A Novel Approach for Developing Interoperable
Services in Cloud Environment

Binh Minh Nguyen, Viet Tran, Ladislav Hluchy

Department of Parallel and Distributed Computing
Institute of Informatics, Slovak Academy of Sciesice
Bratislava, Slovakia
{minh.ui, viet.ui, hluchy.ui}@savba.sk

Abstract— Cloud computing has seen a tremendous growth in
the last five years. Along with the growth, many dud models
have been marketed. They deliver hardware and softave as
virtualization enabled services to users. Althoughcloud
computing offers considerable advantages such as limited
resources, manageability and lower investment costaut there
are still barriers to exploit it. One of the barriers is the
difficulties, which users are being faced when del@ping and
deploying their own services into clouds. In this @per, we
present a novel approach for developing interoperdp services
that can be deployed in different cloud infrastructires at the
same time. The approach provides an instrument with
emphasis on abstraction, inheritance and code reusdsing the
approach, cloud-based services are developed easilyy
extending existing abstractions classes provided bythe
instrument or other developers. The interoperabiliy between
different clouds is solved via the basic abstractioclass of the
instrument and all services are inherited and benékd from
this advantage.

Keywords-cloud computing; service
asbtraction; inheritance; interoperability

development;

l. INTRODUCTION

existing or legacy applications, PaaS may requereriting
completely their codes using a certain dedicatexfqyin,
what is not feasible for developers and users aB. we
Furthermore, each platform can have different keperty
and API, what make moving the applications from a
platform to another practically impossible.

Meanwhile, laaS clouds provide resources (virtual
machines, storage) as services where developess fadv
access to the resources and manipulate directhyinktance,
using laas, they will log into virtual machines (¥Mand
execute some commands or modify some files in otoler
create their own development and deployment platfon
the machines.

Easily realize that, while PaaS binds developers into
existing platforms, building services on laaS will be their
choice to meet specific requirements. However, the laaS use
is perceived as difficult with them, requiring adca
computer skills for the installation and usage [2],and [3].

As mentioned aboveservice developers have to themselves
prepare VM(s) and platform(s). This process is similar to the
age of assembly languages, where the programmers ca
modify every byte of memory and CPU registers. Such
access is error-prone and potentially interfereth viaigh-

With the advance of cloud technologies, the trefid olevel automation and optimization.

developing and deploying services/applications loud

environment also has appeared. There are econaniek
as technological reasons why an application shdagd
developed and deployed on the cloud. On the ecansiahé,
cloud computing can provide significant cost sasidge to
the increased utilization resulting from the poglirof

resources (often virtualized). Otherwise, cloud pating

enables rapid delivery of IT services, which inces
business efficiency. On the operational side, meabijty,

performance, and scalability are the typical reasamy

service developers consider cloud computing. Howetés

trend is being faced two challenges:

e The Platform-as-a-Service (PaaS) type

Consequently, from the view of service developtitay
need to have a solution which enables to simpltg t
development and deployment of services on laaQIsloLhe
solution must allow developers to write, pack argiver
codes of the services for deployment on variousidgo
without any obstacle. The solution thus also presid
developers with a single unified interface to oeene the
incompatible API between the clouds.

In this paper, we present a novel approach forldpiregy
interoperable cloud services that can be deployethatiple
laaS clouds at the same time. The foundation ofipeoach
is a high-level Cloud Abstraction Layer (CAL) prding

limitsdevelopers with a unified interface to support nggmaent

developers to concrete platforms and Applicationof the entire service life cycle from developmethisough

Programming Interfaces (APIs).

deployment to execution and operation over laa$iddo

« The Infrastructure as a Service (laaS) type pravideBased on CAL, the process of service developmedt an

too low-level service.

In principle, PaaS clouds offer environments fosthig
and APIs for implementing applications. The platierwill
manage the execution of these applications andge®ome
advanced features like automatic scaling. However,

deployment will be easier and simpler. More impattig it
overcomes the problem of the centralized VM manager
allows the interoperability between different cleud

Il. RELATED WORKS

Although some cloud standardization efforts andnope
API abstractions have emerged, such as Open Mzatian
Format (OVF) [4]; Open Cloud Computing Interfaced@)
[5]; SimpleCloud API [6]; jCloud [7]; ApacheLibclau[8];
DeltaCloud [9] and many others, but they have net y
brought any solution for service development
deployment issue in cloud environment.

Typically, OVF allows reuse of a standard VM imame
diverse clouds. Thereby, services can move froroadcto
others along with the image. Besides OVF, anothgjept is
OCCI that enables developers to manage resources fr
different clouds via a single unified API. Unforaiely, both
standards still require many efforts from develspmrusers,
who have to carry out a lot of the complex steps (a
mentioned in Section 1) to develop and deploy theirvices
into the laaS clouds. Reason is the lack of a Isleita
programming model for the development and deploynien
addition, the standardizations force cloud prosderaccept
and support their products (e.g. standard image). ARich
scenario would face a very large impact on the send
competitiveness, as it requires them to offer bejteality
services at lower prices without locking customtersely on
only their resources.

Instead of these de-facto standards, the open API

abstractions (e.q. SimpleCloud API, jCloud,
ApacheLibcloud, DeltaCloud and others) also havenbe
designed and implemented in order to manage reseurc
from clouds. The advantage of the API abstractitns
independent from cloud vendors. However, like OGlise
APl also do not help developers to develop and ayepl
cloud-based services more easily than the traditiovay.
The developers still have to directly connect te W#iMs,
install and configure everything to prepare theiwno
platforms. At the present, no API abstractions hanaided
functionalities for these tasks.

Ill. GENERAL APPROACH

Currently, services in laaS clouds are usually bgpesl
and released in form of pre-defined images, whiehveery
cumbersome, difficult to modify, and generally non-
transferable between different clouds. For
marketplace of AWS appliances [10], VMware Virtual
Appliance [11], StratusLab [12] and so on. ThoughFRZan
solve in part of the move issue but it almost carp®
applied to commercial clouds that have held theedstr
market share of cloud computing due to the comipastit
reason.

Therefore, coming from the requirement of a sohtio
that allows developers to use diverse clouds asange time
irrespective of the differences in cloud modelg.(@ublic,
private), middleware (e.g. image, hypervisor)
incompatible APIs,
development of a high-level layer based on abstract
approach which would:

Simplify and streamline the deployment and

deployment of cloud services, not dissimilar to the

andV

and
this work proposes design and

way it is currently being handled in the cloud
environments via mobile images.
Remove vendor lock-in of cloud providers by a
single unified interface.

For these purposesthe approach releases cloud
services as installation and configuration packagethat
il be installed on VMs already deployed in cloud
resources and containing only the base OS. Thee|ajeers

just choose a suitable OS provided by clouds aptbgehe

configuration packages to create their own services
Advantages of this service approach are:
Most cloud infrastructures support images with base
OS, so the services are easily transferrable. For
instance, at the time of this writing, Ubuntu 12.04
LTS is the popular OS provides by most of providers
(both public and private clouds).
The base OS images provided by the infrastructures
are usually kept up-to-date, so they are secure.
VMs are always started correctly with cloud
middleware. In contrast to image delivery of the
existing approaches like OVF and the marketplaces
presented above, which must have the acceptance
and support from providers.
Services can work on unknown infrastructures
without changing codes implemented before.
The approach allows taking full advantages of many
existing applications (especially legacy ones) that
already have had install/setup tools or via package
managers of base OS (eapt, rpm andgit package
of Debian/Ubuntu Linux).
Allowing automatic deployment
services with near zero VM tuning.
One of the techniques supports perfectly for the
abstraction approach is object-oriented programr(@@P).
Relying on OOP, the approach offers services asufascr
objects. A strong configuration and control interface tibgpe
with a programming language for component controlily
allow this. Nowadays, many appliances are alreadyiged
in a package which specifies the configuration riate
(Google Android and Apple iOS appliances for exappl
allowing developers to hide appliance details ahdst

of developed

exampleoptimize them in the manner that developers wanmtth&

time, users use cloud services exclusively via interface
provided by developers

Since services and their functions are definedimfof
OOP objects, they can be extended and customizecdar
to create new services based on the existing cddetis
way, developers can reuse service codes via the
inheritance mechanism without learning implementatbn
detail of the origin. The advantages of the code reuse are:
Service developers do not have to use any
middleware functionality directly. Thus, the codds
services are portable between different clouds.
Developers just focus on service aspects, not the
clouds. In this way, the approach reduces effarts t
learn about cloud middleware.
Allowing developers themselves to create PaaS and
SaasS based on laaS.

Software Layer 1

Initialization Backup/Restoration
init(), config(), start(), stop(), data_backup() , data_restore(),
create_snapshot(), ...

Service Functionalities
function_1(), function_2(), ...

execute(), put_data(), get_data(),
create_snapshot(), put_data(), get_data(), execute(), ...
restore_snapshot()

setCloud(), start(),
execute(), stop(), ...

Service

. o e VM Snapshot . Transfer
Setting Cloud Provisioning Monitoring Execution
setCloud() start(), stop() status() create_snaphsot(), —— put_data(),
) Stop! restore_snapshot() get_data()

Cloud Abstraction Layer - CAL

Figure 1. Inheritance feature of CAL

realization process and hides implementation detajl the
execute() ,put_data() andget data() functions.
A. CAL Design Through abstract functions above, detailed intéyast
As mentioned before, CAL is designed with number ofoetween CAL and clouds are hidden. Therefore, dpees
programming functions in order to manage and interdth ~ €an manipulate multiple clouds at the same timeeure
VMs that belong to different clouds. These functicare Unified interface without caring about how eactudaevorks.
divided into functionality groups: B
e Setting Cloud enables developers to set which
cloud will be wused. This group has only CA
setCloud() function.
¢ Provisioning: consists ofstart() and stop()
function to create and terminate the VMs.
* Monitoring: getting actual information of the
machines (cloud provider, IP address, ID instance

IV. DESIGNING

. Inheritance Features of CAL

Developers can easily create cloud services bygusin
L. Fig.1 describes this. The developers just htavaherit
the existing functional abstractions of CAL for &tiag new
service functions, which can be grouped as follows:
Initialization : developers just reuse the Setting
Cloud functionality of CAL to select cloud in order
to deploy their services. Then they create a VM on

and so on) bgtatus() function. the cloud by using functions of Provisioning. The
+ Execution running commands on VMs by developers can add OS commands to install software
execute() function. packages on newly created VM by Execution.
e Transfer includes two functiongput_data() to Otherwise, they also can upload initial data, their
upload and get_data() to download data application, configuration files into the VM by
to/from the VMs. Transfer.
« VM Snaphost creates/restores snapshot of VM into ¢ Backup/Restoratiornt comprises service functions to
an image. The group involves perform two separate tasks:
create_snapshot() and - Creating/restoring snapshot for the service
restore_snaphsot() function. together with VM. For this purpose, developers
To interact with various clouds, for each of theme inherit VM Snapshot functionalities.
design a driver, which uses its specific API to agsVMs. - Creating/restoring only backup of user data,
Note that, the drivers do not need to implementAdl developers reuse Execution and Transfer.
functionalities that are provided by cloud vendoEach » Service Functionalities developers can create
driver only uses necessary APl actions to shape CAL functions for their services by reusing and
functions, including start() , stop() , status() combining the existing functional abstractions of
create_snapshot () and restore_snaphsot() . CAL. For examples, for database servers, they can
ThesetCloud() function is call to set a driver (cloud) to add a number of functions to import database, make
use. query, and so on. The database functions are
Otherwise, Execution and Transfer do not use anis AP programmed based on Execution and Transfer.
because no APIs provide functionalities to carry those One of the most important things is that during

operations. Thus, CAL abstracts the connection andevelopment, developers do not need to use anyifispec
middleware APIs or connect directly to VM as wélhey

only inherit the functions provided by CAL. The dépers
also can select simply the target cloud to depheyrtservice
without having to worry about incompatible cloudstms.
Meanwhile, their users (distinguish from the depeld will

only use of the service via Initialization, Backiphtoration,
Service functionalities. The users would not regudaring
about how and where the service is developed apid k.

C. Software Layering

A software layer, which has been created by a deee)
also can be used and extended further by othelajmrs in
the same way, i.e. a developer defisaféware layer 1 with
new functionalities on his or her user demandsotimer
words, the layer 1 hides implementation detail€AL in its
functionalities. Similarly, other developer can idef
functionalities for software layer 2 over the layer 1 by
inheriting the layer 1 functionalities. As the ritsaach layer
is practically a platform-as-a-service by itseéchuse users
can use the service via a clear interface provitgd
developers.

Since higher software layers do not use any APIs

provided by the cloud middleware, if CAL correctigerates
on a cloud infrastructures, any services using Czen
operate correctly on the cloud infrastructures,. tdbe
generalized problem of the interoperability of aou
applications, therefore, can be reduced into sglvihe
problem of the interoperability of selected softevéayers of
CAL in our development framework. Developers casilga
move applications/services (software layers) withou
depending on clouds: using the initialization fuowcality of
services, developers can unite simply a softwayerlavith
others. Thus, our approach enables perfectly iptgeability
of cloud-based services among different clouds.

V.

A. Experimental Setup

Our current implementation of CAL prototype bases o
the installations of three middleware: OpenStad{ Hssex
release, Eucalyptus 2.0.3 [14] (both are compatikith

CASE STUDIES

Amazon EC2 API [15]) and OpenNebula 3.6 releasg [16

(using OCCI 0.8 API specification). The middlewaaee
configured separately. Each of them consists afraraller

them into the following familiessmal | , nedi um and

| ar ge. In which, the small type is set to default ins&n
with minimum configuration for testing. The mediuamd
large types otherwise provide high capacity andhhig
performance as well.

B. Development and Deployment of Cloud-based Services

As Python language [20], the abstraction layer is
represented as a clas€AL) which provides the basic
functions of VM. For each cloud infrastructure, we
respectively define separate classeEucalyptus
OpenNebula and Openstack , which are the drivers of
these clouds. Each the class uses the middlewanifisp
APl and utility mechanisms (execution, transfer
functionality) for the implementation. Structurallythe
functions of theCAL class are derived from the separate
classes. If we need to extend our implementatiorafaoew
cloud infrastructure, the only thing we have toislto create
the new derived class (driver) for its specific di@vare
functions.

The case study carried out process of developmmht a
deployment of a concrete service using CAL. Ingplrg the
fact that most users need a cloud-based hostinghfar
applications, a webhosting was built. Purposefefservice
are:

Providing a platform for development and
deployment of web applications (e.g. websites or
WordPress [21] blog).

The platform can be deployed into well-known
clouds of CAL without any changes in its code.
Limiting interaction with VMs for the service user.

The service is developed based on Apache web server
(LAMP). It is an open source platform that usesuixiras
OS, Apache as web server, MySQL as the relaticataloése
management systems and PHP as the OOP language. The
service class is programmed as follows:

class webhosting(CAL):

def setCloud(self, cloud):
CAL.setCloud(self, cloud)

def config(mysql_password):

node, a management network (switch) and two compute

nodes. For controller nodes, each server bladeusppeed
processor Xeon with 16 cores (2.93 GHz), 24GB ofMRA
and 1TB hard drive. Meanwhile, for compute nodesshe
server blade is equipped processor Xeon with 2dsc(i.93
GHz), 48GB of RAM and 2TB hard drive. Linux is iabéd
for all servers as OS. KVM hypervisor is used fihrtleree
systems. An Ubuntu 12.04 images are created aridyeep
on the clouds. While OpenStack, Eucalyptus areigoregd
with Glance [17] and Walrus [18] respectively ateinal
image storage services, OpenNebula uses non-sliigged
systems [19] with transferring image via SSH fostte
purpose.
By default, the cloud middleware provide differar

types that are choices of physical configuratioRUCRAM,
disk space). As its design, for convenient use, @Astracts

def start(self, image, VM_type)
CAL.start(self, image, VM_type)
CAL.execute(self, 'install_LAMP_command')

The backup and restoration functionality also ariten
shortly inside thevebhosting class:

def create_snapshot(self):
CAL.create_snapshot(self)

def restore_snapshot (self):
CAL.restore_snapshot(self)

def data_backup(self):
CAL.get_data(self, ' ")

def data_restore(self):
CAL.put_data(self, ' ")

Besides fundamental functions such sasCloud()
config() ,start() ,stop() , create_snapshot()
and restore_snapshot() , the webhosting provides
specific function for web application developersluding:

e data_backup() and data_restore() backs

def start(self):
webhosting.run(self, 'install wordpress')

def stop(self):

up/restores only user data (e.g. web pages) on the Blog users only have to enter password for thetialstzse

server to local.

on the server when creating their blogs. A blogrisated

e upload() uploads files or web packages into the simply by commands:
hosting server. The function will return URL of the blog = wordpress()
websites. blog.config('mysecret’)

e run() runs web configuration commands on theblog.start()

server (e.g. changing directory name of the web

package, copying files)

In the studies, hosting service is the softwareeray
(equivalent to PaaS — see Fig. 1). According to uker

* mysgl_command() runs MySQL statements (€.9. yequirements, we can go further with providing maniyer
creating database, username, password or settifighsiing functions such as FTP transfer or phpMyAd[2P]

access privilege for a database).

def upload(self, dir_package):
CAL.put_data(self, dir_package)
CAL.execute(self, ' ")

def run(self, user_command):
CAL.execute(self, user_command)

def mysqgl_command(self, MYSQL_statement):
CAL.execute(self, MySQL_statement)

After development, the service can be deployed lgimp
by running commands:

service = webhosting()
service.setCloud(‘cloud_name")
service.config('mypass’)
service.start()

At the time, users can use the hosting servicaugirats
existing functions. There are two types of web &agibns:
« Flat sites are simple web pages. They are céliid

interface for MySQL databases. Meanwhile the WoedBr
service acts as software layer 2 (equivalent taw&woé as a
Service - SaaS) over the layer 1. We also canpogether
SaaS services (wiki pages, forum for instance) basethe
webhosting. The most important thing is the codebath
software layers can be deployed on any cloud itrfressires
by changing the name of target cloud in #e¢Cloud()
function. Therefore, CAL enables the ability to idet
services among different clouds without any obstacl
Furthermore, users of the services do not need doyw
about the VM management because the process dteerv
deployment is automatic.

C. Experimental Results

To evaluate operation of webhosting service, Wad®r
service and CAL, the process of service deploynstasted
on three existing cloud installations with variodis! types.
The experimental measurement is repeated 20 tionesath
of the VM type of each cloud. The average values of

because they do not use any database on the servefgeployment time that are summarized in Table | Badle
» Dynamic sites are built based on database. Examplgg The duration time is calculated in second.

of this type are e-commerce websites, forums

(content management system) and blogs.

The webhosting service supports both types. Fdr fla

sites, web designers just usgload() function to upload
their site packages into the server. Then, the wsbig
service will return URL for these sites. For examm flat
site with name fhysite’ is hosted on the server by:

service.upload('mysite")

For dynamic sites, developers can program new softw
layers by inheriting webhosting service functioisich the
new software layer serves a specific purpose ofreamic
site. In order to demonstrate expansibility of webhosting
service as well as CAL, we continue to develop agbl
WordPress service dealing with the layer of welhgst
This service is inherited all existing functionsdateployed
on the server provided by the webhosting. The ¥alg
presents some codes of it:

class wordpress(webhosting):

def config(self, database_pass):
webhosting.mysql_command(self, ')

TABLE I. WEBHOSTINGDEPLOYMENT TIME
VM Type Duration
small 655.718
OpenNebula medium 666.898
large 674.093
small 365.66
Eucalyptus medium 373.248
large 388.70.
small 215.7
OpenStack medium 225.132
large 236.491
TABLE II. WORDPRESSDEPLOYMENT TIME
VM Type Duration
small 113.014
OpenNebula medium 112.128
large 110.76¢
small 84.66
Eucalyptus medium 79.66
large 78.652
small 48.495
OpenStack medium 46.215
large 45.98¢

700 _ _ - 120 (7 -
600 - 100 B | -
500) = B | B .
80 =
400 —)
I - SN | SR SN SN S - 60 7
- 300 i — -
5 - R B S S e e e
s20 v B F 0 o0 0 00 B ol B
3 a
wo 11— i 20
0 Ea— e 0 — — — d— — — B— — — .
= £ [= £ [= £ [= £ [= £ [= £ o
Q Q o Q o o
£ £ £ E £ £
OpenStack Eucalyptus OpenNebula OpenStack ‘ Eucalyptus ‘ OpenNebula
Figure 2. Deployment time of webhosting service Figure 3. Deployment time of WordPress service

The results also are illustrated by diagrams in Bignd service interoperability, which is one of the inwable
Fig. 3. There are some observations that can beath features for cloud computing.
inspecting the results. First, CAL operates welthwihe
well-known clouds. Second, the webhosting and Wiast ACKNOWLEDGMENT

service can be deployed on all these clouds. Thirdhe This work is supported by projects CLAN No. APVV
case of comparison between clouds, deploying thegog9-11, VEGA No. 2/0054/12, CRISIS ITMS:

webhosting service on OpenStack is faster than 0p6240220060, SMART Il ITMS: 26240120029.
Eucalyptus (approx. 41%) and OpenNebula (appro%)67

The reason is that OpenNebula installation usesshaned REFERENCES

file system and image is transferred between ne@eSSH. (1] Ramakrishnan, L., Jackson, K. R., Canon, S., Chélia Shalf, J.:
Additionally, while OpenStack is kept up-to-date ttwi Defining Future Platform Requirements for e-Scie@euds. ACM
consecutive versions, Eucalyptus 0n|y supports uemce Proceedings of the 1st ACM symposium on Cloud cdmgu2009.
with an old version. This is importance factor then p. 101-106

explain why OpenStack achieves higher performahes t [Goscinski, A, Brock, M. Toward dynamic and amtb based
Eucalyptus cloud. Four. in the same cloud. sintibates of publication, discovery and selection for cloud comtipy. Elsevier,

VM t diff t Th f debl t of th Zv. Future Generation Computer Systems. 2010. p-994
ypes are ditierent. erefore, deployment o [3] Curry, R.; Kiddle, C. ; Mirtchovski, A. ; SimmondR, ; Tingxi Tan.:

webhosting service into medium or large type igefathan A Cloud-based Interactive Application Service. IER®ceedings of
small type. However, using medium and large VM, the the Fifth International Conference on e-Scienc@®®. 102-109
process of service deployment is still slower beeahe VM [4] oOpen Virtualization Format.
startup needs more time. Finally, deploying WordBren http:/dmtf.org/sites/default/files/OVF%200vervie@@Document_2
webhosting server of OpenStack requires less tiham t 010.pdf.

Eucalyptus (approx. 43%) and OpenNebula (appro%)57 [5]1 Metsch, T., Edmonds, A, Nyrén, R.. 2011. Open @l@omputing
Otherwise, for small web applications like WordRrethe Interface — Core.. http://forge.gridforum.org/sfidroc 16161
disparity in deployment time is quite small whenrgimg [6] SimpleCloud API. http://simplecloud.org

out the test with diverse VM types on the same teiddre. ~ [7] iCloud. http://iclouds.org
Although the process of deploying services takémng [8] ApacheLibcloud. http://libcloud.apache.org

time. However, since the process is realized auically, [9] DeltaCloud. http:/deltacloud.apache.org

the time for deployment is always less than maaitporh of [10] AWS marketplace. https://aws.amazon.com/marketplace

the traditional approaches. [11] Ishtiag Ali and Natarajan Meghanathan. Virtual niaeb and
networks — installation, performance, study, adzges and

VI. CONCLUSION virtualization options. International Journal oftiWerk Security & Its

Applications (IINSA), Vol.3, No.1, 2011.

In this paper, we presented the novel approach fo[r12] StratusLab marketplace.
developing interoperable cloud-based services ta http://stratuslab.eu/doku.php/install:marketplace
treated as objects with strongly defined interfacéie [13] openstack. http://openstack.org
foundation of the approach is a high-level abswactayer (14 nurmi, D. wolski, R.; Grzegorczyk, C.; Obertelli, .GSoman,

that provides basic functionalities of VM for eakhown S.; Youseff, L.; Zagorodnov, D.: The Eucalyptus @4S®ource
cloud middleware. Based on the layer, process oficee Cloud-Computing System. IEEE proceedings of théhniBEE/ACM
development and deployment is easier: developatdwid International Symposium on Cluster Computing arel @rid. 2011.
their services by inheriting the existing functitities of the p. 124-131.

[15] Amazon EC2 API.

abstraction layer without using any middleware A&3swell
as directly connecting to the VMs. Thus, developedices [16] Miloji¢i¢, Dejan, Llorente, Ignacio M.; Montero, Ruben S.:

are independent of infraStru_Ctures and they cadepoyed OpenNebula: A Cloud management Tool. Journal IEBErhet
on the diverse clouds. In this way, our approacibkss the Computing. 2011. vol 15. issue 2. p. 11-14

http://docs.amazonwebservices.com/AWSEC2/latesRafdrence

[17]

(18]

(19]

(20]
[21]
(22]

Gregor von Laszewski, Javier Diaz, Fugang Wang,figaoC. Fox.
Comparison of Multiple Cloud FrameworksProceeding of IEEE
Cloud 2012. P734 — 741.

Lonea, A.M. A survey of management interfaces focadyptus
cloud. In proceeding of 7th IEEE International $ysium
on Applied Computational Intelligence and Informati¢SACI),
2012. P. 261 — 266.

Xiaolong Wen; Gengiang Gu; Qingchun Li; Yun Gaoefe Zhang.
Comparison of open-source cloud management plasfo@penStack
andOpenNebula. Proceeding of IEEE 9th Internationahf€rence
on Fuzzy Systems and Knowledge Discovery. 2012457-2461.
Python programming language. http:/python.org

WordPress blog source. http://wordpress.org

phpMyAdmin. http://phpmyadmin.net

