
A Novel Approach for Developing Interoperable
Services in Cloud Environment

Binh Minh Nguyen, Viet Tran, Ladislav Hluchy
Department of Parallel and Distributed Computing

Institute of Informatics, Slovak Academy of Sciences
 Bratislava, Slovakia

{minh.ui, viet.ui, hluchy.ui}@savba.sk

Abstract— Cloud computing has seen a tremendous growth in
the last five years. Along with the growth, many cloud models
have been marketed. They deliver hardware and software as
virtualization enabled services to users. Although cloud
computing offers considerable advantages such as unlimited
resources, manageability and lower investment costs but there
are still barriers to exploit it. One of the barriers is the
difficulties, which users are being faced when developing and
deploying their own services into clouds. In this paper, we
present a novel approach for developing interoperable services
that can be deployed in different cloud infrastructures at the
same time. The approach provides an instrument with
emphasis on abstraction, inheritance and code reuse. Using the
approach, cloud-based services are developed easily by
extending existing abstractions classes provided by the
instrument or other developers. The interoperability between
different clouds is solved via the basic abstraction class of the
instrument and all services are inherited and benefited from
this advantage.

Keywords-cloud computing; service development;
asbtraction; inheritance; interoperability

I. INTRODUCTION

With the advance of cloud technologies, the trend of
developing and deploying services/applications in cloud
environment also has appeared. There are economic as well
as technological reasons why an application should be
developed and deployed on the cloud. On the economic side,
cloud computing can provide significant cost savings due to
the increased utilization resulting from the pooling of
resources (often virtualized). Otherwise, cloud computing
enables rapid delivery of IT services, which increases
business efficiency. On the operational side, manageability,
performance, and scalability are the typical reasons why
service developers consider cloud computing. However, this
trend is being faced two challenges:

• The Platform-as-a-Service (PaaS) type limits
developers to concrete platforms and Application
Programming Interfaces (APIs).

• The Infrastructure as a Service (IaaS) type provides
too low-level service.

In principle, PaaS clouds offer environments for hosting
and APIs for implementing applications. The platforms will
manage the execution of these applications and provide some
advanced features like automatic scaling. However, for

existing or legacy applications, PaaS may require rewriting
completely their codes using a certain dedicated platform,
what is not feasible for developers and users as well.
Furthermore, each platform can have different key property
and API, what make moving the applications from a
platform to another practically impossible.

Meanwhile, IaaS clouds provide resources (virtual
machines, storage) as services where developers have full
access to the resources and manipulate directly. For instance,
using IaaS, they will log into virtual machines (VMs) and
execute some commands or modify some files in order to
create their own development and deployment platform on
the machines.

Easily realize that, while PaaS binds developers into
existing platforms, building services on IaaS will be their
choice to meet specific requirements. However, the IaaS use
is perceived as difficult with them, requiring advance
computer skills for the installation and usage [1], [2] and [3].
As mentioned above, service developers have to themselves
prepare VM(s) and platform(s). This process is similar to the
age of assembly languages, where the programmers can
modify every byte of memory and CPU registers. Such
access is error-prone and potentially interferes with high-
level automation and optimization.

Consequently, from the view of service developers, they
need to have a solution which enables to simplify the
development and deployment of services on IaaS clouds. The
solution must allow developers to write, pack and deliver
codes of the services for deployment on various clouds
without any obstacle. The solution thus also provides
developers with a single unified interface to overcome the
incompatible API between the clouds.

In this paper, we present a novel approach for developing
interoperable cloud services that can be deployed on multiple
IaaS clouds at the same time. The foundation of the approach
is a high-level Cloud Abstraction Layer (CAL) providing
developers with a unified interface to support management
of the entire service life cycle from development, through
deployment to execution and operation over IaaS clouds.
Based on CAL, the process of service development and
deployment will be easier and simpler. More importantly, it
overcomes the problem of the centralized VM manager and
allows the interoperability between different clouds.

II. RELATED WORKS

Although some cloud standardization efforts and open
API abstractions have emerged, such as Open Virtualization
Format (OVF) [4]; Open Cloud Computing Interface (OCCI)
[5]; SimpleCloud API [6]; jCloud [7]; ApacheLibcloud [8];
DeltaCloud [9] and many others, but they have not yet
brought any solution for service development and
deployment issue in cloud environment.

Typically, OVF allows reuse of a standard VM image on
diverse clouds. Thereby, services can move from a cloud to
others along with the image. Besides OVF, another project is
OCCI that enables developers to manage resources from
different clouds via a single unified API. Unfortunately, both
standards still require many efforts from developers or users,
who have to carry out a lot of the complex steps (as
mentioned in Section 1) to develop and deploy their services
into the IaaS clouds. Reason is the lack of a suitable
programming model for the development and deployment. In
addition, the standardizations force cloud providers to accept
and support their products (e.g. standard image, API). Such
scenario would face a very large impact on the vendor
competitiveness, as it requires them to offer better quality
services at lower prices without locking customers to rely on
only their resources.

Instead of these de-facto standards, the open API
abstractions (e.g. SimpleCloud API, jCloud,
ApacheLibcloud, DeltaCloud and others) also have been
designed and implemented in order to manage resources
from clouds. The advantage of the API abstractions is
independent from cloud vendors. However, like OCCI, these
API also do not help developers to develop and deploy
cloud-based services more easily than the traditional way.
The developers still have to directly connect to the VMs,
install and configure everything to prepare their own
platforms. At the present, no API abstractions have provided
functionalities for these tasks.

III. GENERAL APPROACH

Currently, services in IaaS clouds are usually developed
and released in form of pre-defined images, which are very
cumbersome, difficult to modify, and generally non-
transferable between different clouds. For example:
marketplace of AWS appliances [10], VMware Virtual
Appliance [11], StratusLab [12] and so on. Though OVF can
solve in part of the move issue but it almost cannot be
applied to commercial clouds that have held the largest
market share of cloud computing due to the competition
reason.

Therefore, coming from the requirement of a solution
that allows developers to use diverse clouds at the same time
irrespective of the differences in cloud models (e.g. public,
private), middleware (e.g. image, hypervisor) and
incompatible APIs, this work proposes design and
development of a high-level layer based on abstraction
approach which would:

• Simplify and streamline the deployment and
deployment of cloud services, not dissimilar to the

way it is currently being handled in the cloud
environments via mobile images.

• Remove vendor lock-in of cloud providers by a
single unified interface.

For these purposes, the approach releases cloud
services as installation and configuration packages that
will be installed on VMs already deployed in cloud
resources and containing only the base OS. Then, developers
just choose a suitable OS provided by clouds and deploy the
configuration packages to create their own services.
Advantages of this service approach are:

• Most cloud infrastructures support images with base
OS, so the services are easily transferrable. For
instance, at the time of this writing, Ubuntu 12.04
LTS is the popular OS provides by most of providers
(both public and private clouds).

• The base OS images provided by the infrastructures
are usually kept up-to-date, so they are secure.

• VMs are always started correctly with cloud
middleware. In contrast to image delivery of the
existing approaches like OVF and the marketplaces
presented above, which must have the acceptance
and support from providers.

• Services can work on unknown infrastructures
without changing codes implemented before.

• The approach allows taking full advantages of many
existing applications (especially legacy ones) that
already have had install/setup tools or via package
managers of base OS (e.g. apt, rpm and git package
of Debian/Ubuntu Linux).

• Allowing automatic deployment of developed
services with near zero VM tuning.

One of the techniques supports perfectly for the
abstraction approach is object-oriented programming (OOP).
Relying on OOP, the approach offers services as modules or
objects. A strong configuration and control interface together
with a programming language for component control would
allow this. Nowadays, many appliances are already provided
in a package which specifies the configuration interface
(Google Android and Apple iOS appliances for example),
allowing developers to hide appliance details and thus
optimize them in the manner that developers want. At the
time, users use cloud services exclusively via interface
provided by developers.

Since services and their functions are defined in form of
OOP objects, they can be extended and customized in order
to create new services based on the existing codes. In this
way, developers can reuse service codes via the
inheritance mechanism without learning implementation
detail of the origin. The advantages of the code reuse are:

• Service developers do not have to use any
middleware functionality directly. Thus, the codes of
services are portable between different clouds.

• Developers just focus on service aspects, not the
clouds. In this way, the approach reduces efforts to
learn about cloud middleware.

• Allowing developers themselves to create PaaS and
SaaS based on IaaS.

Figure 1. Inheritance feature of CAL

IV. DESIGNING

A. CAL Design

As mentioned before, CAL is designed with number of
programming functions in order to manage and interact with
VMs that belong to different clouds. These functions are
divided into functionality groups:

• Setting Cloud: enables developers to set which
cloud will be used. This group has only
setCloud() function.

• Provisioning: consists of start() and stop()
function to create and terminate the VMs.

• Monitoring : getting actual information of the
machines (cloud provider, IP address, ID instance
and so on) by status() function.

• Execution: running commands on VMs by
execute() function.

• Transfer includes two functions: put_data() to
upload and get_data() to download data
to/from the VMs.

• VM Snaphost: creates/restores snapshot of VM into
an image. The group involves
create_snapshot() and
restore_snaphsot() function.

To interact with various clouds, for each of them, we
design a driver, which uses its specific API to manage VMs.
Note that, the drivers do not need to implement all API
functionalities that are provided by cloud vendors. Each
driver only uses necessary API actions to shape CAL
functions, including start() , stop() , status() ,
create_snapshot () and restore_snaphsot() .
The setCloud() function is call to set a driver (cloud) to
use.

Otherwise, Execution and Transfer do not use any APIs
because no APIs provide functionalities to carry out those
operations. Thus, CAL abstracts the connection and

realization process and hides implementation details by the
execute() , put_data() and get_data() functions.

Through abstract functions above, detailed interactions
between CAL and clouds are hidden. Therefore, developers
can manipulate multiple clouds at the same time under the
unified interface without caring about how each cloud works.

B. Inheritance Features of CAL

Developers can easily create cloud services by using
CAL. Fig.1 describes this. The developers just have to inherit
the existing functional abstractions of CAL for creating new
service functions, which can be grouped as follows:

• Initialization : developers just reuse the Setting
Cloud functionality of CAL to select cloud in order
to deploy their services. Then they create a VM on
the cloud by using functions of Provisioning. The
developers can add OS commands to install software
packages on newly created VM by Execution.
Otherwise, they also can upload initial data, their
application, configuration files into the VM by
Transfer.

• Backup/Restoration: comprises service functions to
perform two separate tasks:
- Creating/restoring snapshot for the service

together with VM. For this purpose, developers
inherit VM Snapshot functionalities.

- Creating/restoring only backup of user data,
developers reuse Execution and Transfer.

• Service Functionalities: developers can create
functions for their services by reusing and
combining the existing functional abstractions of
CAL. For examples, for database servers, they can
add a number of functions to import database, make
query, and so on. The database functions are
programmed based on Execution and Transfer.

One of the most important things is that during
development, developers do not need to use any specific-
middleware APIs or connect directly to VM as well. They

Execution

execute()

Transfer

put_data(),

get_data()

Provisioning

start(), stop()

Monitoring

status()

VM Snapshot

create_snaphsot(),

restore_snapshot()

Cloud Abstraction Layer - CAL

Initialization

init(), config(), start(), stop(),

….

setCloud(), start(),

execute(), stop(), …

Backup/Restoration

data_backup() , data_restore(),

create_snapshot(), …

execute(), put_data(), get_data(),

create_snapshot(),

restore_snapshot()

Software Layer 1

Service Functionalities

function_1(), function_2(), …

put_data(), get_data(), execute(), …

S
e

rv
ic

e

Setting Cloud

setCloud()

only inherit the functions provided by CAL. The developers
also can select simply the target cloud to deploy their service
without having to worry about incompatible cloud systems.
Meanwhile, their users (distinguish from the developer) will
only use of the service via Initialization, Backup/Restoration,
Service functionalities. The users would not require caring
about how and where the service is developed and deployed.

C. Software Layering

A software layer, which has been created by a developer,
also can be used and extended further by other developers in
the same way, i.e. a developer defines software layer 1 with
new functionalities on his or her user demands. In other
words, the layer 1 hides implementation details of CAL in its
functionalities. Similarly, other developer can define
functionalities for software layer 2 over the layer 1 by
inheriting the layer 1 functionalities. As the result, each layer
is practically a platform-as-a-service by itself, because users
can use the service via a clear interface provided by
developers.

Since higher software layers do not use any APIs
provided by the cloud middleware, if CAL correctly operates
on a cloud infrastructures, any services using CAL can
operate correctly on the cloud infrastructures, too. The
generalized problem of the interoperability of cloud
applications, therefore, can be reduced into solving the
problem of the interoperability of selected software layers of
CAL in our development framework. Developers can easily
move applications/services (software layers) without
depending on clouds: using the initialization functionality of
services, developers can unite simply a software layer with
others. Thus, our approach enables perfectly interoperability
of cloud-based services among different clouds.

V. CASE STUDIES

A. Experimental Setup

Our current implementation of CAL prototype bases on
the installations of three middleware: OpenStack [13] Essex
release, Eucalyptus 2.0.3 [14] (both are compatible with
Amazon EC2 API [15]) and OpenNebula 3.6 release [16]
(using OCCI 0.8 API specification). The middleware are
configured separately. Each of them consists of a controller
node, a management network (switch) and two compute
nodes. For controller nodes, each server blade is equipped
processor Xeon with 16 cores (2.93 GHz), 24GB of RAM
and 1TB hard drive. Meanwhile, for compute nodes, each
server blade is equipped processor Xeon with 24 cores (2.93
GHz), 48GB of RAM and 2TB hard drive. Linux is installed
for all servers as OS. KVM hypervisor is used for all three
systems. An Ubuntu 12.04 images are created and deployed
on the clouds. While OpenStack, Eucalyptus are configured
with Glance [17] and Walrus [18] respectively as internal
image storage services, OpenNebula uses non-shared file
systems [19] with transferring image via SSH for test
purpose.

By default, the cloud middleware provide different VM
types that are choices of physical configuration (CPU, RAM,
disk space). As its design, for convenient use, CAL abstracts

them into the following families: small, medium and
large. In which, the small type is set to default instance
with minimum configuration for testing. The medium and
large types otherwise provide high capacity and high
performance as well.

B. Development and Deployment of Cloud-based Services

As Python language [20], the abstraction layer is
represented as a class (CAL) which provides the basic
functions of VM. For each cloud infrastructure, we
respectively define separate classes: Eucalyptus ,
OpenNebula and Openstack , which are the drivers of
these clouds. Each the class uses the middleware-specific
API and utility mechanisms (execution, transfer
functionality) for the implementation. Structurally, the
functions of the CAL class are derived from the separate
classes. If we need to extend our implementation for a new
cloud infrastructure, the only thing we have to do is to create
the new derived class (driver) for its specific middleware
functions.

The case study carried out process of development and
deployment of a concrete service using CAL. Inspired by the
fact that most users need a cloud-based hosting for their
applications, a webhosting was built. Purposes of the service
are:

• Providing a platform for development and
deployment of web applications (e.g. websites or
WordPress [21] blog).

• The platform can be deployed into well-known
clouds of CAL without any changes in its code.

• Limiting interaction with VMs for the service user.
The service is developed based on Apache web server

(LAMP). It is an open source platform that uses Linux as
OS, Apache as web server, MySQL as the relational database
management systems and PHP as the OOP language. The
service class is programmed as follows:

class webhosting(CAL):

 def setCloud(self, cloud):
 CAL.setCloud(self, cloud)

 def config(mysql_password):
 …

 def start(self, image, VM_type)
 CAL.start(self, image, VM_type)
 CAL.execute(self, 'install_LAMP_command')

The backup and restoration functionality also are written
shortly inside the webhosting class:

 def create_snapshot(self):
 CAL.create_snapshot(self)

 def restore_snapshot (self):
 CAL.restore_snapshot(self)

 def data_backup(self):
 CAL.get_data(self, ' ')

 def data_restore(self):
 CAL.put_data(self, ' ')

Besides fundamental functions such as setCloud() ,
config() , start() , stop() , create_snapshot()
and restore_snapshot() , the webhosting provides
specific function for web application developers, including:

• data_backup() and data_restore() backs
up/restores only user data (e.g. web pages) on the
server to local.

• upload() uploads files or web packages into the
hosting server. The function will return URL of the
websites.

• run() runs web configuration commands on the
server (e.g. changing directory name of the web
package, copying files)

• mysql_command() runs MySQL statements (e.g.
creating database, username, password or setting
access privilege for a database).

 def upload(self, dir_package):
 CAL.put_data(self, dir_package)
 CAL.execute(self, ' ')

 def run(self, user_command):
 CAL.execute(self, user_command)

 def mysql_command(self, MYSQL_statement):
 CAL.execute(self, MySQL_statement)

After development, the service can be deployed simply
by running commands:

service = webhosting()
service.setCloud('cloud_name')
service.config('mypass')
service.start()

At the time, users can use the hosting service through its
existing functions. There are two types of web applications:

• Flat sites are simple web pages. They are called flat
because they do not use any database on the server.

• Dynamic sites are built based on database. Examples
of this type are e-commerce websites, forums
(content management system) and blogs.

The webhosting service supports both types. For flat
sites, web designers just use upload() function to upload
their site packages into the server. Then, the webhosting
service will return URL for these sites. For example, a flat
site with name “mysite” is hosted on the server by:

service.upload('mysite')

For dynamic sites, developers can program new software
layers by inheriting webhosting service functions. Each the
new software layer serves a specific purpose of a dynamic
site. In order to demonstrate expansibility of the webhosting
service as well as CAL, we continue to develop a blog
WordPress service dealing with the layer of webhosting.
This service is inherited all existing functions and deployed
on the server provided by the webhosting. The following
presents some codes of it:

class wordpress(webhosting):

 def config(self, database_pass):
 webhosting.mysql_command(self, ' ')

 def start(self):
 webhosting.run(self, 'install wordpress')
 …

 def stop(self):
 …

Blog users only have to enter password for their database
on the server when creating their blogs. A blog is created
simply by commands:

blog = wordpress()
blog.config('mysecret')
blog.start()

In the studies, hosting service is the software layer 1
(equivalent to PaaS – see Fig. 1). According to the user
requirements, we can go further with providing many other
hosting functions such as FTP transfer or phpMyAdmin [22]
interface for MySQL databases. Meanwhile the WordPress
service acts as software layer 2 (equivalent to Software as a
Service - SaaS) over the layer 1. We also can to deploy other
SaaS services (wiki pages, forum for instance) based on the
webhosting. The most important thing is the codes of both
software layers can be deployed on any cloud infrastructures
by changing the name of target cloud in the setCloud()
function. Therefore, CAL enables the ability to deliver
services among different clouds without any obstacle.
Furthermore, users of the services do not need to worry
about the VM management because the process of service
deployment is automatic.

C. Experimental Results

To evaluate operation of webhosting service, WordPress
service and CAL, the process of service deployment is tested
on three existing cloud installations with various VM types.
The experimental measurement is repeated 20 times for each
of the VM type of each cloud. The average values of
deployment time that are summarized in Table I and Table
II. The duration time is calculated in second.

TABLE I. WEBHOSTING DEPLOYMENT TIME

 VM Type Duration

OpenNebula
small 655.718

medium 666.898
large 674.093

Eucalyptus
small 365.66

medium 373.248
large 388.702

OpenStack
small 215.7

medium 225.132
large 236.491

TABLE II. WORDPRESS DEPLOYMENT TIME

 VM Type Duration

OpenNebula
small 113.014

medium 112.128
large 110.768

Eucalyptus
small 84.66

medium 79.66
large 78.652

OpenStack
small 48.495

medium 46.215
large 45.985

Figure 2. Deployment time of webhosting service

Figure 3. Deployment time of WordPress service

The results also are illustrated by diagrams in Fig. 2 and
Fig. 3. There are some observations that can be made from
inspecting the results. First, CAL operates well with the
well-known clouds. Second, the webhosting and WordPress
service can be deployed on all these clouds. Third, in the
case of comparison between clouds, deploying the
webhosting service on OpenStack is faster than on
Eucalyptus (approx. 41%) and OpenNebula (approx. 67%).
The reason is that OpenNebula installation uses non shared
file system and image is transferred between nodes via SSH.
Additionally, while OpenStack is kept up-to-date with
consecutive versions, Eucalyptus only supports open source
with an old version. This is importance factor that can
explain why OpenStack achieves higher performance than
Eucalyptus cloud. Four, in the same cloud, since attributes of
VM types are different. Therefore, deployment of the
webhosting service into medium or large type is faster than
small type. However, using medium and large VM, the
process of service deployment is still slower because the VM
startup needs more time. Finally, deploying WordPress on
webhosting server of OpenStack requires less time than
Eucalyptus (approx. 43%) and OpenNebula (approx. 57%).
Otherwise, for small web applications like WordPress, the
disparity in deployment time is quite small when carrying
out the test with diverse VM types on the same middleware.

Although the process of deploying services takes a long
time. However, since the process is realized automatically,
the time for deployment is always less than manipulation of
the traditional approaches.

VI. CONCLUSION

In this paper, we presented the novel approach for
developing interoperable cloud-based services that are
treated as objects with strongly defined interfaces. The
foundation of the approach is a high-level abstraction layer
that provides basic functionalities of VM for each known
cloud middleware. Based on the layer, process of service
development and deployment is easier: developers will build
their services by inheriting the existing functionalities of the
abstraction layer without using any middleware APIs as well
as directly connecting to the VMs. Thus, developed services
are independent of infrastructures and they can be deployed
on the diverse clouds. In this way, our approach enables the

service interoperability, which is one of the invaluable
features for cloud computing.

ACKNOWLEDGMENT

This work is supported by projects CLAN No. APVV
0809-11, VEGA No. 2/0054/12, CRISIS ITMS:
26240220060, SMART II ITMS: 26240120029.

REFERENCES
[1] Ramakrishnan, L., Jackson, K. R., Canon, S., Cholia, S., Shalf, J.:

Defining Future Platform Requirements for e-Science Clouds. ACM
Proceedings of the 1st ACM symposium on Cloud computing. 2009.
p. 101-106

[2] Goscinski, A., Brock, M.: Toward dynamic and attribute based
publication, discovery and selection for cloud computing. Elsevier,
Zv. Future Generation Computer Systems. 2010. p. 947-970

[3] Curry, R.; Kiddle, C. ; Mirtchovski, A. ; Simmonds, R. ; Tingxi Tan.:
A Cloud-based Interactive Application Service. IEEE proceedings of
the Fifth International Conference on e-Science. 2009. P. 102-109

[4] Open Virtualization Format.
http://dmtf.org/sites/default/files/OVF%20Overview%20Document_2
010.pdf.

[5] Metsch, T., Edmonds, A., Nyrén, R.. 2011. Open Cloud Computing
Interface – Core.. http://forge.gridforum.org/sf/go/doc16161

[6] SimpleCloud API. http://simplecloud.org

[7] jCloud. http://jclouds.org

[8] ApacheLibcloud. http://libcloud.apache.org

[9] DeltaCloud. http://deltacloud.apache.org

[10] AWS marketplace. https://aws.amazon.com/marketplace

[11] Ishtiaq Ali and Natarajan Meghanathan. Virtual machines and
networks – installation, performance, study, advantages and
virtualization options. International Journal of Network Security & Its
Applications (IJNSA), Vol.3, No.1, 2011.

[12] StratusLab marketplace.
http://stratuslab.eu/doku.php/install:marketplace

[13] OpenStack. http://openstack.org

[14] Nurmi, D. Wolski, R.; Grzegorczyk, C.; Obertelli, G.; Soman,
S.; Youseff, L.; Zagorodnov, D.: The Eucalyptus Open-Source
Cloud-Computing System. IEEE proceedings of the ninth IEEE/ACM
International Symposium on Cluster Computing and the Grid. 2011.
p. 124-131.

[15] Amazon EC2 API.
http://docs.amazonwebservices.com/AWSEC2/latest/APIReference

[16] Miloji čić, Dejan, Llorente, Ignacio M. ; Montero, Ruben S.:
OpenNebula: A Cloud management Tool. Journal IEEE Internet
Computing. 2011. vol 15. issue 2. p. 11-14

0

100

200

300

400

500

600

700

sm
a

ll

m
e

d
iu

m

la
rg

e

sm
a

ll

m
e

d
iu

m

la
rg

e

sm
a

ll

m
e

d
iu

m

la
rg

e

OpenStack Eucalyptus OpenNebula

D
u

ra
ti

o
n

 (
s)

0

20

40

60

80

100

120

sm
a

ll

m
e

d
iu

m

la
rg

e

sm
a

ll

m
e

d
iu

m

la
rg

e

sm
a

ll

m
e

d
iu

m

la
rg

e

OpenStack Eucalyptus OpenNebula

D
u

ra
ti

o
n

 (
s)

[17] Gregor von Laszewski, Javier Diaz, Fugang Wang, Geoffrey C. Fox.
Comparison of Multiple Cloud Frameworks. Proceeding of IEEE
Cloud 2012. P. 734 – 741.

[18] Lonea, A.M. A survey of management interfaces for eucalyptus
cloud. In proceeding of 7th IEEE International Symposium
on Applied Computational Intelligence and Informatics (SACI),
2012. P. 261 – 266.

[19] Xiaolong Wen; Genqiang Gu; Qingchun Li; Yun Gao; Xuejie Zhang.
Comparison of open-source cloud management platforms: OpenStack
and OpenNebula. Proceeding of IEEE 9th International Conference
on Fuzzy Systems and Knowledge Discovery. 2012. p. 2457-2461.

[20] Python programming language. http://python.org

[21] WordPress blog source. http://wordpress.org

[22] phpMyAdmin. http://phpmyadmin.net

