
Lograptor Documentation
Release 1.2

Davide Brunato

Dec 13, 2017

CONTENTS

1 Installation 3

2 The lograptor command 5

3 Lograptor configuration 11

4 Configure lograptor’s applications 17

5 Lograptor usage examples 23

Index 25

i

ii

Lograptor Documentation, Release 1.2

Lograptor is a GREP-like tool which provides a command-line interface for processing system logs.

Regular expression searches can be performed together with filtering rules and scope delimitation options. Each
search run can be sent to an output channel (stdout, e-mail, file) and can produces a customizable report.

The program can parse logs written in RFC 3164 and RFC 5424 formats. Lograptor requires Python >= 2.7, and
is provided with a base configuration for a set of well known applications. You can easily add new applications or
new rules to match other unparsed logs.

The project uses parts of Epylog under LGPL terms with author’s permission.

CONTENTS 1

Lograptor Documentation, Release 1.2

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Installing from package

Lograptor is packaged with Python’s wheel format on PyPI (RPM/DEB packages formats are not maintained
anymore) so you can install it using pip. If your have root access you can do a system wide installation:

sudo pip install lograptor

In this case the sources are installed under Python’s packages directory (eg. /usr/lib/python3.6/site-packages/) and
the data files (man, docs and configuration files) are installed under standard POSIX paths (/usr/share and /etc).

For an installation at user level run:

pip install --user lograptor

In this case the files are written into ~/.local/ directory.

You can also install the package into a virtual environment (using virtualenv or pyvenv). In this case the configu-
ration file have to be referenced explicitly, using –conf option, or the configuration files have to be copied to one
of the program’s default locations, that are in order:

./lograptor.conf
~/.config/lograptor/lograptor.conf
~/.local/etc/lograptor/lograptor.conf
/etc/lograptor/lograptor.conf
<package source location>/config/lograptor.conf

1.2 Installing from source

For installing from the source you also need Python’s setuptools, that is generically available on almost all Linux
distributions or however is packaged on PyPI.

With setuptools installed clone the git repository, choosing one of those commands:

git clone https://github.com/brunato/lograptor
git clone git://github.com/brunato/lograptor.git

or download the zip archive from the site and extract the content to a folder. Then go into the lograptor’s source
base directory and type:

python setup.py install

To install also the configuration and documentation files run:

python setup.py install_data

3

https://github.com/pypa/setuptools

Lograptor Documentation, Release 1.2

4 Chapter 1. Installation

CHAPTER

TWO

THE LOGRAPTOR COMMAND

2.1 SYNOPSIS

lograptor [options] PATTERN [FILE ...]
lograptor [options] [-e PATTERN | -f PATTERNS_FILE] [FILE ...]

2.2 DESCRIPTION

lograptor is a search tool for system logs saved with legacy BSD syslog format (RFC 3164) or IETF syslog format
(RFC 5424).

It’s developed as a compact and configurable GREP-like tool, usable for raw or refined searches and to create
customizable reports on system logs. The application mixes regex pattern matching search with scope delimiters
and a configurable set of filters. You can configure additional application pattern rules using the classical regexp
syntax. lograptor can also produce and publish reports in various formats. Reporting can be automated using cron.

For lograptor’s configuration see lograptor-conf(5).

For more information on adding and configuring applications see lograptor-apps(5).

2.3 OPTIONS

2.3.1 Positional Arguments

[FILE ...]
Input files. Each argument can be a file path or a glob pathname. A “-” stands for standard input. If no
arguments are given then processes all the files included within the scope of the selected applications.

2.3.2 General Options

--conf FILE
Use a specific configuration file. For default try to find and use a lograptor.conf file located in the current di-
rectory, in the ~/.config/lograptor/ directory, in the ~/.local/etc/lograptor/ directory or in the /etc/lograptor/
directory. If none of them exist then uses the default configuration provided within the package into the
subdirectory config/. If you call the program from the command line without other options and arguments a
summary of configuration settings is dumped to stdout.

-d [0-4]
Logging level (default is 2, use 4 for debug). A level of 0 suppress also error messages about nonexistent or
unreadable files.

-V, --version
Show program’s version number and exit.

5

Lograptor Documentation, Release 1.2

--help
Show an help page about program options and exit.

2.3.3 Scope Selection

-a APP[,APP...], --apps APP[,APP...]
Process the log lines related to an application. An app name is valid when a configuration file is defined.
For default all apps defined and enabled are processed.

--hosts HOSTNAME/IP[,HOSTNAME/IP...]
Process the log lines related to a comma separated list of hostnames and/or IP addresses. File path wildcards
can be used for hostnames.

-F FIELD=PATTERN[,FIELD=PATTERN...], --filter FIELD=PATTERN[,FIELD=PATTERN...]
Process the log lines that match all the conditions for pattern rule’s field values. The filters within a single
option are applied with logical conjunction (AND). Multiple -F options are used with logical disjunction
(OR).

--time HH:MM,HH:MM
Process the log lines related to a time range.

--date [YYYY]MMDD[,[YYYY]MMDD]
Restrict the search scope to a date or a date interval.

--last [hour|day|week|month|Nh|Nd|Nw|Nm]
Restrict the search scope to a previous time period.

2.3.4 Matcher Selection

-G, --ruled
Use patterns and application rules matching. This is the default.

-X, --unruled
Use patterns only. Application pattern rules are skipped. This option is incompatible with report and filtering
options.

-U, --unparsed
Match the patterns but select the lines that don’t match any application rule. This option is useful for finding
anomalies and for application’s rules debugging. This option is incompatible with filters (option -F).

2.3.5 Matching Control

-e PATTERN, --regexp=PATTERN
The search pattern. Use the option more times to specify multiple search patterns. Empty patterns are
skipped.

-f FILE, --file=FILE
Obtain patterns from FILE, one per line. Blank lines are skipped. If this option is used multiple times or is
combined with the -e (–regexp) option, search for all patterns given. An empty file contains zero patterns,
and therefore matches nothing.

-i, --ignore-case
Ignore case distinctions in matching, so that characters that differ only in case match each other.

-v, --invert-match
Invert the sense of matching, to select non-matching lines.

-w, --word-regexp
Force PATTERN to match only whole words. The matching substring must either be at the beginning of
the line, or preceded by a non-word constituent character. Similarly, it must be either at the end of the line

6 Chapter 2. The lograptor command

Lograptor Documentation, Release 1.2

or followed by a non-word constituent character. Word-constituent characters are letters, digits, and the
underscore.

2.3.6 General Output Control

--output CHANNEL[,CHANNEL...]
Send output to a comma separated list of channels. Channels have to be defined in the configuration file.
For default the output is sent to stdout channel.

-c, --count
Suppress normal output; instead print a count of matching lines for each input file. With the -v/–invert-match
option count non-matching lines.

--color [(auto|always|never)]
Use markers to highlight the matching strings. The colors are defined by the environment variable LO-
GRAPTOR_COLORS.

-L, --files-without-match
Print only names of FILEs containing no match.

-l, --files-with-match
Print only names of FILEs containing matches. The scanning will stop on the first match.

-m NUM, --max-count NUM
Stop reading a file after NUM matching lines. When -c/–count option is also used, lograptor does not output
a count greater than NUM. When using -t/–thread option the limit is related to the number of threads and
not to the number of lines matched.

-o, --only-matching
Print only the matched (non-empty) parts of a matching line, with each such part on a separate output line.

-q, --quiet
Quiet; do not write anything to standard output. Exit immediately with zero status if any match is found,
even if an error was detected.

-s, --no-messages
Suppress error messages about nonexistent or unreadable files. Equivalent to -d 0.

2.3.7 Output Data Control

--report [NAME]
Produce a report at the end of processing. If NAME is omitted that use the default report defined in the
lograptor configuration file.

--ip-lookup
Translate IP addresses to DNS names. Use a DNS local cache to improve the speed of the lookups and
reduce the network service’s load.

--uid-lookup
Translate UIDs to usernames. The configured local system authentication is used for lookups, so it must be
inherent to the UIDs that have to be resolved.

--anonymize
Anonymize defined application rule’s fields value. Translation tables are built in volatile memory for each
run. The anonymous tokens have the format FILTER_NNN. This option overrides –ip-lookup and –uid-
lookup options. WARNING: this is an experimental feature.

2.3.8 Output Line Prefix Control

-n, --line-number
Prefix each line of output with the line number within its input file.

2.3. OPTIONS 7

Lograptor Documentation, Release 1.2

-H, --with-filename
Print the file name for each match. This is the default when there is more than one file to search.

-h, --no-filename
Suppress the prefixing of file names on output. This is the default when there is only one file (or only
standard input) to search.

2.3.9 Context Line Control

-T, --thread
The context is the log thread of the application. The thread rules defined in application configuration files
are used.

-A NUM, --after-context NUM
Print NUM lines of trailing context after matching lines. Places a line containing a group separator (de-
scribed under –group-separator option) between contiguous groups of matches. With the -o or –only-
matching option, this has no effect and a warning is given.

-B NUM, --before-context NUM
Print NUM lines of leading context before matching lines. Places a line containing a group separator
(described under –group-separator) between contiguous groups of matches. With the -o or –only-matching
option, this has no effect and a warning is given.

-C NUM, --context NUM
Print NUM lines of output context. Places a line containing a group separator (described under –group-
separator) between contiguous groups of matches. With the -o or –only-matching option, this has no effect
and a warning is given.

--group-separator SEP
Use SEP as a group separator. By default SEP is double hyphen (–).

--no-group-separator
Use empty string as a group separator.

2.3.10 File and Directory Selection

-r, --recursive
Read all files under each directory, recursively, following symbolic links only if they are on the command
line.

-R, --dereference-recursive
Read all files under each directory, recursively. Follow all symbolic links, unlike -r.

--exclude GLOB
Skip any file with a name suffix that matches the pattern GLOB, using wildcard matching; a name suffix is
either the whole name, or any suffix starting after a / and before a +non-/. When searching recursively, skip
any subfile whose base name matches GLOB; the base name is the part after the last /. A pattern can use *,
?, and [...] as wildcards, and to quote a wildcard or backslash character literally.

--exclude-from FILE
Skip files whose base name matches any of the file-name globs read from FILE (using wildcard matching
as described under –exclude).

--exclude-dir DIR
Skip any command-line directory with a name suffix that matches the pattern GLOB. When searching
recursively, skip any subdirectory whose base name matches GLOB. Ignore any redundant trailing slashes
in GLOB.

--include GLOB
Search only files whose base name matches GLOB (using wildcard matching as described under –exclude).

8 Chapter 2. The lograptor command

Lograptor Documentation, Release 1.2

2.4 FILES

/etc/lograptor/lograptor.conf

/etc/lograptor/conf.d/*.conf

/usr/bin/lograptor

2.5 AUTHORS

Davide Brunato <brunato@sissa.it>

2.6 SEE ALSO

lograptor.conf(5), lograptor-apps(5), lograptor-examples(5),

2.4. FILES 9

mailto:brunato@sissa.it

Lograptor Documentation, Release 1.2

10 Chapter 2. The lograptor command

CHAPTER

THREE

LOGRAPTOR CONFIGURATION

3.1 CONFIGURATION FILE

lograptor.conf

lograptor looks at ./lograptor.conf, ~/.config/lograptor/lograptor.conf, ~/.local/etc/lograptor/lograptor.conf or
/etc/lograptor/lograptor.conf for a configuration file, using the first file found, but you can use an specific config-
uration file using the --conf command line option.

3.2 DESCRIPTION

A lograptor configuration file uses the Python’s ConfigParser format which provides a structure similar to Mi-
crosoft Windows INI files. A configuration file consists of sections and option entries. A section start with a
‘’[section]” header. Each section can have different name=value (name: value is also accepted) option
entries, with continuations in the style of RFC 822 (see section 3.1.1, “LONG HEADER FIELDS”). Note that
leading and trailing whitespaces are removed from values.

A configuration file for lograptor includes three fixed-named sections (main, patterns and fields) and at least one
section for the default report (default_report). Other sections can be added in order to configure additional output
channels or reports.

3.3 [main] SECTION

confdir
This is where lograptor should look for apps configuration information, most notably, conf.d directory. See
lograptor-apps(5) for more info on apps configuration.

logdir
Where the system logs are located. Useful to shortening log path specification in application’s configuration
files.

tmpdir
Where to create temporary directories and put temporary files. Note that log files can grow VERY big and
lograptor might need similar space for processing purposes. Make sure there is no danger of filling up that
partition. A good place is /var/tmp, since that is usually a separate partition dedicated entirely for logs.

from_address
Use a specific sender address when sending reports or notifications. Defaults to address
root@<HOST_FQDN>.

smtp_server
Use this smtp server when sending notifications. Can be either a hostname of an SMTP server to use, or the
location of a sendmail binary. If the value starts with a “/” is considered a path. E.g. valid entries:

11

https://docs.python.org/2/library/configparser.html
https://www.ietf.org/rfc/rfc0822.txt

Lograptor Documentation, Release 1.2

smtp_server = mail.example.com

smtp_server = /usr/sbin/sendmail -t

mapexp
The dimension of translation tables for –anonymize option. The number is the power of 10 that represents
the maximum extension of each table (default is 4).

3.4 [patterns] SECTION

This section includes these basic pattern rules:

DNSNAME
Regular expression pattern for DNS names matching.

IPV4_ADDRESS
Regular expression pattern for IPv4 addresses matching.

IPV6_ADDRESS
Regular expression pattern for IPv6 addresses matching.

EMAIL
Regular expression pattern for RFC824 e-mail address matching.

USERNAME
Regular expression pattern for username matching.

ID
Regular expression pattern for numerical ID matching.

ASCII
Regular expression pattern for ASCII characters matching.

These rules are essential for a correct program execution. You don’t need to add basic pattern rules to you
configuration files because are embedded in program defaults. You can redefine the basic patterns pattern rules
but you have to make sure the new patterns are conform with regexp syntax to avoid execution errors. Basic
pattern customization is useful to match non-ortodox log elements or if you want to simplify the patterns to
slightly speed-up the processing.

Declare additional pattern options if you want to define also additional fields in your configuration. All the pattern
options maybe declared using name with uppercase letters, for clarity and for avoiding collisions with field names.

Defined pattern can be used as template strings in the pattern rules of the applications.

3.5 [fields] SECTION

This section contains the fields that can be included in lograptor filters (command option -F) and in application’s
pattern rules.

Each field declaration maybe a template regex pattern, that uses the declared patterns as template variables. A
string interpolation is then used to create the effective regexp patterns during lograptor execution.

The default configuration includes 8 predefined fields:

user
Field for usernames (defaults to (|${USERNAME})).

mail
Field for email addresses (defaults to ${EMAIL}).

from
Field for sender email addresses (defaults to ${EMAIL}).

12 Chapter 3. Lograptor configuration

Lograptor Documentation, Release 1.2

rcpt
Field for recipient email addresses (defaults to $${EMAIL}).

client
Field for client IP/name (defaults to (${DNSNAME}|${IPV4_ADDRESS}|${DNSNAME}\[${IPV4_ADDRESS}\])).

pid
Field for process IDs (defaults to ${ID}).

uid
Field for user IDs (defaults to ${ID}).

msgid
Field for message IDs (defaults to ${ASCII}).

Those filters are usually skipped in the configuration files because are embedded in the lograptor’s defaults.

3.6 [..._channel] SECTIONS

The default output channel is stdout that is the standard output terminal channel (TermChannel). Other types of
channels can be defined, currently you can choose either a Mail Channel or a File Channel.

Channel types have two common options and some characteristic options. Other options are ignored. A channel
section has a name of format <channel-name>_channel. The defined channels are usable within the option –
output option.

type
The channel type. Type must be set to “tty” for a terminal channel (TermChannel), “mail” for MailChannel
and “file” for a *FileChannel”.

formats
Can be one a comma-separated list of the following: text, html, or csv.

3.6.1 Mail Channel SECTIONS

These are the custom options used by MailChannel declaration sections:

mailto
The list of email addresses where to mail the report. Separate multiple entries by a comma. If omitted,
“root@localhost” will be used.

include_rawlogs
Whether to include the gzipped raw logs with the message. If set to “yes”, it will attach the file with all
processed logs with the message. If you use a file publisher in addition to the mail publisher, this may be a
tad too paranoid.

rawlogs_limit
If the size of rawlogs.gz is more than this setting (in kilobytes), then raw logs will not be attached. Useful
if you have a 50Mb log and check your mail over a slow uplink.

gpg_encrypt
Logs routinely contain sensitive information, so you may want to encrypt the email report to ensure that
nobody can read it other than designated administrators. Set to “yes” to enable gpg-encryption of the mail
report. You will need to install mygpgme (installed by default on all yum-managed systems).

gpg_keyringdir
If you don’t want to use the default keyring (usually /root/.gnupg), you can set up a separate keyring direc-
tory for lograptor’s use. E.g.:

> mkdir -m 0700 /etc/lograptor/gpg

3.6. [..._channel] SECTIONS 13

mailto:root@localhost

Lograptor Documentation, Release 1.2

gpg_recipients
List of PGP key id’s to use when encrypting the report. The keys must be in the pubring specified in
gpg_keyringdir. If this option is omitted, lograptor will encrypt to all keys found in the pubring. To add a
public key to a keyring, you can use the following command:

> gpg [--homedir=/etc/lograptor/gpg] --import pubkey.gpg

You can generate the pubkey.gpg file by running “gpg –export KEYID” on your workstation, or you can use
“gpg –search” to import the public keys from the keyserver.

gpg_signers
To use the signing option, you will first need to generate a private key:

> gpg [--homedir=/etc/lograptor/gpg] --gen-key

Create a sign-only RSA key and leave the passphrase empty. You can then use "gpg --export" to export
the key you have generated and import it on the workstation where you read mail. If gpg_signers is not set,
the report will not be signed.

3.6.2 File Channel SECTIONS

These are the custom options used by FileChannel declaration sections:

method
Method must be set to “file” for this config to work as a file publisher.

path
Where to place the directories with reports. A sensible location would be in /var/www/html/
lograptor. Note that the reports may contain sensitive information, so make sure you place a .htaccess
in that directory and require a password, or limit by host.

dirmask, filemask
These are the masks to be used for the created directories and files. For format values look at strftime
documentation here: https://docs.python.org/2/library/time.html

save_rawlogs
Whether to save the raw logs in a file in the same directory as the report. The default is off, since you can
easily look in the original log sources.

expire_in
A digit specifying the number of days after which the old directories should be removed. Default is 7.

notify
Optionally send notifications to these email addresses when new reports become available. Comment out if
no notification is desired. This is definitely redundant if you also use the mail publisher.

pubroot
When generating a notification message, use this as publication root to make a link. E.g.:

pubroot = http://www.example.com/lograptor

will make a link: http://www.example.com/lograptor/dirname/filename.html

3.7 [..._report] SECTIONS

A report section has a name of format <report-name>_report. The defined reports are usable within the option
–report option.

These are the entries that can be declared within a report section:

14 Chapter 3. Lograptor configuration

https://docs.python.org/2/library/time.html#time.strftime
http://www.example.com/lograptor/dirname/filename.html

Lograptor Documentation, Release 1.2

title
What should be the title of the report. For mailed reports, this is the subject of the message. For the ones
published on the web, this is the title of the page (as in <title></title>) for html reports, or the main header
for plain text reports.

html_template
Which template should be used for the final html reports. The default value is $cfgdir/
report_template.html.

text_template
Which template should be used for the final plain text reports. The default value is $cfgdir/
report_template.txt.

The subreport options define the report logical divisions. The subreports are inserted in the report using the
interpolation of variable string “${subreport}”. You can declare a subreport option using an option name thas
has a “_subreport” suffix. The order of subreports’s declaration is preserved in report composition. In the default
report configuration there are 4 subreports defined:

logins_subreport
User’s “logins” subreport.

email_subreport
E-mail (“email”) subreport.

commands_subreport
System “commands” subreport.

databases_subreport
Databases lookups subreport.

You could add your own subreports: this can be a needs when you expand the applications configurations provided.
To composite the report the subreports are then referred in application’s “report data” sections. See lograptor-
apps(5) for more details on app’s report rules.

3.8 COMMENTS

Lines starting with “#” or ‘;’ are ignored and may be used to provide comments.

3.9 AUTHORS

Davide Brunato <brunato@sissa.it>

3.10 SEE ALSO

lograptor(8), lograptor-apps(5), lograptor-examples(5),

3.8. COMMENTS 15

mailto:brunato@sissa.it

Lograptor Documentation, Release 1.2

16 Chapter 3. Lograptor configuration

CHAPTER

FOUR

CONFIGURE LOGRAPTOR’S APPLICATIONS

4.1 CONFIGURATION FILES

${confdir}/*.conf

Lograptor defines its applications by configuration files. An application configuration filename is the name of
the application followed by the suffix .conf. Each file that is located in the configuration directory that has this
suffix has to be an application configuration file for lograptor.

An application’s configuration file uses the Python’s ConfigParser format which provides a structure similar to
Microsoft Windows INI files. A configuration file consists of sections and option entries. A section start with a
‘’[section]” header. Each section can have different name=value (name: value is also accepted) option
entries, with continuations in the style of RFC 822 (see section 3.1.1, “LONG HEADER FIELDS”). Note that
leading and trailing whitespaces are removed from values.

4.2 DESCRIPTION

An application configuration file for lograptor must contains two sections:

main Contains the parameters of the application. Includes log app-tags, log files locations, priority and enabling
status.

rules This section contains the pattern rules for the analysis of application’s logs. Those regexp rules are used by
the engines of lograptor.

Optional additional sections can be defined to define report data composition.

4.3 [main] SECTION

desc A fully comprehensive description of the application.

files Log files of the application. You can specify multiple entries separated by commas. Entries can be GLOB
filename patterns, so you can use the wildcard characters ?, *, + in filenames. String interpolation is done
on entries just before processing, so you can use obtain the effective list of files to be included in the run.
Typically the string $logdir (or ${logdir}) is used to shorten paths that have the same common root.
You can also use other variables related to program options, such as $hostname, that is linked to the
option –hosts.

Finally you can also use some wildcards related to dates:

%Y specifies the year

%m specifies the month as a number with 2 digits (01..12)

%d specifies the day with 2 digits (01..)

17

https://docs.python.org/2/library/configparser.html
https://www.ietf.org/rfc/rfc0822.txt

Lograptor Documentation, Release 1.2

Currently only these formats are supported to specify the dates. Filenames that include variables related to
dates are expanded by the program according to the date range provided (options –last or –date).

enabled It can be either “yes” or “no.” If “no”, the program ignores the app. If the application is invoked explicitly
using the option -a/–app then the value of this parameter is ignored. This allows you to schedule reports
with a favorite set of applications and still be able to use the program for analyze logs of all the applications
defined.

priority It’s an unsigned integer that indicates the priority of the application, commonly a value from 0 to 10.
A lower value indicates an higher priority in the composition of the final report, ie report data elements
produced by the application will appear before those of other applications with an higher value. The priority
also conditions the processing order of the log files.

4.4 [rules] SECTION

This section contains pattern rules written as regular expressions, according to the syntax of Python’s re module.
Those rules are used by the program to analyze application’s log lines and to extract information from matched
events. Each rule is identified with the option name, so must be unique within application. Don’t use names
already used by other options of the program for defining a pattern rule, in order to avoid ambiguities.

4.4.1 Symbolic Groups

Lograptor makes use of Python’s regex symbolic groups to extract information from logs. A pattern rule must
contain at least one symbolic group in order to be accepted by the program. For example if a rule is:

SMTPD_Warning = ": warning: (?P<reason>.+)"

the program extract information about group “reason” and is able to use those information during reporting stage.
You can use more symbolic groups within a rule for detailing the structure of extracted data:

Mail_Resent = ": (?P<thread>[A-Z,0-9]{9,14}): resent-message-id=<(?P<reason>.+)>"

The “thread” symbolic group is used to extract thread information from log lines, in order to perform thread
matching (see option -T/–thread).

4.4.2 Pattern Rules and Filters

An app pattern rule can also contain variables ($VARNAME or ${VARNAME}) related to a lograptor’s filter. At
the run each variable is substituted with the corresponding filter’s pattern. This feature has sense when you pair a
variable with a symbolic group, as in this example:

Mail_Client = ": (?P<thread>[A-Z,0-9]{9,14}): client=(?P<client>${client})"

If you use filter options the program discards the rules logically excluded by filters (unused rules).

4.4.3 Dictionary of Results

Each rule produces a table of results as a Python dictionary. This dictionary has tuples as keys and integers as
values. The values record the number of events associated with each tuple. For example with the following rule:

Mail_Received = ": (?P<thread>[A-Z,0-9]{9,14}): from=<(?P<from>${from})>, size=(?P
↪→<size>\d+)"

the tuple key consists of three elements, positionally related to fields <hostname>, <from> and <size>:

18 Chapter 4. Configure lograptor’s applications

https://docs.python.org/2/library/re.html
https://docs.python.org/2/library/re.html#regular-expression-syntax

Lograptor Documentation, Release 1.2

('smtp.example.com', 'postmaster@example.com', '4827')

Of course inserting more symbolic groups increase the complexity of the results and the number of elements of
the dictionary. So if you don’t need details you could simplify the default pattern rules.

4.4.4 Order of Pattern Rules

The sequence of the rules in the configuration also determines the order of execution during the process of log anal-
ysis. The order are important to reduce execution total time. Generally is better to put first the rules corresponding
to more numerous log lines.

4.4.5 Writing Pattern Rules

A simple method to write new pattern rules is to use the lograptor unparsed engine for each application, in order
to verify which lines are not matched by any pattern rule, e.g.:

lograptor -a dovecot --unparsed -m 1 /var/log/dovecot.log
...
...

If the search is not empty start to write a new detailed rule until the match is done and the line disappear from the
above search command. Repeat these steps until lograptor doesn’t found any unparsed string in your file.

With this technique you can easily write down all the report rules for an application in some minutes.

4.5 REPORT DATA SECTIONS

Additional configuration sections define the data elements for composing the report. These sections have some
mandatory options and one or more options that define the usage of application’s pattern rules.

4.5.1 Mandatory Options

subreport Indicates in which subreport insert the element. It has to match the name of one of the subreports
specified in the main configuration file.

title Header to be included in the report.

color Color to be used for the header (use the names or the codes defined for HTML and CSS specifications).

function Function to apply on the results extracted from the pattern rules of the application. There are three
different functions definable, each one lead to a different representation of the results:

total(), total Creates lists with total values from the results.

top(<num>, <header>) Creates a ranking of maximum values.

The <num> parameter is a positive integer that indicating how many maximum values to be taken into
account. The third parameter is a description for the field, which will appear on the right column of a
two-column table.

table(<header 1>, .. <header K>) Create a table from a result set.

The arguments are the descriptions that have to be included in the headers of the table. The number
of arguments determines the number of columns of the table. These tables, also when generated from
logs of different applications, are compacted into a single table under specific conditions. For this
topic read the REPORT OPTIMIZATION paragraph.

4.5. REPORT DATA SECTIONS 19

Lograptor Documentation, Release 1.2

4.5.2 Pattern Rules Related Options

A report data section must includes at least an option that refers to a pattern rule of the application. For doing
this simply add the name of a pattern rule as option of the report data section. If you need to refer twice to a
pattern rule in the same section you can use a numeric suffix for differentiate the options names. The order of
those additional options is important because it is maintained when composing the report.

The syntax of a report rule depends by the function type specified in the “function” option.

Report data sections with function “total”

In case of defining a report data section that uses the total function the syntax of an additional option must be:

<pattern_rule_name> = (<filter>, "<description>"[:[+]<counter_field>[<unit>])

The parameter <filter> can have the following values:

* Computes the total on all results.

<field>=<pattern> Consider only the tuples of results for which the specified field satisfies the constraint
described by <pattern>. The value <field> must be the name of a symbolic group and must be defined in
all the pattern rules provided for the section.

<field>!=<pattern> Consider only the results that don’t satisfy the constraint specified by <pattern>. The
value <field> must be the name of a symbolic group present in all the pattern rules provided for the section.

The <description> will be the header of the column of the results.

The optional <counter_field> is used to calculate the total value from result values. For default, the count is done
on the value associated with the tuple-key of the dictionary of results, ie the number of events extracted for the
particular combination of values. If you specify a <counter_field> the count is computed using tuple’s values
related to the field. Fill <counter_field> with the name of the symbolic group that you want to use for calculate
the total value. If <counter_field> is preceded by a “+” the total sum is calculated using field values times the
number of events.

The <counter_field> can be followed by a measurement <unit> specification of bits or bytes. This specification
have to be enclosed between square brackets and can have one of the metric prefixes K, M, G, or T. The value is
calculated according to the JEDEC specification, ie 1Kbit = 1024 bits. For example “[Kb]” or “[Kbits]” means
kilobits and “[GB]” or “[Gbytes]” means gigabytes. The numerical results in bytes or bits are then normalized to
the multiple unit best suited for report presentation.

As a full example, having the pattern rule:

Mail_Received = ": (?P<thread>[A-Z,0-9]{9,14}): from=<(?P<from>${from})>, size=(?P
↪→<size>\d+)"

and defining the corresponding report rule:

Mail_Received = (*, "Total Messages Processed")

you will produce a report that contains the count of total messages received. Instead, using the following option:

Mail_Received = (*, "Total Transferred Size":+size)

a count of the total number of bytes received will be made. Adding a memory measurement unit specification:

Mail_Received = (*, "Total Transferred Size":+size[B])

you can afford a better understanding of the results.

20 Chapter 4. Configure lograptor’s applications

Lograptor Documentation, Release 1.2

Report data section with function “top”

In case of function top the syntax of an additional option must be:

<pattern_rule_name> = (<filter>, <field>[:[+]<counter_field>[<unit>])

All the parameters except <field> have the same syntax and meaning as have for the function total. The <field>
parameter can be hostname or the name of a symbolic group belonging to the pattern rule associated, with the
exception of the thread symbolic group that is reserved.

For example, having this pattern rule:

Mail_Received = ": (?P<thread>[A-Z,0-9]{9,14}): from=<(?P<from>${from})>, size=(?P
↪→<size>\d+)"

you can define a report data option that creates the list of servers that have sent more mail:

Mail_Received = (*, hostname)

Instead, with the following report data option:

Mail_Received = (*, from)

a ranking of email accounts that have sent more messages is created.

As in the case of the total function, you can specify a <counter_field> for count alternative values. For example
with this report rule:

Mail_Received = (*, from:size[B])

you obtain the ranking of the largest e-mails sent during the period: Instead, inserting the prefix “+”:

Mail_Received = (*, from:+size[B])

the program computes the list of senders that had the most high traffic during the period.

Report rules with function “table”

In case of function table the syntax of an additional option must be:

<report_rule> = (<filter>, <field>, ... <field>)

The <filter> parameter has the same syntax and effect as that has in the case of functions “total” and “top”.

The <field> parameters are literal strings enclosed in double quotes, or hostname (without quotes) or in alternative
the name of a symbolic group belonging to the associated pattern rule (except thread that is a reserved).

The number of <field> parameters cannot be less than the number of columns of the table, that is defined by
the section’s option “function”. When the number of parameters of the report rule is greater than the number
of columns of the table, the program collapses the remaining values in the last column of the table, forming a
comma-separated list.

If <field> is a string enclosed between double quotes it will be used as fixed value in the corresponding column,
in order to decorate the data and distinguish results from those extracted by other rules or different applications.

The first <field> parameter is used for sorting the table, so is usually better if you use for this a reference to a
symbolic group instead of a quoted string.

When multiple report data options are configured the results are merged in a single table, so use multiple report
data options only if mixing these results is significant.

4.5. REPORT DATA SECTIONS 21

Lograptor Documentation, Release 1.2

4.5.3 Report Optimization

The program automatically merge tables produced from logs of different applications when the tables belong
to the same subreport. Table merging is done when if there is an exact matching between titles and headers.
The correspondence of the headers is performed on names, total number and position. This feature is useful for
example if you want to produce a single table with all user logins. The resulting reports are smaller and more
readable.

4.6 COMMENTS

Lines starting with “#” or ‘;’ are ignored and may be used to provide comments.

4.7 AUTHORS

Davide Brunato <brunato@sissa.it>

4.8 SEE ALSO

lograptor(8), lograptor.conf(5), lograptor-examples(5),

22 Chapter 4. Configure lograptor’s applications

mailto:brunato@sissa.it

CHAPTER

FIVE

LOGRAPTOR USAGE EXAMPLES

5.1 DESCRIPTION

This chapter describes simple cases usage and some advanced ones.

5.2 BASIC PATTERN SEARCH

Search a pattern in specific log file:

lograptor -e 'hello' /var/log/messages

Same search but ignoring characters case:

lograptor -i -e 'hello' /var/log/messages

Search a string in Postfix’s log files of the last 3 days:

lograptor --last=3d -a postfix -e 'example.com'

5.3 SEARCHING WITH FILTERS

Search of e-mails sent by an address, with match at connection thread level:

lograptor -T -F from=user@example.com -e '' /var/log/maillog

Search of e-mail messages sent by a domain:

lograptor -F from=.*@example.com /var/log/maillog

Search of e-mail messages sent by a domain to another domain:

lograptor -T -F from=.*@example.com -e 'to=<.*@example2.org>' /var/log/maillog

Search of e-mail messages sent by our domain to external domains:

lograptor -T -F from=.*@example.com -e 'to=<.*@(?!example.org>)' /var/log/maillog

5.4 GENERATING REPORTS

Produce a default report on console for application crond:

23

Lograptor Documentation, Release 1.2

lograptor --report -a crond -e '' /var/log/cron

On a custom report saved on a file:

lograptor --report my_report --output file -a crond -e '' /var/log/cron

5.5 SCRIPTING AND CRON

lograptor can be easily called by a script and put in a cron execution. For example you can run a daily batch to all
logs at midnight:

crontab -l
0 0 * * * lograptor --output=mail,file

Running as a batch makes sense if you send the output to not-stdout channels.

5.6 DEFINING APP RULES

When you need to define a new application or to update the configuration of an already defined application the
main problem is generally the definition of app’s rules. An app rule is essentially a regular expression template,
that is transformed into one or several regular expressions at runtime.

To define rules for an application use those steps:

1. Use the unparsed matcher to find the first unparsed line in your log:

lograptor -U -s -a dovecot -m 1 -e '' /var/log/dovecot.log
Sep 22 00:00:04 ockham dovecot: imap-login: Login: user=<brunato>, PID=23892,
method=PLAIN, rip=192.168.107.132, lip=192.168.1.174, secured

2. Build a regex pattern and put it in the “rules” section of your application configuration (eg.
/etc/lograptor/conf.d/dovecot.conf):

IMAP_Logins = dovecot: imap-login: Login: user=<(?P<user>${user})>,\s
PID=(?P<thread>(?P<pid>${pid})),\s(\S+),\srip=(?P<client>$

↪→{client})

3. Repeat steps 1 and 2 until there are no more unparsed lines.

Into an app’s pattern rule you have to define some named groups to retrieve the relevant information and to permit
to some program features to works (eg. filters, report, anonymization).

24 Chapter 5. Lograptor usage examples

INDEX

Symbols
–anonymize

command line option, 7
–color [(auto|always|never)]

command line option, 7
–conf FILE

command line option, 5
–date [YYYY]MMDD[,[YYYY]MMDD]

command line option, 6
–exclude GLOB

command line option, 8
–exclude-dir DIR

command line option, 8
–exclude-from FILE

command line option, 8
–group-separator SEP

command line option, 8
–help

command line option, 5
–hosts HOSTNAME/IP[,HOSTNAME/IP...]

command line option, 6
–include GLOB

command line option, 8
–ip-lookup

command line option, 7
–last [hour|day|week|month|Nh|Nd|Nw|Nm]

command line option, 6
–no-group-separator

command line option, 8
–output CHANNEL[,CHANNEL...]

command line option, 7
–report [NAME]

command line option, 7
–time HH:MM,HH:MM

command line option, 6
–uid-lookup

command line option, 7
-A NUM, –after-context NUM

command line option, 8
-B NUM, –before-context NUM

command line option, 8
-C NUM, –context NUM

command line option, 8
-F FIELD=PATTERN[,FIELD=PATTERN...], –filter

FIELD=PATTERN[,FIELD=PATTERN...]
command line option, 6

-G, –ruled
command line option, 6

-H, –with-filename
command line option, 7

-L, –files-without-match
command line option, 7

-R, –dereference-recursive
command line option, 8

-T, –thread
command line option, 8

-U, –unparsed
command line option, 6

-V, –version
command line option, 5

-X, –unruled
command line option, 6

-a APP[,APP...], –apps APP[,APP...]
command line option, 6

-c, –count
command line option, 7

-d [0-4]
command line option, 5

-e PATTERN, –regexp=PATTERN
command line option, 6

-f FILE, –file=FILE
command line option, 6

-h, –no-filename
command line option, 8

-i, –ignore-case
command line option, 6

-l, –files-with-match
command line option, 7

-m NUM, –max-count NUM
command line option, 7

-n, –line-number
command line option, 7

-o, –only-matching
command line option, 7

-q, –quiet
command line option, 7

-r, –recursive
command line option, 8

-s, –no-messages
command line option, 7

-v, –invert-match
command line option, 6

25

Lograptor Documentation, Release 1.2

-w, –word-regexp
command line option, 6

C
command line option

–anonymize, 7
–color [(auto|always|never)], 7
–conf FILE, 5
–date [YYYY]MMDD[,[YYYY]MMDD], 6
–exclude GLOB, 8
–exclude-dir DIR, 8
–exclude-from FILE, 8
–group-separator SEP, 8
–help, 5
–hosts HOSTNAME/IP[,HOSTNAME/IP...], 6
–include GLOB, 8
–ip-lookup, 7
–last [hour|day|week|month|Nh|Nd|Nw|Nm], 6
–no-group-separator, 8
–output CHANNEL[,CHANNEL...], 7
–report [NAME], 7
–time HH:MM,HH:MM, 6
–uid-lookup, 7
-A NUM, –after-context NUM, 8
-B NUM, –before-context NUM, 8
-C NUM, –context NUM, 8
-F FIELD=PATTERN[,FIELD=PATTERN...], –

filter FIELD=PATTERN[,FIELD=PATTERN...],
6

-G, –ruled, 6
-H, –with-filename, 7
-L, –files-without-match, 7
-R, –dereference-recursive, 8
-T, –thread, 8
-U, –unparsed, 6
-V, –version, 5
-X, –unruled, 6
-a APP[,APP...], –apps APP[,APP...], 6
-c, –count, 7
-d [0-4], 5
-e PATTERN, –regexp=PATTERN, 6
-f FILE, –file=FILE, 6
-h, –no-filename, 8
-i, –ignore-case, 6
-l, –files-with-match, 7
-m NUM, –max-count NUM, 7
-n, –line-number, 7
-o, –only-matching, 7
-q, –quiet, 7
-r, –recursive, 8
-s, –no-messages, 7
-v, –invert-match, 6
-w, –word-regexp, 6

E
environment variable

ASCII, 12
client, 13

commands_subreport, 15
confdir, 11
databases_subreport, 15
DNSNAME, 12
EMAIL, 12
email_subreport, 15
from, 12
from_address, 11
html_template, 15
ID, 12
IPV4_ADDRESS, 12
IPV6_ADDRESS, 12
logdir, 11
logins_subreport, 15
mail, 12
mapexp, 12
msgid, 13
pid, 13
rcpt, 12
smtp_server, 11
text_template, 15
title, 14
tmpdir, 11
uid, 13
user, 12
USERNAME, 12

expire_in, 14

F
formats, 13

G
gpg_encrypt, 13
gpg_keyringdir, 13
gpg_recipients, 13
gpg_signers, 14

I
include_rawlogs, 13

M
mailto, 13
method, 14

N
notify, 14

P
path, 14
pubroot, 14

R
rawlogs_limit, 13

S
save_rawlogs, 14

T
type, 13

26 Index

	Installation
	The lograptor command
	Lograptor configuration
	Configure lograptor's applications
	Lograptor usage examples
	Index

