
Solutions 4
Jumping Rivers

Data manipulation

Start by loading the data and importing the packages we will need for
this practical.

import matplotlib.pyplot as plt
import jrpyintroduction.datasets as dat
movies = dat.movies.load_data()

1. The data has a lot of missing values in, particularly for budgets.
We can remove them with

movies.dropna(inplace=True, subset=['budget'])

2. Calculate the average budget across all films.

movies.budget.mean()

13412513.24966443

3. Create a new column in your DataFrame that takes True of False,
with True representing films that are more recent than 1970.

movies['recent'] = movies.year > 1970

4. Use this new column to calculate the average budget for the older
films and the newer films. Hint: See .groupby()

movies.groupby('recent').agg({'budget': 'mean'})

budget
recent
False 1.926708e+06
True 1.669094e+07

5. Calculate the average and standard deviations for lengths, budgets
and ratings for the films in each year. Store all of the results in a
single DataFrame.

x = movies.groupby('year').\
agg({
'length': ['mean', 'std'],
'budget': ['mean', 'std'],
'rating': ['mean', 'std']

})

solutions 4 2

6. The previous calculation gives a multi index DataFrame. Essen-
tially a heirarchy of indices, have a look at .head() on the result of
the previous question to see what I mean. You can extract specific
sub indicies with, for example, x[('rating','mean')] to get the
mean column inside the length index.1 Extract just the means from 1 Specifically here we are passing a

tuple of indicies.the previous result and store that answer.

y = x[[('length', 'mean'), ('rating', 'mean'), ('budget', 'mean')]]

7. To finish we will draw a plot with all 3 lines showing the averages
evolving over time. To make the axes relevant, we will first scale all
of our values to be on (0,1). Given a DataFrame, y, this could be
acheived with

mins = y.min()
maxs = y.max()

rescaled = (1/(maxs-mins))*(y-maxs) + 1

8. Use rescaled.plot() to draw all 3 lines together. Is there any-
thing interesting?

rescaled.plot()
Interesting is of course subjective, but I think it is interesting that the budget
has consistently gone up, but average ratings of films don't follow that,
neither do the lengths
plt.show()

