PrometheusInterface

v. 0.8.0

Holger Queckenstedt

21.10.2024

CONTENTS

CONTENTS

Contents

1 Introduction

2 Description

2.1
2.2
2.3
2.4
2.5

Test setup . . .
Installations . .
Configuration .

Library import

Support of Prometheus metric types

2.5.1 Counters

AR W oW N NN

and AUZES e e e e e e e e e e e e e e

3 prometheus_interface.py

3.1

Class: prometheus_interface L

3.1.1 Method: convert_to_int_or_float

3.1.2 Keyword:
3.1.3 Keyword:
3.1.4 Keyword:
3.1.5 Keyword:
3.1.6 Keyword:
3.1.7 Keyword:
3.1.8 Keyword:
3.1.9 Keyword:
3.1.10 Keyword:
3.1.11 Keyword:
3.1.12 Keyword:
3.1.13 Keyword:
3.1.14 Keyword:
3.1.15 Keyword:
3.1.16 Keyword:
3.1.17 Keyword:

4 Appendix

5 History

geb_VErSION L e e e e e

who_am-d e e e e e e e

add_gauge e e e
set_gauge L
INC_GAUZE .« . v v v vt et e e e e e e e e e e

dec_gauge e e e e

»n
D
-+
L.
E
]
© © W o N N O O ot ot ot ot gt ot ot W

addsummary
ODSEIrVEe_SUMMATY o v v v e it et et e e e e e 10
add_histogramo L L Lo 10

observe_histogram oL 11

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The interface library PrometheusInterface provides Robot Framework keywords to communicate with the mon-
itoring system Prometheus. With the help of this interface it is possible to use Prometheus to monitor data
provided by Robot Framework tests.

T.B.C.

CHAPTER 2. DESCRIPTION

Chapter 2

Description

2.1 Test setup

How many tests are passed? How many tests are failed? On which test benches do these tests run? Did any resets
occur during test execution? How about the temporary unavailability of required test external components?

To monitor all these informations, a test system setup is necessary consisting of at least the following components:

1. A test framework that executes the test and provides the data to be monitored (here: the Robot Framework).
This includes the possibility that more than one test framework runs in parallel.

2. A component that collects and stores data from all executed test frameworks (here: the monitoring system
Prometheus).

3. A component that visualizes all data that have been collected (here: Grafana).

This is not the only way to establish such a test system, but in this document we concentrate on Robot Framework,
Prometheus and Grafana.

To be able to collect values, Prometheus requires an http based counterpart. And the Robot Framework must
be enabled to support this counterpart. In pure Python this is realized by a Prometheus Python client library.
On Robot Framework level this is done by this component PrometheusInterface that is a mapping between the
interface of the Prometheus Python client library and Robot Framework keywords.

Or in other words: PrometheusInterface uses the Prometheus Python client library to provide values to
Prometheus to enable the data visualization in Grafana.

The Prometheus Python client library is part of the installation dependencies of PrometheusInterface.
Prometheus and Grafana are components that have to be downloaded, installed and configured separately.

2.2 Installations

1. Prometheus

To install Prometheus please visit the homepage. This homepage also contains a getting started section containing
useful hints about how to configure the application.

Further informations can also be found here.
2. Grafana

The advantage of using Grafana for data visualization is to have a ready to use interface to Prometheus available.
Other possible solutions are not in focus here.

To install Grafana please visit the homepage.
How to create a Prometheus data source in Grafana, is described here.
3. Prometheus Python client library

This library belongs to the installation dependencies of PrometheusInterface. A separate installation is not re-
quired. In case you want to learn more about this client library please visit the following web pages: [1], [2], [3].

https://prometheus.io/
https://www.fullstackpython.com/prometheus.html
https://grafana.com/
https://prometheus.io/docs/visualization/grafana/
https://pypi.org/project/prometheus-client/
https://prometheus.github.io/client_python/
https://prometheus.io/docs/prometheus/latest/getting_started/

CHAPTER 2. DESCRIPTION 2.3. CONFIGURATION

2.3 Configuration

Prometheus can be configured with a configuration file in YAML format. This includes the used port numbers. The
example files in the robotframework-prometheus repository use the port numbers 8000, 8001 and 8002. Therefore
the configuration file of Prometheus requires the following entry:

- targets: ["localhost:8000","localhost:8001","localhost:8002"]

2.4 Library import

After installation (see README), the interface library can be found within the site-packages that is the
usual place for installed Python modules. It is recommended to introduce an environment variable to store the
site-packages path, e.g. ROBOTPYTHONSITEPACKAGESPATH .

Now within robot files the interface library can be imported in the following way:

*xx Settings **x*
Library % {ROBOTPYTHONSITEPACKAGESPATH} /PrometheusInterface/prometheus_interface.py

If nothing else is specified, the default port 8000 is used. It can be required to run several Robot Framework
instances in parallel. In this case every instance needs it’s own port number. Within the Prometheus YAML file we
already have three port numbers defined (like described above).

Let’s assume now we want to execute testsuite A parallel to testsuite B. Then we can assign port number 8001 to
testsuite A:

*%% Settings *#*%*
Library % {ROBOTPYTHONSITEPACKAGESPATH} /PrometheusInterface/prometheus_interface.py <~
— port_number=${8001}

and we assign port number 8002 to testsuite B:

*xx Settings **x*
Library % {ROBOTPYTHONSITEPACKAGESPATH} /PrometheusInterface/prometheus_interface.py <~
— port_number=${8002}

Every testsuite needs it’s own robot or resoure file in which this import happens!
To support a better readibility of the test code we recommend to import the interface library with a certain name:
*xx Settings **x*

Library % {ROBOTPYTHONSITEPACKAGESPATH} /PrometheusInterface/prometheus_interface.py <~
— port_number=${8001} WITH NAME rf.prometheus_interface

With rf is the abbreviation of Robot Framework.

https://github.com/test-fullautomation/robotframework-prometheus/blob/develop/README.rst

CHAPTER 2. DESCRIPTION 2.5. SUPPORT OF PROMETHEUS METRIC TYPES

2.5 Support of Prometheus metric types

2.5.1 Counters and gauges

The difference between a counter and a gauge is: A counter can be incremented only, whereas a gauge can be
incremented, decremented and set to a certain value explicitly. Both counters and gauges have to be added before.

A counter is added in this way:

rf.prometheus_interface.add_counter name= (name of counter) <~
— description=(description of counter) labels=(label names)

name and decription are required, labels is optional.

Example:

We want to count passed, failed and unknown tests. A posssible definition of counter can look like this:

rf.prometheus_interface.add_counter name=num_passed description=number of passed <>
<~ tests labels=room; testbench; testname

rf.prometheus_interface.add_counter name=num_failed description=number of failed <
— tests labels=room; testbench; testname

rf.prometheus_interface.add_counter name=num_unknown description=number of unknown <
— tests labels=room; testbench; testname

In this example we assume that several different tests are executed in several rooms and on several testbenches.
It is not necessary to add a separate counter for every test on every testbench in every room. Only one counter
(counting passed tests) is required, but with several labels. Every label will be a separate series of measurements of
the corresponding counter. Every label is also a filter criteria in Grafana when configuring metrics.

During the lifetime of a testsuite a counter can be added only once. Therefore we suggest to place the adding into an
__init_ .robot file.

A counter can be incremented (by default value 1) in this way:

rf.prometheus_interface.inc_counter name= (name) labels=(label wvalues)

A counter can also be incremented by a user defined value:
rf.prometheus_interface.inc_counter name= (name) value= (user defined increment) —

— labels=(label values)

In add_counter , labels 1is a semicolon separated list of label names. In inc_counter , 1labels is a
semicolon separated list of label values. Label names and label values must fit together in add_counter and
inc_counter

Example:

rf.prometheus_interface.inc_counter name=num_passed labels=Room_1; Testbench <>
«— 2;Suite-A-Test-01

The same with gauges. A gauge is added in this way:

rf.prometheus_interface.add_gauge name= (name of gauge) description=(description <>
— of gauge) labels=(label names)

name and decription are required, labels is optional.

A gauge can e.g. be set to a certain value

rf.prometheus_interface.set_gauge name= (name of gauge) value=(value of gauge) <~
< labels=(label values)

As with counters, 1labels is a semicolon separated list of names or values.

CHAPTER 3. PROMETHEUS_INTERFACE.PY

Chapter 3

prometheus_interface.py

3.1 Class: prometheus_interface

Imported by:

from PrometheusInterface.prometheus_interface import prometheus_interface

The class 'prometheus_interface’ provides to communicate with the monitoring system Prometheus. For this purpose
the "Prometheus Python client library’ is used.

3.1.1 Method: convert_to_int_or_float

Little helper to convert a string value to an integer or a float

3.1.2 Keyword: get_version

Returns the version of this interface library

3.1.3 Keyword: who_am i

Returns the full name of this interface library

3.1.4 Keyword: where_am i

Returns path to this interface library

3.1.5 Keyword: get_port_number

Returns the port number assigned to this instance of the library

3.1.6 Keyword: add_info

This keyword adds a new info. The content of an existing info can be defined with set_info.

Arguments:

e name
The name of the new info
/ Condition: required / Type: str /
e description
The description of the new info

/ Condition: required / Type: str /

CHAPTER 3. PROMETHEUS_INTERFACE.PY 3.1. CLASS: PROMETHEUS_INTERFACE

e labels
A semicolon separated list of label names assigned to the new info

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.7 Keyword: set_info

This keyword defines the content of an info. The info has to be added with ’add_-info’ before.

Arguments:

e name
The name of the info
/ Condition: required / Type: str /

e info
The info itself (every info is a key-value information).
/ Condition: required / Type: dict /

e labels

A semicolon separated list of labels assigned to the info. The order of labels must fit to the order of label names
like defined in add_info.

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.8 Keyword: add_counter

This keyword adds a new counter. The values of existing counters can be changed with inc_counter.

Arguments:

e name
The name of the new counter
/ Condition: required / Type: str /
e description
The description of the new counter

/ Condition: required / Type: str /

CHAPTER 3. PROMETHEUS_INTERFACE.PY 3.1. CLASS: PROMETHEUS_INTERFACE

e labels
A semicolon separated list of label names assigned to the new counter

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.9 Keyword: inc_counter

This keyword increments a counter. The counter has to be added with ’add_counter’ before.

Arguments:

e name
The name of the counter
/ Condition: required / Type: str /

e value
The value of increment. If not given, the value of the counter is incremented by value 1.
/ Condition: optional / Type: int / Default: None /

e labels

A semicolon separated list of labels assigned to the counter. The order of labels must fit to the order of label
names like defined in add_counter.

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.10 Keyword: add_gauge

This keyword adds a new gauge. The values of existing gauges can be changed with set_gauge, inc_gauge and
dec_gauge.

Arguments:

e name
The name of the new gauge

/ Condition: required / Type: str /

e description
The description of the new gauge

/ Condition: required / Type: str /

CHAPTER 3. PROMETHEUS_INTERFACE.PY 3.1. CLASS: PROMETHEUS_INTERFACE

e labels
A semicolon separated list of label names assigned to the new gauge

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /
Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.11 Keyword: set_gauge

This keyword sets the value for a gauge. The gauge has to be added with ’add_gauge’ before.

Arguments:

e name
The name of the gauge
/ Condition: required / Type: str /
e value
The new value of the gauge.
/ Condition: optional / Type: int / Default: None /
e labels

A semicolon separated list of labels assigned to the gauge. The order of labels must fit to the order of label
names like defined in add_gauge.

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.12 Keyword: inc_gauge

This keyword increments a gauge. The gauge has to be added with ’add_gauge’ before.

Arguments:

e name
The name of the gauge
/ Condition: required / Type: str /

e value
The value of increment. If not given, the value of the gauge is incremented by value 1.

/ Condition: optional / Type: int / Default: None /

CHAPTER 3. PROMETHEUS_INTERFACE.PY 3.1. CLASS: PROMETHEUS_INTERFACE

e labels

A semicolon separated list of labels assigned to the gauge. The order of labels must fit to the order of label
names like defined in add_gauge.

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.13 Keyword: dec_gauge

This keyword decrements a gauge. The gauge has to be added with ’add_gauge’ before.

Arguments:

e name
The name of the gauge
/ Condition: required / Type: str /

e value
The value of decrement. If not given, the value of the gauge is decremented by value 1.
/ Condition: optional / Type: int / Default: None /

e labels

A semicolon separated list of labels assigned to the gauge. The order of labels must fit to the order of label
names like defined in add_gauge.

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.14 Keyword: add_summary

This keyword adds a new summary. The values of existing summaries can be set with cbserve_summary‘.

Arguments:

e name
The name of the new summary

/ Condition: required / Type: str /

e description
The description of the new summary

/ Condition: required / Type: str /

CHAPTER 3. PROMETHEUS_INTERFACE.PY 3.1. CLASS: PROMETHEUS_INTERFACE

e labels
A semicolon separated list of label names assigned to the new summary

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /
Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.15 Keyword: observe_summary

This keyword observes a summary. The summary has to be added with ’add_summary’ before.

Arguments:

e name
The name of the summary
/ Condition: required / Type: str /
e value

The value assigned to the summary.

/ Condition: required / Type: int or float /

e labels

A semicolon separated list of labels assigned to the summary. The order of labels must fit to the order of label
names like defined in add_summary.

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.16 Keyword: add_histogram

This keyword adds a new histogram. The values of existing histograms can be set with observe_histogram‘.

Arguments:

e name
The name of the new histogram
/ Condition: required / Type: str /
e description
The description of the new histogram

/ Condition: required / Type: str /

10

CHAPTER 3. PROMETHEUS_INTERFACE.PY 3.1. CLASS: PROMETHEUS_INTERFACE

e labels
A semicolon separated list of label names assigned to the new histogram

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

3.1.17 Keyword: observe_histogram

This keyword observes a histogram. The histogram has to be added with ’add_-histogram’ before.

Arguments:

e name
The name of the histogram
/ Condition: required / Type: str /
e value

The value assigned to the histogram.

/ Condition: required / Type: int or float /

e labels

A semicolon separated list of labels assigned to the histogram. The order of labels must fit to the order of label
names like defined in add_histogram.

/ Condition: optional / Type: str / Default: None /
Returns:

e success
/ Type: bool /

Indicates if the computation of the keyword was successful or not

e result

/ Type: str /
The result of the computation of the keyword

11

CHAPTER 4. APPENDIX

Chapter 4
Appendix

About this package:

Table 4.1: Package setup

Setup parameter Value

Name PrometheusInterface

Version 0.8.0

Date 21.10.2024

Description Additional Robot Framework keywords
Package URL robotframework-prometheus

Author Holger Queckenstedt

Email Holger.Queckenstedt@de.bosch.com
Language Programming Language :: Python :: 3
License License :: OSI Approved :: Apache Software License
OS Operating System :: OS Independent
Python required >=3.0

Development status Development Status :: 4 - Beta
Intended audience Intended Audience :: Developers

Topic Topic :: Software Development

12

https://github.com/test-fullautomation/robotframework-prometheus
mailto:Holger.Queckenstedt@de.bosch.com

CHAPTER 5. HISTORY

Chapter 5

History

0.1.0 | 05/2024

Initial version

0.2.0 | 05/2024

Added metric type 'Gauge’; code maintenance

0.3.0 |05/2024

Added keywords ’inc_gauge’ and ‘dec_gauge’

0.4.0 | 05/2024

Added interface description

0.5.0 | 05/2024

Adapted handling of library version and date

0.6.0 | 06/2024

Added metric type 'Tnfo’

0.6.1 | 06/2024

- Added prometheus-client as dependency package
- Maintained package’s repository and workflow files

0.7.0 | 10/2024

Added metric types 'Summary’ and 'Histogram’

0.8.0 | 10/2024

”blank within key name” fix

PrometheusInterface.pdf
Created at 24.10.2024 - 08:24:47
by GenPackageDoc v. 0.41.1

13

	1 Introduction
	2 Description
	2.1 Test setup
	2.2 Installations
	2.3 Configuration
	2.4 Library import
	2.5 Support of Prometheus metric types
	2.5.1 Counters and gauges

	3 prometheus_interface.py
	3.1 Class: prometheus_interface
	3.1.1 Method: convert_to_int_or_float
	3.1.2 Keyword: get_version
	3.1.3 Keyword: who_am_i
	3.1.4 Keyword: where_am_i
	3.1.5 Keyword: get_port_number
	3.1.6 Keyword: add_info
	3.1.7 Keyword: set_info
	3.1.8 Keyword: add_counter
	3.1.9 Keyword: inc_counter
	3.1.10 Keyword: add_gauge
	3.1.11 Keyword: set_gauge
	3.1.12 Keyword: inc_gauge
	3.1.13 Keyword: dec_gauge
	3.1.14 Keyword: add_summary
	3.1.15 Keyword: observe_summary
	3.1.16 Keyword: add_histogram
	3.1.17 Keyword: observe_histogram

	4 Appendix
	5 History

