getElementAbundance()
Returns the abundances of all elements as a vector of double; vector has a length of
FastChem.getElementNumber ()

double FastChem.getSpeciesMolecularWeight(const unsigned int species_index)

void

void

void

void

void

void

void

void

Returns the molecular weight of a species with index species_index as double; returns 0 if species
does not exist; for an element this refers to the atomic weight

setElementAbundances (std: :vector<double> abundances)

Sets the abundances of all elements; the abundances are supplied as std: :vector<double>, where
the vector has to have a size of FastChen.getElementNumber (); if this is not the case, FastChem will
print an error message and leave the element abundances unchanged

FastChem.setVerboseLevel (unsigned int level)

Sets the verbose level of FastChem, i.e. the amount of text output in the terminal. A value of
0 will result in FastChem being almost silent, whereas a value of 4 would provide a lot of debug
output. A value larger than 4 will be interpreted as 4. This value will overwrite the one from
the FastChem config file.

FastChem.setMaxChemistryIter(unsigned int nb_steps)
Sets the maximum number of internal chemistry iterations, provided by unsigned int nb_steps.
This value will overwrite the one from the FastChem config file.

FastChem.setMaxNewtonIter (unsigned int nb_steps)
Sets the maximum number of internal Newton iterations, provided by unsigned int nb_steps.
This value will overwrite the one from the FastChem config file.

FastChem.setMaxBisectionIter (unsigned int nb_steps)
Sets the maximum number of internal bisection iterations, provided by unsigned int nb_steps.
This value will overwrite the one from the FastChem config file.

FastChem.setMaxNelderMeadIter(unsigned int nb_steps)
Sets the maximum number of internal iterations of the Nelder-Mead, provided by
unsigned int nb_steps. This value will overwrite the one from the FastChem config file.

FastChem.setChemistryAccuracy(double accuracy)
Sets the desired accuracy of the chemistry convergence criterion, provided by double accuracy.
This value will overwrite the one from the FastChem config file.

FastChem.setNewtonAccuracy(double accuracy)
Sets the desired accuracy of the Newton’s method convergence criterion, provided by
double accuracy. This value will overwrite the one from the FastChem config file.

6 FastChem class

void FastChem.useScalingFactor(bool use)

Toggles the use of the internal scaling factor. The default value in FastChem is false. The use

of the scaling factor is currently not accessible from the config files but can only be activated by
this function.

7 pyFastChem: The Python module of FastChem

[pyFastChem: The Python module of FastChem

By wusing the library PyBindl1, FastChem can be called directly within Python. This
requires the compilation of FastChem’s Python wrapper that is located in the file
python/fastchem_python_wrapper.cpp. pyFastChem currently only links to the long double
C++ version of FastChem.

As described in Sect. 2.3, when using the CMake approach, pyFastChem will be automatically com-
piled when cmake is configured with the corresponding option. If the configuration and compilation
is successful, a module file should be present in the python/ folder that contains the Python module
which acts as a wrapper between Python and the C++ version of FastChem. The file should be named
pyfastchem. cpython-xxxx, where xxxx will be a combination of your Python version and operating
system.

If pyFastChem has been built using the setup.py script or installed via PyPI, then the module will
be located in your normal Python module library path. It, thus, can be accessed from everywhere on
your system like any other standard Python package. The location and additional module information
can be obtained via

pip show pyfastchem

Depending on your Python installation, pip might need to be replaced by pip3.

A description of the module is given in Sect. 7.1. Besides the pyFastChem module, we also provide
several example Python scripts that show how to call FastChem from within Python for several
different scenarios. We discuss the examples in Sect. 5.1.

7.1 The pyFastChem module

The pyFastChem module provides access to the FastChem object class as well as additional constants
used within FastChem. They are essentially identical to their C++ counterparts discussed in Sect. 6.
To include the pyFastChem module in your Python project, just import it using

import pyfastchem

This provides access to the FastChem object class as well as the input and output structures and
additional pre-defined constants used by FastChem.

7 pyFastChem: The Python module of FastChem

7.2 pyFastChem constants

The pyFastChem module contains a number of pre-defined constants. This includes the constant
pyfastchem.FASTCHEM_UNKNOWN_SPECIES of type int that is returned by some pyFastChem methods when
a chemical species is not found.

The chemistry calculation can also return several output flags of type int defined as constants in the
pyFastChem module:
pyfastchem.FASTCHEM_SUCCESS

Indicates that the calculation has been successful, i.e. that the chemistry iterations converged.

pyfastchem.FASTCHEM_NO_CONVERGENCE
Indicates that the calculation was not successful, i.e. that the chemistry did not converge within
the allowed maximum number of iterations steps given in the config file or set manually via
setMaxChemistryIter (see Sect. 7.5). One way to solve such a problem is to increase the maximum
number of iteration steps.

pyfastchem.FASTCHEM_INITIALIZATION_FAILED
Indicates that something went wrong during reading one of the input files. To find the source
of the problem, one can set the verbose level in the config file or manually via setVerboseLevel
(see Sect. 7.5) to a higher value and look at the terminal output.

pyfastchem.FASTCHEM_IS_BUSY
The chemistry calculations of FastChem can only be called once for each object class instance.
Attempting to start a new calculation while another is still running will result in FastChem
returning this flag.

pyfastchem.FASTCHEM_WRONG_INPUT_VALUES
FastChem returns this flag if some input values are wrong. Currently, this refers to the temper-
ature and pressure vectors in the input structure not having the same size (see Sect. 6.5.1 for
details on the input structure).

In addition to these flags, the pyFastChem module also includes a constant string
array pyfastchem.FASTCHEM_MSG that contains string expressions for each of these flags.
Using this array with any of the aforementioned flags pyfastchen.FASTCHEM_MSG[flag] re-
turns a string with a description of the corresponding flag’s meaning. For example,
pyfastchem.FASTCHEM_MSG [pyfastchem.FASTCHEM_NO_CONVERGENCE] will return the string "convergence failed".

7.3 pyFastChem constructor

Since FastChem is written as an object class, an instance of that class (i.e. an object) needs to be
created before FastChem can be used. This is done by calling the constructor of the FastChem class

7 pyFastChem: The Python module of FastChem 42

that is contained within the pyFastChem module. There are two main ways to call the constructor
and create an object.

pyfastchem.FastChem(str element_abundance_file, str equilibrium_constants_file, int verbose_level)

The constructor requires three different arguments: the location of the element abundance file,
the location of the file with the equilibrium constants, and the verbose level, i.e. the amount
of debug output in the terminal window. Creating a FastChem object with this constructor will
set internal parameters to their default values. The maximum number of chemistry iterations
will be 1000, the number of Newton, bisection and Nelder-Mead method iterations is 3000, and
the accuracy of the of Newton method and the chemistry iterations is set to 1074. All of these
values can be adjusted during runtime by using the methods listed in Section 7.5.

pyfastchem.FastChem(str parameter_file, int intial_verbose_level)
The constructor requires two different arguments: the location of the parameter file and the
initial verbose level. The latter one will be replaced by the corresponding value read in from the
parameter file. The structure of this parameter file is discussed in Section 3.4. All of parameter
values read in from the file can also be adjusted during runtime by using the methods listed in
Section 7.5.

7.4 pyFastChen input and output structures

Running a FastChem chemistry calculation requires input and output data structures, resembling
those of the C++ version (see Sect. 6.5.1).

Input structure An input structure, in the example here called input_data, can be defined from the
pyFastChem module in the following way:

input_data = pyfastchem.FastChemInput ()

The input structure contains the following variables:

temperature

An array of float numbers that describe the temperature in K.

pressure

An array of float numbers that describe the pressure in bar.

Both arrays need to have the same length. The PyBind11 library allows normal Python lists or
NumPy arrays to be used here. For example, a NumPy array for the pressure could be defined using
NumPy’s 1ogspace function:

input_data.pressure = np.logspace(-6, 1, num=1000)

7 pyFastChem: The Python module of FastChem 43

Both input variables need to be an array-type variable, even if only a single temperature-pressure
point is going to be calculated.

Output structure The output structure from the pyFastChem module, in the example here called
output_data, can be defined in the following way:

output_data = pyfastchem.FastChemOutput ()

It has the following variables:

number_densities
The two-dimensional array contains the number densities in cm™ of all species (elements,
molecules, ions) as float numbers. The first dimension refers to the temperature-pressure grid
and has the same size as the temperature and pressure arrays of the input structure. The second
dimension refers to the number of species and has a length of getSpeciesNumber() (see Sect. 7.5).

total_element_density
One-dimensional array of float numbers that contains the total number density of all atoms 4,
ie. Nt =, (m + Zj njuij), summed over their atomic number densities, as well as the ones
contained in all other molecules/ions j. This quantity is usually only a diagnostic output and
not relevant for other calculations. The dimension of the array is equal to that of the input
temperature and pressure vectors.

mean_molecular_weight
One-dimensional array of float numbers. Contains the mean molecular weight of the mixture
in units of the unified atomic mass unit. For all practical purposes, this can also be converted
into units of g/mol. The dimension of the array is equal to that of the input temperature and
pressure vectors.

element_conserved
The two-dimensional array of int numbers contains information on the state of element conserva-
tion. A value of 0 indicates that element conservation is not fulfilled, whereas a value of 1 means
that the element has been conserved. The first dimension refers to the temperature-pressure
grid and has the same size as the temperature and pressure vectors of the input structure. The
second dimension refers to the number of elements and has a length of getElementNumber() (see
Sect. 7.5).

nb_chemistry_iterations
One-dimensional array of int numbers. Contains the number of chemistry iterations that were
required to solve the system for each temperature-pressure point. The dimension of the array is
equal to that of the input temperature and pressure vectors.

7 pyFastChem: The Python module of FastChem

fastchem_flag
One-dimensional array of int numbers. Contains flags that give information on potential issues
of the chemistry calculation for each temperature-pressure point. The set of potential values
is stated in Sect. 7.2. A string message for each corresponding flag can also be obtained from
the constant pyfastchem.FASTCHEM_MSG vector of strings, via pyfastchem.FASTCHEM_MSG[flag]l. The
dimension of the array is equal to that of the input temperature and pressure vectors.

The arrays of the output structure don’t need to be pre-allocated. This will be done internally within
FastChem when running the chemistry calculations. If the arrays already contain data, their contents
will be overwritten. The arrays from the output structure can also be easily converted to more
practical NumPy arrays by using, for example:

number_densities = np.array(output_data.number_densities)

7.5 pyFastChem functions

The pyFastChem object returned from pyfastchem.FastChem() has several methods that allow to
interact with FastChem. These methods are equivalent to those of the C++ object class discussed in
Sect. 6.6.

int calcDensities(pyfastchem.FastChemInput() input, pyfastchem.FastChemOutput() output)
Starts a chemistry calculation with the provided pyfastchem.FastChemInput() and
pyfastchem.FastChemOutput () structures. Returns an int value that represents the highest
value from the flag vector within the pyfastchem.FastChemOutput() structure.

int getSpeciesNumber ()
Returns the total number of chemical species (atoms, ions, molecules) as int value.

int getElementNumber ()
Returns the total number of elements as int value.

int getMoleculeNumber ()
Returns the total number of molecules and ions (anything other than elements) as int value.

str getSpeciesName(int species_index)
Returns the name of a chemical species with int index' species_index as str; returns empty string
if species does not exist.

'In the C++ class, an unsigned int is required here. Since this data type doesn’t exist in Python, PyBind11 will convert
the supplied integer value to its unsigned integer version for C++. Even though the parameter is defined as an int
value for Python, only positive numbers, including 0, are accepted as valid input. Using a negative value will result
in an error message from PyBind11.

7 pyFastChem: The Python module of FastChem

str getSpeciesSymbol(int species_index)
Returns the symbol of an element or the formula of a molecule/ion with int index! species_index
as str; returns empty string if species does not exist

int getSpeciesIndex(str symbol)
Returns the index of a species (element/molecule/ion) with str symbol/formula symbol as int;
returns the constant pyfastchem.FASTCHEM_UNKOWN_SPECIES if species does not exist.

float getElementAbundance(int species_index)
Returns the abundance of an element with int index! species_index as float; returns 0 if the
element does not exist

float [] getElementAbundance()
Returns the abundances of all elements as an array of float values; array has a length of
getElementNumber ().

float FastChem.getSpeciesMolecularWeight(int species_index)
Returns the molecular weight of a species with int index! species_index as float; returns 0 if
species does not exist; for an element this refers to the atomic weight.

setElementAbundances(float [] abundances)
Sets the abundances of all elements; the abundances are supplied as an array of float values,
where the array has to have a size of getElementNumber (); if this is not the case, FastChem will
print an error message and leave the element abundances unchanged

setVerboseLevel (int level)
Sets the verbose level of FastChem, i.e. the amount of text output in the terminal. A value of
0 will result in FastChem being almost silent, whereas a value of 4 would provide a lot of debug
output. A value larger than 4 will be interpreted as 4. This value will overwrite the one from
the FastChem config file.

setMaxChemistryIter(int nb_steps)
Sets the maximum number of internal chemistry iterations, provided by the int
nb_steps. This value will overwrite the one from the FastChem parameter file.

L variable

setMaxNewtonIter (int nb_steps)
Sets the maximum number of internal Newton iterations, provided by the int
This value will overwrite the one from the FastChem config file.

! variable nb_steps.

setMaxBisectionIter(int nb_steps)
Sets the maximum number of internal bisection iterations, provided by the int! variable nb_steps.
This value will overwrite the one from the FastChem config file.

7 pyFastChem: The Python module of FastChem

setMaxNelderMeadIter (int nb_steps)
Sets the maximum number of internal iterations of the Nelder-Mead, provided by the int
variable nb_steps. This value will overwrite the one from the FastChem config file.

1

setChemistryAccuracy(float accuracy)
Sets the desired accuracy of the chemistry convergence criterion, provided by float variable
accuracy. This value will overwrite the one from the FastChem config file.

setNewtonAccuracy(float accuracy)
Sets the desired accuracy of the Newton’s method convergence criterion, provided by float
variable accuracy. This value will overwrite the one from the FastChem config file.

useScalingFactor (bool use)
Toggles the use of the internal scaling factor. The default value in FastChem is false. The use
of the scaling factor is currently not accessible from the config files but can only be activated by
this function.

Bibliography

Bibliography
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481, doi: 10.1146/annurev.

astro.46.060407.145222

Bourrier, V., Kitzmann, D., Kuntzer, T., et al. 2020, A&A, 637, A36, doi: 10.1051/0004-6361/
201936647

Chase, M. W. 1986, JANAF thermochemical tables

Hoeijmakers, H. J., Ehrenreich, D., Kitzmann, D., et al. 2019, A&A, 627, A165, doi: 10.1051/
0004-6361/201935089

Kitzmann, D., Heng, K., Oreshenko, M., et al. 2020, ApJ, 890, 174, doi: 10.3847/1538-4357/ab6d71

Malik, M., Kitzmann, D., Mendonga, J. M., et al. 2019, AJ, 157, 170, doi: 10.3847/1538-3881/
ab1084

Stock, J. W., Kitzmann, D., & Patzer, A. B. C. 2020, in prep

Stock, J. W., Kitzmann, D., Patzer, A. B. C., & Sedlmayr, E. 2018, MNRAS, 479, 865, doi: 10.1093/
mnras/sty1531

Tsai, S.-M., Kitzmann, D., Lyons, J. R., et al. 2018, ApJ, 862, 31, doi: 10.3847/1538-4357/aac834

http://doi.org/10.1146/annurev.astro.46.060407.145222
http://doi.org/10.1146/annurev.astro.46.060407.145222
http://doi.org/10.1051/0004-6361/201936647
http://doi.org/10.1051/0004-6361/201936647
http://doi.org/10.1051/0004-6361/201935089
http://doi.org/10.1051/0004-6361/201935089
http://doi.org/10.3847/1538-4357/ab6d71
http://doi.org/10.3847/1538-3881/ab1084
http://doi.org/10.3847/1538-3881/ab1084
http://doi.org/10.1093/mnras/sty1531
http://doi.org/10.1093/mnras/sty1531
http://doi.org/10.3847/1538-4357/aac834

	Introduction to FastChem
	Overview
	Licence
	About this guide

	Installation of FastChem and pyFastChem
	Installation
	Obtaining the code
	Prerequisites
	Prerequisites for installation via CMake
	Prerequisites for Python installation via setup.py or PyPi
	Supported C++ compilers
	PyBind11 Library

	Configuration and compilation of FastChem with CMake
	Notes on MacOS
	Notes on Windows

	Installation of pyFastChem with Python

	Running FastChem and pyFastChem
	Standard FastChem input and output files
	Element abundance file
	Species file
	Basic element data file (optional)
	FastChem parameter file (optional)
	Output files

	The FastChem C++ stand-alone executable
	Starting the FastChem executable
	Config file
	Benchmark input and output files

	Running pyFastChem
	Provided Python examples
	Detailed steps for running FastChem with pyFastChem
	Output functions of pyFastChem
	Chemistry output scripts
	Monitor output scripts

	Detailed C++ object class and Python module description
	FastChem class
	Some comments on coding conventions
	FastChem object class
	FastChem constants
	FastChem constructor
	Input and output structures
	Input structure
	Output structure

	Public methods of the fastchem::FastChem object class

	pyFastChem: The Python module of FastChem
	The pyFastChem module
	pyFastChem constants
	pyFastChem constructor
	pyFastChem input and output structures
	pyFastChem functions

