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Abstract

Context: Urologists regularly develop clinical risk prediction models to support clinical 

decisions. In contrast to traditional performance measures, decision curve analysis (DCA) can 

assess the utility of models for decision making. DCA plots net benefit (NB) at a range of 

clinically reasonable risk thresholds.

Objective: To provide recommendations on interpreting and reporting DCA when evaluating 

prediction models.

Evidence acquisition: We informally reviewed the urological literature to determine 

investigators’ understanding of DCA. To illustrate, we use data from 3616 patients to develop risk 

models for high-grade prostate cancer (n = 313, 9%) to decide who should undergo a biopsy. The 
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baseline model includes prostate-specific antigen and digital rectal examination; the extended 

model adds two predictors based on transrectal ultrasound (TRUS).

Evidence synthesis: We explain risk thresholds, NB, default strategies (treat all, treat no one), 

and test tradeoff. To use DCA, first determine whether a model is superior to all other strategies 

across the range of reasonable risk thresholds. If so, that model appears to improve decisions 

irrespective of threshold. Second, consider if there are important extra costs to using the model. If 

so, obtain the test tradeoff to check whether the increase in NB versus the best other strategy is 

worth the additional cost. In our case study, addition of TRUS improved NB by 0.0114, equivalent 

to 1.1 more detected high-grade prostate cancers per 100 patients. Hence, adding TRUS would be 

worthwhile if we accept subjecting 88 patients to TRUS to find one additional high-grade prostate 

cancer or, alternatively, subjecting 10 patients to TRUS to avoid one unnecessary biopsy.

Conclusions: The proposed guidelines can help researchers understand DCA and improve 

application and reporting.

Patient summary: Decision curve analysis can identify risk models that can help us make better 

clinical decisions. We illustrate appropriate reporting and interpretation of decision curve analysis.

Keywords

Clinical utility; Decision curve analysis; Net benefit; Risk prediction models; Risk threshold; Test 
tradeoff

1. Introduction

Clinical risk prediction models are commonly developed in urology and other medical fields 

to predict the probability or risk of a current disease (eg, biopsy-detectable aggressive 

prostate cancer), or a future state (eg, cancer recurrence) [1–3]. Such models are usually 

evaluated with statistical measures for discrimination and calibration. Discrimination 

evaluates how well the predicted risks distinguish between patients with and without disease. 

The c-statistic is the most commonly used measure for discrimination. Calibration evaluates 

the reliability of the estimated risks: if we predict 10%, on average 10 out of 100 patients 

should have the disease [1,4]. Assessments of calibration may include graphs and statistics 

such as observed versus expected ratios or calibration slopes. Although a model with better 

discrimination and calibration should theoretically be a better guide to clinical management 

[4–6], statistical measures fall short when we want to evaluate whether the risk model 

improves clinical decision making. Such measures cannot inform us whether it is beneficial 

to use a model to make clinical decisions or which of two models leads to better decisions, 

especially if one model has better discrimination and the other better calibration [7].

To overcome this limitation, decision-analytic measures have been developed to summarize 

the performance of the model in supporting decision making. We focus on net benefit (NB) 

as the key part of decision curve analysis (DCA), which was introduced in 2006 [8]. 

Editorials supporting DCA have been published in leading medical journals including 

JAMA, Lancet Oncology, Journal of Clinical Oncology, BMJ, PLoS Medicine, and Annals 
of Internal Medicine [9–17]. Importantly, evaluating NB is recommended by the TRIPOD 

guidelines for prediction models [18]. DCA is widely used within urology and many other 
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clinical fields. A Web of Science search (July 22, 2018) revealed that the 2006 paper was 

cited 682 times in total. DCA was most often cited in journals from urology and nephrology 

(173 citations), oncology (140), and general and internal medicine (72). European Urology 
is the journal with most citations (44).

However, based on various personal discussions, we notice that researchers struggle with the 

interpretation and reporting of NB. We therefore aim to provide an investigators’ guide to 

NB and DCA. A case study on prediction of high-grade prostate cancer is used as an 

illustrative example.

2. Evidence acquisition

We informally reviewed the urological literature to determine investigators’ understanding of 

DCA. To illustrate, we use data from 3616 patients to develop risk models for high-grade 

prostate cancer (n = 313, 9%) to decide who should undergo a biopsy. The baseline model 

includes prostate-specific antigen (PSA) and digital rectal examination; the extended model 

adds two predictors based on transrectal ultrasound (TRUS).

3. Evidence synthesis

3.1. Case study: prediction of high-grade prostate cancer to decide who to biopsy

Screening with PSA results in overdiagnosis of indolent prostate cancer [19]. Risk 

calculators have been developed for high-grade prostate cancer [20]. Using these models to 

decide who to biopsy can reduce unnecessary biopsies, which are aversive procedures with a 

risk of sepsis and lead to detection of indolent disease. Detecting high-grade prostate cancer 

is important, because early detection of these potentially lethal cancers can lead to curative 

treatment [21]. The Rotterdam Prostate Cancer Risk Calculator (RPCRC) predicts the risk of 

high-grade cancer in an individual patient based on PSA, abnormal digital rectal 

examination (DRE), abnormal TRUS findings, and TRUS-based prostate volume [22]. The 

RPCRC was developed from the European Randomized Study of Screening for Prostate 

Cancer, Rotterdam section. Men between ages 54 and 74 yr and with PSA ≥3.0 ng/ml 

received lateral sextant biopsy between November 1993 and March 2000 (n = 3616). The 

outcome was high-grade prostate cancer (n = 313, 9%), defined as Gleason score 3 + 4 or 

higher on biopsy and/or tumor stage >T2b.

We focused on a baseline model containing two predictors: PSA value and abnormal DRE. 

Then we fitted an extended model to investigate the additional value of abnormal TRUS and 

TRUS-based prostate volume (Table 1). We had 313 events for two or four model 

coefficients (ie, at least 78 events per variable), substantially limiting the risk of overfitting. 

To check this, we calculated the calibration slope using bootstrapping [1,4]. Where a slope 

of 1 indicates no overfitting, we found slopes of 0.998 for the baseline model and 0.995 for 

the extended model, suggesting a marginal 0.2–0.5% overfitting. The c-statistic was 0.814 

(95% confidence interval 0.785–0.840) for the baseline model and 0.866 (0.841–0.888) for 

the extended model. Thus, based on the traditional metrics of discrimination and calibration, 

most researchers would agree that the extended model is clearly better.
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3.2. Risk thresholds

To use a risk model for treatment decisions, we specify a risk threshold T above which we 

would treat. In our example, treatment refers to biopsy; however, depending on the 

application, “treatment” can refer to a wide range of interventions, such as additional 

diagnostic workup, referral to specialized care, a procedure (eg, lymph node resection), 

delaying surgery (eg, in patients at high risk of complications), medical treatment, or 

lifestyle changes. In our prostate biopsy example, we could recommend biopsy if the 

predicted risk of high-grade cancer was 10% or more (T = 10%) and otherwise advise 

monitoring without biopsy. Correct classifications are labeled true positives (for patients 

with the event) or true negatives (for patients without the event). Incorrect decisions are 

labeled false negatives and false positives.

Many investigators select a threshold that maximizes the sum of the true positive and true 

negative rates [23]. However, this assumes that sensitivity and specificity are equally 

important. Relevant thresholds incorporate clinical considerations for decision making. In 

our case, it is more important to find an aggressive cancer than to avoid unnecessary biopsy. 

According to decision theory, the risk threshold reflects the risk at which we are indifferent 

about treatment [24]. Assume that we are willing to biopsy no more than 10 men in order to 

find one high-grade prostate cancer. Then we consider the benefit of detecting one high-

grade prostate cancer to be nine times larger than the harm of an unnecessary biopsy: the 

“harm-to-benefit” ratio is 1:9. This ratio is hard to specify directly. Fortunately, it has a 

direct relationship with the risk threshold T: the odds of T equal the harm-to-benefit ratio 

[24]. For example, a risk threshold of 10% implies a harm-to-benefit ratio of 1:9 (odds 

[10%] = 10/90). A reasonable risk threshold for decision making involves a holistic 

assessment of all possible outcomes. A biopsy can be painful and inconvenient, and entails a 

risk of infection; therefore, it is preferable to avoid a biopsy when deemed unnecessary. In 

case the patient has high-grade prostate cancer, the biopsy can lead to cancer treatment, 

which may improve prognosis but may cause side effects. Hence, different strategies have 

their benefits and harms, which may also be of financial or organizational nature. Balancing 

of all benefits and harms determines which risk thresholds are reasonable.

3.3. NB and DCA

The utility of risk models may be evaluated with cost-effectiveness studies [25], supported 

by empirical evaluations of the impact of using a model in clinical practice. Such studies are 

difficult to conduct. Instead, there are simpler measures to evaluate the potential clinical 

utility of risk models [26]. We focus on NB, which combines the number of true positives 

and false positives into a single “net” number [8,9]. NB is a concept similar to that of net 

profit in business: income minus expenditure. In the prostate cancer example, the “income” 

represents true positives—cases of aggressive prostate cancer found early; the “expenditure” 

represents false positives—unnecessary biopsies. In most medical scenarios, income and 

expenditure are on different scales. Therefore, we need an “exchange rate” to reflect the 

balance between the benefit of a true positive and the harm of a false positive (the harm-to-

benefit ratio). Going back to our example, with a risk threshold of 10%, we would weigh 

each false positive by the odds of 10 (10 ÷ 90 = 0.1111). The baseline model at T = 10% 

yields 211 detected high-grade prostate cancers and 621 unnecessary biopsies. Then, 211 
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true positives minus (10 ÷ 90) × 621 false positives gives 142 “net” true positives. 

Correction for the harm of the unnecessary biopsies adjusts the observed 211 detected high-

grade prostate cancers to a net number of 142. The net result is positive because there were 

only 2.9 false positives per true positive (= 621 ÷ 211) at the 10% risk threshold, whereas 

this threshold implies that we are willing to accept much more unnecessary biopsies (ie, 

nine) per detected high-grade prostate cancer. NB is obtained by dividing the net true 

positives by the sample size, which gives 0.0393 for the baseline model (Table 2). This 

means that there are 3.9 net detected high-grade prostate cancers per 100 patients. The 

division by sample size avoids that the magnitude of NB depends on the size of a dataset. 

Several measures have been proposed that are closely related to NB and that lead to identical 

conclusions (see the Supplementary material) [16,26–28]. Usually, there is no single risk 

threshold that is universally acceptable and so it is important to evaluate NB over a range of 

reasonable thresholds [9,29]. In the case of prostate biopsy, for example, a patient averse to 

the risk of untreated cancer may prefer a lower risk threshold, whereas a patient less tolerant 

of invasive procedures such as biopsy may choose a higher threshold. The clinical decision 

for which the model is used is pivotal to set the relevant threshold range. For example, using 

a risk model to select patients with suspicious bladder tumors for general urological surgery 

will require a different threshold compared with using the model to select patients for 

specialized oncological surgery. A decision curve plots NB for a range of relevant risk 

thresholds (Fig. 1). In our example, we focused on thresholds between 5% and 20%.

3.4. Are model-based decisions useful? Comparison with default strategies

To interpret NB properly, we introduce two default strategies where patients are managed 

without the use of a model [8]. We can biopsy either all patients (“treat all”) or no one 

(“treat none”). NB of treat none is always 0 because this strategy has no true or false 

positives. Treat all does not imply that T has been set to 0. Rather, the decision to treat 

everyone is evaluated at all reasonable values of T (see the Supplementary material for 

formula). For risk thresholds below prevalence, treat all has a higher NB than treat none. For 

thresholds above prevalence, the opposite holds true, which implies a negative NB for treat 

all. At the 10% risk threshold, treat all has an NB of –0.0149.

A model is only clinically useful at threshold T if it has a higher NB than treat all and treat 

none. If a model has a lower NB than any default strategy, we consider the model clinically 

harmful: one of the default strategies leads to better decisions. Importantly, when models are 

calibrated, they cannot be harmful [4,5]. Only miscalibrated models can be harmful. For 

example, if we underestimate the risk of high-grade prostate cancer, we would too often 

advise against biopsy, missing more cancers than anticipated, leading to poorer NB. When 

applying DCA, we first evaluate whether the model(s) under study has (have) a higher NB 

than the default strategies. When comparing two models, we check which model has the 

highest NB. When one of the models is harmful, further model comparison is redundant. 

The baseline and extended models of our case study outperform the default strategies across 

the relevant threshold range, and the extended model outperforms the baseline model.

To interpret DCA results, we illustrate various hypothetical scenarios in Figure 2. We show 

decision curves for an application where the threshold probability is typically about 20%, 
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but a reasonable range of thresholds is determined to be 10–30%. We show threshold 

probabilities outside this range for didactic purposes. In Figure 2A, the model (black dashed 

line) has a higher NB than both treat all (thin gray line) and treat none (thin black line) only 

for threshold probabilities above 20%. As the range of reasonable thresholds is 10–30%, that 

is, some patients would choose treatment if their risk was only 10% or 15%, the model is not 

of value. Indeed, for patients with these types of thresholds, NB of the model is worse than 

the strategy of “treating all”, that is, opting for treatment irrespective of the risk from the 

model. The lower NB at these thresholds is because the model is miscalibrated, slightly 

underestimating the risk. In Figure 2B, we show a well-calibrated model with a relatively 

high area under the curve. However, the prevalence of disease in the study is very high 

(~60%). With baseline risk being very high, it is very difficult for a model to push the risk 

low enough for a patient to refuse treatment. The model has a higher NB for only a small 

part of the range of reasonable thresholds, and therefore the model is not of value. In Figure 

2C, the model is of benefit for almost, but not quite, the whole of the reasonable range 10–

30%: the curves diverge only at the threshold probability of about 13%. However, NB of the 

model is about the same as the NB of treat all below 13%. Therefore, if the investigators 

believed that it was not common to have such low threshold probabilities, they could 

probably justify clinical use. In Figure 2D, either the model or the competing binary test 

(grey dashed line) has a higher NB than treating all or no patients across the entire range of 

reasonable threshold probabilities. However, the curves cross in the middle of the reasonable 

range. In general, the conclusion would be that no strategy is optimal across the whole range 

of reasonable threshold probabilities, and hence further research is required. However, 

depending on the clinical situation, there might be calls to favor the model or the test. For 

instance, NB for each is similar in the key range of thresholds, so if one approach is superior 

in terms of costs and risks of convenience, then that might be the approach chosen. In Figure 

2E, the model is well calibrated with a c-statistic of 0.75. The competing model has a c-

statistic of 0.80 but is miscalibrated (risks are underestimated). As a result, the model with 

the lowest c-statistic is superior to the entire reasonable range of threshold probabilities. The 

miscalibrated model is even harmful for thresholds up to 15%.

3.5. Interpretation of NB

NB gives the proportion of “net” true positives in the dataset: the observed number of true 

positives is corrected for the observed proportion of false positives weighted by the odds of 

the risk threshold, and the result is divided by the sample size. This “net” proportion is 

equivalent to the proportion of true positives in the absence of false positives (ie, perfect 

specificity). The baseline model has an NB of 0.0393 at the 10% risk threshold, which is 

equivalent to detecting 3.93 (≈4) high-grade prostate cancers and suggesting zero 

unnecessary biopsies per 100 patients (ie, four true positives and zero false positives). In 

fact, this is a direct comparison with treat none, which has zero true positives and zero false 

positives by default. Even though a model may compare well with treat none (ie, NB is 

positive), it may still be worse than treat all. This is possible when the risk threshold is 

below prevalence, because then the NB of treat all is higher than the NB of treat none.

To interpret the NB difference between models, consider that the extended model yielded 

236 true positives and 475 false positives at the 10% risk threshold (NB = 0.0507). The 
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difference in NB for the extended versus baseline model is 0.0507 – 0.0393 = 0.0114. The 

extended model has 1.14 more net detected high-grade prostate cancers per 100 patients. 

This is equivalent to having1.14 more detected high-grade prostate cancers per 100 patients 

for the same number of unnecessary biopsies.

3.6. Test tradeoff

NB does not directly account for the cost and harms associated with measuring the 

predictors in the model. This is a reasonable assumption where the model includes only 

routinely available data (such as in our base model of PSA and DRE), but if a predictor 

requires an invasive or expensive test (such as TRUS), we should account for the harm or 

cost of measurement. We may specify the harms of a model upfront: we ask clinicians “how 

many of these tests would you do to find one case (eg, high-grade prostate cancer) if the test 

were 100% perfect”; the reciprocal of that number is the “test harm,” which is subtracted 

from NB [8]. Test harm may be difficult to specify directly. Alternatively, we can focus on 

the difference in NB (ΔNB) to derive the “test tradeoff” [30–32].

3.6.1. Evaluation of a single model—When validating a single model, ΔNB refers to 

the difference between the NB of the model and the NB of the best default strategy. The test 

tradeoff, 1/ΔNB, is the minimum number of tests per true positive that we have to accept to 

make the model worthwhile given its cost. For the baseline model at 10%, ΔNB is 0.0393 

and the test tradeoff is 25.4 (=1/0.0393). If we are willing to use the baseline model on 25 

patients to detect one high-grade prostate cancer, this model is worthwhile.

3.6.2. Model comparison—The test tradeoff for the comparison of two models refers 

to the minimum number of tests for one additional true positive with the best model to make 

this model worthwhile given its additional cost. At the 10% risk threshold, ΔNB of the 

extended versus the baseline model is 0.0114, and the test tradeoff is 87.7 (=1/0.114). If we 

consider it acceptable to subject 88 patients to TRUS to detect one additional high-grade 

prostate cancer compared with the model without TRUS, the utility of the extended model is 

worth the cost of TRUS.

3.6.3. Test tradeoff in terms of true negatives—NB is based on the numbers of true 

and false positives. From these numbers, it is easy to derive the numbers of true and false 

negatives. It is therefore possible to obtain an alternative expression of NB, which corrects 

the number of true negatives for the weighted number of false negatives (see the formula in 

the Supplementary material) [33]. As a result, we can express the test tradeoff in terms of 

true negatives as well. This test tradeoff, obtained as odds (T)/ΔNB, gives the number of 

patients we should be willing to classify with the best model per additional true negative.

For evaluation of a single model (the baseline model for the case study), the test tradeoff in 

terms of true negatives equals 2.8 (=odds [10%]/0.0393). If we are willing to use the 

baseline model on three patients to avoid one unnecessary biopsy, this model is worthwhile. 

When comparing the extended model with the baseline model at 10%, we find a test tradeoff 

of 9.7 patients per additional true negative (=odds [10%]/0.0114). The extended model is 
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preferable over the baseline model if we accept doing TRUS on 10 patients to avoid one 

additional unnecessary biopsy.

3.6.4. Interpretation of the test tradeoffs for the case study—When evaluating 

the baseline model with the default strategies, the test tradeoff indicates that the baseline 

model is clearly of value given that the model only requires data that the urologist already 

has at hand.

TRUS could be invasive and unpleasant; hence, the test tradeoffs can be considered high. 

Some urologists would not agree to subject 88 patients to TRUS to find one high-grade 

cancer or perform 10 TRUS to avoid one biopsy (Table 2), despite an increase in the c-

statistic of 0.052. Other urologists may accept the test tradeoffs given that TRUS has almost 

no complications. Nevertheless, we might consider alternative sources, such as magnetic 

resonance imaging or DRE, to measure volume [34–36].

3.7. Recommendations for practice

3.7.1. Interpreting the results of NB—The first step in DCA is to determine whether 

any model is superior to all other models, and the default strategies of treating all or no 

patient, across the full range of reasonable threshold probabilities. If so, we can declare that 

the use of that model would improve patient outcome irrespective of patient or doctor 

preference. The second step is to consider whether there are important risks, harms, or costs 

to using the model. If so, we need to interpret the magnitude of the increase in NB versus 

best default or the competing model, and evaluate the test tradeoff, or use test harm, to check 

whether the increase in NB is worth the additional cost and harm of using the model.

3.7.2. Defining the treatment decision clearly—DCA evaluates the utility of a 

model or test to decide who should receive treatment, which can be any diagnostic or 

therapeutic intervention depending on the application. It is therefore important to 

unambiguously define the decision. If a model serves mainly to counsel patients (eg, 

survival probabilities), the meaning of decision curves becomes debatable since the range of 

personal decisions is wide. For example, a model predicting probability of death at 1 yr in 

patients with advanced cancer might be used to inform decisions ranging from sorting out 

legal affairs to travel plans or retirement.

3.7.3. Defining a reasonable range of risk threshold—For a particular treatment 

decision, utility should be evaluated for a reasonable range of thresholds only. “Reasonable” 

means that no one would reasonably use a threshold outside that range to decide upon 

treatment. We therefore recommend showing and interpreting decision curves only for the 

adopted reasonable range. The ideal situation is when one model shows the highest utility 

over the entire range. Elsewhere, we have given further details of how researchers can 

develop ideas about the suitable range of threshold probabilities [9]. When researchers 

decide to use DCA for a model used for patient counseling, decision curves might be plotted 

for wider ranges of risk thresholds, even for the full range between 0 and 1.

3.7.4. Not using DCA to choose a risk threshold—We cannot use DCA to choose 

an optimal risk threshold. NB depends on the adopted risk threshold, not the other way 
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around. More generally, the choice of a clinically appropriate threshold should not depend 

on the results of a study of a prediction model [16].

3.7.5. Reporting the test tradeoffs where appropriate—An increase in NB may 

not be worth the additional cost of using the best model. Investigators should consider 

reporting the test tradeoff, in particular when there are significant harms or costs associated 

with obtaining data for the model. When comparing two models, we can express the test 

tradeoff in terms of true positives and true negatives. We recommend reporting both.

4. Conclusions

DCA is a statistical method to evaluate whether a model has utility in supporting clinical 

decisions, and which of two models leads to the best decisions. It is therefore an essential 

validation tool on top of measures such as discrimination and calibration.

NB = TP − odds(T) × FP
N = P − odds × , . RU = .

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
Decision curves for the default strategies and for the baseline and extended models.
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Fig. 2 –. 
Hypothetical decision curves illustrating several possible scenarios.
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Table 1 –

Baseline and extended models to predict high-grade prostate cancer

Predictor
Median (IQR) or n (%)

Baseline model Extended model

B (SE) OR (95% CI) B (SE) OR (95% CI)

Intercept −5.68 (0.21) −0.20 (0.67)

PSA 
a 4.3 ng/ml (3.1−6.4) 1.03 (0.063) 2.79 per doubling (2.47−3.16) 1.21 (0.072) 3.36 per doubling (2.92−3.87)

Abnormal DRE 1279 (35%) 1.60 (0.14) 4.95 (3.79−6.46) 1.03 (0.15) 2.81 (2.10−3.76)

Abnormal TRUS 1229 (34%) 1.21 (0.15) 3.35 (2.50−4.48)

Tumor volume 
a 41 ml (32−55) −1.16 (0.13) 0.31 per doubling (0.24−0.41)

B = regression coefficient; CI = confidence interval; DRE = digital rectal examination; IQR = interquartile range; OR = odds ratio; PSA = prostate-
specific antigen; SE = standard error; TRUS = transrectal ultrasound.

a
PSA and tumor volume are modeled with log2 transformation, such that the odds ratios for these variables represent the change in odds per 

doubling of the PSA/volume.
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Table 2 –

Net benefit and test tradeoff results for the baseline and extended models to predict high-grade prostate cancer 

at a risk threshold of 10%

Statistic Result

Default strategies

NB if all men subject to biopsy (NBTrA) −0.0149

NB if no one subject to biopsy (NBTrN) 0

Baseline model

NB if baseline model is used to select patients for biopsy 0.0393

Detected HG-PCa without unnecessary biopsies 3.9 per 100 patients

Test tradeoff, patients biopsied per detected HG-PCa 25.4

Extended versus baseline model

NB if extended model is used to select patients for biopsy 0.0507

NB difference between extended and baseline models 0.0114

Additional HG-PCa detected (without change in unnecessary biopsies) when using the extended model rather than the 
baseline model

1.14 per 100 patients

Test tradeoff, patients undergoing TRUS per additionally detected HG-PCa 87.7

Test tradeoff, patients undergoing TRUS per avoided unnecessary biopsy 9.7

HG-PCa = high-grade prostate cancer; NB = net benefit; TrA = treat all; TrN = treat none; TRUS = transrectal ultrasound.
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