An Approach for Migrating Applications
to Interoperability Cloud

Binh-Minh Nguyen Ph.D.

v

openstack

VIETNAM CLOUD COMMUNITY

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

e Cloud Vendor Lock-In

e Portability and Interoperability
e Interoperability Approaches

e Cloud Abstraction Layer (CAL)
e Workflow-as-a-Services

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

e User stories:

+ We (SMB) used AWS and we had private OpenStack

cloud, how can we centralize-manage both of
them?

+ We used AWS, RackSpace cloud ... how can we
migrate data between 2 services on-demand?

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

From Cloudonomics

e There are hundreds of cloud vendors ...

—

*Business competition

‘ Each vendor imposes its own stack

e Dueto - of technologies

e[ack of official standards

—

e Differences among the stacks: hypervisor, networking
infrastructure, data storage facilities, management means, ...

e Vendor lock-in issue:

e Lock cloud users into services provided by only one vendor!

e Canyou transfer data and applications to and from the clouds at the same
time?

Some critics, such as Richard Stallman*, have called it “a trap aimed at forcing
more people to buy into locked, proprietary systems that will cost them more
and more over time”

*Richard Stallman is founder of GNU Project and Free Software Foundation

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Impacts of Lock-in on Cloud Actors

Cloud Market

Cloud Users Cloud Providers

High Cost for
Poor Services
(no choice)

Entry Barriers
for New
Entrants

customer loss

Promoting
Particular
Technologies

Incompatible
Technologies Computing

Pricing Power :
Adoption

(monopoly)

A T —

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Vendor Lock-in Figures

What concerns you about moving to the cloud?

Lock-in to Cloud Vendor

[Having My Data Locked-in

Being Locked-in to a Development
Environment

Being Locked-in to a Development
Language

Having my Log Files Locked-in

Source: RighScale Report [1]

Need of innovative solutions => appear keywords in context of cloud computing
Interoperability
Portability
Federation

Avoid Vendor Lock-in = > More Service Choices => Lower Cost

[1] http://Iwww.rightscale.com/blog/cloud-management-best-practices/skinny-cloud-lock

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Why Interoperability?

® Avoid vendor lock-in

e Take full advantages of the different clouds

e Develop applications/services once, deploy anywhere

@ Open research directions:
e Enable hybrid clouds
@ Brokering cloud services
@ Cloud service marketplace

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Concepts

e Interoperability: Ability for
different cloud to talk to Cloud A
each other

Cloud B

Understandi
ng

~ L
\

e Portability: Ability to move
application, data, tools from Cloud
one cloud to another

Cloud B

. | -

Move for
Deployment

Federated Cloud

e Federation: Ability to bring
together services from —
various cloud vendors to el
provide a solution

Development
and
Deployment

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Interoperability between Clouds?

e Ability to use the cloud services provided by multiple vendors
e Across vendors within a cloud model

e Ability to move data and code from one cloud to another or back to
the enterprise (portability)

Across Cloud Service Models

<)

SaaS PaaS laaS
/ \ / \ / Amazon Web Svcs \
Salesforce Google App Engine E':Zi:;torf(t Across Vendors
Gl oree.com GoGrid within a Cloud
DeskAway Rails One Rackspace M d I
Azure OpenStack ode
K J K J K OpenNebula /

A Cloud Standardization? A Solution does not depend on Cloud providers?
Or both?

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Current Standardization Approaches

e Standard deployment packaging format

e laaS level: standard images for vendor hypervisors

e PaaSlevel: application packaging standards for programming languages

e Standard common cloud API

e For both laaS and PaaS level: standard interface for service managements (access,

control and operation) @ %, 'ja Users
S h“J

Ve |
[/

Sl Services

: ; ; Image Transfer } : :
Virtualization |] Virtualization
w)

Cloud g

Service Move

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Vendor Independence Approach

- Program library in various language (e.g. PHP, Ruby, Java,
Python)

- Abstracting different APIs to provide single unified interface

- Do not require support and acceptance from cloud vendors

= -_= .
&- A S,E} Users

(T

| r !

Services Services

Virtualization Virtualization

Uy vy Fl” vy

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Cloud Federation

» ™
Cloud-Cloud Interconnection &)’ &Eﬁ Users
Component Interconnection — '
rd
Cloud Orchestration

A

Services

» Virtualization

Cloud g

Regulation & Policy Impacts,
especially Enterprise
clouds

Standardization + Independent Solutions => More Easily in Building Cloud Federation
2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Our Motivation

e Actual 1aaS clouds are too low-level

» Cloud users are forced to be admins of their virtual
machines and have to install and configure
everything by themselves

e PaaS are special purposed and limited to
concrete platforms
» e.2. Google App Engine can be used only for short

requests, need to re-implement legacy apps while
deploying into clouds

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

e User: | need to create a cluster with shared home
directory and MPI

e Provider: You are admin of your VMs, you can
install/configure whatever you want (and do it
yourself)

e Options for users:
« Learn how to install and configure clusters
+ Hire experts (IT support staffs) to do it
« Use services from third-party companies

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Objectives of CAL

e General-purposed easy-to-use interface for cloud
users (laaS)

e Abstraction of cloud resources

e Design complex system and deploy it by single
command

e Platform independent, interoperability
e Automatic optimization in background

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Desigh and implementation

2/27/2016

Object-oriented approach: resources are represented
by objects

Inheritance and compound objects for creating
complex systems

Enable default parameters: users have to specify only
their special requirements

Implemented in Python

Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Abstraction of a Virtual Machine

e Represented by Instance object

o B o B B o B o B

2/27/2016

= Instance() // create a default i1nstance

.start() // start the i1nstance
.upload(““‘myapp.exe, 1nput.dat”, “)
.execute(““app.exe i1nput.dat output.dat™)
.download(“‘output.dat’™)

.Shutdown()

.delete()

Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Using default parameters

e Users should specify only parameters they
need to change

t = Instance() // create a default i1nstance
t = Instance(type=large) // create a strong VM

t Instance(type=large, os=l1nux, version=“ubuntu-
12.047")

// and this 1s a very concrete machine
t = Instance(image=myimage, keypailr=mykeypalr,
cloud=openstack)

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Inheritance and customization

e Via inheritance, developer can create new abstract
class for concrete type of virtual machine.

e E.g MySQLServer is an instance with image containing
MySQL server, and new method upload database()

MySQLServer: Instance
_mit__
Instance(image=“mysql-server”™)
config()
upload_ database(data)
Instance.upload(data, “’)
Instance.exec(“mysqgl ...”")

2/27/2016

Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

MySQLServer: Consideration

e Generic images

o Developers can choose to create new image with MySQL
server or use generic images and install mysql-server
package:

__init__
t =Instance() //generic machine
t.install (““mysql-server”) //install the package

Advantage of generic images: maintained by
provider/developers, always up-to-date, portability

Disadvantages: additional overhead at start

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

MySQLServer: Consideration

e Code reuse:

e Use of the abstract object is very simple

2/27/2016

+ No need to low-level coding (IP address, manual

login to server)

» Easy to maintain and extend

m
m
m
m

= MySQLServer()
.start()
.config(Q)

-upload _database()

Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Optimization capabilities in background

e There are many places we can do optimization in
background
o compress data before transfer to save bandwidth
« choose best provider (availability, price, ...)
o search and choose suitable images, cloud

e All optimization can be done automatically without
user interference

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Compound objects: cluster

e Complex systems e.g. clusters can be
implemented using compound objects:

c = Cluster(worker=8) // create a cluster with
c.start() // start the cluster
c.upload _and distribute(“additional_software”, “)
c.execute(“mpirun ...7)

c.shutdown()

c.delete()

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Inheritance

Cloud application layer 1

e il l base.backup()

T backup_app_config() Exec(app) put(data, app_dir)

Backup_app_data()

Basic instance

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Software Layering

Service Users

INTERFACE

APPLIANCE

IMPLEMENTATION

P
Service
Developer 2

~ Software Layer 2

INTERFACE

APPLIANCE

IMPLEMENTATION

- - Software Layer 1

Service
Developer 1

INTERFACE

- CAL

IMPLEMENTATION

MUITI-CLOUD INFRASTRUCTURES

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Example 1 — Service Development

e Develop once

class myservice (CAL) :
def setCloud(self,cloud):
CAL.setCloud(self,cloud)

def start(self,0S,VM type):
CAL.start (self,0S,VM type)
CAL.put data(self,my app)
CAL.execute (self,install my app)

#inherit CAL functions

#choose cloud

#start service
#start VM

#upload app or data
#install the app

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Example 2 — Service Deployment and Usage

Developers/users choose base software with OS and
deploy the installation packages.

sv = myservice ()

sv.setCloud (OpenStack) #choose OpenStack driver
sv.start (‘Ubuntu’, ‘small’) $#start the service

Simple service deployment and use: automatic app.
installation after VM start.

2/27/2016

Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Comparison Between CAL and other Solutions

laaS tools
Solution Simple Apache Apache
OVF OCCI Cloud Libclou Deltacloud jclouds | boto Cloudstac
Feature API d k
General
S S A A A A A A

approach
Resource

X X X X X X X
management
Service
development
Service

X X X X X
deployment
Interoperability X X X X X X X X

A — Abstraction approach; S —Standardization approach;
X —major feature; x — support feature

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Comparison Between CAL and other Solutions (contd.)

Distributed Computing Configuration Tools

Solution
Feature CFEngine | Puppet Chef Bcfg2
Configuring easily X X < X
legacy applications
Resource
management
Service development < < < <
and deployment
Interoperability X X X X

X — major support; x — support feature

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Workflow-as-a-Service

e Prototype model using CAL, aim at migrating formal
Bio-Informatics workflow to cloud env.

e Bio tools: clustalw, BLAST ..

e BIMI: Bio-Informatics Management Interface

e Another approaches for migrating apps into
Cloud: Open Service Catalog Manager (OSCM)

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

BIMI High Level Design

Cloud

/‘b Infradnicture

Corvert to
specific cloud
AP and
forwarding

Frovide output
in multiple

format

/ accl
Forward
husinesslogic
teq ues
Ry data C

[k > BIM |

External Attr

Forward data
process
requed

N -
Workflow V ‘y

engine
(appliance)

Pravide data
access pattern

Caonvert to
gpecific cloud
dorage AR
and forwardin g

\' Cloud Storage -/4

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Current Design Status (contd.)

User

Workflow Visualize
(gojs)

Bio-Workflow Engine

Workflow std format
(rdf, scufi2)

OpenStack Mistral ?

. CAL (with BIMI

implemented)

Orchestration
Engine (Heat,
CloudFormation..)

e

~

Wrapper VM/Container
(App/Tools)

Wrapper VM/Container
(App/Tools)

Wrapper VM/Container
(App/Tools)

A
.

Cross-Cloud Infra

2/27/2016

Binh-Minh Nguyen

Hanoi 8th VietOpenStack Meetup

Bio-Informatics Workflow-as-a-
Service on OpenStack

(Work-in-progress)

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

Thank for your attention!
Q&A

minhnb@soict.hust.edu.vn

2/27/2016 Binh-Minh Nguyen = Hanoi 8th VietOpenStack Meetup

mailto:minhnb@soict.hust.edu.vn

	An Approach for Migrating Applications to Interoperability Cloud
	Agenda
	Stories
	From Cloudonomics
	Impacts of Lock-in on Cloud Actors
	Vendor Lock-in Figures
	Why Interoperability?
	Concepts
	Interoperability between Clouds?
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Our Motivation
	Example
	Objectives of CAL
	Design and implementation
	Abstraction of a Virtual Machine
	Using default parameters
	Inheritance and customization
	MySQLServer: Consideration
	MySQLServer: Consideration
	Optimization capabilities in background
	Compound objects: cluster
	Inheritance
	Software Layering
	Example 1 – Service Development
	Example 2 – Service Deployment and Usage
	Comparison Between CAL and other Solutions
	Comparison Between CAL and other Solutions (contd.)
	Workflow-as-a-Service
	BIMI High Level Design
	Current Design Status (contd.)
	DEMO
	Discussion

