
AlertLog Package
User Guide

User Guide for Release 2015.03

By

Jim Lewis

SynthWorks VHDL Training

Jim@SynthWorks.com

http://www.SynthWorks.com

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 1
Verbatim copies of this document may be used and distributed without restriction.

Table of Contents

1 AlertLogPkg Overview... 3
2 AlertLogPkg Use Models ... 3
3 Simple Mode: Global Alert Counter .. 4
4 Hierarchy Mode: Separate Alert Counters .. 5
5 Method Reference .. 6

5.1 Package References ... 6
5.2 AlertType .. 6
5.3 Simple Alerts ... 7
5.4 Creating Hierarchy: GetAlertLogID .. 8
5.5 FindAlertLogID: Find an AlertLogID .. 8
5.6 Hierarchical Alerts .. 8
5.7 ReportAlerts: Reporting Alerts .. 9
5.8 SetAlertLogName: Setting the Test Name ..10
5.9 SetGlobalAlertEnable: Alert Global Enable / Disable...10
5.10 SetAlertEnable: Alert Enable / Disable ..11
5.11 SetAlertStopCount: Alert Stop Counts ..11
5.12 AlertCountType ...11
5.13 GetAlertCount ...12
5.14 GetEnabledAlertCount ...12
5.15 GetDisabledAlertCount ...12
5.16 ClearAlerts: Reset Alert and Stop Counts..12
5.17 Math on AlertCountType ..12
5.18 SumAlertCount: AlertCountType to Integer Error Count13
5.19 SetAlertLogJustify ...13
5.20 LogType ...13
5.21 Simple Logs ..13
5.22 Hierarchical Logs ..13
5.23 SetLogEnable: Enable / Disable Logging ..13
5.24 IsLoggingEnabled ...14
5.25 OsvvmOptionsType ...14
5.26 SetAlertLogOptions: Configuring Report Options ..15
5.27 DeallocateAlertLogStruct ..16
5.28 InitializeAlertLogStruct ..16

6 Compiling AlertLogPkg and Friends ...16
7 About AlertLogPkg ..16
8 Future Work ...17
9 About the Author - Jim Lewis ...17

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 2
Verbatim copies of this document may be used and distributed without restriction.

1 AlertLogPkg Overview

VHDL assert statements are a limited form of an alert and log filtering utility. Through a
simulator, you can set an assertion level that will stop a simulation. Through a
simulator, you can turn off some assertions from printing. However, none of this
capability can be configured in VHDL, and in addition, at the end of a test, there is no
way to retrieve a count of the ERROR level assertions that have occurred.

The AlertLogPkg provides Alert and Log procedures that replace VHDL assert
statements and gives VHDL direct access to enabling and disabling of features,
retrieving alert counts, and set stop counts (limits). All of these features can be used in
either a simple global mode or a hierarchy of alerts.

Alert simplifies signaling errors and reporting errors (passed or failed). Alerts have the
levels FAILURE, ERROR, and WARNING. Each level is counted and tracked in an
internal data structure. Within the data structure, each of these can be enabled or
disabled. A test can be stopped if an alert value has been signaled too many times.
Stop values for each counter can be set. The default for FAILURE is 0 and ERROR and
WARNING are integer'right. If all test errors are reported as an alert, at the end of the
test, a report can be generated which provides pass/fail and a count of the different
alert values.

Logs provide a mechanism to conditionally print information. Verbosity control allows
messages (such as debug, DO254 final test reports, or info) that are too detailed for
normal testing to be printed when specifically enabled. Through simulator settings,
assert has this capability to a limited degree.

AssertLogPkg uses TranscriptPkg to print to either std.textio.OUTPUT, a file, or both.
When the TranscriptFile is opened, alert and log print to the TranscriptFile, otherwise,
they print to std.textio.OUTPUT. For more details on TranscriptPkg see the
TranscriptPkg User Guide (TranscriptPkg_user_guide.pdf).

Already using another package for alerts and verbosity control? See the guide
AlertLogPkg_interface_guide.pdf for ideas on how to interface to AlertLogPkg.

2 AlertLogPkg Use Models

Alerts and Logs may be used in either a simple mode or a hierarchy model.

In simple mode, there is single global alert counter that accumulates the number of
FAILURE, ERROR, and WARNING level alerts for the entire testbench. When a test

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 3
Verbatim copies of this document may be used and distributed without restriction.

completes, a summary of the total number of errors as well as the errors for each level
can be produced.

In hierarchy mode, there is a hierarchy of alert counters. Each model and/or source of
alerts has its own set of alert counters. Counts from lower levels propagate up to the
top level counter. Each level in the hierarchy also supports separate verbosity control.
When a test completes, an error report can be produced for both the top level and each
level in the alert hierarchy.

3 Simple Mode: Global Alert Counter

By default, there is a single global alert counter. All designs that use alert or log need
to reference the package AlertLogPkg.

use osvvm.AlertLogPkg.all ;
architecture Test1 of tb is

Use Alert to flag an error, AlertIf to flag an error when a condition is true, or AlertIfNot
to flag an error when a condition is false (similar to assert). Alerts can be of severity
FAILURE, ERROR, or WARNING.

-- message, level
When others => Alert("Illegal State", FAILURE) ;
. . .
-- condition, message, level
AlertIf(ActualData /= ExpectedData, "Data Miscompare …", ERROR) ;
. . .
read(Buf, A, ReadValid) ;
-- condition, message, level
AlertIfNot(ReadValid, "read of A failed", FAILURE) ;

The output for an alert is as follows. Alert adds the time at which the log occurred.
%% Alert ERROR Data Miscompare … at time: 20160 ns

When a test completes, use ReportAlerts to provide a summary of errors.
ReportAlerts ;

When a test passes, the following message is generated:
%% DONE PASSED t1_basic at 0 ns

When a test fails, the following message is generated (on a single line):
%% DONE FAILED t1_basic Total Error(s) = 2 Failures: 0 Errors: 1 Warnings: 1
at 0 ns

Similar to assert, by default, when an alert FAILURE is signaled, a test failed message
(see ReportAlerts) is produced and the simulation is stopped. This action is controlled
by a stop count. The following call to SetAlertStopCount, causes a simulation to stop
after 20 ERROR level alerts are received.

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 4
Verbatim copies of this document may be used and distributed without restriction.

SetAlertStopCount(ERROR, 20) ;

Alerts can be enabled by a general enable, SetGlobalAlertEnable (disables all alert
handling) or an enable for each alert level, SetAlertEnable. The following call to
SetAlertEnable disables WARNING level alerts.

SetGlobalAlertEnable(TRUE) ; -- Default
SetAlertEnable(WARNING, FALSE) ;

Logs are used for verbosity control. Log level values are ALWAYS, DEBUG, FINAL, and
INFO.

Log ("A message", DEBUG) ;

Log formats the output as follows.
%% Log ALWAYS A Message at 0 ns

Each log level is independently enabled or disabled. This allows the testbench to
support debug or final report messages and only enable them during the appropriate
simulation run. The log ALWAYS is always enabled, all other logs are disabled by
default. The following call to SetLogEnable enables DEBUG level logs.

SetLogEnable(DEBUG, TRUE) ;

4 Hierarchy Mode: Separate Alert Counters
In hierarchy mode, each model and/or source of alerts has its own set of alert counters.
Counts from lower levels propagate up to the top level counter. The ultimate goal of
using hierarchy mode is to get a summary of errors for each model and/or source of
alerts in the testbench:

%% DONE FAILED Testbench Total Error(s) = 21 Failures: 1 Errors: 20
Warnings: 0 at 10117000 ns
%% Default Failures: 0 Errors: 4 Warnings: 0
%% OSVVM Failures: 0 Errors: 0 Warnings: 0
%% U_CpuModel Failures: 0 Errors: 4 Warnings: 0
%% Data Error Failures: 0 Errors: 2 Warnings: 0
%% Protocol Error Failures: 1 Errors: 2 Warnings: 0
%% U_UART_TX Failures: 0 Errors: 6 Warnings: 0
%% U_UART_RX Failures: 0 Errors: 6 Warnings: 0

Using hierarchy mode requires a little more work. Behind the scenes within
AlertLogPkg, there is a data structure inside shared variable. Each level in a hierarchy
is referenced with an AlertLogID - which is currently an integer index into the data
structure. As a result, each model must get (allocate) an AlertLogID and then reference
the AlertLogID when signaling alerts. Other than referencing the AlertLogID, the usage
is identical.

A new AlertLogID is created by calling the function GetAlertLogID. GetAlertLogID has
two parameters: Name and ParentID. Name is a string of the ALERT (that prints when
the alert prints). ParentID is of type AlertLogIDType.

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 5
Verbatim copies of this document may be used and distributed without restriction.

In the following example, CPU_ALERT_ID uses the instance name of the model as its
name. Since it is a top level model, it uses ALERTLOG_BASE_ID (which is also the
default) as its ParentID. DATA_ALERT_ID is an alert counter within the CPU. So it uses
a string as its name and CPU_ALERT_ID as its ParentID.

constant CPU_ALERT_ID : AlertLogIDType :=
 -- Name (string value), Parent AlertLogID
 GetAlertLogID(PathTail(CpuModel'PATH_NAME), ALERTLOG_ BASE_ID) ;
constant DATA_ALERT_ID : AlertLogIDType :=
 GetAlertLogID("Data Error", CPU_ALERT_ID) ;
constant PROTOCOL_ALERT_ID : AlertLogIDType :=
 GetAlertLogID("PROTOCOL Error", CPU_ALERT_ID) ;

The AlertLogID is specified first in calls to Alert, Log, SetAlertEnable, SetAlertStopCount,
and SetLogEnable.

Alert(CPU_ALERT_ID, "CPU Error", ERROR) ;
AlertIf(PROTOCOL_ALERT_ID, inRdy /= '0', "during CPU Read operation", FAILURE);
AlertIfNotEqual(DATA_ALERT_ID, ReadData, ExpectedData, "Actual /= Expected Data");
-- AlertLogID, Level, Enable
SetAlertEnable(CPU_ALERT_ID, WARNING, FALSE) ;
-- AlertLogID, Level, Count
SetAlertStopCount(CPU_ALERT_ID, ERROR, 20) ;

Log(UartID, DEBUG, "Uart Parity Received") ;

-- AlertLogID, Level, Enable, DescendHierarchy
SetLogEnable(UartID, WARNING, FALSE, FALSE) ;

Printing of Alerts and Logs include the AlertLogID.
%% Alert FAILURE in CPU_1, Expect data XA5A5 at 2100 ns
%% Log ALWAYS in UART_1, Parity Error at 2100 ns

5 Method Reference

5.1 Package References
Using AlertLogPkg requires the following package references:

library osvvm ;
use osvvm.OsvvmGlobalPkg.all ;
use osvvm.AlertLogPkg.all ;

5.2 AlertType
Alert levels can be FAILURE, ERROR, or WARNING.

type AlertType is (FAILURE, ERROR, WARNING) ;

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 6
Verbatim copies of this document may be used and distributed without restriction.

5.3 Simple Alerts
Simple alerts accumulate alerts in the default AlertLogID (ALERTLOG_DEFAULT_ID). It
supports the basic overloading and usage:

procedure Alert(Message : string ; Level : AlertType := ERROR) ;
. . .
Alert("Uart Parity") ; -- ERROR by default

Alert has two conditional forms, AlertIf and AlertIfNot. The following is their
overloading.

-- without an AlertLogID
procedure AlertIf(condition : boolean ;
 Message : string ; Level : AlertType := ERROR) ;
impure function AlertIf(condition : boolean ;
 Message : string ; Level : AlertType := ERROR) return boolean ;
procedure AlertIfNot(condition : boolean ;
 Message : string ; Level : AlertType := ERROR) ;
impure function AlertIfNot(condition : boolean ;
 Message : string ; Level : AlertType := ERROR) return boolean ;

Usage of conditional alerts:
AlertIf(Break='1', "Uart Break", ERROR) ;
AlertIfNot(ReadValid, "Read Failed", FAILURE) ;

The function form is convenient for use for conditional exit of a loop.
exit AlertIfNot(ReadValid, "in ReadCovDb while reading …", FAILURE) ;

Alert form AlertIfEqual and AlertIfNotEqual to check two values. In the following,
AType can be std_logic, std_logic_vector, unsigned, signed, integer, real, character, or
string.

procedure AlertIfEqual(L, R : AType ; Message : string ;
 Level : AlertType := ERROR) ; Message : string ;
procedure AlertIfNotEqual(L, R : AType ;
 Level : AlertType := ERROR) ;

Alert form AlertIfDiff is for comparing two files.
procedure AlertIfDiff (Name1, Name2 : string; Message : string := "" ;
 Level : AlertType := ERROR) ;
procedure AlertIfDiff (file File1, File2 : text; Message : string := "" ;
 Level : AlertType := ERROR) ;

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 7
Verbatim copies of this document may be used and distributed without restriction.

5.4 Creating Hierarchy: GetAlertLogID
Each level in a hierarchy is referenced with an AlertLogID. The function, GetAlertLogID,
creates a new AlertLogID. If an AlertLogID already exists for the specified name,
GetAlertLogID will return its AlertLogID. It is recommended to use the instance label as
the Name. The interface for GetAlertLogID is as follows.

impure function GetAlertLogID(Name : string ;
 ParentID : AlertLogIDType := ALERTLOG_BASE_ID) return AlertLogIDType ;

As a function, GetAlertLogID can be called while elaborating the design by using it to
initialize a constant or signal:

Constant UartID : AlertLogIDType :=
 -- Name, Parent AlertLogID
 GetAlertLogID("UART_1", ALERTLOG_BASE_ID);

5.5 FindAlertLogID: Find an AlertLogID
The function, FindAlertLogID, finds an existing AlertLogID. If the AlertLogID is not
found, ALERTLOG_ID_NOT_FOUND is returned. The interface for FindAlertLogID is as
follows.

impure function FindAlertLogID(Name : string ; ParentID : AlertLogIDType)
 return AlertLogIDType ;
impure function FindAlertLogID(Name : string) return AlertLogIDType ;

Note the single parameter FindAlertLogID is only useful when there is only one
AlertLogID with a particular name (such as for top-level instance names). As a
function, FindAlertLogID can be called while elaborating the design by using it to
initialize a constant or signal.

constant UartID : AlertLogIDType := FindAlertLogID(Name => "UART_1") ;

Caution: only use FindAlertLogID when it is known that the ID has already been
created - such as in a testbench where the testbench components have already been
elaborated, as otherwise, it is appropriate to use GetAlertLogID.

5.6 Hierarchical Alerts
Hierarchical alerts require the AlertLogID to be specified in the call to alert. It supports
the basic overloading and usage:

procedure alert(
 AlertLogID : AlertLogIDType ;
 Message : string ;
 Level : AlertType := ERROR
) ;
. . .
Alert(UartID, "Uart Parity", ERROR) ;

When an alert is signaled in a lower level of the hierarchy, it increments all parent levels
until it finds a level whose alert for that level is disabled or the top of the hierarchy.

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 8
Verbatim copies of this document may be used and distributed without restriction.

Alert has two conditional forms, AlertIf and AlertIfNot. The following is their
overloading. The function form is convenient for use for conditional exit of a loop.

procedure AlertIf(AlertLogID : AlertLogIDType ; condition : boolean ;
 Message : string ; Level : AlertType := ERROR) ;
impure function AlertIf(AlertLogID : AlertLogIDType ; condition : boolean ;
 Message : string ; Level : AlertType := ERROR) return boolean ;
procedure AlertIfNot(AlertLogID : AlertLogIDType ; condition : boolean ;
 Message : string ; Level : AlertType := ERROR) ;
impure function AlertIfNot(AlertLogID : AlertLogIDType ; condition : boolean ;
 Message : string ; Level : AlertType := ERROR) return boolean ;

Usage of conditional alerts:
AlertIf(Break='1', UartID, "Uart Break", ERROR) ;
AlertIfNot(ReadValid, UartID, "Read", FAILURE);

Alert form AlertIfEqual and AlertIfNotEqual to check two values. In the following,
AType can be std_logic, std_logic_vector, unsigned, signed, integer, real, character, or
string.

procedure AlertIfEqual(AlertLogID : AlertLogIDType ; L, R : AType ;
 Message : string ; Level : AlertType := ERROR) ;
procedure AlertIfNotEqual(AlertLogID : AlertLogIDType ; L, R : AType ;
 Message : string ; Level : AlertType := ERROR) ;

Alert form AlertIfDiff is for comparing two files.
procedure AlertIfDiff (AlertLogID : AlertLogIDType ; Name1, Name2 : string;
 Message : string := "" ; Level : AlertType := ERROR) ;
procedure AlertIfDiff (AlertLogID : AlertLogIDType ; file File1, File2 : text;
 Message : string := "" ; Level : AlertType := ERROR) ;

5.7 ReportAlerts: Reporting Alerts
At test completion alerts are reported with ReportAlerts.

procedure ReportAlerts (
 Name : string := "" ;
 AlertLogID : AlertLogIDType := ALERTLOG_BASE_ID ;
 ExternalErrors : AlertCountType := (others => 0)
) ;
. . .
ReportAlerts ;

ReportAlerts has 3 optional parameters: Name, AlertLogID, and ExternalErrors. Name
specifies the test name (and can also be set with SetAlertLogName). AlertLogID allows
reporting alerts for a specific AlertLogID and its children (if any). ExternalErrors allows
separately detected errors to be reported. ExternalErrors is type AlertCountType and
the value (FAILURE => 0, ERROR => 5, WARNING => 1) indicates detection logic
separate from AlertLogPkg saw 0 Failures, 5 Errors, and 1 Warning. See notes under
AlertCountType.

-- Name, AlertLogID, ExternalErrors
ReportAlerts("Uart1", UartID, (FAILURE => 0, ERROR => 5, WARNING => 1)) ;

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 9
Verbatim copies of this document may be used and distributed without restriction.

ReportAlerts can also be used to print a passed/failed message for an AlertCount that is
passed into the procedure call.

procedure ReportAlerts (Name : String ; AlertCount : AlertCountType) ;

This is useful to accumulate values returned by different phases of a test that need to
be reported separately.

ReportAlerts("Test1: Final", Phase1AlertCount + Phase2AlertCount) ;

Also see SetAlertLogOptions.

5.8 ReportNonZeroAlerts
Within the hierarchy, if a level has no alerts set, then that level will not be printed.

procedure ReportNonZeroAlerts (
 Name : string := OSVVM_STRING_INIT_PARM_DETECT ;
 AlertLogID : AlertLogIDType := ALERTLOG_BASE_ID ;
 ExternalErrors : AlertCountType := (others => 0)
) ;

5.9 SetAlertLogName: Setting the Test Name
SetAlertLogName sets the name ReportAlerts prints when called without parameters -
such as when an internal stop count reached.

procedure SetAlertLogName(Name : string) ;
. . .
SetAlertLogName("Uart1") ;

5.10 SetGlobalAlertEnable: Alert Global Enable / Disable
SetGlobalAlertEnable allows Alerts to be globally enabled and disabled. The intent is to
be able to disable all alerts until the system goes into reset. Alerts are enabled by
default.

procedure SetGlobalAlertEnable (A : EnableType := TRUE) ;
impure function SetGlobalAlertEnable (A : EnableType := TRUE) return EnableType ;

Suppress all alerts before reset by turning alerts off during elaboration with a constant
declaration and then turning them back on later.

InitAlerts : Process
 constant DisableAlerts : boolean := SetGlobalAlertEnable(FALSE);
begin
 wait until nReset = '1' ; -- Deassertion of reset
 SetGlobalAlertEnable(TRUE) ; -- enable alerts

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 10
Verbatim copies of this document may be used and distributed without restriction.

5.11 SetAlertEnable: Alert Enable / Disable
SetAlertEnable allows alert levels to be individually enabled. When used without
AlertLogID, SetAlertEnable sets a value for all AlertLogIDs.

procedure SetAlertEnable(Level : AlertType ; Enable : boolean) ;
. . .
-- Level, Enable
SetAlertEnable(WARNING, FALSE) ;

When an AlertLogID is used, SetAlertEnable sets a value for that AlertLogID, and if
DescendHierarchy is TRUE, it’s the AlertLogID's of its children.

procedure SetAlertEnable(AlertLogID : AlertLogIDType ; Level : AlertType ;
Enable : boolean ; DescendHierarchy : boolean := TRUE) ;

5.12 SetAlertStopCount: Alert Stop Counts
When an alert stop count is reached, the simulation stops. When used without
AlertLogID, SetAlertStopCount sets the alert stop count for the top level to the specified
value if the current count is integer'right, otherwise, it sets it to the specified value plus
the current count.

procedure SetAlertStopCount(Level : AlertType ; Count : integer) ;
. . .
-- Level, Count
SetAlertStopCount(ERROR, 20) ; -- Stop if 20 errors occur

When used with an AlertLogID, SetAlertStopCount sets the value for the specified
AlertLogID and all of its parents. At each level, the current alert stop count is set to the
specified value when the current count is integer'right, otherwise, the value is set to the
specified value plus the current count.

procedure SetAlertStopCount(AlertLogID : AlertLogIDType ;
 Level : AlertType ; Count : integer) ;
. . .
-- AlertLogID, Level, Count
SetAlertStopCount(UartID, ERROR, 20) ;

By default, the AlertStopCount for WARNING and ERROR are integer'right, and FAILURE
is 0.

5.13 AlertCountType
Alerts are stored as a value of AlertCountType.

subtype AlertIndexType is AlertType range FAILURE to WARNING ;
type AlertCountType is array (AlertIndexType) of integer ;

CAUTION: When working with values of AlertCountType, be sure to use named
association as the type ordering may change in the future.

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 11
Verbatim copies of this document may be used and distributed without restriction.

5.14 GetAlertCount
GetAlertCount returns the AlertCount value at AlertLogID. GetAlertCount is overloaded
to return either AlertCountType or integer.

impure function GetAlertCount(AlertLogID : AlertLogIDType := ALERTLOG_BASE_ID)
 return AlertCountType ;
impure function GetAlertCount(AlertLogID : AlertLogIDType := ALERTLOG_BASE_ID)
 return integer ;
. . .
TopTotalErrors := GetAlertCount ; -- AlertCount for Top of hierarchy
UartTotalErrors := GetAlertCount(UartID) ; -- AlertCount for UartID

5.15 GetEnabledAlertCount
GetEnabledAlertCount is similar to GetAlertCount except it returns 0 for disabled alert
levels. GetEnabledAlertCount is overloaded to return either AlertCountType or integer.

impure function GetEnabledAlertCount(AlertLogID : AlertLogIDType :=
 ALERTLOG_BASE_ID) return AlertCountType ;
impure function GetEnabledAlertCount (AlertLogID : AlertLogIDType :=
 ALERTLOG_BASE_ID) return integer ;
. . .
TopTotalErrors := GetEnabledAlertCount ; -- Top of hierarchy
UartTotalErrors := GetEnabledAlertCount(UartID) ; -- UartID

5.16 GetDisabledAlertCount
GetDisabledAlertCount returns the count of disabled errors for either the entire design
hierarchy or a particular AlertLogID. GetDisabledAlertCount is relevant since a "clean"
passing design will not have any disabled alert counts.

impure function GetDisabledAlertCount return AlertCountType ;
impure function GetDisabledAlertCount return integer ;
impure function GetDisabledAlertCount(AlertLogID: AlertLogIDType)
 return AlertCountType ;
impure function GetDisabledAlertCount(AlertLogID: AlertLogIDType) return integer ;

Note that disabled errors are not added to higher levels in the hierarchy. Hence, often
GetAlertCount /= GetEnabledAlertCount + GetDisabledAlertCount.

5.17 ClearAlerts: Reset Alert and Stop Counts
ClearAlerts resets all alert counts to 0 and stop counts back to their default.

procedure ClearAlerts ;

5.18 Math on AlertCountType
function "+" (L, R : AlertCountType) return AlertCountType ;
function "-" (L, R : AlertCountType) return AlertCountType ;
function "-" (R : AlertCountType) return AlertCountType ;
. . .
TotalAlertCount := Phase1Count + Phase2Count ;
TotalErrors := GetAlertCount - ExpectedErrors ;

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 12
Verbatim copies of this document may be used and distributed without restriction.

NegateErrors := -ExpectedErrors ;

5.19 SumAlertCount: AlertCountType to Integer Error Count
SumAlertCount sums up the FAILURE, ERROR, and WARNING values into a single
integer value.

impure function SumAlertCount(AlertCount: AlertCountType) return integer ;
. . .
ErrorCountInt := SumAlertCount(AlertCount) ;

5.20 SetAlertLogJustify
SetAlertLogJustify justifies name fields of Alerts and Logs. Call after setting up the
entire hierarchy if you want Alerts and Logs justified (hence optional).

SetAlertLogJustify ;

5.21 LogType
Log levels can be ALWAYS, DEBUG, FINAL, or INFO.

type LogType is (ALWAYS, DEBUG, FINAL, INFO) ;

5.22 Simple Logs
Simple logs use default AlertLogID. If the log level is enabled, then the log message
will print.

procedure log(Message : string ; Level : LogType := ALWAYS) ;
. . .
Log("Received UART word", DEBUG) ;

5.23 Hierarchical Logs
Hierarchical logs use the specified AlertLogID. If the log level is enabled, then the log
message will print.

procedure log(
 AlertLogID : AlertLogIDType ;
 Message : string ;
 Level : LogType := ALWAYS
) ;
. . .
Log(UartID, "Uart Parity Received", DEBUG) ;

5.24 SetLogEnable: Enable / Disable Logging
SetLogEnable allows alert levels to be individually enabled. When used without
AlertLogID, SetLogEnable sets a value for all AlertLogIDs.

procedure SetLogEnable(Level : LogType ; Enable : boolean) ;
. . .
Log(UartID, "Uart Parity Received", DEBUG) ;

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 13
Verbatim copies of this document may be used and distributed without restriction.

When an AlertLogID is used, SetLogEnable sets a value for that AlertLogID, and if
Hierarchy is true, the AlertLogIDs of its children.

procedure SetLogEnable(AlertLogID : AlertLogIDType ;
 Level : LogType ; Enable : boolean ; DescendHierarchy : boolean := TRUE) ;
. . .
-- AlertLogID, Level, Enable, DescendHierarchy
SetLogEnable(UartID, WARNING, FALSE, FALSE) ;

5.25 Reading Log Enables from a FILE
ReadLogEnables read enables from a file.

procedure ReadLogEnables (FileName : string) ;
procedure ReadLogEnables (file AlertLogInitFile : text) ;

The preferred file format is:
U_CpuModel DEBUG
U_UART_TX DEBUG INFO
U_UART_RX FINAL INFO DEBUG

ReadLogEnables will also read a file of the format:

U_CpuModel
DEBUG
U_UART_TX
DEBUG
U_UART_TX
INFO
. . .

5.26 IsLoggingEnabled
IsLoggingEnabled returns true when logging is enabled for a particular AlertLogID.

impure function IsLoggingEnabled(Level : LogType) return boolean ;
impure function IsLoggingEnabled(AlertLogID : AlertLogIDType ; Level : LogType)
 return boolean ;
. . .
If IsLoggingEnabled(UartID, DEBUG) then
. . .

5.27 GetAlertLogName
GetAlertLogName returns the string value of name associated with an AlertLogID.

impure function GetAlertLogName(AlertLogID : AlertLogIDType) return string ;

5.28 OsvvmOptionsType
OsvvmOptionsType defines the values for options. User values are: OPT_DEFAULT,
DISABLED, FALSE, ENABLED, TRUE. The values DISABLED and FALSE are handled the
same. The values ENABLED and TRUE are treated the same. The value

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 14
Verbatim copies of this document may be used and distributed without restriction.

OPT_USE_DEFAULT causes the variable to use its default value. OsvvmOptionsType is
defined in OsvvmGlobalPkg.

type OsvvmOptionsType is (OPT_INIT_PARM_DETECT, OPT_USE_DEFAULT, DISABLED, FALSE,
ENABLED, TRUE) ;

5.29 SetAlertLogOptions: Configuring Report Options
The output from Alert, Log, and ReportAlerts is configurable using SetAlertLogOptions.

procedure SetAlertLogOptions (
 FailOnWarning : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 FailOnDisabledErrors : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 ReportHierarchy : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 WriteAlertLevel : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 WriteAlertName : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 WriteAlertTime : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 WriteLogLevel : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 WriteLogName : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 WriteLogTime : OsvvmOptionsType := OPT_INIT_PARM_DETECT;
 AlertPrefix : string := OSVVM_STRING_INIT_PARM_DETECT;
 LogPrefix : string := OSVVM_STRING_INIT_PARM_DETECT;
 ReportPrefix : string := OSVVM_STRING_INIT_PARM_DETECT;
 DoneName : string := OSVVM_STRING_INIT_PARM_DETECT;
 PassName : string := OSVVM_STRING_INIT_PARM_DETECT;
 FailName : string := OSVVM_STRING_INIT_PARM_DETECT
) ;

The following options are for ReportAlerts.

FailOnWarning Count warnings as test errors. Enabled
FailOnDisabledErrors Disabled errors are test errors. Enabled
ReportHierarchy When multiple AlertLogIDs exist, print an error summary for

each level.
Enabled

ReportPrefix Prefix for each line of ReportAlerts. "%% "
DoneName Value printed after ReportPrefix on first line of ReportAlerts. "DONE"
PassName Value printed when a test passes. "PASSED".
FailName Value printed when a test fails. "FAILED"

The following options are for alert:

WriteAlertLevel Print level. Enabled
WriteAlertName Print AlertLogID name. Enabled
WriteAlertTime Alerts print time. Enabled
AlertPrefix Value printed at beginning of alert. "%% Alert"

The following options are for Log:

WriteLogLevel Print level. Enabled
WriteLogName Print AlertLogID name. Enabled
WriteLogTime Logs print time. Enabled
LogPrefix Value printed at beginning of log. "%% Alert"

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 15
Verbatim copies of this document may be used and distributed without restriction.

SetAlertOptions will change as AlertLogPkg evolves. Use of named association is
required to ensure future compatibility.

SetAlertLogOptions (
 FailOnWarning => FALSE,
 FailOnDisabledErrors => FALSE
) ;

After setting a value, a string value can be reset using OSVVM_STRING_USE_DEFAULT
and an OsvvmOptionsType value can be reset using OPT_USE_DEFAULT.

5.30 DeallocateAlertLogStruct
DeallocateAlertLogStruct deallocates all temporary storage allocated by AlertLogPkg.
Also see ClearAlerts.

5.31 InitializeAlertLogStruct
InitializeAlertLogStruct is used after DeallocateAlertLogStruct to create and initialize
internal storage.

5.32 PathTail
When used in conjunction with attribute PATH_NAME applied to an entity name,
PathTail returns the instance name of component.

constant CPU_ALERT_ID : AlertLogIDType :=
 -- Name (string value), Parent AlertLogID
 GetAlertLogID(PathTail(CpuModel'PATH_NAME), ALERTLOG_ BASE_ID) ;

6 Compiling AlertLogPkg and Friends

Use of AlertLogPkg requires use NamePkg and OsvvmGlobalPkg. The compile order is:
NamePkg.vhd, OsvvmGlobalPkg.vhd, TranscriptPkg.vhd, and AlertLogPkg.vhd.
Compiling the packages requires VHDL-2008.

7 About AlertLogPkg

AlertLogPkg was developed and is maintained by Jim Lewis of SynthWorks VHDL
Training. It originated as an interface layer to the BitVis Utility Library (BVUL).
However, it required a default implementation and that default implementation grew
into its own project.

Please support our effort in supporting AlertLogPkg and OSVVM by purchasing your
VHDL training from SynthWorks.

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 16
Verbatim copies of this document may be used and distributed without restriction.

AlertLogPkg is released under the Perl Artistic open source license. It is free (both to
download and use - there are no license fees). You can download it from
http://www.synthworks.com/downloads. It will be updated from time to time.
Currently there are numerous planned revisions.

If you add features to the package, please donate them back under the same license as
candidates to be added to the standard version of the package. If you need features,
be sure to contact us. I blog about the packages at http://www.synthworks.com/blog.
We also support the OSVVM user community and blogs through http://www.osvvm.org.

Find any innovative usage for the package? Let us know, you can blog about it at
osvvm.org.

8 Future Work

AlertLogPkg.vhd is a work in progress and will be updated from time to time.

Caution, undocumented items are experimental and may be removed in a future
version.

9 About the Author - Jim Lewis

Jim Lewis, the founder of SynthWorks, has twenty-eight years of design, teaching, and
problem solving experience. In addition to working as a Principal Trainer for
SynthWorks, Mr Lewis has done ASIC and FPGA design, custom model development,
and consulting.

Mr. Lewis is chair of the IEEE 1076 VHDL Working Group (VASG) and is the primary
developer of the Open Source VHDL Verification Methodology (OSVVM.org) packages.
Neither of these activities generate revenue. Please support our volunteer efforts by
buying your VHDL training from SynthWorks.

If you find bugs these packages or would like to request enhancements, you can reach
me at jim@synthworks.com.

Copyright © 2015 by SynthWorks Design Inc. All rights reserved. 17
Verbatim copies of this document may be used and distributed without restriction.

	1 AlertLogPkg Overview
	2 AlertLogPkg Use Models
	3 Simple Mode: Global Alert Counter
	4 Hierarchy Mode: Separate Alert Counters
	5 Method Reference
	5.1 Package References
	5.2 AlertType
	5.3 Simple Alerts
	5.4 Creating Hierarchy: GetAlertLogID
	5.5 FindAlertLogID: Find an AlertLogID
	5.6 Hierarchical Alerts
	5.7 ReportAlerts: Reporting Alerts
	5.8 ReportNonZeroAlerts
	5.9 SetAlertLogName: Setting the Test Name
	5.10 SetGlobalAlertEnable: Alert Global Enable / Disable
	5.11 SetAlertEnable: Alert Enable / Disable
	5.12 SetAlertStopCount: Alert Stop Counts
	5.13 AlertCountType
	5.14 GetAlertCount
	5.15 GetEnabledAlertCount
	5.16 GetDisabledAlertCount
	5.17 ClearAlerts: Reset Alert and Stop Counts
	5.18 Math on AlertCountType
	5.19 SumAlertCount: AlertCountType to Integer Error Count
	5.20 SetAlertLogJustify
	5.21 LogType
	5.22 Simple Logs
	5.23 Hierarchical Logs
	5.24 SetLogEnable: Enable / Disable Logging
	5.25 Reading Log Enables from a FILE
	5.26 IsLoggingEnabled
	5.27 GetAlertLogName
	5.28 OsvvmOptionsType
	5.29 SetAlertLogOptions: Configuring Report Options
	5.30 DeallocateAlertLogStruct
	5.31 InitializeAlertLogStruct
	5.32 PathTail

	6 Compiling AlertLogPkg and Friends
	7 About AlertLogPkg
	8 Future Work
	9 About the Author - Jim Lewis

