
Solutions 3
Jumping Rivers

Graphics

We will continue to investigate the movies data from earlier. To begin
we will load the data and then take a random sample of 500 values to
help keep the plots a bit cleaner.

import jrpyintroduction.datasets as dat
movies = dat.movies.load_data()
movies = movies.sample(500)

Also load all of the packages that we might need for this practical

import numpy as np
import matplotlib.pyplot as plt

1. Start with a simple scatter plot of movie ratings against lengths. It
should look something like the one below.

p1 = movies.plot.scatter(x='length', y='rating')
plt.show(p1)

0 50 100 150 200 250
length

2

4

6

8

10

ra
tin

g

2. Use the xlim and ylim arguments to change the axis ranges to
(0,200) and (0,10) respectively.

p2 = movies.plot.scatter(x='length', y='rating',
ylim=[0, 10], xlim=[0, 200]

)
plt.show(p2)

solutions 3 2

3. Change the colours of points such that we have one colour for
Comedy films and another colour for non Comedy films.

p3 = movies.plot.scatter(
x='length', y='rating',
ylim=[0, 10], xlim=[0, 200],
c='Comedy', cmap='autumn_r'

)
plt.show(p3)

4. Relabel your axes with the units given on the x axis

p4 = movies.plot.scatter(
x='length', y='rating',
ylim=[0, 10], xlim=[0, 200],
c='Comedy', cmap='autumn_r'

)
plt.xlabel('Length (minutes)')
plt.ylabel('Rating')
plt.show(p4)

5. Finally give your graph a title.

p5 = movies.plot.scatter(
x='length', y='rating',
ylim=[0, 10], xlim=[0, 200],
c='Comedy', cmap='autumn_r'

)
plt.xlabel('Length (minutes)')
plt.ylabel('Rating')
plt.title('Investigating whether long movies are good.')
plt.show(p5)

6. Create a boxplot of movie lengths using the .boxplot() method.

p6 = movies.boxplot('length')
plt.show(p6)

7. You can amend the axes after the plot with plt.ylim() and the
corresponding .xlim().

p7 = movies.boxplot('length')
plt.ylim(

calculate the axes limits from the data
movies.length.min(),
movies.length.max()

)
plt.show(p7)

solutions 3 3

8. Add a new column to your movies DataFrame which corresponds to
the decade the film was released. Hint: You can do this by taking
the year value, dividing by 10, rounding down using np.floor()
and then multiplyng by 10 again.

movies['decade'] = np.floor(movies.year/10) * 10
To be really good you could then change the type of the
variable to be an integer
movies.decade = movies.decade.astype('int32')

9. Use the by argument of the .boxplot() method to create a sepa-
rate boxplot for each decade.

p8 = movies.boxplot('length', by='decade')
plt.ylim(

calculate the axes limits from the data
movies.length.min(),
movies.length.max()

)
plt.show(p8)

If you finish

If you finish, feel free to explore some of the other graphics that we
have discussed.

