{% extends "base.html" %} {% block title %}Export {{ count }} rows to a notebook{% endblock %} {% block extra_head %} {% endblock %} {% block content %}
You can export this data to a Jupyter or Observable notebook by copying and pasting the following:
Make sure you have Pandas. Import it in a cell like this:
import pandasIf this shows an error you can run
%pip install pandas
in a notebook cell to install it.
Now paste the following into a cell to load the {{ count }} row{% if count != 1 %}s{% endif %} into a DataFrame called df
:
df = pandas.read_json({{ json.dumps(json_url) }})
Run df
in a new cell to see the table.
You can export all {{ "{:,}".format(total_count) }} rows using a single streaming CSV export like this:
df = pandas.read_csv({{ json.dumps(csv_stream_url) }})
This could lose type information, since every column in a CSV import will be treated as text.
{% endif %}Import d3 by running this in a cell:
d3 = require("d3@5")
Now import the data into a variable called rows
like this:
rows = d3.json({{ json.dumps(json_url) }}){% if allow_csv_stream and csv_stream_url and total_count and total_count > count %}
You can export all {{ "{:,}".format(total_count) }} rows using a single streaming CSV export like this:
rows = d3.csv({{ json.dumps(csv_stream_url) }})
This could lose type information, since every column in a CSV import will be treated as text.
{% endif %} {% else %} {% endif %} {% endblock %}