
Solutions 1
Jumping Rivers

Lists

The following code will import the package associated with this course
as jr and assign a variable which contains a series of random numbers.

import jrpyintroduction as jr
x1 = jr.get_numeric_list()

Using this list:

1. How many elements are in x1?

print(len(x1))

55748

2. What is the 55th element of x1? Remember, indexing starts at 0

print(x1[54])

-12.85

3. What is the final value of x1?

print(x1[-1])

-30.42

4. What is the 50th smallest values in x1?

x1.sort()
print(x1[49])

-39.87

5. Get a fresh copy of the random numbers with x1 = jr.get_numeric_list().
The sum() function can be used on a list of numbers to calculate
the total. What is the sum of the first 5 values?

x1 = jr.get_numeric_list()
print(sum(x1[:5]))

168.59

6. What is the average value of the list? Note that there is no mean
function for lists. Mean is total sum divided by number of values.

print(sum(x1)/len(x1))

24.736813876730785

solutions 1 2

Numpy arrays

For mathematics and statistics numpy provides a more convenient
data structure, the array. For this section import the numpy library
and get a new copy of the random list:

import numpy as np
x1 = jr.get_numeric_list()

1. Convert your list to a numpy array.

x1_array = np.array(x1)

2. Calculate the mean, median and standard deviation of the array

x1_mean = np.mean(x1_array)
x1_median = np.median(x1_array)
x1_std = np.std(x1_array)
print(x1_mean)

24.736813876731006

print(x1_median)

24.81

print(x1_std)

the std() function returns population standard deviation rather
than sample standard deviation,
to get sample standard deviation
x1_sample_std = np.std(x1_array, ddof = 1)

37.58518023172968

3. By default the answers to the previous question have a lot of dec-
imal places so look a bit messy, round them to 2 decimal places.
Hint: look at the round() function from numpy.

print(round(x1_mean, 2))

24.74

print(round(x1_std, 2))

37.59

