Coopr Library API 3.1

Coopr Library API 3.1




Coopr Library API 3.1

COLLABORATORS
TITLE :
Coopr Library API 3.1
ACTION NAME DATE SIGNATURE
WRITTEN BY January 28, 2012




Coopr Library API 3.1

Contents

1 Introduction

2 Declaring Coopr Functors
3 The Functor Registry

4 Functors and Workflow

5 Coopr Functor API

5.1 pyomo.script Functors




Coopr Library API 3.1

1 Introduction

This document describes the API of Coopr’s library and functions and classes. This API is focused on the functions and classes
that support the transformation and analysis of Coopr models.

A key aspect of Coopr’s library are functors, which are function objects that can be executed like other functions. Coopr’s
functors provide a unifying interface for Coopr’s API, and they support the following functionality:

* Functor registration standardizes function definition, which facilitates plug-and-play of the functions in the APIL
* The functor docstrings are parsed to support error checking for functor inputs and outputs.

 Functors are globally registered, which allows functors to be created on the fly and enables documentation/enumeration of all
functors in the APL

* Functors can be integrated into formal workflows (using components from pyutilib.workflow)

Thus, functor declarations allow the Coopr API to be more than a simple library of function calls.

2 Declaring Coopr Functors

Functors in the Coopr API are declared using the coopr_api decorator with a Python function. The following example
illustrates the use of this decorator:

@coopr_api
def fl (data, x=0, y=1):
""'"A simple example.

Required:
x: A required keyword argument

Optional:
y: An optional keyword argument

Return:
a: A return value
b: Another return value

nmwn

return CooprAPIData (a=2*data.z, b=x+ty)

The £1 function is a normal Python declaration, and the coopr_api decorator transforms this function into a functor. This
functor can be executed as if it was a function. For example:

data = CooprAPIData (z=1)
val = fl(data, x=2)

Coopr functors are required to have an argument that is a container of labeled data, which is treated specially. The container
is required to be a dict or CooprAPIData class. The CooprAPIData class generalizes the Python dict class in several
ways. Most notably, an attribute added to an CooprAPIData object is also added to the underlying dictionary. In the previous
example, the CooprAPIData object is passed in as the first argument. In fact, Coopr functors are only allowed to have one non-
keyword argument. Alternatively, a functor can be declared with a dat a keyword argument, in which case it has no non-keyword
arguments. For example, the functor can be declared as follows

@coopr_api
def f2 (x=0, y=1, data=None) :
""'A simple example.

Required:
data: The required data argument




Coopr Library API 3.1
2/8

x: A required keyword argument

Optional:
y: An optional keyword argument

Return:
a: A return value

b: Another return value
mnon

return CooprAPIData (a=2xdata.z, b=x+y)

and it is evaluated as follows

data = CooprAPIData (z=1)
val = f2(data=data, x=2)

In fact, this functor can also be evaluated as before:

data = CooprAPIData (z=1)
val = fl(data, x=2)

Although this creates a syntactic difference between the declaration and formulation of functors, this allows functors to be used
with a common APIL.

If a dict is passed into a functor to provide the container of labeled data, then the functor converts it to a CooprAPIData
object before executing the function. Since CooprAPIData objects are subclasses of dict, this change may be transparent to
the user. However, this is important in contexts where features of CooprAPIData are used.

The return value of a Coopr functor is an CooprAPIData object. However, the return value of the function used to declare
the constructor may be either None, a dict object, or an CooprAPIData object. If the function returns None or the data
object is returned, then the functor creates an CooprAPIData object with an element with key data whose value is the
CooprAPIData object passed into the functor. Otherwise, if an CooprAPIData object is returned then the functor adds an
element with key data if it does not already exist. If a dict object is returned, then it is converted to an CooprAPIData
object and processed in the same manner. Consequently, the return value of a Coopr function is an CooprAPIData object that
is guaranteed to contain a container of labeled data with key data.

The docstring comments used in these examples are needed to fully specify the API of the Coopr functor. These docstrings are
needed to properly execute Coopr functors. The Required, CooprAPIData, and Return keywords declare blocks where
keyword arguments and return values are described. Although all keywords are declared with a default value, these values are
only used in a functor for the optional arguments. An exception is generated if a required argument to a functor is omitted. The
labeled return values specify the possible outputs of a functor. An exception is generated if a unexpected label for a return value
is specified. When a functor returns without defining a defined return label, then its value is None.

The Required block can also be used to validate the existence of data that is nested inside of the functor arguments. Consider
the following example, which validates the existence of values in the data and x arguments:

@Qcoopr_api
def f3(data, x=None) :
"""A simple example.

Required:
data.z: A nested required data value
x: A required keyword argument
xX.y: A nested required data value

Return:
a: A return value
b: Another return value

nmwn

return CooprAPIData (a=2*data.z, b=x.y)




Coopr Library API 3.1
3/8

Note that the nested values are assumed to be simple nested attributes of the form a.b.c.d. General purpose tests are not
supported for checking the validity of data, and the test for a nested value simply verifies that it exists and that it is not equal to
None.

These requirements on functors enforce a uniform API for the input and output values. Input values consist of a container
of labeled data along with keyword arguments, and output values have the same form. This consistency facilitates the use of
functors in a larger computational workflows. The incorporation of the container object into the Coopr functor API allows
keyword arguments to be added in an extensible manner. For example, this feature enables the incorporation of data that is used
by subsequent functors in the computation without requiring an extension of a the APIs of the preceding functors.

Note: The CooprAPIData class supports a container for labeled data that generalizes the dictionary used for Python nonformal
keyword arguments, which are specified with the syntax » «kwd. Nonformal keyword arguments are used in the APIs of other
Python packages (e.g. MatplotLib). The use of CooprAPIData is motivated by the use of functors in formal computational
workflows.

3 The Functor Registry

Declarations of Coopr functors automatically populate a global registry of the Coopr API. This registry allows functor objects to
be created on the fly. For example:

g = CooprAPIFactory(’fl’")

This example illustrates how the functor object g can be created from the registered functor £1. The functor g acts exactly like
£1, and in practice there is little difference between using g and £1. However, functors can be created by name using the factory
CooprAPIFactory, and thus the user does not need to know the specific Coopr library in which a functor is defined.

To help organize functors, a name space option can be specified when declaring the functor. This allows functors to be defined
with the same name in different packages, while distinguishing how they are registered. For example:

@Qcoopr_api (namespace="utility’)
def f1l(data, x=0, y=1):
"""A simple example.

Required:
x: A required keyword argument

Optional:
y: An optional keyword argument

Return:
a: A return value

b: Another return value
mnon

return CooprAPIData (a=2*data.z, b=x+y)

The functor £1 is declared within the ut 11ity namespace. The £1 object can be used within the python module containing
this declaration. However, this functor is registered as uti1lity. £1 in the registry, so the functor is created as follows:

g = CooprAPIFactory (‘utility.f1’)

Finally, the functor registry allows for the automatic generation of documentation for the Coopr API. The coopr command
supports the api subcommand, which generates a simple summary of all functor namespaces and their corresponding functors.
This output looks something like the following:

Coopr Functor API

pyomo.script Functors




Coopr Library API 3.1
4/8

apply_optimizer:
Perform optimization with a concrete instance

apply_postprocessing:
Apply post-processing steps.

apply_preprocessing:
Execute preprocessing files

create_model:
Create instance of Pyomo model.

finalize:
Perform final actions to finish the execution of the pyomo script.

Additionally, the ——asciidoc option can be specified to generate a detailed description of the Coopr API, which is used to
generate this document (see below).

4 Functors and Workflow

TODO: Coopr functors can be tied together into formal workflows that can be executed in an arbitrary manner

5 Coopr Functor API

5.1 pyomo.script Functors

5.1.1 apply_optimizer

Perform optimization with a concrete instance

* Required Keyword Arguments:
data
A container of labeled data.
instance
Problem instance.
e Return Values:
data
A container of labeled data.

opt
Optimizer object.

results
Optimization results.

5.1.2 apply_postprocessing
Apply post-processing steps.

* Required Keyword Arguments:




Coopr Library API 3.1

5/8

data
A container of labeled data.

instance
Problem instance.

results
Optimization results object.

e Return Values:

data
A container of labeled data.

5.1.3 apply_preprocessing

Execute preprocessing files

* Required Keyword Arguments:
data
A container of labeled data.
parser
Command line parser object
e Return Values:
data
A container of labeled data.

error
This is true if an error has occurred.

5.1.4 create_model
Create instance of Pyomo model.

* Required Keyword Arguments:

data
A container of labeled data.

e Return Values:
data
A container of labeled data.

filename
Filename that a model instance was written to.

instance
Problem instance.

model
Model object.

symbol_map

Symbol map created when writing model to a file.




Coopr Library API 3.1
6/8

5.1.5 finalize

Perform final actions to finish the execution of the pyomo script.

This function prints statistics related to the execution of the pyomo script. Additionally, this function will drop into the python
interpreter if the interactive option is True.

* Required Keyword Arguments:

data
A container of labeled data.

model
A pyomo model object.

* Optional Keyword Arguments:

instance
A problem instance derived from the model object.

results
Optimization results object.

¢ Return Values:

data
A container of labeled data.

5.1.6 print_components
Print information about modeling components supported by Pyomo.

* Required Keyword Arguments:

data
A container of labeled data.

e Return Values:

data
A container of labeled data.

5.1.7 print_solver_help

Print information about the solvers that are available.

* Required Keyword Arguments:

data
A container of labeled data.

e Return Values:

data
A container of labeled data.




Coopr Library API 3.1
7/8

5.1.8 process_results

Process optimization results.

* Required Keyword Arguments:
data
A container of labeled data.

instance
Problem instance.

opt
Optimizer object.

results
Optimization results object.

e Return Values:

data
A container of labeled data.

5.1.9 run_command

Execute a function that processes command-line arguments and then calls a command-line driver.

This function provides a generic facility for executing a command function is rather generic. This function is segregated from
the driver to enable profiling of the command-line execution.

* Required Keyword Arguments:
command
The name of a function that will be executed to perform process the command-line options with a parser object.
parser
The parser object that is used by the command-line function.

* Optional Keyword Arguments:

args
Command-line arguments that are parsed. If this value is None, then the arguments in sys.argv are used to parse the
command-line.

data
A container of labeled data.

name
Specifying the name of the command-line (for error messages).
* Return Values:
data
A container of labeled data.

retval
Return values from the command-line execution.




Coopr Library API 3.1
8/8

5.1.10 setup_environment
Setup Pyomo execution environment

* Required Keyword Arguments:

data
A container of labeled data.

e Return Values:

data
A container of labeled data.




	Introduction
	Declaring Coopr Functors
	The Functor Registry
	Functors and Workflow
	Coopr Functor API
	pyomo.script Functors


