Matri x of derivatives d eqn(i)/d var(j)
egni\var | f T m X r L| f T m X r L] f T m X r L| C]|

P(f)=g(r)| * . + 2
L=rA2Tr4 * : + o+ : : ZSBC 3
mdot =f (T) + o 1
hfyx=o] + .* | e Fsee 6
Pegdfy] o+ . s L T + 2
L' =Ce(T) T * o * : + 4
P =Cg(r) | * : + * : + : + FDE 1
T =L * ’ 4 * ' + : + 3
m =C * * * 5
X =RT) | . s . < . s | | SE 6
v=cdty] . L — . o N 2
L' =Ce(T) ﬁ + : * + : s+ 4
P =Cg(r) : * : + * : + + FDE 1
T =L) * ' + * i + | + 3
m =C * * * 5
hfyx=o| . | . A . = | | FceC 4
r=0 | s 3
L=0 * ZCBC 2
=0 * 1

For illustrative purposes, the system of equations has been trivialised down to (a) 6 Variables, f, ..., L (b) 3
meshpoints (surface at left, centre towards right), (c) 1 Evalue, C, at far right (d) 3 Zero-order Surface BCs,
first 3 rows, (e) 1 First-order SBC, 4th row (f) 5 First-order DEs (g) 1 Second- order DE (h) 5 FDEs again (i)
1 First-order Central BC (j) 4 Zero-order Central BCs. This gives 19 equations in 19 variables.

The matrix has a block tri-diagonal structure. The variables and the equations have been ordered (ie
permuted relative to their numbering in the code, which is indicated along the bottom, and down the RH
side) so that very significant terms are on the leading diagonal -- except for the bottom RH element.
However this element gets a significant value in the course of the elimination of the material below the
leading diagonal (see later).

\% \% E (actual)
1 2 4 5 7 8 6 (1245876)

FSBC
SDE FDE . . . FDE
6 2 4 1 3 5 (642135)

FCBC zZCBC . ZCBC ZSBC . ZSBC
4 3 2 1 2 3 1 (4231231)

(continued on next page)

(continued from previous page)

The above rows give the values for the array IE on p10 of the writeup, except that

(a) I 'misremembered' the ordering of L, r and consequential on that the ordering of the L', r' FDEs, and the
L, r ZCBCs. This permutation doesn't matter at all.

(b) The real code has 5 composition Variables instead of 1 (X). The 4 extra composition Variables are
numbered 3, 9, 10, 11. The 4 extra SDEs are numbered 7, 8, 9, 10, as are the 4 extra FSBCs. The 4 extra
FCBCs are numbered 5, 6, 7, 8.

The 4 below m means that the m-Variable is stored as H(4,K) at meshpoint K. The 3 beside ZSBC means
that in the ZSBC portion of subroutine EQUNS,

EQU(3)=L-"2T"4.
The 1 beside FDE means that in the FDE portion of EQUNS,

EQU(1)=P(K)-P(K-1)-0.5C(g(K)+g(K-1))
and so on. In the illustration, P is assumed to be a function of f only, rather than of f, T, and its gradient P' to be
C times a function of r only, etc.

* means a significant term; + is a minor term, might be comparable but need not be. Every block that contains
either *s or +s also in practice contains more non-zero but unimportant terms; all blocks that have neither are
completely empty, except for the 3rd and 4th block in the bottom row. Since the ‘central' meshpoint is actually
half a meshpoint in from the centre (to avoid singularities like m/r*2), the real ZCBCs involve *both*
innermost meshpoints.

P()=g(r)| 1 S+ 2
L=rA2Tr4 1 e+ o+ : : SBC1 3
mdot =f (T) 1.+ o+ o+ 1
hfyx=o| + .+ | s T e s
r=cd(t)] v . S L < n 2
L' =Ce(T) o * T * : + 4
P' =Cg(r) * + * + + DE1 1
T =CL * ' + * ' + ' + 3
m =C * * * 5
X =R(T) | e s P < A s 1] DE2 s
r=cd(ty .0 L —_— . S N 2
L' =Ce(T) : +) * + : o+ 4
P =Cg(r) : * : + * : + + DEL 1
T =L) * ' + * i + | + 3
m =C * * * 5
hfyx=o| . L S . s B2 4
r=0 | L < 3
L=0 * CBCL 2
mE0 * 1

Successive calls to DIFRNS in SOLVER set up successive rows of blocks in the matrix. In between these
calls, Gaussian elimination proceeds via calls to ELIMNS and DIVIDE.

The first call to DIVIDE mutiplies the top 3 rows by the inverse of the leading 3 X 3 block, reducing this
block to unity. The block to its immediate left is stored (and also the columnn on the far right, which is not
illustrated: when operating on the array A in Ax =y, the same operatioins are done on y as on A, but we
only illustrate A).

After the first call to DIVIDE, we call DIFRNS again to fill the next 6 rows (SBC2 and DE1). Then a call to
ELIMNS eliminates the blocks below the leading unit matrix: see next Fig.

P(f)=g(r)] 1 .o+ + + 2
L=r~2Tr4 1 L+t : : SBC1 3
mdot =f (T) 1.+ o+ o+ ' ' 1
hFYX =0 | . f e e e e | | sB2 6
regd(f)] o+ e S |+ 2
L' =Ce(T) e x + : * : + 4
P =Cg(r) Y : + : + DE1 1
T =CL : + + + * : + : + 3
m =C + + + * N 5
X =RT) | A S A < A . | | D2 6
=g dty] . + N + . |+ 2
L' =Ce(T) + * + - 4
P =Cg(r) * + * + + DE1 1
T = * + * + | + 3
m =C * * * 5
hfyx=o| . 1 L o | | B2 4
k=0 | s 3
L=0 : : : * cBC1 2
m=0 * 1

Then in DIVIDE we divide the current 6 rows (SBC2 and DE1) by the leading 6 X 6 matrix: next page.

P(f)=g(r)| 1 .o+ + + 2
L=r"2T/4 1 e+t : : SBC1 3
mdot =f (T) 1.+ o+ o+ ' ' 1
h(fyx=o| .1 | o« e ox | | sB2 6
r=cd(t)y .1 e e |+ 2
L' =Ce(T) : 1 S+ o+ o+ : + 4
P =Cg(r) : 1 e+ o+ : + DEL 1
T =CL ' 1 S+ o+ ' + 3
m =C 1.+ + o+ + 5
X' =R(T) | A < P < A . 1 D2 6
=g dty] . T 0 T . |+ 2
L' =Ce(T) + * + * + 4
P =Cg(r) * + * + + DE1 1
T = * + * + | + 3
m =C * * * 5
h(fyx=0| . 1 o e | | o8B 4
r=0 | Ly 0 3
L=0 : : : * CBCL 2
me0 * 1

Next, we fill up the next 6 rows (DE2, DE1) in DIFRNS. Then we use ELIMNS to eliminate everything
below that part of the leading diagonal which is already reduced to unit matrices. See next fig.

P(f)=g(r)
L=rr2Tr4
mdot =f (T)

h(f) X =0

+ o+ o+
+ o+ o+
+ *

| f T m X r L |
|
* |
+ *
+ *
* +
* +
*
+ * |
*
*
*

Now use DIVIDE to convert the leading 6 X 6 array of rows DE2, DEI to unity: next fig.

SBC1

SBC2

PN W O W R, AN OO W, A~ DN O WDN

P(f)=g(r)
L=r 274
ndot =f (T)

h(f) X =0
r=Cd(f)
L' =Ce(T)

P =Cg(r)

h(f) X =0

+ + +
1 + + +
1 + + +

Now fill up the last 4 rows (CBC2, CBC1) in DIFRNS, and ELIMNS8 what is below the unit part of the

leading diagonal: next fig.

SBC1

SBC2

CBC2

CBC1

PN WA W R, AN OO W R, BMMDN O PR ®WDN

P(f)=g(r)| 1 + + + 2
L=r"2T"4 1 + + + SBC1 3
mdot =f (T) 1.+ + o+ 1
ntyx=o| .1 1 o+ w1 s e
ceadt)] .1 o ow 2
L' =Ce(T) 1 + + + 4
P =Cg(r) 1 + o+ o+ DEL 1
T =CL 1 + + + 3
m =C 1 + + + 5
X'=R L. P DE2 6
cead) . P 2
L' =Ce(T) 1 + o+ o+ 4
P =Cg(r) 1 + + + DE1 1
T =CL 1 + + + 3
m =C 1 + o+ o+ 5
hfyX=o | . s 4]+ B2 4
r=0 | o 3
L=0 + + * cBC1 2
m=0 + o+ 4+ 1

This must have the effect of putting some non-trivial value in the bottom RH corner, which was previously
empty. In fact, the previous ELIMNS step will put there the product of two starred values -- one at the far
right of the last m'=C row, and one in the last (m=0) row -- in the previous fig. This should leave a
reasonably invertible 4 X 4 block in the bottom right: next fig.

P(f)=g(r)| 1 .+ + + 2
L=r"2T 4 1 Do+ + + SBC1 3
mdot =f (T) 1.+ o+ o+ 1
h(fyx=o| .1 | s« o+ x| 7 s s
v=gd) .1 | s s sy v 2
L' =Ce(T) ﬁ 1 L+ j + 4
P =Cg(r) : 1 S+ o+ : + DEL 1
T=a ' 1+ o+ : + 3
m =C 1.+ + + + 5
X =RT) | . + + +]+] DE2 6
v=ad(f)] .y e e e . 2
L' =Ce(T) i Z 1 TSR 4
P =Cg(r) : : 1 I DEL 1
T =CL 1 o+ 4]+ 3
m =C 1.+ o+ o+ + 5
hfyx=o| . | o e 4
r=0 | L e 3
L=0 : : : 1 CBCl 2
o

We can now proceed by back-substitution to obtain the required dC, {dL, dr, df at central meshpoint},
{dL, dr, ... df at intermediate meshpoint} and finally {dL, dr, ... df at surface meshpoint}.

It should be clear that while some permutations of variables and/or equations have a trivial effect -- eg
interchanging r and L, or f and T -- others permutations can have a completely disruptive effect -- eg
interchanging m and X. Determining a viable permutation is as much an art as a science, in my experience.

Suppose we wish to add a few extra equations, as I did recently: the moment of inertia I such that
I'=0.667 mr"2C
(remembering that C = m' = dm/dk), and Prot, Horb and e: the last 2 are the orbital angular momentum and
the eccentricity The extra BCs are =0 at the centre, and at the surface
d(Horb+2.pi.I/Prot) = ..., dHorb/dt = ..., de/dt=... .

(continued on next page)

(continued from previous page)

The unspecified derivatives involve tidal friction, etc. We have apparently 1 new Variable (I) and 3 new
Evalues (Prot, Horb,). There would be KM+3 new equations (KM = no. of meshpoints, = 3 in the
illustration): KM-1 DEls (for I) and 4 BCs, ie 1 CBC1 and 3 SBCls. This looks OK, but apparently it isn't -
- the 3 new Evalues would contribute elements at the *RH* end of the top row of blocks, but the the 3 new
SBC1s would require some non-trivial elements at the *LH* end, in order to give an invertible 6 X 6 block
at the top left.

I have found it necessary to treat only Prot as an Evalue, and to treat the other 2 quantities (Horb, e) as
spurious new Variables, satisfying
Horb'=0, ¢'=0.

One can squeeze in 3 new Variables (I, Horb, e) along the top, between m and X at each meshpoint, the new
Evalue at the end, after C, the 3 new SBCls after mdot, the 3 new DE1s after m' = C, and the 1 new CBC1
after m = 0. This allows the leading diagonal matrices to be invertible.

The moral seems to be that it would have been better to write the code so that the centre of the star is at the
top left and the surface at the bottom right. Apparently one should start at the end which has the *fewest™*
BCs; this is exactly the opposite of what [supposed in 1969 when I wrote the code. It should be possible to
rewrite the solution package to work from centre to surface, but my heart sinks at the thought of it. Besides,
one might wonder whether the saving of cpu time is worth it. The current version requires inverting 9 X 9
matrices, apart from the first and last; revised as I suggest this would be reduced to 7 X 7. But actually the
figures are 13 X 13 and 11 X 11, since I have ignored 4 of the 5 composition equations. The cpu time goes
as the cube of the size of the matrix.

