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Abstract

The subject of this thesis is the construction of an approximation for the next-
to-next-to-next-to leading order (N®LO) deep inelastic scattering (DIS) massive
coefficient function of the gluon for F5 in heavy quark pair production. Indeed, this
object is one of the ingredients needed for the construction of any variable flavour
number (factorization) scheme at O(a?). The construction of such scheme is crucial
for the improvement of the accuracy of the extraction of the parton distribution
functions from the experimental data, that in turn will provide an improvement of
the accuracy of all the theoretical predictions in high energy physics.

Despite the function we are interested in is not known exactly, its expansion in
some kinematic limits is available. In particular the high-scale limit (Q2? > m?),
high-energy limit (z — 0, where z is the argument of the coefficient function) and
threshold limit (z — zmax = 1/(1 + 4m?/Q?)) of the exact coefficient function are
all known, with the exception of some terms that we will provide in approximate
form. Therefore, combining these limits in a proper way, we will construct an
approximation for the unknown term of the N3LO gluon coefficient function, that
describes the exact curve in the whole range of z.

Our approach consists first of all in the construction of an asymptotic limit:
this limit approximates the exact coefficient function in the small-z region for all
the values of Q2. It will be constructed using the high-scale limit in which we will
reinsert the neglected power terms in the small-z limit. In this way we will make
sure that the asymptotic limit will approach the exact curve.

Once that we have the asymptotic limit we will combine it with the threshold
limit using two damping functions so that the final result will approach the exact
coefficient function both for z — 0 and for z — zp.x. For intermediate values of z
the agreement between the approximate and the exact curves will depend on the
choice of the damping functions. In order to choose such functions, we will apply
our approximation procedure to the NLO and NNLO coefficient functions, that
are exactly known, and we will choose the functional form that provides the best
agreement between the exact and the approximate curve.

Since other approximations for the N3LO gluon coefficient functions are present
in the literature, we will conclude by comparing our final approximate coefficient
functions with such approximations. We will show a comparison both for the NNLO,
whose exact function is known, and for the N3LO. With our approach, we expect
our results to be more accurate than previous approximations, thus providing a
sufficient precision for a complete description of DIS at N>LO and the consequent
determination of N3LO PDFs.
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Chapter 1

Introduction

In the search of physics beyond the Standard Model (BSM) a high accuracy for the
study of the Standard Model (SM) processes, both in the experimental measurements
and in the theoretical predictions, is required. In fact, if these ones did not have
enough precision, in presence of data that slightly deviate from the SM predictions,
we wouldn’t be able to understand whether this deviation is due to BSM phenomena
or not, since it would be within the uncertainty band. For this reason the high-energy
experimental physics is going towards a high precision phase. Indeed, in the High
Luminosity LHC (HL-LHC) era the objective will be to increase the LHC luminosity
by a factor of 10 beyond its actual value. This will bring a great improvement in the
precision of the experimental measurement, such that the goal will be to reach an
accuracy of the order of percent or better. For this reason the theoretical predictions
will have to be at least of the same precision, in order to compare theory with
experiments.

In high-energy physics the hadronic cross sections are computed within the
factorization theorem as a convolution between the partonic cross sections, in which
the external particles are the elementary constituents of the hadron (i.e. quarks and
gluons) and not the hadron itself, and the parton distribution functions (PDFs), that
contain information on the internal structure of the hadron, as it will be explained in
the following chapters. Since at present time the PDFs are one of the main sources
of uncertainty in theoretical predictions, PDF determination will have to be more
accurate than the one that have been performed so far.

For energies smaller than the typical hadronization scale, i.e. Q < 1 GeV, Quan-
tum Chromodynamics becomes non perturbative. Therefore the PDFs cannot be
computed but must be extracted from data. Such procedure is usually called PDF
fit. It means that in order to increase the precision of the prediction of the cross
sections, on the one hand we have to increase the precision in the computation of
partonic cross sections, computing them at the order required by the accuracy we
want to reach and on the other hand we have to increase the precision of the PDF fit.
A crucial observation is that the PDFs are process-independent objects, which means
that they depend only on the energy scale Q characteristic of the interaction and on
the fraction of longitudinal protons momentum carried by the parton, but not on
the particular process the proton is involved into. Thus the strategy is to extract the
PDFs from a very clean process, i.e. a process that is easy to describe theoretically
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and to reconstruct experimentally, and then to use them to obtain predictions in
more complicated ones, for example like the proton-proton collision at LHC. Usually
the PDFs are fitted from deep inelastic scattering (DIS) data, in which an electron
and a proton collide at energy high enough to break the internal structure of the
proton and form new hadrons in the final state. The data used in the fits come
mostly from DIS experiments at HERA collider. For a generic structure function F
for DIS, the factorization theorem takes the form

F@,Q}) =z 3 / CHE@)GQY, g =light quarks, (L)

1=q,4,9

where f; is the PDF of a parton of type i (quark or gluon), = is the Bjorken’s scaling
variable and Cj is the coefficient function (the partonic cross section for DIS) that is
computed in perturbation theory. DIS and Eq. with its various factors will be
further explained in Sec. All we have to observe now is that, using Eq. (1.1]), we
can extract the PDFs: measuring the left hand side and computing the C; up to a
given fixed order, we can fit f; at the scale (). The uncertainty of our fit will depend
on different sources: first of all, on the precision of the computation of the coefficient
functions, i.e. on the order in perturbation theory at which we have computed them;
then, it will depend on the experimental errors associated to the measurement of the
left hand side of Eq. ; last, the fit procedure itself, i.e. the way the PDFs are
extracted from experimental data, is a source of uncertainty. In fact, the functional
form that is used to extract the PDFs from Eq. can in some cases be too
constrained and bias the final result.

Another important ingredient for the PDF determination is the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation, that governs the scale
dependence of the PDFs. It will be described in Sec. DGLAP equation depends
on the splitting functions which are computed in perturbation theory. Solving it
with a certain initial condition at the scale pg, we can obtain the PDFs at every
scale p. Hence, after fitting the PDFs from Eq. at a given initial scale @,
we can obtain them at every scale using DGLAP evolution. Obviously, in order to
obtain consistent results, we have to compute DGLAP evolution with the same level
of accuracy of the coefficient functions, i.e. at the same order in perturbation theory.

Nowadays the PDFs are extracted using next-to-next-to-leading order (NNLO)
theory: it means that both the coefficient functions and DGLAP evolution are
computed at NNLO. However, this level of precision is not enough if we want the
accuracy of theoretical predictions to be of the order of percent. Therefore, if we
want to reach this accuracy we have to perform a next-to-next-to-next-to-leading
order (N3LO) fit. In order to do it we need the coefficient functions and DGLAP
evolution at O(a?). However, not all the ingredients required for such a fit are
available in the literature yet. So far the quark and gluon DIS coefficient functions in
which the massive effects are neglected are known exactly up to O(a?) [1]. Instead,
the coefficient functions with the exact quark mass dependence are known exactly at
O(a?) from Ref. [2], but at O(a?) they are still unknown, even if partial information
is available in the literature [3,[4]. Therefore, if we want to perform a N3LO fit we
need either to compute exactly the unknown parts of the quark and gluon exact
massive coefficient functions at O(a?) or to find good approximations for them.



Regarding N®LO DGLAP evolution, in order to compute it at O(a?) we need the
N3LO splitting functions. However, only partial information is available in the
literature so far [5).

In this thesis we will construct an approximation for the unknown part of the
N3LO massive DIS coefficient function of the gluon for F, in heavy quark pair
production. Such approximation will be constructed combining the threshold limit
(s ~ 4m?, where /s is the partonic center-of-mass energy) of the exact coefficient
function, with an asymptotic limit (z — 0) that we will construct in Chapter
Although we will treat only the gluon coefficient function, because the gluon PDF
is dominant at small-z, i.e. at high-energy, with respect to the quark PDFs, all
our methods can be applied to the quark coefficient function to find an analogous
approximation.

This thesis is organized as follows: in Chapter [2] we will introduce the basics of
Quantum Chromodynamics like renormalization, renormalization group equation,
variable flavour number (renormalization) schemes and the parton model. In Chapter
we will describe the factorization of collinear divergences, DGLAP equations,
factorization of mass logarithms and variable flavour number (factorization) schemes.
In Chapter [4] we will construct three kinematics limits of the DIS exact massive
gluon coefficient function for Fy at O(a?) in heavy flavour pair production, i.e. the
high-scale limit (Q? > m?), the high-energy expansion (s — o0) and the threshold
limit. Such limits are known with the exception of some terms, for which we will
provide approximate results. Then these limits will be combined using two damping
functions to find the final approximation of the unknown term of the O(a?) exact
gluon coefficient function. In conclusion, in Chapter [5] such approximation will be
tested and tuned on the NLO and on the NNLO coefficient functions, that are known,
and we will give the results at N3LO. Moreover, we will compare our approximation
with the ones already present in the literature.






Chapter 2

Strong Interactions

The Standard Model is the theory that describes the fundamental interactions of
the elementary particles. It is a quantum field theory and it is based on the gauge
symmetry group

SUB)e @ SU2)w @ U(1)y, (2.1)

where SU(3)¢ is the subgroup of the strong interactions and SU(2)w @ U(1)y is
the one of electroweak interactions. Since in this discussion we are interested in the
strong interactions, we will focus only on the strong sector SU(3)¢.

The part of the Standard Model that describes the strong interactions is called
Quantum Chromodynamics (QCD). As mentioned before, it is a field theory based
on the non abelian gauge symmetry group SU(3) and its charge is called color. The
fundamental fields of QCD are the ones of the quarks and of the gluons. The quarks
are the matter fields: they are spin 1/2 particles which belong to the fundamental
representation of SU(3), i.e. to a triplet. In other words we have three different
colors for the fermions (sometimes called blue, red and green). The different kinds
of quarks are called flavours: all of them have the same quantum numbers under the
Lorentz and color groups but different masses. It means that the strong interaction
is flavour independent and the differences that arise from the different masses of
the quarks are only of kinematical nature. In addition to the quarks there are their
antiparticles that are called antiquarks. They belong to the antitriplet representation
of SU(3) and their charge is sometimes called anticolor. Then there are the gluons:
they are the carriers of the strong interactions, i.e. they are the gauge bosons of the
SU(3) symmetry. It means that they are spin 1 massless particles that belong to the
adjoint representation of SU(3), i.e. to an octect. Therefore, there are eight possible
colors for the gluons. We already notice a big difference between QCD and Quantum
Electrodynamics (QED): in QED the carrier of the interaction (i.e. the photon) does
not have a charge under the U(1)g symmetry group. It means that we cannot have
photon-photon interactions at tree-level (but we can have such interaction at loop
level with a fermion loop). Instead, in QCD the gluons are charged under color.
Therefore, we can have vertices with three or four gluons, as we will see in Sec.
This difference comes from the fact that for QED the gauge symmetry is abelian,
while for QCD it is non abelian.

An important property of strong interactions is color confinement: it is the
phenomenon that colored particles cannot be observed experimentally. It means
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that the asymptotic states of the theory can only be singlets of SU(3), i.e. colorless
particles. Such particles are called hadrons and are composite by two or three
quarks. This makes the computation of the cross sections impossible in the context
of perturbative QCD, because of the failure of perturbation theory for energy
scales typical of the hadronization scale. A possible way to avoid this problem is
the introduction of the so-called parton model that will be described in Sec.
Another important consequence of color confinement is that we can only have indirect
experimental evidences of the existence of color: for example in the decay 70 — 2y
and in the eTe™ annihilation into hadrons, color appears as a multiplicative factor
for the reaction rates but it cannot be observed directly. See for example Ref. [6] for
a more detailed description.

Another fundamental property of QCD is that the strong coupling goes to zero
at high energies. This property is called asymptotic freedom. In fact, in contrast
to QED, in which the electromagnetic coupling is almost constant in a wide range
of energies, the strong coupling has a strong dependence on the energy scale of the
process we are considering. In particular if A is the typical energy of the hadronic
physics, i.e. A ~ 1 GeV, then for energies much bigger than A the strong coupling
goes to zero, while for energies comparable or smaller than A, it becomes of O(1).
This has very important consequences: at high energies, being the coupling small,
QCD is perturbative and therefore we can compute our observables up to a certain
fixed order in perturbation theory, neglecting all the higher orders since they are a
small correction. Instead, at energy scales typical of the hadronization scale QCD
becomes non perturbative because in the power series expansion every term is of
the same order (or bigger) of the previous one, and therefore we should include
infinite terms in order to have reliable predictions. It means that at small energies
our theory cannot give predictions.

In this chapter we will describe the basics of QCD, presenting its lagrangian and
its main properties. In Sec. we will write down the various terms composing the
lagrangian of QCD, explaining where they come from and their implications. In
Sec. 2.2l we will describe the basics of renormalization. In Sec. 2.3 we will derive
the renormalization group equation and we will explain how it implies asymptotic
freedom. In Sec.[2.4] we will describe why a variable flavour number (renormalization)
scheme is needed and how it is constructed. In conclusion, in Sec. [2.5] we will describe
the parton model that is fundamental in order to obtain predictions in hadronic
physics.

2.1 Quantum Chromodynamics

The QCD interactions are governed by the QCD lagrangian that is
£QCD = Egauge + ECP + Egal}ge + Eghost- (22)
fixing
The first term contains the kinetic terms of both quarks and gluons, the mass terms
of the quarks and both the quark-gluon and the gluon-gluon interaction vertices. Its
expression is

() (. 1 a a,py
ﬁgauge = Z ¢1( )(Zwij - m(f)%)wgf) - ZFMVF H ) (23)

f=flavours
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where
D,u,ij = 51‘3'8” - igsTi(;Az, (24)
Fo, = 9,A% — 9,A% + go f*e AL AC. (2.5)

Plugging the definitions of Eqs. (2.4) and (2.5) into Eq. (2.3) we find that

Loauge = D (ial(f)awz(f) — m(f)%(f)wz(f) + gs%('f)AijTﬁj(f))

f=flavours

1 a a,v abc qa v c
+ 54 H(gu0® — 0,0,) A" — g fUPC AR AP, AC
1
. Zggfabefcde‘Aa,uAb,z/leAff7 (26)

with Az’j =Y Au; = MALTE,
wz(f ) and AZ appearing in Egs. 1 i are respectively the quark and gluon fields.

Notice that we have omitted the spinor indices of Qf)if and the dependence on the

where v# are the Dirac matrices [7]. The objects

space-time point z = z* = (20, 2!, 22, 23) of both wl-(f) and Afj. The sum over the
repeated indices is understood. In particular ¢, =1,2,3 and a,b,c=1,...,8 are
the color indices respectively of the triplet and of the octect of SU(3)c¢. T3 are the
generators of the fundamental representation of SU(3) and f%¢ are the structure
constants, i.e. they satisfy the Lie algebra of the group

[T?, T° = ifeTe, a,bc=1,....,8. (2.7)

Fixing the normalization of the T such that
Tr(T°T") = Tpow, — Tr =, (2.8)

we can identify the matrices T% with the Gell-Mann matrices [§]. An important
property that will be useful in the following is that

4

wlej = Crdij,  CF =3, (2.9)

where CF is called Casimir of the fundamental representation. Obviously we can
consider others representations of SU(3) in addition to the fundamental. A very
important one is the adjoint representation: if we define

(ngj)bc = _ifabca a, bu Cc= ]-7 sty 87 (210)

it is easy to show that they satisfy the algebra of SU(3), i.e. Eq. (2.7). They are the
generators of the adjoint representation of SU(3). With this definition we have that

TyeTeg = Cadpa,  Ca =3, (2.11)

and Cj is called Casimir of the adjoint representation. In Eq. (2.6) we can clearly
see that the two final terms are the ones that give the three and four gluon vertices
that we mentioned at the beginning of this chapter. In QED instead, these terms
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are absent because, being it an abelian gauge theory, we have that f2¢ = 0. This is
why in QED we don’t have photon-photon interaction at tree-level.
The transformation properties of the fundamental fields are the following;:

¥; = Uijthy, (2.12)
a pla a pa i -1
T%:U@Awgf‘@wm, (2.13)
where '
U=U(z)j = (e*wa(x)Ta)”. (2.14)
ij

Using Eq. (2.13) we can show that
FoT* = UFS,TUT, (2.15)

that is the transformation rule of the adjoint representation. With these transforma-
tion properties we can easily show that Eq. is invariant under the SU(3)¢ gauge
symmetry group. It is very convenient to consider infinitesimal transformations, i.e.
transformations in which the group parameters 0%(x) are small so that

Uij ~ 05 — 10T}

17

(2.16)

where we have omitted the dependence of U and 6 on the space-time point x. With
this expansion the transformation properties of the fields become

Y =1 — 0" T35, (2.17)
1
a __ Aa abcpb fc a

From Egs. (2.18]) and (2.10) we can derive that

Fl8 = (8ap + [0 F,, (2.19)
that is the infinitesimal transformation rule of the adjoint representation.
Another term that is allowed by the symmetries is
Lcp = H—F“ Fory. (2.20)
where .
Fiiy = 5€upa 77, (2.21)

and 6 is a dimensionless parameter. This term violates CP because of the presence
of the completely antisymmetric tensor €,,,,. Since for strong interactions CP
violation has never been observed, either this term is absent or 6 is extremely small.
Experimental estimates give the bound < 10710, This is known as strong CP
problem.

Then we have the gauge fixing term, that is

1 8
Lgauge = —— (9 Aa’ﬂ 2.22
gouze =~ 2 (0 (2.22)
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This term is needed in order to correctly quantize the theory, avoiding the infinities
that arise in the functional integral formalism from the invariance of the lagrangian
over all possible infinite gauge transformations. Therefore choosing the parameter £
we can choose a particular gauge. It follows that this term is not gauge invariant, as
it can be easily verified. For example setting £ = 1 we recover the Feynman gauge,
while setting £ = 0 we find the so-called Landau gauge.

The last term of Eq. is

Eghost = (8uxa)*DZb bv (223)

where the fields x are complex scalars obeying Fermi statistics and are called
Faddev-Popov ghosts. DZb is the covariant derivative in the adjoint representation,
therefore

Dib =579, — gs f*"C A, (2.24)

This term, as the previous one, is required in order to correctly quantize the theory.
It comes from the fact that QCD is a non abelian gauge theory. In fact we don’t
have a similar term in QED. Since the ghosts are not “real” particles they cannot
appear in the final states but only in virtual corrections and can be eliminated with
a convenient gauge choice. Moreover, ghosts are needed because when we sum over
the gluon polarizations, the unphysical longitudinal polarizations do not cancel as it
happens in QED. But when we include the ghost contributions this cancellations is
complete and we are left just with the physical transverse polarizations.

2.2 Renormalization

Whenever we compute a cross section in the SM we have to deal with the appearance
of divergences. Being the cross section an observable, it must be finite and therefore
these divergences are unphysical. It means that we have to find a way to remove them.
In this section we will focus on the divergences that come from the virtual corrections
to the Feynman diagrams, that are the corrections coming from internal loops, i.e.
that don’t change the number of particles in the final state. Such divergences can
be of two types: ultraviolet (UV) or infrared (IR). The first ones appear when the
momentum flowing inside a loop diagram goes to infinity. In these diagrams we have
loop integrals of the form

/ dk EP~L. (2.25)

The lower limit of integration s has been put in order to underline that we are
focused on the behavior for £ — co. For D < 0 the integral is finite, but for D > 0 it
is divergent. The way in which UV divergences are removed is called renormalization.
The IR divergences arise when the momentum flowing in the loop goes to zero. This
kind divergences are present whenever we have to deal with massless particles like
photons or gluons, but also when we neglect the mass of particle like a light quark.
They are cured including all diagrams in which we have the emission of one or more
photon (or gluon) from one of the external legs. In this chapter we will focus on the
UV divergences, while IR divergences will be described in a more complete way in

Chapter
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In order to deal with divergent quantities we have to regularize them: it means
that we have to modify our theory introducing a regulator that prevents every
quantity from being divergent. Once we have regularized all the divergences we
perform all the computations in this “modified” theory assuring that the “divergent”
quantities (divergent in the limit in which the regulator is removed) are canceled.
Then we can remove the regulator recovering the “real” theory that now is free from
divergences. For example in Eq. we can integrate up to a certain cutoff A. In
this way every integral is perfectly finite and the divergences are recovered in the
limit A — co. Now we can perform the renormalization to cancel the “divergent”
quantities. After that, taking the limit A — oo gives no problem and the result is
perfectly finite. When we regularize the theory we have to choose a regularization
that keeps all the important properties of our theory. This is not the case for the
cutoff regulator since it spoils the gauge invariance. A much better regularization
is the so called dimensional reqularization: in this case we regularize the theory
performing all the momentum integrations in d = 4 — 2e¢ dimensions, instead of the
physical d = 4. In this way both the UV and IR divergences are regularized and
appear as poles in €. The advantage of dimensional regularization is that the gauge
invariance is preserved in the regularized theory.

In order to renormalize the theory first of all we call every field and every
coupling appearing in Eq. bare fields and bare couplings and address them with
a subscript 0, e.g. 1o, Aj,, mo etc. They are the fields and the couplings of the
divergent theory. Then the bare lagrangian is the lagrangian written in terms of the
bare quantities. Therefore, considering for example just the first term of Eq. ,
we have that the bare lagrangian is

Loauge = (z@é{ )ﬂwé{ ) m(()f)@((){)w((){) + gsO@é?fﬂOij%?)
f=flavours
1 a a,V abc AQ v c
5 A (90 = 8u0,) AT — g0 f be ga ALY 9, AL
1 a v C
— GRS A AGY AG, AL, (2.26)

Then we rescale all these quantities defining

e A B BVE
- \/Z7 l,L_ \/2737 m_me07 gs_ Zl /"L
that are called renormalized fields and constants. The objects Z; are dimensionless
and are called renormalization constants. p is a scale with dimension of energy and
has been introduced because if we compute the dimensions of the various terms of
the lagrangian in dimensional regularization, i.e. with d = 4 — 2¢, we find that, in
unity of energy

(4

gs0, (227)

ol =5 — &, (229)
[Ag] =1 —¢, (2.29)
[9s0] = €. (2.30)

Now the bare couplin is no more dimensionless. Therefore, since we want to
s0 )
perform an expansion in terms of a dimensionless parameter, the scale p has been
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introduced so that the renormalized strong coupling gs is dimensionless. With this

definition we have that
Y

2e
Qg = %M Qg, (231)
where we have used that )
9s
— Js 2.32
Ag 47_(_’ ( )

and the same holds for the bare coupling. p is called renormalization scale (sometimes
addressed with pg) and it is a completely arbitrary scale: it means that any
observable cannot depend on the choice of p. With these definitions Eq. ([2.26])

becomes

Lgange = Z (i22$z(f)a¢§f) - me(f)@z(f)d’i(f) + Zmﬁgs%(f)éhj%('f))

f=flavours

1
5 DAY (g0 — 0,0,) A" — Ziggp g, fUC A AP D, A
1
ZZ4gu2€g§fabEdeEAa7MAb,VAZAg’ (2-33)

where Z3, and Z,4 are combinations of Z71, Z3 and Z3. Now we can compute order
by order in perturbation theory the renormalization constants Z; in order to cancel
the poles in € from the matrix elements. Once we have done it, we can remove the
regulator taking the limit ¢ — 0 and all the diagrams will be perfectly finite since we
have removed all the “divergent” terms. In other words we are reabsorbing all the
divergences into a redefinition of the bare couplings and the bare fields, that therefore
become infinite. This does not represent a problem since, being the bare couplings
the ones of the divergent theory, they are unphysical and therefore unmeasurable.
In addition to removing the divergences, we still can choose how much of the
finite part of the amplitudes we can subtract in the renormalization. This gives
rise to different renormalization schemes. Obviously the choice of the scheme does
not modify the physical quantities like cross sections or decay rates. The one that
we have described so far is the so-called minimal subtraction (MS) scheme. In this
scheme we are removing only the poles 1/¢, leaving all the finite parts untouched.
Instead of using the definitions in Egs. and we can use slightly modified
ones: since in the amplitudes 2 is always multiplied by a term €7 /47 we can define

ZoN/ L3
gs = 221 B 950, (2.34)
Z:
€ 2.35
as0 Z22Z3'u Qs, ( )
with )
N
= . 2.36
= (2.36)

This scheme is called MS scheme. After we have done the redefinition in Eq. (2.36)),
the MS scheme is realized subtracting only the poles in e. This is equivalent in using
the variable p and subtracting the poles in €, plus the finite term log(4m) — 7.
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In conclusion the values of the renormalization constants at the first order in the
expansion of a, in the MS scheme are

.1
Zy=1— (Cp+Ca) 2= + 0(a?), (2.37)
47 €
1
Zy=1-Cp222 4 0(a?), (2.38)
41 €
5 4 a1
Z3=1+4(=Cp— -niTp)—= 2 2.
3 +(3CA i F)47T6+O(O‘s)7 (2.39)

where T, Cr and Cy4 are the color factors defined in Eqgs. (12.8)),(2.9) and (2.11)),
while ny is the number of flavors of our theory, i.e. ny = 6. Obviously, in order
to have finite observables, renormalization must be applied to the other terms of

Eq. (2.2)) too.

2.3 Renormalization group equation

In order to cancel the poles in € from the amplitudes we had to introduce a completely
arbitrary scale p with the dimension of energy. Obviously, physical observables do
not have to depend on the choice of . Imposing the independence of the observables
from p we find that the only possibility is that the renormalized strong coupling gs,
or equivalently «y, is y-dependent. Instead of imposing the independence from p
on the physical observables, like cross sections, we can observe that, being the bare
lagrangian independent from p, the bare coupling must be independent from p as
well. Therefore we can impose that

d
2 _
a9 = 0, (2.40)
or equivalently
d
2 _
Plugging Eq. (2.35)) into Eq. (2.41)) we find
d [ Z}
2 1 ~2¢
— =0. 2.42
B2 (22223“ as) (2.42)

Now using Eqgs. (2.37)), (2.38]), (2.39)) we get that

d
Hngﬂas = Blas), (2.43)

that is called remormalization group equation (RGE) and gives the running of o,
with the renormalization scale, i.e. its solution gives a(p?). B(a) is called beta
function of QCD and is computed in perturbation theory. In particular one can
show that

Blas) = —eas — (Boa? + fral + Baat +...). (2.44)

Solving Eq. (2.43) at O(a?), with a certain initial condition a(ud), one finds that
at leading order (and with € = 0)

as(ﬂ2) _ aS(:“’%) _ 1

Lt as(ud)Bolog(s)  folog(hy)’

(2.45)
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where we have defined )
A2 = p2e Poosd) (2.46)

A is called Landau pole. It is the value of u for which the coupling ay diverges.
Depending on the sign of 5y we can have two different situations:

« For By > 0 the coupling a(u?) goes to zero for p? > A2. In this case the
theory is said UV free.

e For By < 0 the coupling as(u?) goes to zero for pu? < A2. In this case the
theory is said IR free.

Computing By in QCD yields the result of

 11C4 — dny Ty

Bo 127

(2.47)

Since as far as we know the number of quark flavours in the SM is ny = 6 we are
in the case By > 0 and QCD is UV free. This is where asymptotic freedom comes
from. In contrast, if we compute [y in QED we find that ,BSQED = —%. Therefore
in QED we are in opposite case. The value of A can be computed measuring ag
at a certain scale yp and inserting it in Eq. . Using that as(M2) = 0.118 [9]
we find that A ~ 200 MeV. It means that as p becomes of order A, as becomes
of O(1). This invalidates perturbation theory since every term in the expansion
becomes of O(1) and therefore we should resum the whole infinite series in order
to get reliable results. If we perform the computation of A in QED we find, using
Qem (1?2 = m2 = (0.511MeV)?) = 1/137, that Agep ~ 10%%¢eV. This is why in
QED the dependence of ae,, on the renormalization scale, at the energies we usually
deal with, is much weaker than the one of a,. In fact, we have, for example, that
Qem (M%) = 1/128.

Now the question is: how do we choose u? Since it is completely arbitrary we
can in principle choose any value. However, also in this case some problems arise.
For example, in the computation of the virtual corrections to the couplings (e.g.
gs or e) we always have the insurgence of logarithms of the form log u?/u2, where
o is a certain energy scale at which the coupling is known (for example from an
experimental measurement). It means that choosing p ~ po the logarithms are small
and we can safely use perturbation theory since every order in the perturbative
expansion is much smaller than the previous ones. If instead p? > p2 the logarithms
are big and perturbation theory breaks down. In this second case, in order to
obtain reliable results, it is mandatory to resum all the perturbative series. This is
completely analogous to using the RGE to compute the coupling at the scale p with
the difference that we don’t have to compute all the infinite diagrams that give a
correction to this coupling, that in many cases can be impossible.

To conclude this section we can observe that the same arguments that have led
to the conclusion that the strong coupling runs with the renormalization scale, can
be applied to the mass. In fact, requiring that the bare mass is independent from g,
we can obtain a RGE for the renormalized mass. Hence, we get that

d
'MQdTLQm = Ymm, (2.48)
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where vy, is called anomalous dimension and is computed in perturbation theory.
The solution of Eq. gives the running of m with the renormalization scale
p. For this reason m is also called running mass. However, we usually work with
the physical mass that is a constant of nature and is the value that we measure
experimentally. It is defined as the pole in the propagator of the quark (or in general
of any particle). For this reason it is also called pole mass. Since the renormalized
propagator of a fermion is

7

WErEs L (2.49)

iGR(p)

where X(p) is the fermion self-energy and is computed in perturbation theory, the
relation between the physical mass and the renormalized mass is given by solving
(iGRr(p = mp))fl = 0, where mp is the physical mass. It means that we have to
solve

mp —m+ X(mp) = 0. (2.50)

In the remaining of this thesis we will always work in terms of physical masses, that
from now on will be addressed with m.

2.4 Running of a4 with different flavour numbers

In the last section we saw the RGE, Eq. , that depends on the S-function.
Since the computation of this object involves quark loops of all possible flavours, it
depends on the total number of flavours, i.e. as far as we know ny = 6. Moreover,
if there are heavy quarks that we don’t know yet, we should include them in the
computation of the beta function as well. This is not an ideal situation since we
expect that physically, if a particle is much heavier than the scales of the considered
process, then its contribution to physical observables must be negligible. It is the
content of the Applequist-Carazzone decoupling theorem [10]. The decoupling of
heavy flavours can be achieved for example with the decoupling renormalization
scheme (DS): performing a subtraction at zero momentum the propagators of the
flavours with m? > u? go to zero and therefore the heavy flavours vanish from
the amplitudes and from physical observables like cross sections and decay rates.
However, the 8 function is not a physical observable. It means that Applequist-
Carazzone decoupling theorem does not apply and also in the DS the RGE must be
written in terms of ny = 6. This problem can be avoided using effective field theories
to make decoupling explicit. For example let us consider QCD with n; = ny — 1
light flavours and one heavy flavour with mass m? > u? (ns flavour scheme). Then
we consider a modified theory with n; light flavours and no heavy flavours (ny — 1
flavour scheme). It means that we have integrated out the heavy flavour so that
we are left with a smaller number of degrees of freedom that take part to the
interactions. Therefore, in this second scheme we will write the RGE in terms of a
smaller number of flavours. The equivalence between the two theories is obtained
requiring that physical observables must be equal in both of them. This leads to

matching conditions between the couplings in the two theories, namely a[snf 1 and
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aﬁ"f]. We find that, up to NNLO [11],

ny—1 n n 2
o) o) o (@) (1) 19 T
[nsle ooy 6 & 2 672 6 % m2 1 ®m2T
ol (u2) h " "

From Eq. we can see that at LO and NLO Oanf} (m3) = aLnf_l} (m3), but at
NNLO it is no longer true. Moreover, we introduce a matching scale py that is the
threshold such that if u > u;, we use the ny flavour scheme and and if p < pp we
use the ny — 1 flavour scheme. Obviously we must have that p, ~ O(my,), otherwise
we would have unresummed large logarithms.

In conclusion, we have constructed a scheme where the number of active flavours
varies with the renormalization scale p. In fact, whenever p crosses the threshold of
a given heavy quark, we have to switch from the n; flavour scheme to the ny — 1
flavour scheme (or vice-versa if p is increasing). This is called variable flavour
number (renormalization) scheme (VFNS).

2.5 Parton model

So far in this chapter we talked about the fundamental fields of QCD that are
quarks and gluons. However, as consequence of color confinement, what is really
observed experimentally are the hadrons. Due to the failure of perturbation theory
in studying the confinement of quarks and gluons into hadrons, computing cross
sections with hadrons in the initial and final states is impossible in the context of
perturbatitive QCD. Therefore, we need the introduction of the so-called parton
model. In this section it will be described starting from the deep inelastic scattering
(DIS) and then it will be extended to proton-proton collision.

Let us consider the scattering of an electron off a proton via the exchange of a
virtual photon. We can define the following quantities

Q= -, (2.52)
v=P.q, (2.53)
@@
R (2.54)
q- P
y= L P (2.55)

where k and k' are respectively the momenta of the initial and final electrons, P
the one of the initial proton and P’ is the one of the final hadronic state that
can be still composed by the proton (elastic scattering) or can be a multi-hadron
state (inelastic scattering). The variable x is called Bjorken’s scaling variable and
q=k—k = P’ — P is the momentum carried by the photon. The differential cross
section can be written as

do 4ra?,, (S — M?) [ , ryM?
drdy AL <y zFy + (1 —Yy— 5—1\42)FQ>’ (2.56)
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p

Figure 2.1. Elastic scattering of an electron with a proton.

where F, = F,(z,Q?) with a = 1,2 are called structure functions and parametrize
the internal structure of the proton target as “seen” by the virtual photon. M is the
mass of the proton and /S is the hadronic center-of-mass energy, i.e. S = (P + k).
If the scattering is elastic the structure functions will be those of an object with an
internal structure. It means that they will depend on a scale Qg characteristic of
the extension of the proton, e.g. Qo ~ /(r?). Therefore the structure functions will
depend on @ through the ratio Q/Qo because they must be dimensionless. In this
case we have that

M?=P?=P+q¢q*=M*+¢*+2P.q — az=1. (2.57)

It is a consequence of the fact that we still have the proton in the final state. Fig.
shows the elastic process. If the electron has enough energy it can break the internal
structure of the proton, forming new hadrons in the final state. Then the process
will be e + P — e~ + X, where X is a generic hadronic state. Neglecting the proton

mass we can write Eq. (2.50) as

d 2
dxdan = 27;%3"1 ((1 +(1-y)?)F— y2FL), (2.58)

where we have defined
Fr(z, Q%) = Fy(z, Q%) — 22F (z,Q%). (2.59)

In this case an approximate scaling law, called Bjorken scaling, is observed: in the
limit Q?, v — oo with x fixed we have that

Fo(z,Q*) — Fu(z), a=2,L. (2.60)

Bjorken scaling implies that the virtual photon scatters against a point-like free
particle inside the proton. In fact, if it scattered against a composite particle, then
the structure functions would depend on the ratio between a scale characteristic of
the extension of the particle and @, like it was for the elastic scattering. Notice that
in this case

M?<P?=P+q*=M*+¢*+2P.q — az<l1. (2.61)
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Figure 2.2. DIS of a quark with the virtual photon emitted by the electron.

*

v
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~

zP

q

Figure 2.3. DIS partonic process ¢(zP) + v*(q) — q(p’) that gives the partonic structure

functions in Eqs. and .

The first relation of this equation comes from the fact that we no longer have the
proton in the final state but instead we have a multi-hadron state. Therefore we
conclude that the proton is composed by point-like constituents that we call partons.
For the moment let us neglect the existence of the gluons. It means that we identify
partons with quarks. This is the so-called “naive” parton model. It is the model in
which we don’t consider gluons and QCD corrections.

We have said that the cross section is the one of the scattering of a virtual photon
against a point-like free particle, as shown in Fig. Let us suppose that this
particle carries a fraction z of the longitudinal momentum of the proton, i.e. if p
is the momentum of such particle then p = zP. We are neglecting the possibility
that the partons have a transverse momentum with respect to the one of the proton.
Then we define the partonic structure functions as the structure functions of the
process in which we have the partons as external states and not the proton itself.
They will addressed with a hat, e.g. 13’1, Fg, etc. For example in this case we have
that the partonic process is q(2P) +~*(q) — q(p'). Its tree-level diagram is shown in
Fig. However, the partonic processes cannot be observed experimentally because
of color confinement. What we observe are the hadronic processes, in which the
proton and the hadrons are the external particles. In order to compute the hadronic
cross sections we have to introduce the parton distribution functions (PDFs): f;(z)dz
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represents the probability that the virtual photon scatters off a parton of type ¢ that
carries a momentum fraction between z and z + dz with 0 < z < 1. Moreover, we
will make the assumption that the photon scatters incoherently against the different
types of partons. Therefore, a generic structure function Fy(z), will be of the form

Fy(x) = Z/Ol dz fi(z)ﬁa,i<§), a=2,L, q=u,d,s. (2.62)

1=q,q

Fa,i is the partonic structure function E, of the parton of type i, where i runs
over all possible light quarks but also on their antiquarks. Since the PDFs contain
the information on the internal structure of the proton, they are non-perturbative
objects. Indeed, they are governed by an energy scale that is of the order of the
proton mass and therefore the strong coupling becomes of O(1) and QCD becomes
non-perturbative. It means that we cannot predict the PDFs from the theory but we
have to extract them from data, as we explained in Chapter [l We didn’t consider
heavy quarks because their mass is higher than the one of the proton and therefore
they are are not present as its constituents but they are generated perturbatively.
Actually, the charm quark has a mass that is of the order of the one of the proton
and therefore it is not light enough to be neglected but it is not heavy enough so
that we can fully rely on perturbation theory. Therefore, we cannot rule out a priori
the presence of a charm PDF. In this discussion, in order to avoid complications, we
will assume that we don’t have intrinsic charm in the proton and therefore we don’t
have a charm PDF.

In Sec. B.1.2] we will show how the structure functions are extracted from the
matrix element of the Feynman diagram of a certain process. Computing the partonic
structure functions of DIS of a quark with a virtual photon, i.e. the process shown
in Fig. 2.3] we find that

Fg(g) = e25(1- g) (2.63)
FLG) = 0. (2.64)

where e, is the charge of the quark involved in the scattering. Plugging these
relations into Eq. (2.62) we find

Fy(z) = Z_ /01 dz fi(2)e2xd(z — x) = Z et fi(z), (2.65)

1=q,q 1=q,q
FL(x) =0. (2.66)

Eq. implies that Fy(z) = 2xFy(z), that is called Callan-Gross relation.

So far we didn’t consider the existence of gluons and QCD corrections. Adding
these contributions we find the full parton model (sometimes called improved parton
model). In particular we have to include a gluon PDF that interacts with the virtual
photon via splitting in quark-antiquark pairs, and we have to compute the partonic
processes, like v* 4+ ¢ — ¢, to higher orders in perturbation theory. If we consider
fully inclusive cross sections we will have emissions of other particles in the final
state. In this case one observes that the scaling is broken by the QCD corrections.
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Moreover, in the full parton model the PDFs acquire a dependence on the energy
scale Q? of the process we are considering. Such dependence will be further discussed
in Sec. A consequence is that also the structure functions acquire a dependence
from Q?. When we consider the full parton model we expect that the PDFs satisfy
certain sum rules: the first one is related to the proton’s momentum conservation

/1 dz Z 2fi(z, Q%) = 1. (2.67)
0 1=4,4,9

Then, imposing proton flavour conservation, we have that

[ (52, @%) ~ e, @) =2 (2.68)
[ = (fut. @)~ gt @) =1, (2.69)

If we want to compute a hadronic cross section, then it will be of the form
o, Q%) = / a2 £:(2, Q)5 (2, 0,(@%)) (2.70)

where G; is the partonic cross section of a parton of type ¢ and it is computed in
perturbation theory, so 6 = ), 6(’“)045 . Taking the leading order expansion we
recover the “naive” parton model. Eq. involves various simplifications: first
of all the partons in the initial state that constitute the proton are considered free.
This is true only if the virtuality Q2 of the virtual photon is much larger than the
hadronization scale. It means that Eq. neglects terms of O(A2/Q?). A second
simplification is that in the computation of the partonic cross sections the initial and
final partons are always considered on-shell. Obviously it is not true since, due to
color confinement, they never appear as final particles but give rise to parton showers
that end with hadrons in the final state. However, being the calculation of the
confinement of the partons into hadrons impossible due to the failure of perturbation
theory, such simplification is used to obtain useful results. Also in this case we are
throwing away terms of O(A2/Q?). Third, so far we always neglected the possibility
that the interaction between the electron and the parton is mediated by a weak
vector boson (i.e. W* or Z°). If the energy of the electron is high enough we have
to consider such contributions and this gives rise to different structure functions.

If we consider structure functions instead of cross sections, using y = @, Eq.
takes the form

(z,Q*) ==z Z / —fz (z,Q%)C. ( ,as(Q2)>, a=2,L (2.71)
i=q,q,9
where C,; are called coefficient functions and are defined as
x x

;Ca,i(ga as(Q2)) = Fa,i(;

They are computed in perturbation theory and so we have that

Jas(Q). (2.72)

Cuilz,a5) = C0(2) + a,C (2) + o202 (2) + O(a?). (2.73)



20 2. Strong Interactions

The k-th order expansion of Eq. , i.e. the function C’((li-), is usually called N*L.O
coefficient function. The lower limit of integration of Eq. is x and not 0
because the partonic variable % = QZQ;_(] = Z must be smaller than 1, for the same
reason that x must be smaller than 1 in the inelastic scattering. Obviously, at zeroth
order in perturbation theory we get the results in Egs. and . However,
it is not true beyond LO. Comparing these definitions with what we have said in

this section, it’s easy to show that

O3 (2) = €28(1 — 2), (2.74)
e (z) =0, (2.75)
3 (2) =0, (2.76)
P (z) =0. (2.77)

The expressions of the coefficient functions at NLO will be given in the next chapter.
A notation that will be very useful in the following chapters is

Geo@=[ L) = [ Lo (278)

z z z z

so that Eq. (2.71)), omitting the z and Q2 dependence, can be written in the compact

form
F,=z Z fi® Caﬂ‘. (279)

1=¢,q,9

So far we focused our discussion on DIS, where we have one proton in the initial
state. For this reason Eq. (2.70)) contains only one PDF. However we can consider
also processes with two protons in the initial state, for example proton-proton
collision at LHC. These processes are much more complex than DIS due to the
presence of two hadrons H; and Hs in the initial state, that interact through their

Figure 2.4. Diagram of the interaction between two initial state hadrons H; and Ha, via
their point-like constituents that carry a fraction z; and 2 of their momentum. ¢ and j can
be quarks, antiquarks or gluons.
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point-like constituents, which carry a fraction z; and zo of their momenta. In this
case the hadronic cross section is given by

1 1
(@)= > /Odzl/o dzy fi,i(21, Q%) fHa (22, Q%)63j (21, 22, as(Q%)), (2.80)

4,J=4,9,9

where Q2 is the typical scale of the process we are considering, fr, (21, Q?) and
[Hs,j (22, Q?) are respectively the probabilities densities of finding the parton i or j
in the hadron H; or Hs with longitudinal momentum fraction z; and z3 at the scale
Q2. 6;; is the partonic cross section of a certain process with the partons i and j as
initial states and it is computed in perturbation theory. Fig. 2.4 shows graphically
the process we are considering.
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Chapter 3

Factorization

In Sec. we saw that whenever we compute a cross section in the SM we always
have to deal with divergences. In that discussion we focused our attention on the
UV divergences, that are cured with renormalization. In this chapter we will focus
on the IR divergences: they appear when we have massless particles in our theory,
for example photons and gluons. Moreover, if we neglect the mass of the quarks
(or of any fermion) we have the appearance of other IR divergences. In this case
the divergences are an artifact that comes from sending the quark mass to zero and
therefore they can be eliminated reinserting the mass dependence. However, being
light quarks much lighter than the energies we usually deal with in perturbative
QCD, treating them as massless is a very good approximation. Therefore, we have
to find a way to remove the IR divergences that come from neglecting the mass of
the quarks. IR divergences can appear both in the virtual corrections and in the
real ones. For the virtual corrections the divergences appear when the momentum
flowing in the propagator goes to zero. The real corrections consist in emission
of real particles and when such particles have zero mass they gives rise to an IR
divergence that can be of two types: soft or collinear. The first ones appear when
the energy of the emitted particle goes to zero (since we are treating a massless
particle the energy can be arbitrarily small) while the second ones appear when the
angle between the emitted particle and the emitting one tends to zero.

Now that we have introduced all the different IR divergences we have to find a
way to remove them because the final cross sections must be finite (they are physical
quantities). A crucial observation is that when the emitted particle becomes very
soft or very collinear (or both), the real emission process becomes indistinguishable
from the no-emission one, both practically and theoretically. Then Bloch-Nordsieck
theorem states that IR singularities cancel between real and virtual diagrams when
summing up all resolution-indistinguishable final states. This means that summing
virtual and real corrections ensures the cancellation of both soft and collinear
singularities from the emissions coming from final state particles. Moreover, the
Kinoshita-Lee-Nauenberg theorem says that mass singularities (m — 0) of external
particles are canceled if all mass-degenerate states are summed up. From this
theorem one can derive that the soft singularities cancel also from the emissions
coming from initial state state particles. However, collinear divergences coming from
the initial state do not cancel, so we have to find a way to deal with this kind of
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Figure 3.1. Virtual correction to the diagram in Fig. they are all IR divergent due to
the zero mass of the gluon.

q q

Figure 3.2. Real correction to the diagram in Fig. the diagram on the left is the initial
state emission, while the one on the right is the final state emission.

divergences. This is called factorization and it is the subject of this chapter.

For example if the process we are considering is the scattering of a quark on
a virtual photon shown in Fig. then the LO virtual corrections are those in
Fig. while the real ones are those in Fig. As we were saying, summing up
all these divergent diagrams provides the cancellation of all the singularities with
the exception of the collinear divergences coming from the first diagram of Fig.

In this chapter we will describe factorization: in Sec. we will describe how to
remove collinear divergences coming from the initial state emission and in Sec.
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we will describe how this implies DGLAP equations. In Sec. we will use the
exact quark mass dependence and we will explain why factorization is still necessary
and how to perform it. Then in Sec. we will describe what a variable flavour
number (factorization) scheme (VFNS) is and how to construct it.

3.1 Factorization of collinear divergences

3.1.1 Discussion in perturbation theory

Before dealing with the collinear divergences of the initial state we have to regularize
them: one possible way is using a cutoff that prevents the transverse momentum
of the emitted particle (transverse with respect to the momentum of the emitting
particle) from going to zero. Another possibility is using dimensional regularization
since it regularizes UV and IR divergences at the same time.

In the case of the cutoff regularization, the computation of the sum of the
diagrams in Fig. and neglecting the quark mass, gives [12]

2
Fry(2,Q%) =e m[é(l —z) —i—ozS(Pq(g)(z) log% +02,q(z))}, (3.1)
h
e pl0) _ Cf 1422 351 _Cp 1422 39
QQ(Z)_%<(1_z)++2( _Z)>_27T<1—Z)+’ ()

and cy4(x) is a calculable function. x is a cutoff that prevents the transverse
momentum of the emitted gluon from going to zero, i.e. |kr|> > 2. In Eq. we
introduced the plus distribution that will be described in Appendix [A] Thanks to
the factorization theorem, the DIS hadronic structure function is

ngqu Z/ 7‘]0 F2q( Q2)
:Zegg;/;dzz%( )l5<1_z)+as(P(0)( )logQ+02,q<x)>1,

(3.3)

where qg is the PDF of the quark. Using the same procedure that is adopted for the
renormalization, we can regard qp as a bare PDF, which is unmeasurable since it
is the PDF of the divergent theory, and redefine it in order to absorb the collinear
singularity. In order to do it we must introduce a scale up, called factorization scale,
that plays a similar role that the renormalization scale pugr plays for renormalization.
Hence we define a new PDF so that the divergences are canceled from the hadronic
structure functions:

qms(x,u%)=/:fq<)(z)[5(1—Z)+as<Pq(q>( )log—i-CQq(x))]. (3.4)

Therefore, Eq. (3.3]) becomes

Fyy(z, Q%) Ze x/ — qps (2, 1) {5(1 - —) +a5P( )( )log 2 } (3.5)

F
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In this way we have factorized the singular part of Eq. into a redefinition of the
PDF. In addition to it we have also factorized in the PDF the whole regular part cs 4.
However, we could have factorized only a term Cl?vq that would have left in Eq.
a finite contribution ¢z 4 — c’2,q. In fact, while factorization provides a prescription
for dealing with the collinear divergences, we still have an arbitrariness in how the
finite contribution is treated. How much of the finite contribution is factorized
defines what is called the factorization scheme. This is completely analogous to
the renormalization schemes introduced in the previous chapter. For example, the
redefinition in Eq. is called DIS scheme. Observe that like for renormalization
we had to introduce an unphysical scale ur, such that physical observables do not
depend on the choice of pup. Conceptually it is a different scale with respect to
the renormalization scale pur. However, being the two completely arbitrary, we can
always choose pur = ur = p, as we will do from now on. Anyway, if we want to
reinsert the up dependence, we can expand as(u%) in terms of as(u%) using that

2y NF o2 o ﬁ #F 2 HE\ 3/, 2
ol = aulu) - ftow “E i) (ronF — ot 2L Yo, (0

All this derivation can be carried out in dimensional regularization too. In this
case we have that

Fog(5,QY)| = ea, () PO()(—2). (3.7)

div

Now we can factorize the singular term in the PDF using the MS scheme, i.e. we
use the redefinition in Eq. (2.36) so we have to subtract only the poles in e. Hence
we get that

By 4(2,Q%) Ze x/ —q Z, )[5(1 — E) +a5(u2)C§}3(j,g;)], (3.8)

with

2a\" (2 A 1—=z 2\1 — 2 1—=z
ar2— (T4 Do0-2 - (12) 1og(2)]. 39)

So far we considered only the contribution of one quark to F». We can add the
gluon contribution to the DIS: the first nonzero contribution is the O(a,) that is
given by the two diagrams shown in Fig. These diagrams are divergent due to
the zero mass of the quarks. Regularizing with a cutoff gives

Fry(z) == Z ez (P(O log Q— + ¢ 4(2 )) (3.10)
with
PO(z) = %(22 +(1— 2)2). (3.11)

O (1) = 2 [2<log(1 - Z))+ ~2(), -+ )log(i - 2) - (5 2 tog-
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Adding this contribution to Eq. (3.3)) we find that the total structure function F» is

Ze :1;/ 7% )[5(1—Z)+a (Pq(q)(z)lOgQ+02’q<x)>]
-l—Ze x/ 790 z)a [Pég)(z)logQ—i—clg(x)] (3.12)

In order to absorb the collinear singularities into the PDFs in DIS scheme, we make
the following redefinition:

) = [ 000 s(1-5) v () s 2)]
+/ — 90(= as[ PO (= )1og2+cgg($)] (3.13)

gDIS(mMLL ) = 90( (3.14)
so that we find

Zeq:/ qDIs(Z:u){(S(l_)"‘asP()(Z)lngfz}
+Z€ $/ — Ipis (2 %)as q(g)(g) log '6322 (3.15)

A more common choice is to use the MS scheme: we find that
Fz,g‘ = zela, ZP D) (- ) (3.16)
Reabsorbing the collinear divergences in the the PDFs with the redefinition

i) = [ Eao(1- ) - Loy (2]
+ [ L) tatr ()], (3.17)
gz, 1?) = g(ﬂj (3.18)

we have that

R @) = X [ Lad)[s(1- ) +attrc) (1))

with

— 8224821+ log(1_7z) (224 (1 —2)?)

— (22 +(1-22) 10g<22 } : (3.20)
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Notice that we have removed the sum over g and ¢ from the second line of Eq.
and this yields an additional factor of 2 in Eq. . Eq. agrees with
Eq. with the only difference that in that case we choose u = Q.

The same computations can be performed for the longitudinal structure functions.
However, both Fr,, and Fp, 4 are finite at O(c), therefore at this order they are
scheme independent and the redefinition of the PDFs in Egs. and don’t
change their expressions. Their form is the following

) (z) = %z, (3.21)
16T
i) () = ifzu _ ). (3.22)

3.1.2 Computation of the gluon coefficient function

In order to show how the collinear divergences appear in the coefficient functions
when we have the emission of massless particles, we consider the deep inelastic
scattering of a virtual photon with a real gluon that gives a quark-antiquark pair:

9(p) +7"(q) = q(k1) + q(k2), (3.23)

where p? = 0 and ¢®> = —@Q? < 0 is the virtuality of the photon. As mentioned before,
the quarks are considered massless and therefore we will have collinear divergences.
The two Feynman diagrams that contribute to this process at tree level are the ones
shown in Fig.|3.3| The virtual photon is emitted by the electron participating in the
DIS process. In the squared amplitude the part related to the initial electron and
the one related to the partonic process factorize as

1,0
|A‘2 = quLM W/uxa (3.24)

where L*¥ is the part associated to the electron line and Ww is the amplitude
associated to the process in Eq. (3.23). Therefore we will consider W,,,, only. The most

,y* ,7*
H;IL‘I‘ kl \LLqLLL‘l‘ k2 _
—»———— (¢ ——(
P — k’Qﬂ k‘l — pv
<« ¢ ¢
k2 kfl
p p
g g

Figure 3.3. Feynman diagrams that contribute to the partonic process g +v* — ¢+ ¢q at
tree level.
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general expression of WW that satisfies current conservation q“Ww =q" Ww/ =01is
N N a"q” 24 (o + I (o + D\ (2. 02
W@, Q) = (=g + 75 )Wal@, Q%) (0 + 55 ) (1 4 57 ) W2, @%), (325)

where & is the partonic scaling variable and is defined as

Q* @ =

= = .2
2g-p 2q-zP Z’ (3.26)

T =

where P is the momentum of the proton participating in the DIS. What we want to
compute are the partonic structure functions, defined as

Fy(#,Q%) = 0Wa(#,Q7), (3.27)
ﬂ%@)ﬁ (2, Q%) — 201 (2,Q%), (3.28)

with 7 = ¢ - p. In order to extract them from VAV#,; we have to define the 4-vectors p
and ¢ such that

pP=0, p-p=1, p-qg=0, (3.29
7>=0, ¢-p=0, g-q=70 (3.30)
With this definition they satisfy the relations
D-ki+p-ky=1, 3.31)
qg-k1+q-ke=70, 3.32)

where we have used momentum conservation ¢ + p = k1 + k2. Now we can extract
the structure functions applying p and ¢ to WH” obtaining

Ey = 0p"p" W, (3.33)
. 432
L= ="7" W (3.34)

Using Eqgs. and - we can compute the partonic structure functions F and
Fy, from the dlagrams in Fig.|3.3] Since massless particles give rise to IR divergences
we will use the dimensional regulamzatmn in the MS scheme. In this way such
divergences are regularized and they will appear as poles of the form 1.

In the case of massless quarks we have that k% = k3 = 0 and therefore the
amplitude of the two diagrams is

M“:qusTaawl)( (p ”2)2;%() 4 >(Z1_‘f)2w>v<k2>, (3.35)

where T are the Gell-Mann matrices and ¢, is the polarization vector of the gluon.
The tensor of Eq. (3.25) is given by

= SO MM, (3.36)
pol
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where the symbol ipol is the sum over the final polarizations and the average over
the initial ones. When we sum over the colors of the final quarks and of the initial
gluon we find a factor
. 4
S OTETE = 3 > 6 =4, (3.37)
1;7]7 Z?]
that averaged over the colors of the gluon becomes Tr = 1/2. Since we are in d

dimensions, the polarizations of the gluon are d — 2 = 2(1 — €). Putting all of these
ingredients together we find

i = Ty [kfl( Mﬂp)w(p)'ﬁ_”w)k@(%()(” (LB

2(1 kg) (k‘l —p) P k )
K —p
+ AT . 3.38
" =) (p) (3.38)
It is convenient to define the Mandelstam variables

s=(p+9q)°=-Q +2p-q= (ki +k2)* = 2k1 - ko, (3.39)
t=(q—k1)*=-Q*—2k; - q= (k2 —p)* = —2ka - p, (3.40)

u=(q— k2)2 = —Q2 —2ky-q= (k1 —p)2 = —2ky - p, (3.41)

that satisfy s + ¢ 4+ u + Q% = 0. Plugging these definitions in Eq. (3.38)) we find

R e2q2 Amv B CHv
WH =Tp qgse) ( + + , (3.42)

2(1 — t2 u? ut
where we have defined

A = (Wi (p — W) og* (9 — o)),
:Tr(%m—p) "oy (i~ p)f°).
s = (o (p— W) M i — )

+ Te (K — PR (p - k/m )

Now we can compute these factors using that >_, €,€, = —g, using the definitions

in Egs. (3.39)), (3.40) and (3.41) and the fact that since we are in d = 4 — 2¢
dimensions we still have that {v#,7"} = 2¢*” and Tr(~y~") = 4¢"” but the following

relations hold

g = d, (3.43)
'YM’Y;L =d, (3.44)
VP, = —(d — 2)4*, (3.45)
VP, = 4977 — 2eyP4°, (3.46)
APy = =297 P + 267y (3.47)



3.1 Factorization of collinear divergences 31

What we find is
u
AW = —8t(1 —¢) (k:fp” + ki{p* + 59‘“’), (3.48)
t
B" = —8u(l—¢)(p"ks + p'KS + 59" (349)
CH = ggh” (etu — 8% —s(u+ t)) + 8p” (263}9“ + eukh — skb + etky — skf)
+ 8k7 (etp” — spt — 2tkl + K (u+t + 28))

+ 8ky (eup“ — spt — 2ukh + k' (u +t + 25)). (3.50)

Computation of 23

Now that we have computed W we can apply Eq. (3.33) to compute F,. Remem-
bering the properties in Egs. (3.29) and (3.30) we find that

62 2
Py = Trog i [—1:3(1 ~ kP — (1= E)(k2 D)
2 () (et — 5 — 26001 - 5) + (o )5 — Q7))
+ %(kg ) (eu— s = 2ulks - p) + (k1 - p)(s — Q)

+ §(2€8 +eu(ke - p) — s(ka - p) + et(kr - p) — s(ky ]5))] :

ut

Using Eqgs. (3.31)) and (3.32)) to write ko -p = 1 — k; - p and using ¥ = Q2/24 we find

that
. 4Tp eg g2

By = m@‘* (2(k1 p)* = 2(k1-p)+1- e). (3.51)

In order to compute F, we move to the center-of-mass frame of the real gluon and
virtual photon and we rotate the spatial axis such that their 3-momenta lie on the z
axis. Since the gluon is on-shell and the photon is off-shell we can write

b= (pO’ Ovo’po)a q= (qo’()?o? 7p0) pO’ q0 > 0.
If we define the two light-like 4-vectors
n = (170707 1)7 ﬁ:(170707_1)7
we can write
_ 0 _ 0 . 0 .0
p=pn, g=an+(p +a)n=2a+p,0,0,—p°). (3.52)

The constants o and p° can be computed in terms of s and Q2 from the relations
s=(q+p)? and ¢*> = —Q?, finding

O_S—I-QQ - QQ
«

N (3.53)
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In order to compute (k; - p) in this frame we parametrize ki, ko and p in the following
way

]3 = Aﬁn + Bﬁﬁ +ﬁt,
kl = Aln + B177L + kt,
ko = Agn + Bon — ky,

where p; and k; have only the x and y components and the opposite signs of k; come
from the momentum conservation in the transverse plane. If we impose the relations

in Egs. (3.29) we can compute Ap, Bp and p7, while imposing Egs. (3.39), (3.40) and

(3.41) and k? = k2 = 0 we can compute Ay, A, By, By and k?. What we find is

_ Q* Vs
— 3.54
p \/E(S+Q2)n+S+Q2n+pt7 ( )
t uys
k= ——(1-2n— —Y k 3.55
1 2\/5( )n 2(5+Q2)n+ t (3.55)
u\/s s _
ko — — _ _k 3.56
TG D TP S (3:50)
with )
_ =g 4:% — tu ~
p?:—|pt‘2:—@, kt2: _‘kt‘QZ_s—FQ?(l_m). (357)

In conclusion we find, using the relations s+Q? = Q?/% and Q*+t& = —uQ?/(s+Q?),
that

A

_ xr “ _
b= 5 (QF 4+ 428 = 1)) + k- - (3.58)
pr and k; are two space-like vectors in the xy plane so k; - p = —|k¢||pt| cos ¢ where

¢ is the angle between the two vectors. Since the integration of the phase space of
the final particles includes an integration in d¢, observing that

I/QWcosgi)qu—O I/ZWcosqudd)—l (3.59)
2m Jo 7 27 Jo -2’ '
we have that the factor k; - p; contributes only in the quadratic form. So we can
write ) ) ( )(Q2 )

1 i 22°t(1 — & +tz

— | dp (ki -pr)? = - : 3.60

o 0 (b ( t pt) QQ Q2 ( )

Now we can plug the results of Eq. (3.58) and Eq. (3.60) into Eq. (3.51]) and

integrate the d-dimensional phase space that has the expression

1 (4m)¢ /1—2\—€¢ o _ _
d = — € € ]. - € M 1
with 1 0
y = %’ (3.62)

where 6 is the angle between ki and the z axis. In Eq. (3.61) the angle ¢ (or its
analogous in d dimensions) is already integrated assuming independence from ¢.
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This gives a factor that for € — 0 goes to 2w. Therefore, since we want to integrate
a function that has a dependence from ¢ we have divided a factor of 27 in the

Eq. (3.59) that cancels the 27 present in Eq. (3.61). Using
t = —2ky-p=—2(k9p° — |ka||F] cos0) = —2k9p°(1 — cosh),

we can show that

Q%y
t=— 3.63
L (363)
from which we find )
1—
w— _Q(ﬁy). (3.64)

Now we can plug Egs. (3.63]) and (3.64) into Eq. (3.51]) and integrate in the phase

space given Eq. (3.61). Using the MS scheme, so that the coupling becomes
Qs (uQ)(’i—f)e with a(p?) dimensionless, we arrive to the expression

=z

A

o () (155)
x

(—or(l—e \@
1232 — 1)+ (1 —€) — 2(62% — 62 + 1)y(1 — y)
/0 yet1(1 — y)etl
The integral can be evaluated using the properties of the gamma function:
1232 — 1)+ (1 —€) — 2(62% — 62 + 1)y(1 — y)
/0 y (1 —y)Ht

dy. (3.65)

dy
= (22(@—-1)+1—¢ /01 y N1 —y) " dy — 2(62% — 63 + 1) /01 y (1 —y) “dy
I'(—e)'(—e) M(1—-el'(1—¢)
I'(—2¢) [(2—2)

=22@ -1 +1—¢ —2(64% — 62 + 1)

where we used that
['(a)l'(a)

T(3a) (3.66)

1
/O Yl —y) Ty =

Finally we can expand in € using that

MQ 2

PN L 2
(Q2> =1 —|—elog(Q2) + O(€?)
In conclusion the expression for £} is, neglecting terms linear in e and inserting the
“flux factor” 1/4m

Aar 13y -2 L

Fy = dejas(u’) [— 832 + 8% — 1+ log(T) (52 + (1—2)?) —

— (34 (1 - 4)?) log(gz)] (3.67)

and therefore, using Egs. (3.17)) and (3.18)), we find the expression in Eq. (3.20)),

that is the final result.
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Computation of Fy,

Now we can apply Eq. (3.34]) in order to compute Fr. Remembering the relations
in Egs. (3.42), (3.48)), (3.49) and (3.50) and in Egs. (3.29)) and (3.30) we find

. 432
Fp = f e2g24(1 — e)ut [Skl +q(—2thy - g+ ko - qlu+ 1+ 29))

+ 8ks - q(—2uk2 Gk qutt+ 25))} . (3.68)

Using Egs. (3.31) and (3.32)) to write ko - ¢ = 7 — k; - ¢ we can find

. 8Twa? 2e2¢2Q? ~ 2uts—Q? u@?
F = 978 4 k . 2 k N - :|

(3.69)

In order to compute ki - ¢ we have to parametrize ¢ as we did for p in the previous
section. So we write

Imposing Eq. (3.30]) we find
Q* 9
As=—+, B;=0 =0.
q 2‘%\/g7 q ) Qt
Since g is a spatial vector g2 = 0 implies ¢; = 0. So we’ve found
_ Q?
= ——n. 3.71
1= 57" (3.71)
Using this parametrization we can compute
@ wu
ki-g=—— . 3.72
L 2% s+ Q? (8:72)
Using this expression in Eq. (3.69)) we find after some algebra
A e2g2
Fr = 32TF1‘1—SQZ=2(1 —7) (3.73)
—€

Now we integrate the phase space in Eq. (3.61]) finding

R e2a(p?)e p2Ne 1l —dy e 1
Fp=32Tp—2° (L A21—A/ ~“(1—y)°d
L=3 F(l_e)r(l_e)(Q2> ( P ) °(1 - 2) v (L—y) “dy,

and using the integral in Eq. (3.66) we get

IF(1—e'(1—c¢)
I'(2 — 2¢)

1
/0 y (1-y) “dy=

In conclusion, neglecting terms of O(e) and inserting the same factor 1/47, we have

that
16T

47

Fp = zelag(p?) (1 -2), (3.74)

that is finite, as we said previously.
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3.1.3 Discussion to all orders

So far we have done a discussion at leading order in perturbation theory: we
considered the expansion of Cy, and Cy4 up to O(ay) and we factorized their
divergences in the PDFs order by order. Moreover we considered only one flavour
of quarks. Obviously this discussion can be generalized beyond leading order. The
most general expression of a generic structure functions (i.e. either Fy or Fr) is,
suppressing all z and Q2 dependence, and considering all the light flavours

F==x Z C()J' & fo’l', q=u,d,s, (3.75)
1=4,4,9

where Cp; and fo; are respectively the bare coefficient functions and the bare PDF.
It means that Cp; contains the collinear singularities. One can show that the bare
coefficient functions always factorize as

Coi= Y Cj(ph) @ Thuluf), (3.76)
J=a,9,9

where Cj is no longer singular and therefore I';j; contains the collinear divergences.
As we did in the previous discussion, we introduced the factorization scale yg. In
fact we have that, using the MS scheme with ur = pr = p,

TjiCe i) = 6(1 — 2) — ~au() PR(2) + Oa). (3.77)

The objects Pj(i0 ) will be given in the next section. Plugging Eq. (3.76]) into Eq. (3.75|)
we find
F=z ) Cj(*)@Tju(k*) ® fou (3.78)

4,7=9,9,9
Now we can absorb the collinear divergences into a redefinition of the PDFs. Hence
we define

i) =" Ti(p?) @ fo, (3.79)

1=¢,q,9

so that Eq. (3.78) becomes

F=z Y G & fi(n?), (3.80)

that is written in terms of finite quantities. Expanding these equations at O(ay) we
get exactly what we found in the previous sections.

3.2 DGLAP equations

Imposing the independence of the bare PDFs from p? we can derive the so-called
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations:

d Ldz x
2 . 2\ _ 2 : N 2 . 2 . =
,U, dMQfZ(xHU’ )_j:qqg/x Z]DZ](Z7aS(M ))fj(zvu )7 Z_q7q7gv (381)



36 3. Factorization

where P;; are called splitting functions and are computed in perturbation theory, i.e.

Py(z) = asPY) (2) + a2 PV (2) + O(a?). (3.82)

El Y

DGLAP equations are a system of 2n; + 1 integro-differential equations whose
solution gives the running of the PDFs with the factorization scale. They are the
analogous of the RGE, Eq. , for the running of a,. It means that, solving
Eq. with a certain initial condition at the scale pg, we can find the PDFs at
every scale p. Therefore

J=4,4,9
where Uj;(u, p10) are the DGLAP evolution factors from the scale pp to the scale p.

They resum logarithms of the form log(p1/po) to all orders in a,. In fact we can
write

Usj (1, o) = UL (L) + a UM (L) + 2U N (o L) + O(a), (3.84)

s“ij

where L = log(u/po) and Ui]]\f LL(a4L) are functions to all orders in asL. The PDFs
evolved at N*LL are usually called N*LO PDFs.
We report the other O(ay,) splitting functions in addition to the ones given in

Eas. () and (B1):

Cr(1+2°

P (2) :Pq(((z))(z):%};< 1_Z>+, (3.85)
T

Fi(2) = Py (2) = 5= (2 4+ (1= 2)°), (3.86)
Crl+(1-2)?

P() = P = SELH O (387

2CF
2

z(l i Z)+ + 72 t2(1-2)+ (% - %)5(1 - z)]. (3.88)

The higher orders can be found in Ref. [13,/14]. Starting from the O(a?2), the
components Py, for ¢ # j and Pz, for any ¢ or j arise. Using the definition in

Eq. (2.78) we can write Eq. (3.81]) as

o d

0
Pg(g)(z) -

Y Pye fi(u), (3.89)
J=4,,9
where we suppressed the x and z dependence.

In order to solve DGLAP equations we have to write it in a simplified form. First
of all we consider

GFp LG = B0)= Y (Paew feli) — Pre® i), (3.90)

k=q,q,9
with 4, 7 = ¢, . The contribution for £ = g exactly cancels among the two terms in
parenthesis. At leading order, using that Pq(ioq)j =0 for i # j and Pq(?;j =0 for any i
or j, we find that

MZsz(ﬂ(ﬁ) — [i(*)= Pyq © (fip?) = £ (1?)). (3.91)



3.2 DGLAP equations 37

Therefore, if we have n; light flavours, there are 2ny — 1 independent combinations
of PDFs that evolve independently from each other. They are called non-singlet
components. Beyond LO the non-singlet components can be still diagonalized but
in a more complex way, see Ref. [12] for a complete description. Then we consider

I d — > filw) = > Pu®fi(p?) = D Pr® fu(p’)+ Y Pig® fo(1?)
A — k@ 4,9 i,k=q,q 1=q,q
=4,q,9
= Igq ® Z Ji(p +2nqug®fg( ) (3.92)
k=q,q

In the last step we used again that at leading order F,,; is diagonal. This form is
found also beyond LO, but with a different definition of Py, [12]. Instead, for the
gluon evolution we have that

#dlﬂfg = Y Pu®fip?) = > Pu® fi(p?) + Pog ® fo(1i?).  (3.93)

1=q,4,9 i=q,q

Therefore, defining

=3 ), (3.94)

1=q¢,q

that is called singlet component, we get that

d
MszLQ (NZ) = FPyg® S(p )+2nf g @ fopt )a (3.95)
M2dTL2fg<M2) :qu®5(ﬂ2) +ng®f9(ﬂ2)~ (3.96)

It means that, while the non-singlet components evolve independently, the singlet
component mixes with the gluon density in its evolution.

After that we have almost diagonalized Eq. , in order to solve it we move
to Mellin space: in this way DGLAP equations become

U d sz Z%g N as )f](N ,UJ) (3-97)

where f;(N, u?) and 7;; (N, as) are the Mellin transform of f;(x, u?) and Pj(z, o)
and are given by

fi(N,IuQ):/ldzzN1f,~(z,u2), (3.98)

0

Vi (N, as) = /1d2 NP (2 a0). (3.99)
0

The functions 7;; are called anomalous dimensions. In this way we get an ordinary
differential equation that is easier to solve than Eq li Obviously, the same
procedure can be applied to Egs. ED and (3.95)) giving analogous results.
After that we have solved Eq. @ in Melhn space we have to transform the result
back to z space, finding the final solution of Eq. .
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3.3 Factorization of large logarithms

3.3.1 Three flavour scheme

In the previous sections we have said that sending the quark mass to zero gives
rise to other IR divergences, in addition to those coming from the zero mass of the
gluon. However, if we are treating heavy quarks, for example in heavy quark pair
production, considering them as massless would be a rude approximation. Therefore
we will treat the light quark as massless, where light is referred with respect to A,
and we will keep the mass dependence of the heavy quarks. It means that the top
and bottom quarks will be considered as massive, while up, down and strange will
be considered as massless. The charm is a little bit more complicated since its mass
sits somewhere near A. In order to avoid complications we will treat the charm as
heavy, as we did in the previous chapter.

When we consider the mass of the quarks, it acts as a regulator to collinear
singularities. Hence, the coefficient functions will be finite. In particular, if we
choose u = @), the cross section will be of the form

o X ao
+ g (bo + b1 log g;)
4+« (co +c1 log Q—z + ¢ log? Q2)
+al(do + di log = Qj + dz log® =5 + dy log” Qg)
+.o.., (3.100)

where m is the mass of the quark and the logarithms come from the integration in the
collinear region. It means that while for massless quarks factorization is mandatory,
for massive quarks we have no need to factorize the mass logarithms. However, also
in this case some problems arise: first of all, treating the massive quarks is way more
complicated than treating the massless ones. Second, the appearance of logarithms
of the form log %z is problematic: when Q? ~ m? the logarithms are small and
therefore every term in the perturbative expansion is smaller then the previous ones
thanks to the extra powers of as. It means that we can safely approximate the
cross section taking all the contributions up to a certain order in ag and neglecting
all the higher orders, because we are throwing away small terms. Instead, when
Q? > m? the factors log % become large and we have that a,(Q?)log Q%/m? ~ 1:
it means that every order in perturbation theory is not negligible with respect to the
previous ones but rather it is comparable with them. This means that truncating
the perturbative expansion up to a certain order is no longer a good approximation.
Therefore we have to resum the series to all orders if we want to have reliable
predictions.

The three flavour scheme (3FS) uses the MS scheme for the three light quarks,
it keeps the mass logarithms of the heavy quarks and it uses the DS for the heavy
quarks loops. It means that the coefficient function will contain unresummed and
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potentially large logarithms. A generic structure function for DIS will be of the form

F(z,Q*) ==z Z 03]<

1=q,q,9

3
QQ, (@) @ 7@, (3.101)
where CB is the coefficient function in the 3FS. In this scheme the PDFs are labeled
as fB! to remember that they follow DGLAP evolution with three active flavours
and therefore they satisfy

ey =Y vt e @), i=aag (3.102)

J=4:4,9

Notice that Eq. is written in terms of a?] because we have used the DS for
the heavy quarks and therefore the beta function is written in terms of ny = 3. In
the case of heavy quark pair production, since the coefficient functions contain the
exact heavy quark mass dependence, they will contain also kinematical constraints
like a term (s — 4m?), that comes from imposing momentum conservation of the
partonic process. In fact, the heavy quark can be produced in the final state only if
s > 4m?. Using that s = Q?(1/z —1) the kinematical constraint becomes (zmax — 2)
with zmax = 1/(1 +4m?2/Q?). If s < 4m? the heavy quarks doesn’t appears in the
final state. It means that, since the adoption of the DS assures the decoupling of
heavy quark loops, the heavy quark completely decouples below its threshold and
thus at scales Q? such that Q? < m?. Therefore, if Q> < m? the heavy quark mass
dependence completely disappears from Eq. .

So far we focused on the charm quark. However, these considerations apply
equivalently to the case of bottom and top. Therefore, the top quark can be ignored
if we work at energies below its threshold. This is why in Eq. we considered
only the charm.

3.3.2 Computation of the massive gluon coefficient function

The fact that keeping the heavy quark mass dependence regulates the IR divergences
and gives the kinematical constraint 6(zyax — 2) can be shown for example computing
the process in Eq. without sending m — 0. It means that now we consider the
case k? = m? # 0, where m is the mass of the quark produced in the process that we
are considering. In this case the mass of the quark behaves as a IR regulator, so the
amplitudes will be finite: it means that we will not need dimensional regularization
and therefore there will not be poles in . However we still expect to find logarithms
of the form log Q%/m? that are large for Q? > m?. In this case Eq. becomes

M =qusT“u<k1>< Rt Al ) (k). (3.108)

and Eq. (3.38) becomes

62 2 m m
e 1 8 e ) (s B g g PR )

by —m) (mmf’—%ﬂwu ﬂu’vﬁ—%mmp)ﬂ (3.104)

(p— k2)? —m? (k1 —p)? —m?
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Now the Mandelstam variables will be

s=(p+9)°=-Q°+2p-q= (k1 +k2)* = 2m" + 2k1 - ko, (3.105)
t=(q—k)?=—-Q*+m?—2ki-q= (ko —p)® =m> — 2ky - p, (3.106)
u=(q— k)’ =-Q>+m*—2ky-q= (k1 —p)® =m? — 2k - p. (3.107)

Using these definitions we can write Eq. (3.104)) in the form

WH = T

2.2 uv 0% nv
€495 (( A = ¢ ) , (3.108)

2 \E=m?? " (= m?P " (— m) (- m?)
where
A = Te((y + m)y? (p = Bo -+ m)¢(He = m)¢*(p — o +m)"),
(3 + )¢ (B — p+ )y (o = m)y (= p+m)f”).
C = To((Hh + m)y™(p — Ko+ m)¢ (Ko — m)y” (Hh — p+m)¢”)
+ Te( (B +m) ¢ — p+ m)y™ (Bo — m)¢"(p — Ho +m)y").

BM =

=

Computing these factors with the properties of the Dirac matrices in d = 4 dimensions
(it is sufficient to use the relations in Eqs. (3.4343.47) with ¢ = 0) we find

AP = 8m® (3pHEY + 3kEpY — 2k EY — 2k5EY) — St(phEY + Ei'pY),

B = 8m?(3plky + 3kbp” — 2kkY — 2k EY) — Su(plks + kbpY),

CM = 8m> (2K, kY 4 2kb kY — 6kN kS — 6kLKY + 2p kY + 2pPKY 4 2K4'p” + 2kEp” — 4pHp”)
+ 8t(ki'kS + KEEY — 2KV KY) + Su(kYKS + kY kY — 2k5KY) + 8s(2Kk5 kY + 2k5 kY — pHkY
— p'ky — Ki'p” — khpY).

where we have omitted terms proportional to g" since they are irrelevant for the
computation of F» and FJ, thanks to the relations in Egs. (]3.29[) and d3.30b.

Computation of B

We can apply Eq. (3.33) to compute F. What we find is

By —srpoeds{ 1 2(6(ky - p) — A(ky - p)(ka - B)) — 2t(k1 - b
= 8T U o [ (600 ) = Ak )b ) = 2(0 5|

2

+ (u_1m2)2 [mQ (6(kz - p) — 401 - p) (ks - P)) — 2ulky -ﬁ)}
1
(t —m?2)(u—

+4(kz - p) = 4) +(2ks - P) (k2 - p) = 2(k1 - 5)°) +u(2(ky - D) (k2 - P) — 2(ks - P)°)

+

[ (200 9+ 20029~ 12001 ) )+ 400 )

+5(4Ck1 - p) (k2 - p) — 20k - p) — 2(k .p))] } (3.109)
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and using ko - p=1— k1 - p we find

N2 42
- 4Trvegg;

(t —m?)2(u — m?

2 {(kzl -p)? l4m2((u —m?)? 4+ (t - m2)2)

+ (8m? +4Q%) (u — m*)(t —m?)| + (k1 - p) [2(m? — t)(u — m?)?

+ (=10m? + 2u)(t — m?)% 4 (=12m? — 2Q* + 4u + 2s)(u — m?)(t — m2)]

+ (6m? — 2u)(t —m*)* + 2(m* —u — s)(u — m?)(t — m2)} (3.110)

Now we have to parametrize the vectors ¢, p, p, k1, ko like we did in the massless
case in order to compute ki - p. Following the steps of the massless computation we
move to the center-of-mass frame of the virtual photon and the real gluon (that is
also the center-of-mass frame of the two final quarks) and we align the 3-momenta
of these two initial particles with the z axis. Notice that the expressions that we
found for ¢, p, p (Eq. and Eq. ) are still valid because the equations
that we imposed to derive them still hold. Computing k; and ko in the same way
we did in the massless case we find

k1 = Qj/g(mQ—QQ_t+;z»(m2—u))n+Q(S_i_\/zQ)(m2—u)n+kt, (3.111)

te = gz (214 8) —u— QP — ta)a+ 2o — 0 — ke, (3.112)
with

K= R =m® - 52(””‘2 —u)(m? — Q* — t 4 i(m® —u)) (3.113)

From the expression of

0

t =m?—2ky - p=m? — 2(kIp° — |k2||F] cos 0) = m? —2k‘gp0< - “1:2’0059),
2

2
we can define t — m? = —%,

1 2 4z 1
y:2<1—MCOSO>:2(1—BCOSG), (3.114)

where the value of kJ has been computed using the parametrization in Eqs.
and (and since we are in the center-of-mass frame of two particles with the
same mass we find kJ = 1/s/2). Observe that 3 is exactly the velocity of the final
quarks in the partonic center-of-mass frame. Using the definition of y and the results
in Egs. (3.111)) and (3.112)) we can show that

where

ki-p=ke-p+y(l—2)+2(1-vy), (3.115)
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where we have also used that u — m? = —%2 (1 —y). Also in this case we have

that k; - pr = —|k¢||pt| cos ¢ and thanks to the integrals in Eq. (3.59) only the terms
proportional (k; - p)? survive. In conclusion we find that

1o Lo o 1, R R 28%m?
or | G5 = Sl PInf? = SRR = 28y(1 - 2)(1— ) - Tgr 1)

where the factor 1/2 comes from the integration over ¢.
Putting everything inside Eq. (3.110) what we find after some algebra is

. ATpi  elg? am* .
By TR a2 (07 + (1- ) — 2001 - (35 - 1)
+Q%y(1 — y)((28% — 22 + 1) — 2y(1 - y)(63* — 63 + 1))]. (3.117)

Now we can integrate the phase space that has the form

)\%(s m?2,m?) 1- 1+

)\%(s,mQ,m2
—_— <y< 5

)d0089 =

2
dog = —
02 167s 15} 167s

, (3.118)

where \(z, Y,z 2) =22 +y? + 2% — 22y — 202 — 2yz is the triangular function and in
particular b} (s,m? m?) = \/sv/s — 4m?2. Integrating Eq. ( we find

A 2TF e2as /s — 4m? omt 83 + 1622m?2p3
H T2 RV l"‘ Q2<(1+ﬁ)(1—ﬁ)+4bg(l 5>)+<1+5><1—5>

 8em?(3% — 1) log(l + g) +202(247 - )log(i + §> —28Q2(62% — 64 + 1)
4 2
- @egafg [10 (1 fg) ( 8@2% - 4@%(3@ 1)+ (24% — 2 + 1))

+6( 2( )—(8@2—8@“)),

o (3.119)

where we used that /1 —4m?/s = 3 and we have again inserted the flux factor.
The term log % is the large logarithm that we expected to find since it explodes

for Q® > m? (B — 1 for 8—; — 0). Moreover, from the expression for 5 we find that

# < (1+4m?/Q?) ™!, that is exactly the kinematic condition that we mentioned
before. Using the definition in Eq. (2.71) we obtain

4T 1 4 2
Cé’lg)(id) - 47rF [log( +B)(_8A2ZQL4 4”52 (3$—1)+(2f2—2:%+1))

+ B<4mi(:ﬁ —1)— (822 — 83 + 1))] . (3.120)
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Computation of Fy,

Applying Eq. (3.34]) to compute Fy, we find that

Fr,=Tr

42 €22 —4m?2 —4m?
] D00 - )00

1 _ _ _ _
=) m?) [sz((’“ ERICISLCRICR)
2t ke @)~ (k-2 ) + 20k Dk @)~ (a0
+ 48(161 . (j)(kQ . Q)] }, (3.121)

and using that (ke - q) =0 — (k1 - q) we get

- i2e2g? L 8m?+4Q? ) 1 1
Fr, =161F ; {(k‘l'Q) l(u—m2)(t—m2) +4m <(t—m2)2+ (u—m2)2>
. _ | 4u + 25 — 12m? — 2Q* 9 1 1 202
+ (k- q) (t —m?2)(u — m2) —dm ((u—m2)2+(t—m2)2)] N (t—m2)}'

(3.122)

Computing this factor, using that the expression of ¢ in the massive case is the same
of the massless case, Eq. (3.71), we find

2

Fy = 32T qus [Q2( ) - y(im_ y)}, (3.123)

where y is the same we used in the computation of F5.

Integrating this expression in the phase space in Eq. (3.118)), observing that this
time we have no ¢ dependence, we get

W ., 16Tp m?. 148
Fy, = dejo,— = |#(1 - 2)5 — 22 2Q2 g( 5)} (3.124)
that gives
(1) /A 16T om? 144
CLg(®)=——|21~-2)5 - 22 2Q2 ( 5)} (3.125)

This time the potentially large logarithm is multiplied by a factor that goes to
zero as a power term for Q? > m? and therefore gives no problem. Indeed, in
the massless computation of F;, we had no pole in €, so the insertion of the mass
dependence has no divergence to regularize. We have again the kinematical constraint
& < (1+4m?/Q?)~! that comes from considering heavy flavours pair production
with the exact quark mass dependence.
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3.3.3 Four flavour scheme

As mentioned before, if Q? > m? the logarithms become big and must be resummed.
This can be achieved by factorizing the large logarithms into a redefinition of the
PDFs in the same way we factorized the collinear divergences, and then performing
the DGLAP evolution with four active flavours. Thanks to Collins theorem [15] we
can write

0[3]( 0‘[4](622)) - ¥ 0[4}(622’ al(Q? )>®sz(Q2, ol (Q? >)' (3.126)

J=4,4,9,¢,C

Q*
The functions Kj; exactly contain the mass logarithms so that CJ[.A‘} are free from
large logarithms. They are called matching condmons Observe that now the 3FS
coefficient functions have been written in terms of o (QQ) this can be easﬂy done

order by order in perturbation theory by re-expanding 04[9 (Q?) in terms of a (Qz)

using Eq. - Obviously the two expansions are equivalent to all orders. With
this definition Eq. (3.101]) becomes

_ 4] [3]
F(z,Q%) == Z%g cl (Q2, aldl (2 ))@Kﬂ(Qz, oall(@M) @ (@Y. (3.127)
7=9,9,9,¢,C

If now we redefine the PDFs as

fj[ Z KJZ(QQ’ [4 (Q2)> ® fz[3](Q2)7 ] = q, (jmga c, Ea (3128)
1=q,q,9
we find that
Fa,@)=z Y M (”ii,a[ (@) @ £,"(@). (3.129)
J=4,4,9,¢,C Q

Eq. is free from large logarithms and therefore we can approximate it
truncating the perturbative expansion in a£4] up to a certain order. This is called
four flavour scheme (4FS). Observe that since we have removed the large logarithms
we can take the massless limit (or equivalently the limit Q2 > m?). The result that
we get will be exactly the same we would have if we had considered a theory with
four massless quark and we would had factorized the collinear divergences coming

from the fourth quark too. It means that we have that

2

Q2) (3.130)

0[41(6227 al¥) L2 clo,alf) 1 O

where C; 4 (0, 04[4}) is the coefficient function computed neglecting the heavy quark
mass, i.e. the one computed in Sec. [3.1.2] Therefore the DGLAP evolution will be
written in terms of four active flavours as

Mey= Y vl@.@)ertQ), i=aagee (3.131)

j:q167g7c76
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It means that the splitting functions will depend from n; = 4 flavours. Observe
that in the 4FS we have the appearance of a heavy quark PDF. The evolution in
Eq. is resumming collinear logarithms to all orders in perturbation theory.
In practice the matching coefficients K;; are computed by comparing calculations
of the coefficients functions in the 3FS and in the 4F'S to a given order in perturbation
theory and using Eq. . They have the following perturbative expansion

m2 00 b m2
Kii(z,22) = 6(1 — 2)6; + W2 wk® (2, ), 3.132
i 5) = 0= 2+ 3 (@) K (= ) (3.132)

where 1 is the factorization scale (previously we assumed p = Q). The off-diagonal
components with a gluon and a heavy quark, ie. K.y, Kz, Ky and Ky start
being nonzero at O(ay), while the off-diagonal components that involve a light
quark start contributing only at O(a?). All the diagonal quantities are of the form

Ki; =1+ O(a,) except for K, which get corrections only at O(a?).

3.4 Variable flavour number scheme

We have seen that if the DIS scale Q? is smaller than the heavy quark production
threshold, then the heavy quark decouples and cannot be produced. As this threshold
is crossed we start producing it and we have a scheme (the 3FS) in which we have
unresummed mass logarithms. Increasing again Q? these logarithms become large
and spoil perturbation theory and therefore must be resummed with the 4FS. When
we cross the production threshold of the next heavy quark analogous considerations
hold. Therefore we need a scheme such that for Q% < m? the heavy quark decouples,
for Q% ~ m? the fixed order result is used, while for Q? > m? we resum large
logarithms and the heavy quark can be considered massless. Since the number
of active flavours changes with the scale @), such scheme is called variable flavour
number (factorization) scheme (VFNS).

In the literature various schemes are available, such as ACOT [164/17], SSACOT
[18,19], TR and TR’ [20,21] and FONLL [22-24]. All of them are equivalent to all
orders, because physical observables like cross sections must be scheme-independent,
but differ in the way the ingredients are combined at finite order.

If we have the PDFs at the scale Qg < m, we evolve them in the 3FS using
Eq. (3.102)). As Q approaches m we have to perform the scheme change. Thus, we
have to use Eq. to evolve the PDFs towards higher energies. It means that
the evolution of the PDFs will be described by

A2 2 S U ) Y 2)

J=4,4,9,¢,C
= Y Uilupd X ng( () ;2 (u2)
J=4,9,9,¢,C k=q,q,9 ,U,
= ul! ol vl 3] ,,2
> (ope) D K > Ui (ptes o) fr (1)
J=4¢,q,9,¢,C k=q,4,9 ,uc h=q,4,9
> Eh(u,uo,m)f;[f}(u%), (3.133)

h=q,q,9
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where i = q, q, g, ¢, ¢ and p. is the matching scale, i.e. the scale at which we perform
the scheme change. Obviously we have to choose p. ~ O(m), otherwise in the
matching condition in Eq. we would have unresummed large logarithms. It
means that for p < p. we use the 3FS, while for p > u. we use the 4FS. We defined
the evolution matrix T as

2
m
Tl pom) = > U (p, pre) K (ﬁ ol (M?))Uzﬁ} (e, f10), (3.134)
J=4,4,9,¢,¢ ¢
k=q,q,9

that is resumming large logarithms of the form logu?/u. Observe that in the
evolution matrix Tj; the dependence from the matching scale u. disappears. In fact,
being it a completely arbitrary scale, the physical quantities cannot depend from
it. Observing Eq. , since the coefficient function in the 4FS does not depend
from p., if the PDFs in the 4FS depended from it then the structure function would
depend from . as well. For this reason the PDFs cannot depend on the choice of
te and it means that T;p is independent from p,. at any given order. This procedure
applies in the same way when we cross the threshold for production of the bottom
and top quarks: for p > up we use the 5F'S and for p > u; we use the 6FS where we
have respectively five and six active flavours.

In conclusion we have constructed a factorization scheme in which the number
of active flavours, i.e. that take part to DGLAP evolution, varies with the scale pu.
This is completely analogous to what we did in Sec. 2.4
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Chapter 4

Approximate coeflicient
function at N°LO

As we explained in Chapter [I] in order to increase the accuracy of PDF determi-
nation we need the N3LO exact massive coefficient functions of both quark and
gluon. Unfortunately, such functions are not fully known at present time. In fact,
only the u-dependent terms are currently available in the literature, since they
have been constructed thanks to renormalization-group arguments [3}/4], and are
completely known in numerical form, using the NNLO coefficient functions and the
NNLO splitting functions [3,25]. It means that the only unknown terms are the
p-independent ones.

From now on we will consider heavy quark pair production in DIS, considering
the charm quark as the heavy quark. This process is slightly different from the totally
inclusive one, because it requires the presence of a heavy quark pair in the final state.
It follows that the light quark coefficient function starts at O(a?) because in such
processes two strong vertices are needed to produce a heavy quark pair. Moreover,
we will take into consideration only the structure function F5 which is dominant with
respect to Fr. In the end, even if both the gluon and the quark coefficient functions
in principle contribute, being the gluon PDF dominant a small-z with respect to
the quark PDFs, the gluon initiated processes are much more important than the
quark ones. For this reason we will focus on the gluon exact massive coefficient
function at N3LO. However, all the following considerations can be applied to the
quark coefficient function too.

In every coefficient function for heavy quark production, assuming to be in the
3FS, the dependence from u always factorizes as

O RS S O S Co I (8

where k starts from 1 because in heavy quark pair production the zeroth order of
both the quark and the gluon processes are absent. For this reason the first order
expansion of the gluon coefficient function is sometimes called LO, the second order
is called NLO and so on. In this thesis we will follow the convention in which the
zero order is called LO and is absent, so that the gluon coefficient function starts at
NLO. From Eq. ( it follows that the O(a?) perturbative expansion of the quark
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and gluon coefficient functions can be written as

€8 e g ) = O o )l o 1)+ o ) 1),
(4.2)

% %
example, for the Fy gluon coefficient function their expression in the MS scheme
is [3,4,25]

As we said before, the terms @Y and ¢®? in Eq. (4.2) are exactly known. For

Oy = g @ (Pl = B1) + 053" @ P + O @ (P —280). (4.3)
(3:2) _ ~(1) L 50 0, 1p0 0 3 0 2
Cyy) =C3)® (2139(9) ® Py + 5Py @ P — Sy + Bo>- (4.4)

ng) is given in Eq. . The NNLO quark and gluon massive coeflicient functions
are exactly known [2], even if not in an analytical form. Instead, parametrizations
for these functions are given in Ref. [26], with minor corrections provided in Ref. [27].
Observe that in Eqgs. and the splitting functions are expanded as in
Eq. , i.e. in terms of o and not in terms of a, /47 as they are often presented.
Analogous expressions hold for the p-dependent terms of the N3LO quark coefficient
function.

Although the complete expression of the p-independent part of the N3LO massive
coefficient function of the gluon is still unknown, its expansions in various kinematic
limits are available in the literature. In particular the high-scale limit (i.e. Q? > m?),
the high-energy limit (i.e. s — oo, or equivalently z — 0) and the threshold limit
(i.e. s — 4m?, or equivalently z — zyay) are all known. These limits are good
approximations of the exact curve only in some kinematic regions but not for all the
values of z. Therefore, if we want to construct an (hopefully good) approximation of
the N3LO missing term that is valid in the whole z range, we have to combine such
limits in a proper way, as it has already been done in the literature [28].

In this chapter we will construct an approximation for the p-independent part
of the O(a?) exact massive DIS gluon coefficient function for Fy in heavy quark
pair production. In order to do so, we will combine the aforementioned limits of
the exact function, but in a different way with respect to the other approximations
that can be found in the literature. Then, adding the exact u-dependent parts to
our approximation of the p-independent one, we will find the full (approximate)
expression of the N3LO exact massive gluon coefficient function. Being the exact
result unknown, in order to test the accuracy of our approximation and to tune its
parameters, we will apply the same approximation to the O(a,) and O(a?) coefficient
functions, that are exactly known. In this way we will verify the accuracy of our
procedure by comparing such approximate curves with the exact ones. For this reason,
we will give the expressions of the various limits and of the final approximation
also at NLO and at NNLO. Obviously the exact O(a?) unknown term will be a
different function with respect to the O(ay) and O(a?). It means that, even if our
approximation will give precise results when applied to the NLO and to the NNLO,
we cannot be sure that it will be equally accurate for the N3LO. Therefore, we
will not have to make a construction that is too specific for the NLO and for the
NNLO, but rather we will have to make an approximation that is general enough
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to be applied to the N>LO p-independent term. In this way we expect accurate
results even if we constructed and tested our approximation on curves that can be
in principle very different from the one we are interested in.

The logical footsteps of our procedure are the following: in Sec. we will
construct the asymptotic limit, i.e. the small-z approximation of the exact function.
It will be done using the @Q? > m? limit at which we will reinsert the neglected
power terms in the z — 0 limit. In this way we will assure that the asymptotic limit
approaches the exact curve for z — 0. In Sec. we will present the threshold limit
that has already been derived in Ref. [28]. These two limits will be combined in
Sec. using two damping functions in such a way that the final result overlaps the
asymptotic limit for z — 0 and the threshold limit for z — zp.x and interpolates
the two curves for the intermediate values of z.

4.1 Asymptotic limit

In this section we will construct an approximation for the N3LO exact massive gluon
coefficient function in the limit z — 0, where z is the argument of the coefficient
function. In order to construct such approximation we will consider the high-scale
limit and the high-energy limit, that at O(a?) are both known with the exception of
some contribution for which we will give approximate results. The high-scale limit
is a good approximation of the exact massive coefficient function for Q% > m?, but
not for values of Q? such that Q2 ~ m?2. Moreover, it does not approaches the exact
coefficient function in the small-z region. The high-energy limit is the expansion for
small-z with @ fixed. It means that for any @ it gives the limit of the exact curve
for z — 0. In order to find an approximation that describes the exact coefficient
function in the small-z limit for every values of () and therefore that approaches
it for z — 0, we have to reinsert in the high-scale limit the power terms that have
been neglected, at least in the small-z limit. Such power terms will be estimated
comparing the high-energy expansion with its @2 > m? limit. In fact, the difference
between the two will give exactly the power terms in the small-z limit. In this way
the result will approach the exact coefficient functions for z — 0 for every value of
Q. Moreover for Q% > m? it will be a good approximation of the exact curve in
the whole range of z, with the exception of the region z >~ zy,x. This will be our
small-z approximation of the exact massive coefficient function and it will be called
asymptotic limit.

4.1.1 High-scale limit

The first ingredient of our approximation is the so-called high-scale limit. In the
previous chapter we have said that in the 3FS, the exact massive coeflicient functions
have unresummed mass logarithms. In particular, using p = @, it can be written as

2 2

ez al(@) = (a1 )ZA,,W( " ew & )

k=0

The high-scale limit is obtained sending Q% > m?. It is equivalent to neglecting the
power terms m?/Q? while keeping the logarithmic ones in Eq. (4.5). Therefore, in
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this limit, Eq. (4.5) can be written as

2

C’Z[3 o) (z " ol (QQ)) = i(a[g ) ZAZ’W z,0) log? Q (4.6)

27 S
Q k=0 j=0

where C’F”O] is the high-scale limit of the massive coefficient function in the 3FS. For
example it is easy to show that the Q2 > m? limit of the gluon coefficient function

at O(ay), Eq. m, is

C[&ow)( mQ) ATp

1_Z 2
2.9 ¥op e (1—-22+22 )log(7) —1+82—82

4 (1= 22+ 222) log(g;)] . (4.7)

The high-scale limit can be written in a convenient form taking the Q% > m?
limit of Eq. (3.126]). In this way we get that, suppressing the z dependence for ease
of notation,

PN al@) = X A (0.al@) o Ky

J=4,3,9,¢,C

QQ, aM@%). (18

Where CF](O) are the massless coefficient functions computed for p = ). This
formula can be inverted finding

S P al@) & K5 (g al(@) €2 0 0,0890%), (49)

1= qngC

which shows that K i;l(mz /Q?) factors out the mass logarithms from the massive
coefficient functions in the 3FS so that we can safely take the massless limit.

Eq. (4.8) holds in the case u = Q. Instead, in the general case u # @, p # m we
have that

P ) = A Galln) o K (T all),

2 b
Q J=4,4,9,¢,C
(4.10)

where C’[ (Q%/u?) are the massless coefficient functions in which we keep the
dependence from p. Observe that Eqgs. -, and -, in contrast to

Eq. (3.126] m, are written in terms of a[ss} since the hlgh scale coefficient functions
belong to the 3FS.

In order to write the high-scale limit at N3LO we have to expand every term in
Eq. and then we have to isolate the O(a?) contribution. Observe that the
massless coefficient functions and the matching conditions are usually given as an

[4]

expansion in terms ag . Since we need the expansion of the high-scale limit in terms

of a[s }, we have to re-expand aL} in terms of aL] using Eq. - In the following

[3]

we will call C®) the k-th order expansion of the coefficient functions in terms of o

[4]

and D®*) the one in terms of as . It means that

Ci= O +afloi) + ()’ + (@)’ + 0((al)), (4.11)

S

C; =D +al'D[V + (alh)’DP + (al1)’ DY + O((al)?). (4.12)

S
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Obviously Eqgs. (4.11)) and (4.12)) are equal to all orders but differ at fixed order in
perturbation theory. The relation between C'%) and D*) is obtained using Eq. (2.51])

to re-expand a[ Vin Eq. ( in terms of oz[ ] and then comparing it with with
Eq. [£.12)) (or vice- Versa)

The expansion at NLO in terms of aLS] of Eq. (4.10) for the gluon coefficient
function for Fy gives

Ci}o](l)(g; _ Dgﬂq(l)(?) 2Dl )(222) K(1)<M2 ) (4.13)

At this order the exact massive coefficient function is independent from p, therefore
in Eq. the © dependence cancels, giving the result in Eq. . The factor of
2 in front of the second term of Eq. comes from summing both on the charm
and on the anti-charm. At NNLO we have that

clpa (1 my :D[41<2>(i2j) 4 D (LY L o1

2,9 Q2 1 2,9 2,9 2)6n 2
+ Dyt )(QQ) ©KY (MmQ)Z 2D[ZZ0)(Q ) ® K2 )(mz)
p? ©? w? 2
+ 2D[4](0)(§22> ® ,g;>( )—1og(“2>

6m m?2

+2D[4](1)(222> (1)(M2 )’ (4.14)

cg

where the two terms multiplying log(u?/m?) /67 come from the NLO expansion of
a£4] in terms of a[sg}, i.e. the first two terms of Eq. (2.51). Observe that the second

and the third terms of Eq. (4.14) exactly cancel (however it is only a coincidence).
Eq. (4.14) can be written as

R (G ) = PRI (G ) + g () oB ().

ol (m? Q? Q? .
P () = P ) 20 () R (), (19
P (G ) =P ) + o1 () o M0 )
+2D[4](0)(§ ) o K )(M ) +20 )(ffj) ®K§;)<7Z22).
(4.17)

Observe that Eq. (4.16)) coincides with Eq. (4.13]) because at LO order we have that

a[g] = aL] Finally, the N3LO expansion of the high-scale limit is

G ) - P () + o7 () 0k () DIV () )

+2D3 10 (52) 2 K (%5 " ) +2Dy )(gj) O KS) (7322)
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+2D1) (Q2) ® K (%) + 2% log(%) [Déﬂ, (QQ)
Ll (2922) & K (222) + 2D (32) 2 K2 (Zi)
2

2,9

2
+2D“‘“”(fz)®ffé?(22) gl (1) + Hion()
ffj)wgy(m (4.18)

7 (1) Q7 4)(0
+ 4} {ngq( )(F) + 2D

that can be rewritten as

L () = P (G )+ g on ) PR (- )

gl () + 7 os(ls) + 1080 ()
where o
P (o ) = A7 () = 127 () = s )

+ pii >(i2 )®K(2)(M ) + 24 )(2222) @ K ()
2

+2D[4](1)<Q ) ®K(2)(%) Jr2D[4}( )(ffj) ®Kc(;)(m )
2

It is clear from Eq. that, in order to construct the high-scale limit at O(a?),
we need K,y at O(a?) and K4 at O(a2). The matching conditions are exactly
known at O(a?) from Ref. [22]. This means that the high-scale limit is fully known
at O(a?). Its expression is given for example in Ref. [29]. Instead, the matching
conditions K4 are not fully known at O(a?). In fact, although the pu-dependent
contribution of such functions is exactly known, the u-independent one is not. If we

(3)

call k:g;) the p-independent term of K¢y’, then it can be decomposed as

kD (2) = KD0(2) + npklD(2). (4.21)

The term proportional to ns is known exactly from Ref. [30]. The ns-independent
term, on the other hand, is not fully known yet. In fact only a number of integer
Mellin moments have been computed so far [31]. It is thus the only missing quantity

for the construction of C’Q[ZO} ®) via Eq. (4.18). Leaving for the moment the function

kgg)o(z) unspecified, the explicit expression of the high-scale limit of the exact massive
coefficient function at O(a?) is presented in Ref. [28]. In that expression the N3LO
massless coefficient function of the gluon computed for u = @ appears. Although
such function is exactly known, being its complete expression unmanageable due to
its length, we used the approximation presented in Ref. [1] that deviates from the
exact result by less than one part in a thousand.
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A comment on the massless coefficient functions given in Ref. 1] is now required.
They are the completely inclusive coefficient functions, which means that they take
in account every possible final state and not only heavy quark pair production. For
this reason, starting from the N3LO, the massless coefficient functions contain new
quark flavour topologies, that are denoted with fl;; for the quark coefficient function
and with f1{, for the gluon. These coefficient functions are not identical to the
the heavy quark production coefficient functions that we need, since they require
a heavy quark pair in the final state. However, the information that is currently
available is not sufficient to disentangle the heavy quark production term from the
totally inclusive one. For this reason, we have decided to omit the (usually small)
contributions proportional to fI{; in the gluon massless coefficient function that
enters in the expression of the N3LO high-scale limit.

Finally, in order to arrive to useful results, it remains to find approximate
expressions for the only missing term, i.e. k‘g)o(z), together with estimates of
its uncertainty. Some possible approximations are given in Ref. [2§], with minor
corrections given in Ref. [32], that are based on the known Mellin moments, on the
small-z leading logarithm expansion and on the large-z behavior. Their expressions
are

KO (2) = 354.100210g% (1 — 2) + 479.3838 log?(1 — 2) — 7856.784(2 — 2)

9416.621 ~ 1548.891
— 6233.5301og? z + + log 2, (4.22)
z z

KR (2) = 226.384010g3(1 — 2) — 652.2045 log?(1 — =) — 2686.387 log(1 — 2)
7721120 | 1548891

— TT14.786(2 — ) — 2841.851 log? 2 +

log z.

(4.23)

Egs. and can be interpreted as the extremes of an error band, while
the average of the two can be used as the central value of our approximate function.

Now we have all the ingredients, at least in an approximate form, for the
construction of the N3LO high-scale limit of the exact massive gluon coefficient
function for F5 in heavy quark pair production. As we said before, it is a good
approximation of the exact curve in the limit Q2 > m? but not for smaller values of
Q?. Moreover, comparing the O(a?) exact coefficient function with its high-scale
limit, it can be easily verified that for values of Q? that are comparable with m?,
the approximation does not approaches the exact result for z — 0. Figs. [f.1] and [£.2]
show the comparison between the p-independent part of the NNLO exact massive
coefficient function of the gluon for Fy with its high-scale limit. In Fig. 2] the
curves are plotted as a function of the variable 7, defined as

s Q% /1—=z
_ 1= -1 4.24
Ky 4m? ( 2 ) ’ (4.24)

so that n — oo corresponds to the z — 0 limit, while n — 0 corresponds to
2 — zmax (or equivalently s — 4m?). For n < 0 the heavy quark pair production is
kinematically forbidden. With such definition, plotting the coefficient functions as a
function of  we are stretching the threshold zone z — zpax, With respect to a plot
as function of z.  We can observe that for small values of ¢ = Q?/m? the high-scale
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Figure 4.1. Comparison between the u-independent part of the NNLO exact massive
coefficient function of the gluon for Fy (solid orange) computed from the parametrization
in Ref. [26] and its high-scale limit (dashed green), i.e. Eq. ([£.18). Six relevant values of
¢ = Q?%/m? are shown.
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2Cy,4'%9): Exact vs High-Scale
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Figure 4.2. As Fig. but the coefficient functions are multiplied by z and the curves are
plotted as a function of 7, Eq. , instead of z, in order to stretch the threshold region.
From this figure is even more clear that the high-scale limit does not approach the exact
curve for z — 0 and that even if Q2 > m? it is not a good approximation for the threshold
region.
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Figure 4.3. Comparison between the NLO exact massive coefficient function of the gluon
for F» in Eq. (3.120) (solid orange) and its high-scale limit in Eq. (4.7) (dashed green). Six
relevant values of £ = Q%/m? are shown.
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zC; 4'V): Exact vs High-Scale
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Figure 4.4. As Fig. but the coeflicient functions are multiplied by z and the curves are
plotted as a function of 7, Eq. (4.24), instead of z, in order to stretch the threshold region.
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limit does not approximate the exact curve at all. Moreover, for £ < 100, it does
not have the correct behavior for z — 0 (or equivalently n — o0) since it does not
approaches the exact coefficient function. Starting from & ~ 100 the high-scale limit
gives a good approximation of the exact curve for every value of z, except for those
too close to the threshold point z = zyax (or n = 0). For the NLO gluon coefficient
function instead, we are in a lucky case since all the power terms that are neglected
in the high-scale limit go to zero for z — 0, as can be verified from Eq. . This
means that the NLO high-scale limit in Eq. can be used as asymptotic limit
since it approaches the exact massive coefficient function in the small-z limit, for
any value of Q2. This can be observed in Figs. and

4.1.2 Power terms

So far in this section we have introduced the high-scale limit of the exact massive
coefficient function and we have said that it is a good approximation of this one in
the limit Q% > m? but not for Q% ~ m?2. In fact in the second case the high-scale
limit does not approaches the exact function for z — 0 due to the absence of the
power terms that for such values of Q2 are not negligible. Thus, in order to construct
an asymptotic limit that approaches the exact massive coefficient function in the
limit z — 0, we need to reinsert such power terms, at least in the small-z limit (if
we could reinsert the power terms for every value of z we would have the exact
coefficient function and we would not need the approximate one). In order to do
it we will use the small-z expansion (with @ fixed) of the exact massive coefficient
function. Being s = Q?(1/z — 1), where /s is the partonic center-of-mass energy,
the small-z limit with @ fixed corresponds to s — co. For this reason such limit is
called high-energy limit.

In Ref. [28] the leading logarithm (LL) contributions of the high-energy limit of
the gluon coefficient function are given at O(a?) and O(a?). They are computed
performing small-z resummation from the results of Ref. [33]. Their expressions are
the following

Cg]@)LL _§Ca llo 4 (1 _ 1)](5) i (163 _ 5) JE) + L, (2 + (1 _ 1>J(§)>]’

21272 | 3¢ 3 3¢ § ¢
(4.25)
-2 A - L= {1+ ) 5 (- e
g (m =0+ 50 P n(gg -5~ e
~3(13-)70) + 12 (-5 - 301~ é)J@))] , (4.26)

where £ = Q*/m?, L, = log(m?/u?) and

1) = 3\ 7ot (+— €+ ), (4.27)
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g\/i m) (4.28)
0-s\r Jele+ ), (4.20)

with
L(z) = 1ogG f z> (4.30)
H(+,—,2) = Hia(2) + Hia(2) = Hoaa(2) = Hoa o (2), (4.31)

H(= 4= 2) = Hi1a(2) = Hi1(2) + Hio11(2) — i1, (2)
—Ho11(2) + Horp,-1(2) = Horm10(2) + Hog o1 -1(2)- (4.32)

The functions szzzn (z) are the harmonic polylogarithms, and are defined in
Ref. [34]. At O(a?), in the high—energy expansion, only the leading logarithm
contribution is present. However, at O(a3) also the next-to-leading logarithm (NLL)
appears, and it is a factor proportional to 1/z. Without this term the high-energy
expansion would not give the correct small-z limit of the N3LO exact coefficient
function since the exact result would not approach it for z — 0. Unfortunately,
this contribution is still unknown. In Appendix [B] we will show how to compute
an approximation of the next-to-leading logarithm small-z expansion of the N3LO
coefficient function and how to estimate an uncertainty band associated to it.
Therefore, the high-energy limits of the NNLO and N3LO coefficient functions are
given by

ng(z)h.e. _ Cf]g(Q)LL, 4.33)
Céi]](?))h.e. _ C%( L 0[3]( INLL (4.34)

where C; [3]( INLL 5 given in Eq. ( -
Now we can consider the Q? > m? limit of Egs. and ( , that are

3,0](2)h.e. 3,0](2)LL
cg,gK e _ C;g“ JLL (4.35)
3,0](3)h.e. 3,0 3,0](3)NLL
C£,g J(3)he. _ Cé,g J(3)LL C;g JGNLL. (4.36)
with
1 C4 T8 104 40 16 16 8
CROI@IL Ly - Lo+ — — =G+ (—=L L ] 4.37
2.9 Zlen2|3e” g ety C2+< 3 Q+3) , (437)
BOGLL _ log =z CA { 32 4 208L2 2272 _ % 1472
Cag - 2 64m3| 9 9" 9 ( 27 42) o7
416 128 32 416 160
— 7@2 7C3 (? Lo+ — Cz)

32 16\
(-2t 3)L4, (4.38)
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where Lg = log(m?/ QQ) and Q are the zeta functions, while Cz[ OIGNLL 4 given

in Eq. ( - Eqgs. and (| are the high-scale limits of the high-energy
ones. If we assume the exact coeﬂiment function to be smooth enough such that
the two limits can be interchanged, we can state that Eqgs. and ( - are
the high-energy limits of the high-scale ones. Therefore, while the exact coefficient
function will tend to the high-energy limit for z — 0, the high-scale limit will tend
to the high-scale limit of the high-energy. It means that we can estimate the power
terms in the small-z limit simply subtracting the high-energy limit with its high-scale
limit. In fact, the high-energy limit of the exact coeflicient function contains the
power terms, while in its high-scale limit we have thrown away such power terms.
Thus, the difference between the two gives exactly the power terms that we need. In
practlce we have to subtract Eq. - ) and Eq. ( at O(a?), and Eq. (4.34)) and
Eq. { at O(az). We conclude that

2 2 2 2 2 2
[3](2)p.t. hee. mTomTN _ ~[B](2)hee. m= m [3 0](2)h.e. m- m-
CQ,g ( ng ) - CQ,g (Z an ) C ( 2, 2 L )a
(4.39)
@ e m? m?y cl@he m? m? CBOl@he. m? m?
2,9 (2’»@,?) =ULag ('%@a?) 2.9 (Zaﬁaﬁ),
(4.40)

Fig. ﬂ 4.5 shows the comparison between the p-independent part of the O(a?) exact
massive, high-energy, high-scale and high-scale of high-energy gluon coefficient
functions. It is evident that the exact massive tends to the high-energy limit for
z — 0, while the high-scale tends to the Q2 > m? limit of the high-energy. Notice
that the power terms correctly go to zero as € increases. Fig. [4.6]shows the comparison
between the p-independent part of the O(a?) high-energy, high-scale and high-scale
of high-energy gluon coefficient functions for ny = 3. Observe that the agreement for
z — 0 between high-scale limit and high-scale of high-energy limit is not perfect for
small £. This may be due to the fact that the next-to-leading logarithm, that when
multiplied for z gives a constant factor, is an approximate expression, and therefore
the final curve may be shifted by a constant. Instead, at high £ such difference goes
to zero and the high-scale limit approaches the high-scale limit of the high-energy
coefficient function. Moreover, for high values of ¢ the high-energy correctly tends
to its high-scale limit, since the power terms go to zero.

Now that we have computed the power terms in the small-z region we can add
them to the high-scale to find our asymptotic limit. Therefore, what we get is

2 2 2 2 2 2

3](2)asy (. M° M 3,0/2) /. mM* m B](2)p.t.he. [ M M
Cog y('Z’ Q2 12 ) Cog ( Q2 2) + 0oy ’ (Z’ Q2 2 >’ (4.41)

2 2 2,2 2,2

[3](3)353’ mTomTN _ S[3,013)(, T M [B]3)p-t.he. (T T
CP (2, o7 u2) =z, o 5 ) +Ch (2, 07 ). (4.42)

Eqgs. (4.41]) and (4.42) are our final expressions of the asymptotic limit of the DIS
exact massive gluon coefficient functions for Fy in heavy quark production at O(a?)
and O(a?). As we have said previously, we want to find an approximation for the

p-independent term of the N3LO gluon coefficient function, i.e. 051](3,0)' Therefore,
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Figure 4.5. Comparison between the p-independent part of the O(a?) exact massive (from

Ref. [26]), high-energy (Eq. (4.33)), high-scale (Eq. (4.14)) and high-scale of high-energy
(Eq. (4.35))) gluon coefficient functions. Four different values of £ = Q?/m? are shown.
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62 4. Approximate coefficient function at N3LO

we have to extract the p-independent contribution of Eq. . This can be
easily done computing it for u = m, so that all the logarithmic terms of the form
log(p?/m?), see Eq. ([4.2)), go to zero and we are left only with the p-independent
part. In conclusion, the final approximation we are interested in is

2

C%?]g(:a,o)asy (Z’ gi) - ngo](&o) (z7 gz) 4 C;}g(&o)p.t.h.e. (Z’ % )
= 52,0](370) (z, gz) + Cé?}}(?),o)h.e (Z’ gi) — C%o](s,o)h.e. (Z’ gz )
(4.43)

Figs. and show the comparison of the p-independent part of the exact NNLO
coefficient function with its asymptotic limit. We can observe that our asymptotic
limit approaches the exact curve for z — 0 for every value of (). Moreover for
Q? > m? it tends to the exact coefficient function for all the values of z since in this
case the high-scale approximates the exact curve while the power terms go to zero.
As we have mentioned previously, the asymptotic limit does not describe correctly
the threshold region even if Q% > m?, as it can be clearly observed from Fig. 4.8

4.2 Threshold limit

In the past section we have constructed the asymptotic limit of the exact massive
gluon coefficient function at O(a?) and O(a?). Such limit approaches the exact
curve for z — 0. Moreover for Q? > m? it is a good approximation of the curve for
every z, with the exception of those values that are too close to the threshold point
Z = Zmax. In fact, as can be observed from Figs. @ and the asymptotic limit
fails to describe the exact function in the threshold region even for Q% > m?.

In this section we will present the threshold limit of the exact massive coefficient
function of the gluon. Such limit approaches the exact coefficient function for
Z — Zmax Or equivalently n — 0. This is the limit in which 5 — 0, where § is the
center-of-mass velocity of the final heavy quarks and is given by

/ 4m? 4m? 2z
=4/l—-— =4/l - ——. 4.44

In this limit, corrections of the form aZ log™ 8 with m < 2n appear in the pertur-
bative series. Such terms must be resummed performing the so-called threshold
resummation [35-39]. Moreover, in heavy quark pair production, there are correc-
tions of the form a3~ log! 8 with m < n. They come from the exchange of gluons
between the heavy quarks. Also these contribution can be resummed [40]. Ref. [28]
provides the expressions of the threshold limit of the gluon coefficient function for
Fy up to O(a?). At NLO the threshold limit is

s mj) _TrE B o, (4.45)

2,9 Z,Q2 _471'21—{—%
Beyond NLO, in the resummed contribution always factorizes the term C. B g it

2,9
is convenient not to expand Cég}g(l) for § — 0, but instead to use the exact result.
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Figure 4.7. Comparison between the p-independent part of the NNLO exact massive
coefficient function of the gluon for F» (solid orange) computed from the parametrization

in Ref. and its asymptotic limit (dashed green), i.e. Eq. (4.41)). Six relevant values

of £ = Q%/m? are shown. The p-independent parts are extracted computing the exact

coefficient function and the high-scale limit for p = m.
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Figure 4.8. As Fig. but the coeflicient functions are multiplied by z and the curves are
plotted as a function of n, Eq. (4.24), instead of z, in order to stretch the threshold region.
From this figure is even more clear that the asymptotic limit approaches the exact curve for
z — 0, but even if Q2 > m? it is not a good approximation for the threshold region.
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This will not change our results in the region in which the threshold limit is accurate,
but only in the region where it is no more reliable. Therefore, at NNLO we have
that

27 9 2
CPet m ”i) - ng){ch log? 3 + [48C4 log 2 — 40C'4] log 3
2
(205 — OA)% +8Culog ALy + |co(€) +36Ca log? 2
—60C4 log2 + LM(SCA log2 — Eo(f))}} + (’)(,6’2),
(4.46)

where cg(¢) and ¢o(€) are given in Egs. (C.1) and (C.2). Finally, at N3LO the
threshold limit is

510 (, m
@y esh (M Gy (= ) 128C% log? 7681og 2 — 0204 2
2,9 (37@7ﬁ) W Alog” B+ 0g<— —5— LA

12
+ 780A”f +128C3 L, | log® B+ <1728 log22 — 3232log 2 — % 2
15520 640 .
9 )CA + (6410g2 — )CAnf + 16C 4c9(&) 4+ 32C 4 (CF — ;)ﬁ

11
- {< —512log 2 + ;’6>0A - —CAnf + 160Aco(§)}LM + 3203@,3} log? 3

1
+ [(1728log32—484810g22+ P20 o2 — 2087 log 2 + 986 + oo

88856 640 16 , 4592

Ca
- — lo 2——1 —

)cAnf ~ 32CF (C’ — >7T2

27 2

2 2
+(as1og2 - 0)Ciaco(€) + { (- 5 +321082) Ca+ gy} (0o - )T

104 41 2
- ( 67210g> 2 + 976 log 2 + g 2—960) 31+(—3210g2+390)0,4nf

+ (48log 2 — 40)Caco(€) — 8Caco(§) — 1604 (CF - C;‘) B}Lu

658

+ {(64 log2 — )CA + gCAnf - SCACO(é)}LZ] log
{ 8

20
<810g 2——log2 7r2—9)C’A+ (3log2—9>nf—|-2co(£)

8
3
~|—<2360A+ nf—2co(§))LH <CF—C;A>’R;+§<CF CA> %

is the term independent from £, that at this order is still unknown. An
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Figure 4.9. Comparison between the NLO exact massive coefficient function of the gluon
for F» multiplied by z (solid orange), i.e. Eq. (3.120)), and its threshold limit (dashed purple),
i.e. Eq. (4.45)), as a function of 7). Six relevant values of £ = Q?/m? are shown.



4.2 Threshold limit

67

2C;,4‘20): Exact vs Threshold

0.2 e 0.45 T T T T T T T
£=2 0.4 E=5 -
015 [ 2Cp 420 40.35 .
0.3 + -
0.1 | 40.25 + -
0.2 + -
0.05 40.15 + -
0.1+ -
0t 40.05 F —
exact massive o+ .
threshold limit
_005 FEEETTTTT AR RTTT B AR T TR AT R AR TTIT BRI B R TITT B R e 005 sl vl vl sl vl el il
104 103 102 101 10° 10! 102 103 104 103 102 101 109 10! 102 103
07 ik AL LA LA IR AL IR I 1 Rk AL IR IR IR IR IR LA
=10 =20
o6 & 1osl & -
0351 T o6 F -
0.4 | -
0.4 + -
03} -
0.2 + -
0.2 | -
0.1} 1 °or ]
o} ]-0.2 -
_01 | | | | " | | | _04 | | | | | | |
104 103 102 10! 10° 10! 102 103 104 103 102 10! 109 10! 102 103
15 bRkl LR IR I AL IR ELLALLL IR B AL BN 2 R B LA LA IR ALLL BENLELLLL) LA B
=50 =100
g 1.5 - g —
1 - -
1 - -
0.5 - 05 | -
0 i 0r -
-0.5 + -
_0_5 - .
1k 4
_1 | | | | | | | _15 | | | | | | |
104 103 102 101 10° 10! 102 103 104 103 102 101! 100 10! 102 103

n

n

Figure 4.10. Comparison between the p-independent part of the NNLO exact massive
coefficient function of the gluon for F» multiplied by z (solid orange) computed from the
parametrization in Ref. and its threshold limit (dashed purple), i.e. Eq. , as a
function of 7. Six relevant values of £ = @Q%/m? are shown. The p-independent parts are
extracted computing the exact coefficient function and the high-scale limit for p = m.



68 4. Approximate coefficient function at N3LO

estimate is

s e GO (o)
[3](3)const mTomTN 4 ! 249
Csy (z, OERE ) = —(477)2 {co(é) + 36C 4 log” 2 — 60C 4 log 2
2
+ Lu(8Calog2 — & (€)) | (4.48)

Fig. shows the comparison between the NLO exact massive coefficient function
and its threshold limit. It is evident that the two curves overlap in the region n — 0.
Fig. shows the comparison between the p-independent part of the NNLO exact
massive coefficient function for the gluon and its threshold limit. We can observe
that it correctly approximates the exact result for < 10~!. Moreover the fact that

in Eqgs. (4.46) and (4.47) there is the factor C’gﬂg(l) assures that ng?]gthreSh goes to
zero for n — oo both at NNLO and at N3LO. This will be of great importance in
the next chapter when we will combine threshold and asymptotic limits to get the
final approximation. Notice that, as £ increases, the threshold limit gives a good
approximation for higher values of 7, but at the same time it tends more slowly to

zero for n — oo.

4.3 Combination of threshold and asymptotic limits

In the previous sections we have constructed the asymptotic and the threshold limits
of the exact coefficient function of the gluon. Such limits, obviously, do not describe
the exact curve in the whole z range, but only in specific kinematic regimes, i.e.
respectively z — 0 and z — zpax. In order to have a function that approximates
the exact coefficient function for all the values of z, we have to combine these two
limits. This is achieved using two damping functions: we multiply the threshold by
a function fi(z) and the asymptotic by a function fa(z) such that

fl(z) ﬂ) 07 fl(z) m) 17 (449)
Fo2) 2251, fo(z) Z22max g, (4.50)

In this way we make sure that for z — 0 only the asymptotic limit contributes
since the threshold has been suppressed, while for z — z,.x we have the opposite.
Therefore, in these limits our approximation approaches the unknown exact massive
coefficient function. Instead, in the intermediate values of z, the approximate curve
will be an interpolation of the two limits. The accuracy of the approximation for
these values of z will depend on the specific form that we choose for fi; and fs.
In the remaining of this section we will leave them unspecified, but in Chapter
we will choose their functional form and we will tune its parameters comparing
our approximation applied to the NLO and to the NNLO with their known exact
coefficient functions, in order to have the best agreement between the two. Thus,
our approximate coefficient function has the following form

2 2 2 2 2

2
[3](k)approx m= m=\  [3](k)thresh m= . m [3](k)asy m=.m
Cog (Z’ Q2 ,u2> = Cayg <Z7 Q2 12 >f1(2)+c2,g (Z’ o uz(zifl(;)
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Since we want an approximation just for the p-independent part of the O(a?) gluon
coeflicient function, our final approximation is

2 2
C[B](k 0)approx (Z, %) _ C%I?é]](k,O)thresh( QQ )fl( ) 2?]9(’6 ,0)asy (Z, %) fZ(Z);
(4.52)
with k = 1,2, 3 since we are considering the NLO, the NNLO and the N3LO. The
p-independent part of Eq. can be extracted simply computing it for u = m,
as we have done in the previous sections.

Now a comment on Eq. is required: in the construction of our approxi-
mation we have used two ingredients, i.e. the asymptotic and the threshold limit,
that have been combined using the damping functions f; and fs. This will be of
great importance in the next chapter when we will tune the damping functions on
the NLO and on the NNLO. In fact, constructing the approximation in the most
simple way, we are confident that it will give accurate results also at the N3LO.
Instead, the other approximations that can be found in the literature construct their
approximation using more ingredients and combining them in a more complicated
way, with the risk that, even if such approximation has been accurately tuned on
the lower orders, it can fail when applied to the N3LO, since it is a different function
with respect to the NLO and NNLO. For this reason we expect our approximation
to be more accurate than the ones that can be found in the literature.

Now that we have an approximation for the p-independent part of the N3LO
coeflicient function of the gluon, we can add the exact u-dependent part to find the
full function. What we get is

CQ[?]Q(?))approx (Z, gz’ 7/722) _ C%?]Q(S,O)approx (z gi) C[S](3 1)( Qz) log(M—Z)—i-
b e, gz) log? (14 a ). (4.53)

where C’B](3 O)approx jq given in Eq. (| while 0[3](3 Y and C’Q[:i}](?”z) are given in

Eqgs. and .
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Chapter 5

Results

In Chapter [] we constructed our approximation for the y-independent part of the
N3LO gluon coefficient function, Eq. , combining the threshold limit, Eq. ,
and the asymptotic limit, Eq. , using two damping functions, i.e. fi(z) and
f2(z). In that discussion we left the functions fi(z) and f2(z) unspecified, only
requiring that they had to satisfy Eqs. (4.49) and (4.50). This provides the correct
behavior in these two kinematic regimes for our approximation because in this way
we make sure that for z — 0 and z — zpax the approximate function approaches
the exact one. However, as we have said before, for the intermediate values of z our
approximation interpolates the two limits. Therefore, the choice of the functions
fi(z) and fa(z) will be crucial in order to make sure that our construction gives a
good description of the exact curve for such values of z.

In this chapter we will choose the functional forms for the damping functions: it
will be done applying our approximation to the NLO and NNLO gluon coefficient
functions, i.e. using Eq. for k = 1 and k£ = 2, and comparing them with
their exact curves, that are known. In this way we will choose the functions fi(z)
and f2(z) that provide the best agreement between the NLO and the NNLO exact
coefficient functions and their approximations. After doing it, we will apply our
construction to the p-independent part of the N3LO gluon coefficient function for
Fy, that is the one we are interested in. As we have said in Chapter {4} the N3LO
exact curve can in principle be very different from its lower orders. Therefore, even
if we tested and tuned our approximation on such orders, we cannot be sure that at
N3LO it will give the same accuracy that it had for the NLO and the NNLO. For
this reason we have to construct our approximation always keeping in mind that in
the end it will be applied on a different function with respect to the ones we tested
it on. Thus, we will have to make an approximation that it is not too specific for the
NLO and the NNLO, i.e. that is not “order dependent”, but instead that is general
enough to be applied to the unknown N3LO still expecting accurate results.

Another problem we have to consider is the fact that at N3LO not every term
of our approximation is exactly known. In fact the term kg)o, appearing in the
high-scale limit, Eq. , the NLL expansion for small-z of the N3LO coefficient
function, Eq. , and the term independent of 3 of the N3LO threshold limit,
Eq. , are only known in an approximate form. For this reason the final

approximation will be associated with a bigger uncertainty that comes from the



72 5. Results

uncertainty associated to the approximate terms that we used.

This chapter is organized as follows: in Sec. [5.I] we will choose the functional
form for the damping functions fi(z) and fa2(2), testing it on the known NLO and
NNLO and using these functions to tune its various parameters. In Sec. [5.2] we will
apply our construction to the unknown N3LO gluon coefficient function, showing
the plots of the curves that we will obtain and discussing their accuracy. In Sec.
we will construct the uncertainty band associated to our approximation. In the
end, in Sec. we will compare the approximation that we propose with another
approximation available in the literature, i.e. the one given in Ref. [2§].

5.1 Tuning the damping function

In this section we will finally choose the functional form of the functions fi(z) and
f2(z). In the following we will use the variable 1 defined in Eq. , instead of z,
since with such a variable the threshold region is stretched with respect to a plot
as a function of z and this allows to correctly check the agreement between our
approximation and the exact curve in that kinematic region. Hence, the damping
functions will depend on z through the variable 7(z). The functional form that we
will adopt is

1
filn) = T(%)k’ (5.1)
fa(n) =1~ fi(n). (5.2)

It is trivial to show that these functions have the correct behaviors in the limits
n — 0 and n — oo (that are respectively z — zpax and z — 0). h and k are
the two parameters that we want to tune because they control the “form” of the
damping functions. In particular, since fi(n = h) = fo(n = h) = 1/2 for any value
of k, h controls the point in which the two dampings equal each others. Increasing
h, such point is shifted to bigger values of n and vice-versa. The parameter k,
instead, controls the slope of the function close to the turning point n = h. It
means that it controls the “speed” with which we pass from asymptotic to threshold
(or vice-versa). Therefore, changing it we change the size of the region in which
Eq. is dominated by the asymptotic or the threshold limit and the size of the
interpolated region.

As we have observed in the previous chapter, as & = Q?/m? increases, the
asymptotic limit approximates well the exact coefficient function down to lower
values of 7, while the threshold limit approximates it well up to higher values of 7.
Therefore, increasing £ we have to reduce the interpolated region. It means that k
has to increase as £ increases. Fig.[5.1] shows the comparison between the NNLO
exact gluon coefficient function and its asymptotic and threshold limits. We can
observe what we where discussing previously: for small values of £ the interpolation
zone is quite large so k must be small. As £ increases both the asymptotic and
the threshold limits give a good approximation for a bigger range of values of 7,
therefore the transition from asymptotic to threshold must be quicker so £ must be
large. We can also observe that h has to be a function of £ as well. It is because of
different reasons: first of all, as we already observed in Sec. even if the fact that
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Figure 5.1. Comparison between the p-independent part of the NNLO exact massive
coefficient function of the gluon for F; multiplied by z (solid orange) computed from the
parametrization in Ref. and its threshold (dashed purple) and asymptotic (dashed green)
limits, i.e. Eqgs. and (4.41), as a function of 7. Six relevant values of £ = Q*/m? are
shown. The p-independent parts are extracted computing the exact coefficient function and
the high-scale limit for p = m.
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the threshold limit goes to zero for n — oo helps the damping to send it to zero, for
big values of &£ the convergence to zero becomes slower. Thus, as n — oo we want
f1(z) to be practically zero, so that the threshold limit is totally suppressed. This is
achieved both increasing the slope of the damping and shifting it leftwards. Second,
we can observe from Fig. that the center of the interpolation zone, as £ becomes
bigger, moves towards smaller values of 7. For these reasons h must decrease as £
increases. In conclusion, we have shown that h and k must be functions of £&. Once
we have chosen these functions, we have all the ingredients for the construction of
our approximation.
The chosen functional forms for the parameters h and k are

B-—A
he) = A+ 1 +exp (a(logé — b))’ (5:3)
k(&) =C+ b—¢C (5.4)

1+ exp (c(log& — d))’

with a,c > 0. We chose these functional forms because for small £, we want h
and k to be almost constant. As £ increases, these parameters have to start a slow
transition from a value to another. Then, when £ becomes big, they have to settle
on a constant value and do not change for all the higher £. In fact, for £ ~ O(1) the
exponential is suppressed and we have, if e, e~ °¢ <« 1, that h ~ B and k ~ D.
For &£ > 1 the exponential diverges and thus we have that h ~ A and k ~ C. We
used log & instead of just £ in order to have a slower transition from the small values
of £ to the big ones. We choose this form since we want the growth of k to stop at a
certain point. In fact, due to the fact that the N3LO coefficient function is unknown,
having a too fast transition from threshold to asymptotic for large £, would probably
fail to describe correctly the exact function since we do not know if the interchange
between the two limits would be as good as for the NNLO in Fig. [5.1] This will be
shown explicitly applying our approximation to the NLO.

All we have to do now is to tune the eight parameters A, B, C, D, a, b, ¢ and d.
Comparing the plots given by different values of these parameters we established that
at small £ the choices h ~ 2.5 and k ~ 1.2 best describe the exact NNLO coefficient
function. Instead, for large &, i.e. € > 10%, the best values of the parameters
are h ~ 1.7 and k£ ~ 2.5. This value of h has been extracted observing that the
intersection point between the asymptotic and the threshold limits tends to h ~ 1.7
for high &. Instead, the value of k for large ¢ has been chosen in order to move
quickly from threshold to asymptotic limit, see Fig.[5.1] Therefore we choose

A=17, B=225, (5.5)
C=25 D=12.

The remaining parameters are chosen in order to have a not too sharp transition
between the small and high values of £&. Thus, we made the following choice

a=c=2.5, b=d=>5.

With such values the condition e~%, e~°? < 1 is satisfied.
Now we have all the ingredients for the construction of the approximation.
Testing it on the NNLO gives promising results. Fig. shows the comparison
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Figure 5.2. Comparison between the p-independent part of the NNLO exact massive
coefficient function of the gluon for F; multiplied by z (solid orange) computed from the
parametrization in Ref. , its threshold (dashed purple) and asymptotic (dashed green)
limits, i.e. Eqgs. and , and the approximation that we propose (solid red) in
Eq. , as a function of 7). Six relevant values of £ = Q?/m? are shown.
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between the NNLO exact gluon coefficient function and the approximation that we
propose. Different values of & are shown. We can observe a good agreement between
the two both at small and at high £. Moreover, for £ > 1 our approximation tends
to the exact coefficient function for all the values of  and therefore in the whole
z range. Actually, in this limit the massless result is accurate. It means that we
can use the massless computation, that at N3LO is exactly known, and we don’t
really need the approximate massive coefficient function that we are constructing.
However, our aim is to construct an approximation that gives precise results both
for small £ and for £ > 1. It means that for £ > 1, in the computation of the
structure functions via Eq. , we can use both our approximation of the massive
coefficient function and the massless limit, expecting with good approximation the
same result. Instead, if we constructed an approximation that deviates from the
exact result as £ increases, we would have an intermediate range of values of £ that
are not described neither from our approximation nor from the massless limit.

As a first check of the accuracy of the approximation procedure that we con-
structed from the NNLO, we can apply it to the NLO gluon coefficient function,
Eq. . First of all we have to notice a small difference with respect to the
NNLO and the N3LO: the NLO threshold function doesn’t approach zero for n — oo.
For this reason, since we want to use exactly the same form for the damping function
(but with a small difference in the parameters that we are going to discuss), the
convergence to zero of the threshold limit times its damping will be slower. However,
this problem affects only the small values of £. In fact, even for the NNLO and
the N3LO we have seen that for £ > 1 the convergence to zero is pushed towards
higher values of 7. For the approximation at NLO our approach consists in using the
same damping function we used at NNLO, i.e. Eq. , and the same functional
form for h and k, i.e. Egs. and . Regarding the parameters, the only one
that will be changed is A, since the center of the interpolation region will approach
a different value with respect to the case of the NNLO. The value of A has been
chosen in the following way: we wanted the value of h for small £ to be the same
that we extracted from the NNLO. Hence, we have that h ~ 2.5. Then, we studied
the point of minimal distance between threshold and asymptotic limits for £ > 1.
We extracted the value h >~ 0.2. It means that we have to set

A=02 B=25. (5.7)

All the others parameters will be left unchanged. Observe that this procedure of
searching the point of minimal distance between threshold and asymptotic limit, or
the point of intersection between the two, in the limit Q2 > m?, does not require
the knowledge of the exact curve. It means that we can tune in the same way the
parameters for the N3LO approximation.

Now we can apply our approximation to the NLO. Fig. 5.3 shows the comparison
between the exact curve and the approximate one. We can observe a good agreement
between the two. Also in this case we have that the approximate coefficient function
tends to the exact one for £ > 1. From the plots for £ = 1000 and £ = 10000 we
can observe that if we had chosen a value of k that is too large, even if the accuracy
of the approximation at NNLO would have been the same, it wouldn’t have been
so at NLO. In fact, in this case a too sharp transition from the threshold to the



5.1 Tuning the damping function

77

zCy,¢'M: Approximation vs Threshold

009 R I LA LA B B “‘.““I T
exact massive

0.08 - §=2 - . asymptotic limit

0.07  zC, g(1) . threshold limit
’ approximation

0.06 - \

0.05

0.04

0.03
0.02
0.01

T

0.16
0.14

To.12

0.1

|o.08

0.06
0.04
0.02

0

T

LA B L e L e L e R

£=5 S .

| | d | | | |

_0‘01 | | | | | |
104 103 102 101 109 10! 102

0.35

103

104 103 102 101 10° 10! 102 103

0.4

MR BELELARLLL IELELRLLLL LA LLLL ELELRLLLL LA LLLL BELELRLLLL, IR ALY MR BELELALLLL AL LA IR LAY BRI
03 L E=100 10.35 + E=20 .
0.25 03r
0.25
0.2
0.2
0.15
0.15
0.1 o1k
0.05 0.05 -
0 PEERTTT B AR RTTT MR TTIT AT BECATR T MR RTTT BT R TTTT BT R 0 PR AR T RS R AT MR TTTTT SRR AR T BTSRRI MR T
104 103 102 10! 109 10! 102 103 104 103 102 101 10° 10! 102 103
06 MR BELELARLLL IELELRLLLL LA LLLL ELELRLLLL LA LLLL BELELRLLLL, IR ALY 08 Rl B LR RLL B B LLL B =L |
£=1000 07 L E=10000
0.5 |-
0.6 |
0.4 |
0.5 |
0.3 0.4 |
0.2 F 03r
0.2 F
0.1
0.1 |

104 103 102 10! 100 10! 102
n

103

104 103 102 10! 100 10! 102 103

n

Figure 5.3. Comparison between the NLO exact massive coefficient function of the gluon for

F, multiplied by z (solid orange), Eq.

, its threshold (dashed purple) and asymptotic

(dashed green) limits, i.e. Egs. (4.45) and (4.7), and the approximation that we propose in
Eq. (#.51), as a function of 5. Six relevant values of ¢ = Q?/m? are shown.
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asymptotic limit would have spoiled the agreement between the approximation and
the exact curve in the interpolation region.

In conclusion, tuning the damping functions f; and fo on the NNLO coefficient
function, we have constructed an approximation that gives accurate results for
small values of ¢ and tends to the exact function for £ > 1. Since applying our
approximation on the NLO still provides accurate results, we are confident that it
will provide accurate results when we will apply it on the N3LO too.

5.2 Results at N°LO

Now that we have constructed our approximation and that we have tested it to the
NLO and NNLO we can apply it to the p-independent part of the N3LO coefficient
function of the gluon. From the accuracy that such approximation had when we
applied it to the lower orders, see Figs. [5.2] and [5.3] we expect good results also at
N3LO. Obviously, since at this order some ingredients are only approximate, the
precision of the approximation will not be as good as the one of the NLO and NNLO
coefficient functions.

First of all we have to set the parameter A of the damping functions, see Eq. .
In order to do it, we have to study the behavior of the asymptotic and threshold
limits for £ > 1, as we did for the lower orders. Fig. shows the comparison
between these two limits. For the high-scale limit we used the center of the band
given by the two approximations of the term kéﬁ)o in Eqgs. and . As
it happened for the NLO, for £ > 1 we do not have the good transition from
the asymptotic to the threshold limit that we had at NNLO. This may be due to
the fact that we used approximate expressions for the construction of both the
asymptotic and the threshold limits. Therefore, the fact that the growth of k(§)
stops at a certain point helps to increase the accuracy of our approximation. From
the comparison of the two limits for the highest values of £ we extracted that the
center of the interpolation region is approaching roughly the value of n >~ 0.3. We
conclude that A = 0.3. Instead, at small &, as explained in the previous section, we
still want that h ~ 2.5. Therefore, we set

A=03, B=25. (5.8)

Now that we have all the parameters of the damping functions we can construct
our approximation for the u-independent part of the O(a?) DIS massive coefficient
function of the gluon for F5 in heavy flavour production. Fig. shows the results
that we obtained. Six values of £ are shown and we used n;y = 3 since we are
considering the charm as heavy quark. A comment on such results is now required:
first of all, being the N3LO next-to-leading logarithm expansion for small-z and
the p-independent term of the high-scale limit of the massive coefficient function
only approximate expressions, we cannot be sure that in the small-z region the
asymptotic limit exactly approaches the (yet unknown) exact massive coefficient
function. Second, also the threshold limit contains approximate ingredients: in fact
in Eq. the term constant in /3 is not exact but it is an approximation [28]. For
this reason we expect our approximation to approach the exact result both in the
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Figure 5.4. Comparison between the p-independent part of the N3LO threshold (dashed
purple) and asymptotic (dashed green) limits of coefficient function of the gluon for F
multiplied by z, i.e. Egs. and , as a function of . Six relevant values of ¢ = Q%/m?
are shown. The p-independent parts are extracted computing the exact coefficient function
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asymptotic and in the threshold regions only approximately. Third, as we mentioned
before, at N3LO the transition from asymptotic limit to threshold limit at high &
is not perfect as it was for the NNLO. Moreover, contrary to the lowest orders, we
do not have the exact curve as a reference to help us to tune the point that the
parameter h(§) has to tend to. For these reasons, at high ¢ the accuracy of our
N3LO approximation will not be as good as the one of the NNLO and NLO. Last,
we observe again that even if the application of the approximation to the NNLO
and to the NLO gives promising results, the N3LO will be a different function and
therefore we cannot be sure that such approximation will be accurate in the same
way. Despite the sources of uncertainty that we have just mentioned, we expect our
approximation to have a good level of precision. In order to check the accuracy of
our approximate coefficient function, in Sec. we will compare it with an other
approximation that is available in the literature.

5.3 Construction of the uncertainty band

In this section we will construct an uncertainty band associated to our approximation
of the gluon coefficient function at O(a?). It will be done varying the parameters A,
B, C and D around their central value and varying the approximate contributions
that we used in our construction between the two extremes of their uncertainty
estimate. The parameters a, b, ¢ and d will not be varied since the final approximation
depends very weakly on their precise value and therefore their variation does not
change significantly the final result.

First of all we construct the uncertainty band for the approximation of the
NNLO gluon coefficient function. The central values of the parameters are those of
Egs. and . Observe that in the construction of the approximation at NNLO
we do not have approximate ingredients. Therefore, at NNLO the uncertainty band
will not have the contribution coming from the uncertainty of unknown ingredients.
Then, we have to observe that the approximation that we constructed depends more
strongly on the parameters C' and D, that govern the parameter k in Eq. , and
more weakly on the parameters A and B, that govern the parameter h in Eq. .
Therefore, C and D will be varied by 30% above and below their central value, while
A and B will be varied by a factor of 3. It means that we define

A, =34, A_=A/3, B,=3B, B_=B/3 (5.9)
C.=(1+03)C, C_=(1-03)C, Dy=(1+03D D_=(1-03)D,
(5.10)

and the variations of the approximate coefficient function will be obtained using these
values as the parameters of the damping functions. Then, we plot all the curves in
which we vary one parameter at the time, the curve in which all the parameters are
varied together above their central value and the curve in which all the parameters
are varied together below their central value. In this way we get a set of curves that
lie around our approximation. Our uncertainty band will be the envelope of such
curves. It means that the two extremes of our band will be the curves that in each
point will differ more from the central value of our approximation. Fig. [5.6] shows
the results that we obtained. We can observe that in the threshold region the exact
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coeflicient function lies inside our band for any £. Instead, in the asymptotic and in
the interpolation regions we have that the exact function does not always lie inside
the uncertainty band. However, this problem will not affect the approximation at
N3LO since in that case the uncertainty in the asymptotic region is increased by
the one coming from the unknown term of the high-scale coefficient function, as we
will see. Anyway, the fact that the exact coefficient function does not lie inside our
uncertainty band for some values of n does not represent a big problem. In fact, the
band we constructed is a rough estimate of the uncertainty of our approximation
and therefore in some points it can be a bit inaccurate. However, the agreement
between our approximation and the exact NNLO coefficient function is good and
thus we think that globally our construction can provide enough accuracy. In the
end, we can observe that, due to the fact that our approximation tends to the exact
function at high-£, the uncertainty band correctly gets smaller at high-£. Moreover,
since at any £ our approximation approaches the exact function in the asymptotic
and in the threshold limits, the band becomes narrower in these two limits.

Now we can construct the uncertainty band of the approximation of the N3LO
gluon coeflicient function. The central values of the parameters are those of Egs.
and . They are varied according to Eqgs. and . It means that in
the construction of the uncertainty band we will plot the curves varied in the same
way we did for the NNLO, i.e. varying one parameter at the time and varying
all the parameters together. At N3LO, in addition to varying the parameters of
the damping functions, we varied the approximate expressions that appear in the
construction of the approximation at O(a2). It means that in the construction of the
band we added the curves obtained using the two extremes of the uncertainty bands
of such approximate contributions, instead of their central values. For example, the
unknown term for the construction of the high-scale coefficient function at O(a?),

ie. kﬁg)o, has been varied using in Eq. the functions kS?O and kg?g (given
in Egs. and ) instead of their average value. The approximate terms
are the p-independent part of the heavy quark-gluon N3LO matching condition, the
NLL small-z expansion and the g-independent part of the threshold limit. While
for the first two we have an estimate of their uncertainty, for the unknown term of
the N3LO threshold limit we do not have such estimate. Therefore, we varied only
the two terms for which we have an uncertainty band. In the curves in which all the
parameters are varied together, also the approximate contributions have been varied.
Fig. shows the uncertainty band that we obtained. As we mentioned before, the
band in the high-n (small-z) region is dominated by the uncertainty of the high-scale
limit. We conclude this section observing that also in this case the uncertainty band
reduces its size at high £ since our construction has to approach the exact coefficient
function. However, at high £, due to the bigger uncertainty in the choice of the
point that the center of the interpolation region has to tend to, we have a bigger
uncertainty in the central region with respect to the O(a?) approximation.

5.4 Comparison with other approximations

So far in this chapter we have constructed an approximation for the u-independent
part of the N3LO gluon coefficient function for F,. It has been done combining the
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the high-scale, high-energy and threshold limits of the exact coefficient function. As
we have said previously, in the literature there are other approximations for the
N3LO unknown term that are constructed starting from the same three limits. Our
approximation procedure differs from the other ones in the way these three known
limits are combined together. In this section we will compare our results with the
approximation of the N3LO gluon coefficient function proposed in Ref. [28]. Also
in that case the accuracy of the approximation is tested applying it to the NNLO
coefficient function and comparing the known exact curve with the approximate one.
So we will compare our approximation with the one of Ref. [28] also at NNLO. The
NNLO approximation that is proposed in Ref. [28] is the central value of the two
extremes of the uncertainty band given by the functions

2 2 2
[3](2,0)approx,A m=N  +[3](2,0)thresh m [3](2,0)const m
CQ,g Pp: (Z, @) - 2,9 (Z QQ) 02’9 (27 @)
2
[3 0](2,0)
+ (- 7©)05"" (2 )
2 2
3| ~I[3](2,0)LL m- n
+ f(g)ﬂ |:02,g (Z, Q2> C + ’]’]'7:|’ (511)
2 2 2
3](2,0)approx,B m 3](2,0)thresh m 3,0](2,0 m
02[72}( )app ( 7@) — Cé,‘]q( )t (2:7 @) + (1 f(f))ﬁgcé’g] )(2,7 @)
2 S
3[ ABI(2,0LL/_ ™ n
+f(©)8 [C (2, @) B 775], (5.12)
(5.13)
where )
= ) 5.14
&) 1+exp(2(¢ —4)) (5.14)
and

v=1.0, C =425, (5.15)
6=08, D=194. (5.16)

The function 0[31(2 O)const 1o the [B-independent part of the threshold limit of the

NNLO gluon coefﬁcient function, i.e.

(31(1)
CBI2,0)const _ Cig ( Q2>

o - (co(g) +36C4 log? 2 — 60C 4 log 2), (5.17)

where we have omitted the term proportional to L, since we are interested in the
p-independent contribution. From Eqgs. and (5.12]) we can observe that this
approximation treats the three kinematic limits as three different ingredients, each
of which with its own damping function (the threshold limit is not multiplied by a
damping since it goes to zero at high-n). Instead, in our approximation we use just
two ingredients, since the high-scale and the high-energy limits are combined together
in the construction of the asymptotic limit. Fig. .8 shows the comparison between
the p-independent part of the NNLO exact massive gluon coefficient function for
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Figure 5.8. Comparison between the p-independent part of the NNLO exact massive
coefficient function of the gluon for F; multiplied by z (solid orange) computed from the
parametrization in Ref. , the approximation that we propose (solid red) in Eq. (4.52),

and the approximation given in Ref. (dashed blue), Egs. (5.11)) and (5.12), as a function
of 7. Six relevant values of £ = Q?/m? are shown.
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Fy, the approximation that we propose in Eq. and the approximations given
in Ref. [28], that is the average value of the two extremes given in Egs. and
. First of all, we can observe that for any £ this approximation does not overlap
accurately with the exact coefficient function for intermediate values of 7, while our
approximation does. Second, while this approximation correctly approach the exact
coefficient function in the threshold limit (n — 0) for every value of &, it does not
approach perfectly the exact curve in the high-n region. Instead, our approximation
tends to the exact result at large n for any £. This is due to the better way of
combining the high-scale limit and the high-energy limit into the asymptotic limit.
Last, while the upper extreme of the band gives a good description of the exact
function for £ > 1, the lower extreme does not, as it can be clearly observed. It
follows that the average of the two extremes does not give a good description of the
exact function at high-¢£.

At N3LO the approximation for the u-independent part of the gluon coefficient
function proposed in Ref. [28] is the average of the two extremes of the uncertainty
band given by the expressions

2 , 2 2
Cg?}g(&O)approx,A (Z m7) _ C[3](3,0)thresh (Z, m7> + (1 _ f(f))ﬁcg[zo}(&O)A (Z, m7)
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2 2 2
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v=10, C =200, (5.20)
6=0.8, D=10.7. (5.21)
In this case 0[3](3 0)thresh’ is defined without the contribution 0[321(3 ,0)const , that is

the B- mdependent part of the threshold limit and is given in Eq. - omlttmg
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by, converting to our normalization, i.e. multiplying a factor 4¢/z,

3(3,0NLLA _ 4§ log&y4

oy == [0.0007(10g5) 0.28], (5.22)
3](3,0NLLB _ 4 log&\2

s == [0.055(10g5) 0.423)]. (5.23)

These expressions are extracted from the high-scale limit and from the high-scale limit
of the high-energy limit of the exact coefficient function. Hence, this approximation
differs from the one we constructed also in the way the next-to-leading logarithm
of the small-z limit of the gluon coefficient function is estimated. Fig. shows
the comparison between the approximation that we propose and the approximation
proposed in Ref. [28]. We used ny = 3, as we did previously. The curve B’ is
obtained using in Eq. the function

CBIGONLLE _ %0[3](3,0)NLL,B

5.9 Cr 5.4 , (5.24)
with,
[3)(3,0NLLB _ 4§ log&\2
i = - [0.0245(10g5) 0.17], (5.25)

instead of CE}](?”O)NLL’B. Eq. is a correction of the approximation B of the
N3LO next-to-leading logarithm term for low &, while for high ¢ it is indistinguishable
from it. Therefore, it is plotted only in the cases £ =2 and £ = 5.

Comparing the two approximations, we can observe a perfect agreement in
the small-n region for the smallest values of £&. However, this agreement slightly
deteriorates as £ increases. In the high-n region (and therefore for small-z) our
approximation, with its uncertainty band, always lies inside the band of the approx-
imation of Ref. [28], but it slightly differs from its central value. Instead, for the
intermediate values of 1 the two approximations are quite different, especially at
large €.

In conclusion, the comparison between our construction at NNLO and the one
proposed in Ref. [28] shows that at high-n the first one is more accurate. Moreover,
our approximation shows a better agreement with the NNLO exact function also
for the intermediate values of n and for £ > 1. Therefore, we are confident that at
N3LO our approximation for the gluon coefficient function provides more accurate
results. Anyway, having both results will surely provide an improvement of the
accuracy of the knowledge of the N®LO gluon coefficient function. In fact, combining
both results we can construct a bigger uncertainty band, that will likely contain the
exact result.
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Chapter 6

Conclusions

The argument of this thesis is the construction of an approximation for the u-
independent part of the DIS massive gluon coefficient function for F5 in heavy quark
pair production, that nowadays is still unknown. This contribution is a crucial
ingredient for the construction of a VFNS at N3LO, which in turn is needed for the
extraction of the PDFs at N3LO.

Our approximation was constructed combining the known limits of the exact
coefficient function in three kinematic limits, i.e. high-scale (Q? > m?), high-
energy (z — 0, where z is the argument of the coefficient function) and threshold
(2 = Zmax = 1/(1+4m?/Q?)), similarly to previous works in the literature. In order
to do so we constructed an asymptotic limit for the exact coefficient function: it
approximates the exact curve in the small-z region for all the values of Q2. Such
limit has been constructed reinserting in the high-scale coefficient function the power
terms that had been neglected, in the small-z limit. In this way we assured that for
z — 0 the asymptotic limit approaches the exact curve for all the values of Q2. The
power terms in the small-z limit have been estimated from the high-energy limit
and its Q% > m? limit. In fact, subtracting these two functions, we found exactly
the power terms in the limit z — 0.

Once we constructed the asymptotic limit, in order to get our final approximation,
we have combined it with the threshold limit using two damping functions. In this
way our approximate curve approaches the exact coeflicient function both for z — 0
and for z — zmax. For intermediate values of z, the final curve is an interpolation
between the two limits. The accuracy of our approximation in this region depends
on the choice of the two damping functions. In order to choose the form of such
functions, and to tune their parameters, we applied our approximation procedure to
the NLO and NNLO massive coefficient function, that are exactly known. Thus, we
chose the form that provided the best agreement between the approximate and the
exact curves.

However, as we have already observed, even if we tuned precisely the approx-
imation on the lower orders, we cannot be sure that at N3LO the accuracy will
be the same, since the N3LO exact coefficient function will be a different function
with respect to the NLO and NNLO. For this reason, at N3LO we expect a bigger
uncertainty. Moreover, while at NLO and NNLO all the ingredients we need are
known, at N3LO there are some contributions that are missing. In fact, at N3LO the
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p-independent part of the the matching condition between heavy quark and gluon
(that is needed for the construction of the high-scale limit), the term independent
from B in the threshold limit and the next-to leading logarithm small-z expansion
are all still unknown. Therefore, for these contributions we had to use approximate
forms. This leads to a bigger uncertainty in the final approximate coefficient function.
As soon as the exact expressions for the unknown terms will be available, it will be
possible to update them in our construction, and this will improve the accuracy of
our approximation.

Despite the lack of some contributions, we expect a good accuracy in the final
approximation. In fact, with our procedure the approximate coefficient function
approaches the exact function in the small-z limit for all the values of Q2, while
other approximations that can be found in the literature do not. Moreover, our
approximation for the NNLO gives a good description of the exact curve for all the
values of £, so we expect the same to be true also at N3LO.

In conclusion, in this thesis we focused on the gluon coefficient function for F5.
In fact, since the gluon PDF is dominant at small-z and the structure function
Fy is dominant with respect to Fp, in the whole range of z, the gluon coefficient
function for F5, convoluted with the gluon PDF, is one of the largest contribution
in the computation of the hadronic cross sections. However, we can apply our
approximation to the quark coefficient function and to the structure function F7y,
in the same way we applied it to the gluon coefficient function for Fs. In fact, also
the massive quark coefficient function at N®LO is an important ingredient for the
construction of any VFNS at O(a2). Moreover, in this case we need the N®LO light
quark-gluon matching condition, that is exactly known [32]. Once we will have
constructed such coefficient functions, the accuracy of our description of DIS will
be further increased since this result represents a fundamental ingredient for the
determination of a future generation of PDFs at N3LO.
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Appendix A

Plus distribution

In this appendix we will discuss the plus distribution and its main properties. It is
needed to cancel the divergences for z — 1, i.e. the soft divergences.

A.1 Definition

Given a function f(z) which is divergent and non integrable in z = 1, then the
distribution [f(2)], is defined as

1 1
| 18] 9 = [ a5 o(a) - g1), (A1)

so that the divergences that arise due to the non integrability of f(z) in z = 1,
exactly cancel for any test function g(z) that is regular in z = 1 or that diverges at
most as

1
—_— 2. A2
A= °< (A.2)
In particular all the functions of the form
logh(1 — =
)= 80D, (A3)

with k > 0, are regularized. From the definition in Eq. (A.1]), it follows that

1
FE), = £ =00 =2) [ dy f(w). (A4)

Since f(z) diverges as z — 1, this definition makes sense only as a limit:

£, = im0 -n-2)5G)-60-2) [ ayiw)], (a9)

n—0+

where the limit must be performed after the integration in y.
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A.2 Convolution

Now we can discuss the convolution between a plus distribution and a test function.
This is not trivial since Eq. is written in terms of an integral from 0 to 1, while
the definition of convolution, given in Eq. , is written in terms of an integral
from x to 1. Such convolution is performed in the following way:

(- 29w = [ L1 >1+g( )

—/ dz/ dy [f (y)d(z — zy) =

:/ dz/ dy f(2)g(y) 5($—Z?J)—5(‘”_y)) -
[ ast (/ dya(a)i(a = 2) ~o(0)) =
/1 dz x _g(l,)/o dz f(z). (A.6)

Since Eq. (A.6)) is composed by two divergent quantities, it must be interpreted as a
limit, i.e.

(@@= tim [ [ r0(t) o) [ r@)] @

Eq. (A.6]) is usually written in the form

(v 2o = [ =) (20(2) ~o@)) — o) [(dzra) (a9)

The advantage of writing it in this way is the following: the two integrals of Eq.
are both divergent because f(z) is not integrable in z = 1. For this reason we had to
define Eq. as a limit. However, the final result is finite so the divergences must
exactly cancel. Instead, the two integrals of Eq. are both finite: in fact the
second one is trivially finite because we have that x < 1 and therefore the integral
doesn’t extends up to the point z = 1, while the first one is finite because near the
point z = 1 we have that, expanding in z, the integrand is

1) gta) + (~9(@) ~ 2¢'@)) (= = 1) ~ 9(0)| = 72 [~9(2) = 29/ @)z - 1.

The term (z — 1) simplifies with a term 12— that is always present inside f(z) (we
will consider only functions like the one in Eq. - , so that the first integral in
Eq. (A.8)) is convergent for any function g(z) that is derivable for 0 < z < 1.

A.3 Convolution between D!V (m = 0) and K{})

In order to show that computing the convolution of a plus distribution with a smooth
function, using the form in Eq. (A.8]), gives a perfectly finite result, we will compute
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the convolution between D,£4](1)(m =0) and Kc(;). So, what we want to compute is
1) 0 bz o (z m?

(DO ©) & K@) = | =DV 0K (2 57). (A.9)

Such computation is present in the high-scale coefficient function of the gluon at
O(a?) for p = Q, see Eq. (4.14). D£4](1)(m = 0) is given in Eq. (3.9), while the
expression of KC; is

2 2
(z, %) = ﬁ(ZQ + (1= 2)?)log % (A.10)

47

For simplicity we will consider the case u = @ but the generalization to u # Q
is straightforward. In order to compute Eq. (A.9) we can use Eq. (A.8) for the
terms that involve the plus distribution (i.e. the first two terms of Eq. (3.9)), and
Eq. (2.78) to compute the regular terms.

For the computation of the first two terms of Eq. (3.9) we can proceed as
follows: we have to apply Eq. (A.8) with f(z) = logl(izz) or f(z) = i and with
g(z) = 22+ (1 — 2)%. Since we have that

K1)

cg

— (1 — »\n—1
— ==, (A.11)
10g<1 B Z) o i n—1
e LU L (A.12)

we will compute Eq. (A.8) with f(z) = (1 — 2)7~! and then we will take the zeroth
and the first order expansions around 77 = 0. Therefore we want to compute

! g1l 2 2 v n—1

/z dz (1—2) ;(2;—2;“)—(29@» —224+1)| — (22 —2x+1)/0 dz (1—z)" 1.

(A.13)

Let’s focus first on the last integral of Eq. (A.13): with the change of variable
t =1 — z we can write that

n

T 1
/ dz (1 —2)171 = dttt = —
0 1-x n

L e O
1—x n

expanding in powers of 7

1 2 3
:n{l <1+nlog(1x)+77210g2(1x)+g!10g3(1x)+...)} =

Ui U
= —log(l—x)— §log2(1—x) — ylog?’(l—x) — ...

In the end what we have found is

—log(1 —z) k=0
/xd logk(l —2) B —% log2(1 — x) k=1
0 T T —%log?’(l—x) k=2
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so for a general k£ we have that

v logh(l—2) 1 k1
= _ log®t1(1 = 2). A.14
/Odz S gt (1 - ) (A.14)

Now let’s see the first integral of Eq. (A.13)): with some easy mathematical
manipulations we can write it in the form

/1dz(1—z)77—1(2x2(1 —2)(1+ 2+ 2?) oy, (=21 +2) 1 _Z>7

23 22 z

so that a common term 1 — z factorizes and cancels with the (1 — 2)~! in front.
Therefore the integral becomes

1 2 92429 202 —2x 4+ 1
/ dz(l—z)”<2xg+ x . v, 2 T+ >
x z z z

This last expression shows that we can limit ourselves to the evaluation of integrals

of the form )
/ dz (1 — 2)"zF,

with £k = —1,—-2,-3. For f(z) = l—iz we can take n = 0 before the integration so
that we are left with .
/ dz 2",
x

that is trivial. So for this term the result is

((1iz)+®(22+(1_2)2)>(x) :—1+4x—3x2+(1—2m+2x2)10g(1—x)+

+ (=14 2z — 22%) log(). (A.15)

For f(z) = bgl(ij), using the properties of the Gamma function, we find

T(p+ D)I(1 + k)
F2+k+n)

/1 dz(1 — 2)"2F = — Bz, 14+ k,1+n), (A.16)
0

where B(z,1+ k, 14 n) is the incomplete beta function, defined as
B(z,a,b) = / di o1 (1 — )1, (A.17)
0

Computing the first order expansion around n = 0 of Eq. (A.16)), sending k to
—1,—2,—3 and then putting everything together, we find that

(E=2) e 40-29)@) = — (-0 gree® — 20+ 1)+ o3 — 2 loga

+ (222 — 22 + 1)Lig(z) + [% - (1- x)x} log?(1 — z)

+[-1+ (4= 32)z|log1 —2),  (A18)
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where Lig(x) is the dilogarithm, defined as
z  log(l—t
Lis(2) = —/ dt Og(t). (A.19)
0

Now that we have computed the singular terms of Eq. (3.9)), we can apply the
standard definition of convolution, i.e Eq. (2.78)), in order to compute the regular
ones. In conclusion the full result of Eq. (A.9)) is

_ 2Cp2Tp { 5 2
(4m)?

(DM (0) @ K§))(w) = —5 +203 — da)z + %(—1 + 22 — 42”)

T1og2(1 — ) [1 - 2(1 — )] - %log(l _ ) [7 + 42(3z — 4)

+ (4 —8(1— x)x) log(x)] + %log(w) [—1 + 4z(3z — 2)
(1= 2+ 40?) log(a)] + (20 1)L12(x)} log fi;
(A.20)

The same procedure can be applied to the computation of the convolution

pii®@ (0) ® Kégl,) that is present in Eq. (4.18]). In this case we still have to compute
2

Eq. (A.8) but we have also the contribution from the terms f(z) = log (1=2) and

1-2
f(z) = logi(%z_z) [1]. This is done observing that

log?(1—2) &

1 e e d7772(1 — Z)n71|7]20’ (A21)
log3(1—2) & _

and proceeding in an analogous way.
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Appendix B

Approximate NLL small-z
expansion of the gluon
coefficient function

In this appendix we will construct an approximation for the NLL small-z expansion of
the gluon coefficient function. Moreover, we will construct an error band associated
to it. We will follow the approach presented in Ref. [41,|42]. Considering just the
gluon contribution, in Mellin space the hadronic structure function F5 can be written

FQ,N(g) = FZN(‘S)fg,N(Mz)v (B'l)
with ,
Fan(€) = Kan(€ () () (B.2)

where Ky v (&) and h(y) are given in Ref. [28] and read

() = maremael |5 + 527+ 0 + O] (B.3)
Ko (&) = (1+ i)fN = 57)3(1 57 {2(1 +9)+ (14 E)H (2+37
32— 2(1 + ’y))gFl(l — gf%)} (B.4)

The function 9 F; satisfies the expansion

oF1 (1 —7,2%) = ;{L(z) + 'y[H(—,—i—,z) + L(z)log(1 — 22)} - %72 [H(—, +,—,2)

H(—, 4, 2)log(1 — 2) — L(2)log?(1 — 22)} + 0(73)}, (B.5)

where z = /§/(§+4) and I(§), J(§) and K (&) are defined in Egs. ,

and (4.29). Now we can expand Eq. (B.2) for small v up to second order. What we
find is

A (0 A (1 A (2 :

By (€) = B + 7 Eyn + B + 0. (B.6)
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Then we make the substitution [43}/44]

A0 — [70} =1, (B.7)
Y= [V =7 = asyo + a2y + 02, (B.8)
V2 = 7% = v(v — asfo) = aZ(7E — v0B0) + O(a?). (B.9)

With these definitions Eq. becomes
iR + B (48 - 7050)). (B.10)

Observe that since h(7) is O(ay), then all the FQ(]}), are O(ay). It means that the term

proportional to o2 in Eq. (B.10) is the O(a2) expansion of the partonic structure
function of the gluon in Mellin space. In order to find our approximate result we
will use the values [41,/42]

NLL ai aio
= — B.11
o N TN+ (B.11)
NLL Q21 2a91
= — — B.12
m N N+l (B.12)

where the coefficients a1, a19 and a1 are given by

C
al]p = 714, (Bl?))
11C4 4+ 2n¢(1 — 2Cr/C
alg = — A f1(27-[- F/ A)7 (B14)
2 -2
agy = ny 20CF ~ 2304 (B.15)

3672

Now we have to transform back from Mellin space to z-space. Using that the Mellin
transform is defined as

MIFE) = 50 = [ a5, (5.16)
one can show that
M) =+ (B.17)
Mlz] = Nir o (B.18)
M{log(2)] = % (B.19)
M(zlog()] =~ i 7 (B.20)

and that
M([f(az)] = a " M[f(2)], a>0. (B.21)



99

We find that, neglecting terms proportional to z and zlog(z), and then dividing a
factor z in order to find the coefficient function, our approximation of the next-to-
leading logarithm expansion of the O(a?) gluon coefficient function for Fy is

A ) =S (100G ) -0

e (g +21((1— ) + 105 ~ 5¢) ) + e

_ J(f)(; - 1)) + anﬁo(_Gﬁ - I({)(l _ é) _ J(£)<%3 B tl}b)]

Fasan (o + K@ (; 1) + (5 - 52) + 1O (5 - 30)

101 = g)Le) +an (g + 1€ (1= ¢) + 7€ (5 — 7))
(a0 20 -

g -)) e 12 7)) s

-y aal ) el
1% )+ Jr(} ) @ D)]ae)

(B.22)

+ L,

where L, = log(m?/u?), L¢ = log(1 + £/4) with £ = Q*/m?. Taking the Q2 > m?
limit of Eq. (B.22)) we find its high-scale limit, that is

m
Q¥

2 .92
3,0/(3)NLL m 11
Cé,g 1(3) ( 72) = ;86471' {a21(240 — 4871'2) + 01150(_736 + 1047T2 - 576(3)

+ ajpa11 (1472 — 20872 4 1152(3) + a3, (1472ly — 208ly7>
+ 115215¢3) + Lg [—624@21 + a1150(1136 — 4872)
+ ayoa11(—2272 + 9672) 4 a2, (736 — 22721y — 1047 4 9617

+ 57643)} + L [624a10a11 + 144as1 — 312a11 8 + a3 (—1136
+ 6241 + 487r2)} + L} {—96@1()&11 + a?,(312 — 961y)

+ 48@11,30] — 480,%1[/5 + Li [144@10&11 — T2a1150

+ 1440} Iy + Lo (—288ar0a1 + 144an1 By + afy (72 — 2881))
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— a11144L22] + Ly, [144@1 + aipa1 (480 — 967°)
+ a1 (240 + 487%) + a3, (480l — 96157) + Lo (288
— 1248a1pa11 + 624a11 8 + a2, (240 — 124815 — 487r2))

+ LY (288arpa11 — 144a11 80 + af (28812 — 624))

+ 144a§1L§f)], (B.23)

where Lg = log(m?/Q?) and Iy = log(2).
Now we have to construct the uncertainty band for this approximation. It will
be done using Eq. (B.10)) with [411/42]

LL' _ ail aio
B.24
Wl =Nt N R (B-24)
/ 1 4N
L _ 21, 1
moo= 506111( 3 € 4log(2)) (N Nr1? 1)2). (B.25)

In this way we find the curve

C’E}g(?’)NLL, (z 752 m—j) = 1;7T§{Li [aman(z - J(ﬁ)(i - 1)) + a115o (—é + ;J(f)(é - 1))}

I [aloall <20 +21(6)(1- é) + J(&)(L; - 10))

3¢ 3¢
+anpo(—gp - St 2a - 1O(1- 7) + HO(% - )
#4795 -1) + 51O (1= )6 ) | + anan( G2
+RE(g-1) 105~ 3¢) + I<s>(1 - )L
+I@ (g~ g)) Fanbo( 26 - g - gela+ K@ (1- )
+3(6) (5 15) + IO (35~ 50)a + 1O (¢ — 3t
+ I(&)(f5 - %3) + 516 (g~ 1) Le+ 1) (¢ —4)

+a11[L2(—+ J(g)(2—1)>
13 )

( 1001 ¢) -0 50))

St J<5>(4§ RS LGIEIERGIC TR

- %I(g)(1 - 5)} Lg} (B.26)

;_n
|
e
N——
\_/ ~__
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whose high-scale limit is

C[30BNLL

2,9

€

m2 m?

7@) [LZ

)

1 1

8647 2 {481’??@%1 + L {—96a11a10 + 48a11 o

+a}; (312 — 96l2)] +Lg {a%1(624l2 — 1136 + 4877)

+ 624a11a10 + a11 B0 (—312 — 5761y + 378@‘3)} + Lg [a%l (736

— 1047% + 3205 (377 — 71) + 57677) + 32ar1a10(37% — 71)

+ a1 (2496l2 +2(568 — 2472) — 1638(3” + a11a10 (—2(104772

—736) + 115243) + a4l (—2(104772 — 736) + 1152@,)

+ allﬂo(—2(368 — 521%) + 192y (7% — 5) — 2(637% — 27)@,)
+ L, {14@%@% + L3 (288a10a11 — 144a11 6o + af; (288l — 624))

+ Lo (—1248a10a11 + a}; (—124815 — 12(47% — 20)) + 115 (624

+ 115205 = 756Cs) ) — 96a10ar1 (7 — 5) — 96at,la(n? - 5)
+an 50(7576l2 —6(40 — 87%) + 378{3)] +L [144a§1L22
+ LQ (—288&11&10 + 144a11 80 + a%1(72 - 288l2)) + 144a19a11

— 72a113 + 144a%1l2} } (B.27)

In conclusion, our uncertainty will be given by

A = |CPIONLL _ oBIENLL) (B.28)

and the same holds for the high-scale limit.
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Appendix C

Functions cy(£) and ¢y(€)

In this Appendix we give the functions cy(£) and ¢y(&) appearing in Egs. (4.46) and
(4.46). They are presented in Ref. [28] and their expression is

co(€) = CA{50 —n?+ Ij log(vVE(y — 1)/2) + 4log?(VE(y — 1)/2) + log® (1 + £/2)

+6log(2+¢/2) —4log?(2 +£/2) + 2”2(_2—2%) " 24f§ N 410g(22:-r§/2)

6410g(2+§/2) _1 log(2 + £/2) B 160 B log(2 + £/2)
(2+¢)? 2+82(4+¢8 (2+HAE+E 2+8(4+8)
128 pite  Jleg’(VEy-1/2) = 64 }

(2+&4+¢)? 4+¢ 4+¢ (44 ¢)?

+ CF{ ~18 - ng — zjlog(\/g(y —1)/2) — 8log®(VE(y — 1)/2) + 21og® (1 4 £/2)

~6log(2+/2) + 4Lin(— i £) - 2?5 + 810g(22:§/2) tE g‘& g
e Er T LR o
e e s gt

- (4172@2} (C.1)

co(€) = 4C A |2 + 1og(1 + 5)}

i (C.2)

4 3

where

y=4/1+—. (C.3)
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