
autosubmit Documentation
Release 3.7.0

Domingo Manubens - Joan López

July 28, 2016

Contents

1 Introduction 1
1.1 What is Autosubmit ? . 1
1.2 Why is Autosubmit needed ? . 1
1.3 How does Autosubmit work ? . 1

1.3.1 Experiment creation . 2
1.3.2 Experiment configuration . 2
1.3.3 Experiment run . 3

2 Tutorial 5
2.1 Quick start guide . 5

2.1.1 First Step: Experiment creation . 5
2.1.2 Second Step: Experiment configuration . 5
2.1.3 Third Step: Experiment run . 10
2.1.4 Fourth Step: Experiment monitor . 14

3 Installation 15
3.1 How to install . 15
3.2 How to configure . 15

4 Usage 17
4.1 Command list . 17
4.2 How to create an experiment . 17
4.3 How to create a copy of an experiment . 18
4.4 How to create a dummy experiment . 18
4.5 How to configure the experiment . 18
4.6 How to check the experiment configuration . 19
4.7 How to run the experiment . 20
4.8 How to test the experiment . 20
4.9 How to monitor the experiment . 21
4.10 How to monitor job statistics . 22
4.11 How to stop the experiment . 22
4.12 How to restart the experiment . 22
4.13 How to rerun a part of the experiment . 23
4.14 How to clean the experiment . 24
4.15 How to refresh the experiment project . 25
4.16 How to delete the experiment . 25
4.17 How to add a new job . 26
4.18 How to add a new platform . 27

i

4.19 How to change the communications library . 28
4.20 How to archive an experiment . 28
4.21 How to unarchive an experiment . 29
4.22 How to configure email notifications . 29
4.23 How to request exclusivity or reservation . 30

5 Defining the workflow 31
5.1 Simple workflow . 31
5.2 Running jobs once per startdate, member or chunk . 32
5.3 Dependencies . 32

5.3.1 Dependencies with previous jobs . 32
5.3.2 Dependencies between running levels . 33

5.4 Job frequency . 34
5.5 Job synchronize . 35
5.6 Rerun dependencies . 37

6 Troubleshooting 39
6.1 How to change the job status stopping autosubmit . 39
6.2 How to change the job status without stopping autosubmit . 40

7 Developing a project 43

8 Variables reference 45
8.1 Job variables . 45
8.2 Platform variables . 46
8.3 Project variables . 47

9 Module documentation 49
9.1 autosubmit . 49
9.2 autosubmit.config . 49

9.2.1 autosubmit.config.basicConfig . 49
9.2.2 autosubmit.config.config_common . 49
9.2.3 autosubmit.config.log . 49

9.3 autosubmit.database . 51
9.4 autosubmit.date . 53
9.5 autosubmit.git . 53
9.6 autosubmit.job . 53
9.7 autosubmit.monitor . 54
9.8 autosubmit.platform . 54

Python Module Index 55

ii

CHAPTER 1

Introduction

1.1 What is Autosubmit ?

Autosubmit is a python-based tool to create, manage and monitor experiments by using Computing Clusters, HPC’s
and Supercomputers remotely via ssh. It has support for experiments running in more than one HPC and for different
workflow configurations.

Autosubmit is currently used at Barcelona Supercomputing Centre (BSC) to run EC-Earth, NEMO and NMMB air
quality model.

Autosubmit has been used to manage models running at supercomputers in IC3, BSC, ECMWF, EPCC, PDC and
OLCF.

Autosubmit is now available via PyPi package under the terms of GNU General Public License.

Get involved or contact us:
Autosubmit GitLab: https://earth.bsc.es/gitlab/es/autosubmit
Autosubmit Mailing List: autosubmit@bsc.es

1.2 Why is Autosubmit needed ?

Autosubmit is the only existing tool that satisfies the following requirements from the weather and climate community:

• Automatisation: Job submission to machines and dependencies between jobs are managed by Autosubmit. No
user intervention is needed.

• Data provenance: Assigns unique identifiers for each experiment and stores information about model version,
experiment configuration and computing facilities used in the whole process.

• Failure tolerance: Automatic retrials and ability to rerun chunks in case of corrupted or missing data.

• Resource management: Autosubmit manages supercomputer particularities, allowing users to run their experi-
ments in the available machine without having to adapt the code. Autosubmit also allows to submit tasks from
the same experiment to different platforms.

1.3 How does Autosubmit work ?

You can find help about how to use autosubmit and a list of available commands, just executing:

1

https://earth.bsc.es/gitlab/es/autosubmit
mailto:autosubmit@bsc.es

autosubmit Documentation, Release 3.7.0

autosubmit -h

Execute autosubmit <command> -h for detailed help for each command:

autosubmit expid -h

1.3.1 Experiment creation

To create a new experiment, run the command:

autosubmit expid -H HPCname -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

This command assigns a unique four character identifier (xxxx, names starting from a letter, the other three characters)
to the experiment and creates a new folder in experiments repository with structure shown in Figure 1.1.

1.1: Example of an experiment directory tree.

1.3.2 Experiment configuration

To configure the experiment, edit expdef_xxxx.conf, jobs_xxxx.conf and platforms_xxxx.conf in
the conf folder of the experiment (see contents in Figure 1.2).

After that, you are expected to run the command:

autosubmit create xxxx

This command creates the experiment project in the proj folder. The experiment project contains the scripts specified
in jobs_xxxx.conf and a copy of model source code and data specified in expdef_xxxx.conf.

2 Chapter 1. Introduction

autosubmit Documentation, Release 3.7.0

1.2: Configuration files content

1.3.3 Experiment run

To run the experiment, just execute the command:

autosubmit run xxxx

Autosubmit will start submitting jobs to the relevant platforms (both HPC and supporting computers) by using the
scripts specified in jobs_xxxx.conf. Autosubmit will substitute variables present on scripts where handlers ap-
pear in %variable_name% format. Autosubmit provides variables for current chunk, start date, member, computer
configuration and more, and also will replace variables form proj_xxxx.conf.

To monitor the status of the experiment, the command:

autosubmit monitor xxxx

is available. This will plot the workflow of the experiment and the current status.

1.3. How does Autosubmit work ? 3

autosubmit Documentation, Release 3.7.0

1.3: Example of monitoring plot for EC-Earth run with Autosubmit for 1 start date, 1 member and 3 chunks.

4 Chapter 1. Introduction

CHAPTER 2

Tutorial

2.1 Quick start guide

2.1.1 First Step: Experiment creation

To create a new experiment, run the command:

autosubmit expid -H HPCname -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

This command assigns a unique four character identifier (xxxx, names starting from a letter, the other three characters)
to the experiment and creates a new folder in experiments repository.

Examples:

autosubmit expid --HPC ithaca --description "experiment is about..."

Caution: The HPCname, e.g. ithaca, must be defined in the platforms configuration. See next section Second
Step: Experiment configuration.

autosubmit expid --copy a000 --HPC ithaca -d "experiment is about..."

Warning: You can only copy experiments created with Autosubmit 3.0 or above.

2.1.2 Second Step: Experiment configuration

To configure the experiment, edit expdef_cxxx.conf, jobs_cxxx.conf and platforms_cxxx.conf in
the conf folder of the experiment.

expdef_cxxx.conf contains:

• Start dates, members and chunks (number and length).

• Experiment project source: origin (version control system or path)

• Project configuration file path.

jobs_cxxx.conf contains the workflow to be run:

• Scripts to execute.

5

autosubmit Documentation, Release 3.7.0

• Dependencies between tasks.

• Task requirements (processors, wallclock time...).

• Platform to use.

platforms_cxxx.conf contains:

• HPC, fat-nodes and supporting computers configuration.

Note: platforms_cxxx.conf is usually provided by technicians, users will only have to change login and accounting
options for HPCs.

Note: There are multiple implementations of the communication with the platforms, so if you are interested in
changing the default implementation, you can see how to do it on the ‘Usage’ section.

You may want to configure Autosubmit parameters for the experiment. Just edit autosubmit_cxxx.conf.

autosubmit_cxxx.conf contains:

• Maximum number of jobs to be waiting in the HPC queue.

• Maximum number of jobs to be running at the same time at the HPC.

• Time (seconds) between connections to the HPC queue scheduler to poll already submitted jobs status.

• Number of retrials if a job fails.

Examples:

vi <experiments_directory>/cxxx/conf/expdef_cxxx.conf

[DEFAULT]
Experiment identifier
No need to change
EXPID = cxxx
HPC name.
No need to change
HPCARCH = ithaca

[experiment]
Supply the list of start dates. Available formats: YYYYMMDD YYYYMMDDhh YYYYMMDDhhmm
Also you can use an abreviated sintax for multiple dates with common parts:
200001[01 15] <=> 20000101 20000115
DATELIST = 19600101 19650101 19700101
DATELIST = 1960[0101 0201 0301]
DATELIST = 19900101
Supply the list of members. LIST = fc0 fc1 fc2 fc3 fc4
MEMBERS = fc0
Chunk size unit. STRING = hour, day, month, year
CHUNKSIZEUNIT = month
Chunk size. NUMERIC = 4, 6, 12
CHUNKSIZE = 1
Total number of chunks in experiment. NUMERIC = 30, 15, 10
NUMCHUNKS = 2
Calendar used. LIST: standard, noleap
CALENDAR = standard

[rerun]

6 Chapter 2. Tutorial

autosubmit Documentation, Release 3.7.0

Is a rerun or not? [Default: Do set FALSE]. BOOLEAN = TRUE, FALSE
RERUN = FALSE
If RERUN = TRUE then supply the list of chunks to rerun
LIST = "[19601101 [fc0 [1 2 3 4] fc1 [1]] 19651101 [fc0 [16-30]]]"
CHUNKLIST =

[project]
Select project type. STRING = git, svn, local, none
If PROJECT_TYPE is set to none, Autosubmit self-contained dummy templates will be used
PROJECT_TYPE = git
Destination folder name for project. type = STRING, default = leave empty,
PROJECT_DESTINATION = model

If PROJECT_TYPE is not git, no need to change
[git]
Repository URL STRING = 'https://github.com/torvalds/linux.git'
PROJECT_ORIGIN = https://gitlab.cfu.local/cfu/auto-ecearth3.git
Select branch or tag, STRING, default = 'master',
help = {'master' (default), 'develop', 'v3.1b', ...}
PROJECT_BRANCH = develop
type = STRING, default = leave empty, help = if model branch is a TAG leave empty
PROJECT_COMMIT =

If PROJECT_TYPE is not svn, no need to change
[svn]
type = STRING, help = 'https://svn.ec-earth.org/ecearth3'
PROJECT_URL =
Select revision number. NUMERIC = 1778
PROJECT_REVISION =

If PROJECT_TYPE is not local, no need to change
[local]
type = STRING, help = /foo/bar/ecearth
PROJECT_PATH =

If PROJECT_TYPE is none, no need to change
[project_files]
Where is PROJECT CONFIGURATION file location relative to project root path
FILE_PROJECT_CONF = templates/ecearth3/ecearth3.conf
Where is JOBS CONFIGURATION file location relative to project root path
FILE_JOBS_CONF = templates/common/jobs.conf

vi <experiments_directory>/cxxx/conf/jobs_cxxx.conf

Example job with all options specified

Job name
[JOBNAME]
Script to execute. If not specified, job will be omited from workflow.
Path relative to the project directory
FILE =
Platform to execute the job. If not specificied, defaults to HPCARCH in expedf file.
LOCAL is always defined and referes to current machine
PLATFORM =
Queue to add the job to. If not specificied, uses PLATFORM default.
QUEUE =
Defines dependencies from job as a list of parents jobs separed by spaces.
Dependencies to jobs in previous chunk, member o startdate, use -(DISTANCE)

2.1. Quick start guide 7

autosubmit Documentation, Release 3.7.0

DEPENDENCIES = INI SIM-1 CLEAN-2
Define if jobs runs once, once per stardate, once per member or once per chunk. Options: once, date, member, chunk.
If not specified, defaults to once
RUNNING = once
Specifies that job has only to be run after X dates, members or chunk. A job will always be created for the last
If not specified, defaults to 1
FREQUENCY = 3
On a job with FREQUENCY > 1, if True, the dependencies are evaluated against all
jobs in the frequency interval, otherwise only evaluate dependencies against current
iteration.
If not specified, defaults to True
WAIT = False
Defines if job is only to be executed in reruns. If not specified, defaults to false.
RERUN_ONLY = False
Defines jobs needed to be rerun if this job is going to be rerun
RERUN_DEPENDENCIES = RERUN INI LOCAL_SETUP REMOTE_SETUP TRANSFER
Wallclock to be submitted to the HPC queue in format HH:MM
WALLCLOCK = 00:05
Processors number to be submitted to the HPC. If not specified, defaults to 1.
PROCESSORS = 1
Threads number to be submitted to the HPC. If not specified, defaults to 1.
THREADS = 1
Tasks number to be submitted to the HPC. If not specified, defaults to empty.
TASKS =
Memory requirements for the job in MB
MEMORY = 4096
Number of retrials if a job fails. If not specified, defaults to the value given on experiment's autosubmit.conf
RETRIALS = 4
Some jobs can not be checked before running previous jobs. Set this option to false if that is the case
CHECK = False
Select the interpreter that will run the job. Options: bash, python, r Default: bash
TYPE = bash

[LOCAL_SETUP]
FILE = LOCAL_SETUP.sh
PLATFORM = LOCAL

[REMOTE_SETUP]
FILE = REMOTE_SETUP.sh
DEPENDENCIES = LOCAL_SETUP
WALLCLOCK = 00:05

[INI]
FILE = INI.sh
DEPENDENCIES = REMOTE_SETUP
RUNNING = member
WALLCLOCK = 00:05

[SIM]
FILE = SIM.sh
DEPENDENCIES = INI SIM-1 CLEAN-2
RUNNING = chunk
WALLCLOCK = 00:05
PROCESSORS = 2
THREADS = 1
TASKS = 1

8 Chapter 2. Tutorial

autosubmit Documentation, Release 3.7.0

[POST]
FILE = POST.sh
DEPENDENCIES = SIM
RUNNING = chunk
WALLCLOCK = 00:05

[CLEAN]
FILE = CLEAN.sh
DEPENDENCIES = POST
RUNNING = chunk
WALLCLOCK = 00:05

[TRANSFER]
FILE = TRANSFER.sh
PLATFORM = LOCAL
DEPENDENCIES = CLEAN
RUNNING = member

vi <experiments_directory>/cxxx/conf/platforms_cxxx.conf

Example platform with all options specified

Platform name
[PLAFORM]
Queue type. Options: PBS, SGE, PS, LSF, ecaccess, SLURM
TYPE =
Version of queue manager to use. Needed only in PBS (options: 10, 11, 12) and ecaccess (options: pbs, loadleveler)
VERSION =
Hostname of the HPC
HOST =
Project for the machine scheduler
PROJECT =
Budget account for the machine scheduler. If omitted, takes the value defined in PROJECT
BUDGET =
Option to add project name to host. This is required for some HPCs
ADD_PROJECT_TO_HOST = False
User for the machine scheduler
USER =
Path to the scratch directory for the machine
SCRATCH_DIR = /scratch
If true, autosubmit test command can use this queue as a main queue. Defaults to false
TEST_SUITE = False
If given, autosubmit will add jobs to the given queue
QUEUE =
If specified, autosubmit will run jobs with only one processor in the specified platform.
SERIAL_PLATFORM = SERIAL_PLATFORM_NAME
If specified, autosubmit will run jobs with only one processor in the specified queue.
Autosubmit will ignore this configuration if SERIAL_PLATFORM is provided
SERIAL_QUEUE = SERIAL_QUEUE_NAME
Default number of processors per node to be used in jobs
PROCESSORS_PER_NODE =
Default Maximum number of jobs to be waiting in any platform queue
Default = 3
MAX_WAITING_JOBS = 3
Default maximum number of jobs to be running at the same time at any platform
Default = 6
TOTAL_JOBS = 6

2.1. Quick start guide 9

autosubmit Documentation, Release 3.7.0

[ithaca]
Queue type. Options: ps, SGE, LSF, SLURM, PBS, eceaccess
TYPE = SGE
HOST = ithaca
PROJECT = cfu
ADD_PROJECT_TO_HOST = true
USER = dmanubens
SCRATCH_DIR = /scratch/cfu
TEST_SUITE = True

vi <experiments_directory>/cxxx/conf/autosubmit_cxxx.conf

[config]
Experiment identifier
No need to change
EXPID =
No need to change.
Autosubmit version identifier
AUTOSUBMIT_VERSION =
Default maximum number of jobs to be waiting in any platform
Default = 3
MAXWAITINGJOBS = 3
Default maximum number of jobs to be running at the same time at any platform
Default = 6
TOTALJOBS = 6
Time (seconds) between connections to the HPC queue scheduler to poll already submitted jobs status
Default = 10
SAFETYSLEEPTIME = 10
Number of retrials if a job fails. Can ve override at job level
Default = 0
RETRIALS = 0

Then, Autosubmit create command uses the expdef_cxxx.conf and generates the experiment:

autosubmit create cxxx

cxxx is the name of the experiment.

In the process of creating the new experiment a plot has been created.

It can be found in <experiments_directory>/cxxx/plot/

2.1.3 Third Step: Experiment run

After filling the experiment configuration and create, user can go into proj which has a copy of the model.

A short reference on how to prepare the experiment project is detailed in the following section of this documentation:

Developing a project

The experiment project contains the scripts specified in jobs_xxxx.conf and a copy of model source code and
data specified in expdef_xxxx.conf.

To configure experiment project parameters for the experiment, edit proj_cxxx.conf.

proj_cxxx.conf contains:

• The project dependant experiment variables that Autosubmit will substitute in the scripts to be run.

10 Chapter 2. Tutorial

autosubmit Documentation, Release 3.7.0

Warning: The proj_xxxx.conf has to be defined in INI style so it should has section headers. At least one.

Example:

vi <experiments_directory>/cxxx/conf/proj_cxxx.conf

[common]
No need to change.
MODEL = ecearth
No need to change.
VERSION = v3.1
No need to change.
TEMPLATE_NAME = ecearth3
Select the model output control class. STRING = Option
listed under the section : https://earth.bsc.es/wiki/doku.php?id=overview_outclasses
OUTCLASS = specs
After transferring output at /cfunas/exp remove a copy available at permanent storage of HPC
[Default: Do set "TRUE"]. BOOLEAN = TRUE, FALSE
MODEL_output_remove = TRUE
Activate cmorization [Default: leave empty]. BOOLEAN = TRUE, FALSE
CMORIZATION = TRUE
Essential if cmorization is activated.
STRING = (http://www.specs-fp7.eu/wiki/images/1/1c/SPECS_standard_output.pdf)
CMORFAMILY =
Supply the name of the experiment associated (if there is any) otherwise leave it empty.
STRING (with space) = seasonal r1p1, seaiceinit r?p?
ASSOCIATED_EXPERIMENT =
Essential if cmorization is activated (Forcing). STRING = Nat,Ant (Nat and Ant is a single option)
FORCING =
Essential if cmorization is activated (Initialization description). STRING = N/A
INIT_DESCR =
Essential if cmorization is activated (Physics description). STRING = N/A
PHYS_DESCR =
Essential if cmorization is activated (Associated model). STRING = N/A
ASSOC_MODEL =

[grid]
AGCM grid resolution, horizontal (truncation T) and vertical (levels L).
STRING = T159L62, T255L62, T255L91, T511L91, T799L62 (IFS)
IFS_resolution = T511L91
OGCM grid resolution. STRING = ORCA1L46, ORCA1L75, ORCA025L46, ORCA025L75 (NEMO)
NEMO_resolution = ORCA025L75

[oasis]
Coupler (OASIS) options.
OASIS3 = yes
Number of pseduo-parallel cores for coupler [Default: Do set "7"]. NUMERIC = 1, 7, 10
OASIS_nproc = 7
Handling the creation of coupling fields dynamically [Default: Do set "TRUE"].
BOOLEAN = TRUE, FALSE
OASIS_flds = TRUE

[ifs]
Atmospheric initial conditions ready to be used.
STRING = ID found here : https://earth.bsc.es/wiki/doku.php?id=initial_conditions:atmospheric
ATM_ini =
A different IC member per EXPID member ["PERT"] or which common IC member
for all EXPID members ["fc0" / "fc1"]. String = PERT/fc0/fc1...

2.1. Quick start guide 11

autosubmit Documentation, Release 3.7.0

ATM_ini_member =
Set timestep (in sec) w.r.t resolution.
NUMERIC = 3600 (T159), 2700 (T255), 900 (T511), 720 (T799)
IFS_timestep = 900
Number of parallel cores for AGCM component. NUMERIC = 28, 100
IFS_nproc = 640
Coupling frequency (in hours) [Default: Do set "3"]. NUMERIC = 3, 6
RUN_coupFreq = 3
Post-procssing frequency (in hours) [Default: Do set "6"]. NUMERIC = 3, 6
NFRP = 6
[Default: Do set "TRUE"]. BOOLEAN = TRUE, FALSE
LCMIP5 = TRUE
Choose RCP value [Default: Do set "2"]. NUMERIC = 0, 1=3-PD, 2=4.5, 3=6, 4=8.5
NRCP = 0
[Default: Do set "TRUE"]. BOOLEAN = TRUE, FALSE
LHVOLCA = TRUE
[Default: Do set "0"]. NUMERIC = 1850, 2005
NFIXYR = 0
Save daily output or not [Default: Do set "FALSE"]. BOOLEAN = TRUE, FALSE
SAVEDDA = FALSE
Save reduced daily output or not [Default: Do set "FALSE"]. BOOLEAN = TRUE, FALSE
ATM_REDUCED_OUTPUT = FALSE
Store grib codes from SH files [User need to refer defined ppt* files for the experiment]
ATM_SH_CODES =
Store levels against "ATM_SH_CODES" e.g: level1,level2,level3, ...
ATM_SH_LEVELS =
Store grib codes from GG files [User need to refer defined ppt* files for the experiment]
ATM_GG_CODES =
Store levels against "ATM_GG_CODES" (133.128, 246.128, 247.128, 248.128)
e.g: level1,level2,level3, ...
ATM_GG_LEVELS =
SPPT stochastic physics active or not [Default: set "FALSE"]. BOOLEAN = TRUE, FALSE
LSPPT = FALSE
Write the perturbation patterns for SPPT or not [Default: set "FALSE"].
BOOLEAN = TRUE, FALSE
LWRITE_ARP =
Number of scales for SPPT [Default: set 3]. NUMERIC = 1, 2, 3
NS_SPPT =
Standard deviations of each scale [Default: set 0.50,0.25,0.125]
NUMERIC values separated by ,
SDEV_SPPT =
Decorrelation times (in seconds) for each scale [Default: set 2.16E4,2.592E5,2.592E6]
NUMERIC values separated by ,
TAU_SPPT =
Decorrelation lengths (in meters) for each scale [Default: set 500.E3,1000.E3,2000.E3]
NUMERIC values separated by ,
XLCOR_SPPT =
Clipping ratio (number of standard deviations) for SPPT [Default: set 2] NUMERIC
XCLIP_SPPT =
Stratospheric tapering in SPPT [Default: set "TRUE"]. BOOLEAN = TRUE, FALSE
LTAPER_SPPT =
Top of stratospheric tapering layer in Pa [Default: set to 50.E2] NUMERIC
PTAPER_TOP =
Bottom of stratospheric tapering layer in Pa [Default: set to 100.E2] NUMERIC
PTAPER_BOT =
ATMOSPHERIC NUDGING PARAMETERS
Atmospheric nudging towards reinterpolated ERA-Interim data. BOOLEAN = TRUE, FALSE
ATM_NUDGING = FALSE

12 Chapter 2. Tutorial

autosubmit Documentation, Release 3.7.0

Atmospheric nudging reference data experiment name. [T255L91: b0ir]
ATM_refnud =
Nudge vorticity. BOOLEAN = TRUE, FALSE
NUD_VO =
Nudge divergence. BOOLEAN = TRUE, FALSE
NUD_DI =
Nudge temperature. BOOLEAN = TRUE, FALSE
NUD_TE =
Nudge specific humidity. BOOLEAN = TRUE, FALSE
NUD_Q =
Nudge liquid water content. BOOLEAN = TRUE, FALSE
NUD_QL =
Nudge ice water content. BOOLEAN = TRUE, FALSE
NUD_QI =
Nudge cloud fraction. BOOLEAN = TRUE, FALSE
NUD_QC =
Nudge log of surface pressure. BOOLEAN = TRUE, FALSE
NUD_LP =
Relaxation coefficient for vorticity. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_VO =
Relaxation coefficient for divergence. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_DI =
Relaxation coefficient for temperature. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_TE =
Relaxation coefficient for specific humidity. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_Q =
Relaxation coefficient for log surface pressure. NUMERIC in]0,inf[;
1 means half way between model value and ref value
ALPH_LP =
Nudging area Northern limit [Default: Do set "90"]
NUD_NLAT =
Nudging area Southern limit [Default: Do set "-90"]
NUD_SLAT =
Nudging area Western limit NUMERIC in [0,360] [Default: Do set "0"]
NUD_WLON =
Nudging area Eastern limit NUMERIC in [0,360] [Default: Do set "360"; E<W will span Greenwich]
NUD_ELON =
Nudging vertical levels : lower level [Default: Do set "1"]
NUD_VMIN =
Nudging vertical levels : upper level [Default: Do set to number of vertical levels]
NUD_VMAX =

[nemo]
Ocean initial conditions ready to be used. [Default: leave empty].
STRING = ID found here : https://earth.bsc.es/wiki/doku.php?id=initial_conditions:oceanic
OCEAN_ini =
A different IC member per EXPID member ["PERT"] or which common IC member
for all EXPID members ["fc0" / "fc1"]. String = PERT/fc0/fc1...
OCEAN_ini_member =
Set timestep (in sec) w.r.t resolution. NUMERIC = 3600 (ORCA1), 1200 (ORCA025)
NEMO_timestep = 1200
Number of parallel cores for OGCM component. NUMERIC = 16, 24, 36
NEMO_nproc = 960
Ocean Advection Scheme [Default: Do set "tvd"]. STRING = tvd, cen2

2.1. Quick start guide 13

autosubmit Documentation, Release 3.7.0

ADVSCH = cen2
Nudging activation. BOOLEAN = TRUE, FALSE
OCEAN_NUDGING = FALSE
Toward which data to nudge; essential if "OCEAN_NUDGING" is TRUE.
STRING = fa9p, s4, glorys2v1
OCEAN_NUDDATA = FALSE
Rebuild and store restarts to HSM for an immediate prediction experiment.
BOOLEAN = TRUE, FALSE
OCEAN_STORERST = FALSE

[ice]
Sea-Ice Model [Default: Do set "LIM2"]. STRING = LIM2, LIM3
ICE = LIM3
Sea-ice initial conditions ready to be used. [Default: leave empty].
STRING = ID found here : https://earth.bsc.es/wiki/doku.php?id=initial_conditions:sea_ice
ICE_ini =
A different IC member per EXPID member ["PERT"] or which common IC member
for all EXPID members ["fc0" / "fc1"]. String = PERT/fc0/fc1...
ICE_ini_member =
Set timestep (in sec) w.r.t resolution. NUMERIC = 3600 (ORCA1), 1200 (ORCA025)
LIM_timestep = 1200

[pisces]
Activate PISCES (TRUE) or not (FALSE) [Default: leave empty]
PISCES = FALSE
PISCES initial conditions ready to be used. [Default: leave empty].
STRING = ID found here : https://earth.bsc.es/wiki/doku.php?id=initial_conditions:biogeochemistry
PISCES_ini =
Set timestep (in sec) w.r.t resolution. NUMERIC = 3600 (ORCA1), 3600 (ORCA025)
PISCES_timestep = 3600

Finally, you can launch Autosubmit run in background and with nohup (continue running although the user who
launched the process logs out).

nohup autosubmit run cxxx &

2.1.4 Fourth Step: Experiment monitor

The following procedure could be adopted to generate the plots for visualizing the status of the experiment at any
instance. With this command we can generate new plots to check which is the status of the experiment. Different job
status are represented with different colors.

autosubmit monitor cxxx

The location where user can find the generated plots with date and timestamp can be found below:

<experiments_directory>/cxxx/plot/cxxx_<date>_<time>.pdf

14 Chapter 2. Tutorial

CHAPTER 3

Installation

3.1 How to install

The Autosubmit code is maintained in PyPi, the main source for python packages.

• Pre-requisties: These packages (bash, python2, sqlite3, git-scm > 1.8.2, subversion) must be available at local
host machine. These packages (argparse, dateutil, pyparsing, numpy, pydotplus, matplotlib, paramiko) must be
available for python runtime.

Important: The host machine has to be able to access HPC’s/Clusters via password-less ssh.

To install autosubmit just execute:

pip install autosubmit

or download, unpack and:

python setup.py install

Hint: To check if autosubmit has been installed run autosubmit -v. This command will print autosubmit’s
current version

Hint: To read autosubmit’s readme file, run autosubmit readme

Hint: To see the changelog, use autosubmit changelog

3.2 How to configure

After installation, you have to configure database and path for Autosubmit. It can be done at host, user or local level (by
default at host level). If it does not exist, create a repository for experiments: Say for example /cfu/autosubmit

Then follow the configure instructions after executing:

15

autosubmit Documentation, Release 3.7.0

autosubmit configure

and introduce path to experiment storage and database. Folders must exist.

Hint: The dialog (GUI) library is optional. Otherwise the configuration parameters will be prompted (CLI). Use
autosubmit configure -h to see all the allowed options.

As Autosubmit has an email notifications feature, you have also to configure a SMTP server and an email account
from where the notifications will be sent.

There is the BSC configuration by default, it can helps you as an example.

For installing the database for Autosubmit on the configured folder, when no database is created on the given path,
execute:

autosubmit install

Danger: Be careful ! autosubmit install will create a blank database.

Now you are ready to use Autosubmit !

16 Chapter 3. Installation

CHAPTER 4

Usage

4.1 Command list

-expid Create a new experiment

-create Create specified experiment workflow

-check Check configuration for specified experiment

-run Run specified experiment

-test Test experiment

-monitor Plot specified experiment

-stats Plot statistics for specified experiment

-setstatus Sets job status for an experiment

-recovery Recover specified experiment

-clean Clean specified experiment

-refresh Refresh project directory for an experiment

-delete Delete specified experiment

-configure Configure database and path for autosubmit

-install Install database for Autosubmit on the configured folder

-archive Clean, compress and remove from the experiments’ folder a finalized experiment

-unarchive Restores an archived experiment

4.2 How to create an experiment

To create a new experiment, just run the command:

autosubmit expid -H HPCname -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

Options:

17

autosubmit Documentation, Release 3.7.0

usage: autosubmit expid [-h] [-y COPY | -dm] -H HPC -d DESCRIPTION

-h, --help show this help message and exit
-y COPY, --copy COPY makes a copy of the specified experiment
-dm, --dummy creates a new experiment with default values, usually for testing
-H HPC, --HPC HPC specifies the HPC to use for the experiment
-d DESCRIPTION, --description DESCRIPTION

sets a description for the experiment to store in the database.

Example:

autosubmit expid --HPC ithaca --description "experiment is about..."

4.3 How to create a copy of an experiment

This option makes a copy of an existing experiment. It registrates a new unique identifier and copies all configuration
files in the new experiment folder:

autosubmit expid -H HPCname -y COPY -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
COPY is the experiment identifier to copy from. Description is a brief experiment description.

Example:

autosubmit expid -H ithaca -y cxxx -d "experiment is about..."

Warning: You can only copy experiments created with Autosubmit 3.0 or above.

4.4 How to create a dummy experiment

This command creates a new experiment with default values, useful for testing:

autosubmit expid -H HPCname -dm -d Description

HPCname is the name of the main HPC platform for the experiment: it will be the default platform for the tasks.
Description is a brief experiment description.

Example:

autosubmit expid -H ithaca -dm "experiment is about..."

4.5 How to configure the experiment

Edit expdef_cxxx.conf, jobs_cxxx.conf and platforms_cxxx.conf in the conf folder of the exper-
iment.

expdef_cxxx.conf contains:

• Start dates, members and chunks (number and length).

• Experiment project source: origin (version control system or path)

18 Chapter 4. Usage

autosubmit Documentation, Release 3.7.0

• Project configuration file path.

jobs_cxxx.conf contains the workflow to be run:

• Scripts to execute.

• Dependencies between tasks.

• Task requirements (processors, wallclock time...).

• Platform to use.

platforms_cxxx.conf contains:

• HPC, fat-nodes and supporting computers configuration.

Note: platforms_cxxx.conf is usually provided by technicians, users will only have to change login and accounting
options for HPCs.

You may want to configure Autosubmit parameters for the experiment. Just edit autosubmit_cxxx.conf.

autosubmit_cxxx.conf contains:

• Maximum number of jobs to be running at the same time at the HPC.

• Time (seconds) between connections to the HPC queue scheduler to poll already submitted jobs status.

• Number of retrials if a job fails.

Then, Autosubmit create command uses the expdef_cxxx.conf and generates the experiment: After editing the
files you can proceed to the experiment workflow creation. Experiment workflow, which contains all the jobs and its
dependencies, will be saved as a pkl file:

autosubmit create EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit create [-h] [-np] expid

expid experiment identifier

-h, --help show this help message and exit
-np, --noplot omit plot

Example:

autosubmit create cxxx

More info on pickle can be found at http://docs.python.org/library/pickle.html

4.6 How to check the experiment configuration

To check the configuration of the experiment, use the command:

autosubmit check EXPID

EXPID is the experiment identifier.

It checks experiment configuration and warns about any detected error or inconsistency.

4.6. How to check the experiment configuration 19

http://docs.python.org/library/pickle.html

autosubmit Documentation, Release 3.7.0

Options:

usage: autosubmit check [-h] expid

expid experiment identifier

-h, --help show this help message and exit

Example:

autosubmit check cxxx

4.7 How to run the experiment

Launch Autosubmit with the command:

autosubmit run EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit run [-h] expid

expid experiment identifier

-h, --help show this help message and exit

Example:

autosubmit run cxxx

Hint: It is recommended to launch it in background and with nohup (continue running although the user who
launched the process logs out).

Example:

nohup autosubmit run cxxx &

Important: Before launching Autosubmit check password-less ssh is feasible (HPCName is the hostname):

ssh HPCName

More info on password-less ssh can be found at: http://www.linuxproblem.org/art_9.html

Caution: After launching Autosubmit, one must be aware of login expiry limit and policy (if applicable for any
HPC) and renew the login access accordingly (by using token/key etc) before expiry.

4.8 How to test the experiment

This method is to conduct a test for a given experiment. It creates a new experiment for a given experiment with a
given number of chunks with a random start date and a random member to be run on a random HPC.

20 Chapter 4. Usage

http://www.linuxproblem.org/art_9.html

autosubmit Documentation, Release 3.7.0

To test the experiment, use the command:

autosubmit test CHUNKS EXPID

EXPID is the experiment identifier. CHUNKS is the number of chunks to run in the test.

Options:

usage: autosubmit test [-h] -c CHUNKS [-m MEMBER] [-s STARDATE] [-H HPC] [-b BRANCH] expid

expid experiment identifier

-h, --help show this help message and exit
-c CHUNKS, --chunks CHUNKS

chunks to run
-m MEMBER, --member MEMBER

member to run
-s STARDATE, --stardate STARDATE

stardate to run
-H HPC, --HPC HPC HPC to run experiment on it
-b BRANCH, --branch BRANCH

branch from git to run (or revision from subversion)

Example:

autosubmit test -c 1 -s 19801101 -m fc0 -H ithaca -b develop cxxx

4.9 How to monitor the experiment

To monitor the status of the experiment, use the command:

autosubmit monitor EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit monitor [-h] [-o {pdf,png,ps,svg}] expid

expid experiment identifier

-h, --help show this help message and exit
-o {pdf,png,ps,svg}, --output {pdf,png,ps,svg}

type of output for generated plot

Example:

autosubmit monitor cxxx

The location where user can find the generated plots with date and timestamp can be found below:

<experiments_directory>/cxxx/plot/cxxx_<date>_<time>.pdf

Hint: Very large plots may be a problem for some pdf and image viewers. If you are having trouble with your usual
monitoring tool, try using svg output and opening it with Google Chrome with the SVG Navigator extension installed.

4.9. How to monitor the experiment 21

autosubmit Documentation, Release 3.7.0

4.10 How to monitor job statistics

The following command could be adopted to generate the plots for visualizing the jobs statistics of the experiment at
any instance:

autosubmit stats EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit stats [-h] [-ft] [-fp] [-o {pdf,png,ps,svg}] expid

expid experiment identifier

-h, --help show this help message and exit
-ft FILTER_TYPE, --filter_type FILTER_TYPE

Select the job type to filter the list of jobs
-fp FILTER_PERIOD, --filter_period FILTER_PERIOD

Select the period of time to filter the jobs
from current time to the past in number of hours back

-o {pdf,png,ps,svg}, --output {pdf,png,ps,svg}
type of output for generated plot

Example:

autosubmit stats cxxx

The location where user can find the generated plots with date and timestamp can be found below:

<experiments_directory>/cxxx/plot/cxxx_statistics_<date>_<time>.pdf

4.11 How to stop the experiment

You can stop Autosubmit by sending a signal to the process. To get the process identifier (PID) you can use the ps
command on a shell interpreter/terminal.

ps -ef | grep autosubmit
dmanubens 22835 1 1 May04 ? 00:45:35 autosubmit run cxxy
dmanubens 25783 1 1 May04 ? 00:42:25 autosubmit run cxxx

To send a signal to a process you can use kill also on a terminal.

To stop immediately experiment cxxx:

kill -9 22835

Important: In case you want to restart the experiment, you must follow the How to restart the experiment procedure,
explained below, in order to properly resynchronize all completed jobs.

4.12 How to restart the experiment

This procedure allows you to restart an experiment.

22 Chapter 4. Usage

autosubmit Documentation, Release 3.7.0

You must execute:

autosubmit recovery EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit recovery [-h] [-np] [-all] [-s] expid

expid experiment identifier

-h, --help show this help message and exit
-np, --noplot omit plot
-all Get all completed files to synchronize pkl
-s, --save Save changes to disk

Example:

autosubmit recovery cxxx -s

Hint: When we are satisfied with the results we can use the parameter -s, which will save the change to the pkl file
and rename the update file.

The -all flag is used to synchronize all jobs of our experiment locally with the information available on the remote
platform (i.e.: download the COMPLETED files we may not have). In case new files are found, the pkl will be
updated.

Example:

autosubmit recovery cxxx -all -s

4.13 How to rerun a part of the experiment

This procedure allows you to create automatically a new pickle with a list of jobs of the experiment to rerun.

Using the expdef_<expid>.conf the create command will generate the rerun if the variable RERUN is set to
TRUE and a CHUNKLIST is provided.

autosubmit create cxxx

It will read the list of chunks specified in the CHUNKLIST and will generate a new plot.

Note: The results are saved in the new pkl rerun_job_list.pkl.

Example:

vi <experiments_directory>/cxxx/conf/expdef_cxxx.conf

[...]

[rerun]
Is a rerun or not? [Default: Do set FALSE]. BOOLEAN = TRUE, FALSE
RERUN = TRUE
If RERUN = TRUE then supply the list of chunks to rerun

4.13. How to rerun a part of the experiment 23

autosubmit Documentation, Release 3.7.0

LIST = "[19601101 [fc0 [1 2 3 4] fc1 [1]] 19651101 [fc0 [16-30]]]"
CHUNKLIST = [19601101 [fc1 [1]]

[...]

Then you are able to start again Autosubmit for the rerun of cxxx 19601101, chunk 1, member 1:

nohup autosubmit run cxxx &

4.14 How to clean the experiment

This procedure allows you to save space after finalising an experiment. You must execute:

autosubmit clean EXPID

Options:

usage: autosubmit clean [-h] [-pr] [-p] [-s] expid

expid experiment identifier

-h, --help show this help message and exit
-pr, --project clean project
-p, --plot clean plot, only 2 last will remain
-s, --stats clean stats, only last will remain

• The -p and -s flag are used to clean our experiment plot folder to save disk space. Only the two latest plots
will be kept. Older plots will be removed.

Example:

autosubmit clean cxxx -p

• The -pr flag is used to clean our experiment proj locally in order to save space (it could be particullary big).

Caution: Bear in mind that if you have not synchronized your experiment project folder with the information
available on the remote repository (i.e.: commit and push any changes we may have), or in case new files are found,
the clean procedure will be failing although you specify the -pr option.

Example:

autosubmit clean cxxx -pr

A bare copy (which occupies less space on disk) will be automatically made.

Hint: That bare clone can be always reconverted in a working clone if we want to run again the experiment by using
git clone bare_clone original_clone.

Note: In addition, every time you run this command with -pr option, it will check the commit unique identifier for
local working tree existing on the proj directory. In case that commit identifier exists, clean will register it to the
expdef_cxxx.conf file.

24 Chapter 4. Usage

autosubmit Documentation, Release 3.7.0

4.15 How to refresh the experiment project

To refresh the project directory of the experiment, use the command:

autosubmit refresh EXPID

EXPID is the experiment identifier.

It checks experiment configuration and copy code from original repository to project directory.

Warning: DO NOT USE THIS COMMAND IF YOU ARE NOT SURE ! Project directory will be overwritten
and you may loose local changes.

Options:

usage: autosubmit refresh [-h] expid

expid experiment identifier

-h, --help show this help message and exit
-mc, --model_conf overwrite model conf file
-jc, --jobs_conf overwrite jobs conf file

Example:

autosubmit refresh cxxx

4.16 How to delete the experiment

To delete the experiment, use the command:

autosubmit delete EXPID

EXPID is the experiment identifier.

Warning: DO NOT USE THIS COMMAND IF YOU ARE NOT SURE ! It deletes the experiment from database
and experiment’s folder.

Options:

usage: autosubmit delete [-h] [-f] expid

expid experiment identifier

-h, --help show this help message and exit
-f, --force deletes experiment without confirmation

Example:

autosubmit delete cxxx

Warning: Be careful ! force option does not ask for your confirmation.

4.15. How to refresh the experiment project 25

autosubmit Documentation, Release 3.7.0

4.17 How to add a new job

To add a new job, open the <experiments_directory>/cxxx/conf/jobs_cxxx.conf file where cxxx is the experiment
identifier and add this text:

[new_job]
FILE = <new_job_template>

This will create a new job named “new_job” that will be executed once at the default platform. This job will user the
template located at <new_job_template> (path is relative to project folder).

This is the minimun job definition and usually is not enough. You usually will need to add some others parameters:

• PLATFORM: allows you to execute the job in a platform of yout choice. It must be defined in the experiment’s
platforms.conf file or to have the value ‘LOCAL’ that always refer to the machine running Autosubmit

• RUNNING: defines if jobs runs only once or once per stardate, member or chunk. Options are: once, date,
member, chunk

• DEPENDENCIES: defines dependencies from job as a list of parents jobs separed by spaces. For example,
if ‘new_job’ has to wait for “old_job” to finish, you must add the line “DEPENDENCIES = old_job”. For
dependencies to jobs running in previous chunks, members or startdates, use -(DISTANCE). For example, for a
job “SIM” waiting for the previous “SIM” job to finish, you have to add “DEPENDENCIES = SIM-1”

For jobs running in HPC platforms, usually you have to provide information about processors, wallclock times and
more . To do this use:

• WALLCLOCK: wallclock time to be submitted to the HPC queue in format HH:MM

• PROCESSORS: processors number to be submitted to the HPC. If not specified, defaults to 1.

• THREADS: threads number to be submitted to the HPC. If not specified, defaults to 1.

• TASKS: tasks number to be submitted to the HPC. If not specified, defaults to 1.

• QUEUE: queue to add the job to. If not specificied, uses PLATFORM default.

There are also another, less used features that you can use:

• FREQUENCY: specifies that a job has only to be run after X dates, members or chunk. A job will always be
created for the last one. If not specified, defaults to 1

• SYNCHRONIZE: specifies that a job with RUNNING=chunk, has to synchronize its dependencies chunks at a
‘date’ or ‘member’ level, which means that the jobs will be unified: one per chunk for all members or dates. If
not specified, the synchronization is for each chunk of all the experiment.

• RERUN_ONLY: determines if a job is only to be executed in reruns. If not specified, defaults to false.

• RERUN_DEPENDENCIES: defines the jobs to be rerun if this job is going to be rerunned. Syntax is identical
to the used in DEPENDENCIES

Example:

[SIM]
FILE = templates/ecearth3/ecearth3.sim
DEPENDENCIES = INI SIM-1 CLEAN-2
RUNNING = chunk
WALLCLOCK = 04:00
PROCESSORS = 1616
THREADS = 1
TASKS = 1

26 Chapter 4. Usage

autosubmit Documentation, Release 3.7.0

4.18 How to add a new platform

Hint: If you are interested in changing the communications library, go to the section below.

To add a new platform, open the <experiments_directory>/cxxx/conf/platforms_cxxx.conf file where cxxx is the ex-
periment identifier and add this text:

[new_platform]
TYPE = <platform_type>
HOST = <host_name>
PROJECT = <project>
USER = <user>
SCRATCH = <scratch_dir>

This will create a platform named “new_platform”. The options specified are all mandatory:

• TYPE: queue type for the platform. Options supported are PBS, SGE, PS, LSF, ecaccess and SLURM and

also the options supported by saga-python library.

• HOST: hostname of the platform

• PROJECT: project for the machine scheduler

• USER: user for the machine scheduler

• SCRATCH_DIR: path to the scratch directory of the machine

• VERSION: determines de version of the platform type

Warning: With some platform types, Autosubmit may also need the version, forcing you to add the parameter
VERSION. These platforms are PBS (options: 10, 11, 12) and ecaccess (options: pbs, loadleveler).

Hint: If you want to run on marenostrum3 with saga communications library, you have to set the

platform type as lsf and the platform version as mn.

Some platforms may require to run serial jobs in a different queue or platform. To avoid changing the job configuration,
you can specify what platform or queue to use to run serial jobs assigned to this platform:

• SERIAL_PLATFORM: if specified, Autosubmit will run jobs with only one processor in the specified platform.

• SERIAL_QUEUE: if specified, Autosubmit will run jobs with only one processor in the specified queue. Auto-
submit will ignore this configuration if SERIAL_PLATFORM is provided

There are some other parameters that you must need to specify:

• BUDGET: budget account for the machine scheduler. If omitted, takes the value defined in PROJECT

• ADD_PROJECT_TO_HOST = option to add project name to host. This is required for some HPCs

• QUEUE: if given, Autosubmit will add jobs to the given queue instead of platform’s default queue

• TEST_SUITE: if true, autosubmit test command can use this queue as a main queue. Defaults to false

• MAX_WAITING_JOBS: maximum number of jobs to be waiting in this platform.

• TOTAL_JOBS: maximum number of jobs to be running at the same time in this platform.

Example:

4.18. How to add a new platform 27

autosubmit Documentation, Release 3.7.0

[platform]
TYPE = SGE
HOST = hostname
PROJECT = my_project
ADD_PROJECT_TO_HOST = true
USER = my_user
SCRATCH_DIR = /scratch
TEST_SUITE = True

4.19 How to change the communications library

In order to handle the remote communications with the different platforms, Autosubmit uses an implementation of a
communications library. There are multiple implementations, so you can choose any of them.

Hint: At this moment there are two available communications libraries which are saga and paramiko.

To change the communications library, open the <experiments_directory>/cxxx/conf/autosubmit_cxxx.conf file where
cxxx is the experiment identifier and change the value of the API configuration variable in the communications section:

[communications]
Communications library used to connect with platforms: paramiko or saga.
Default = paramiko
API = saga

4.20 How to archive an experiment

To archive the experiment, use the command:

autosubmit archive EXPID

EXPID is the experiment identifier.

Warning: this command calls implicitly the clean command. Check clean command documentation.

Warning: experiment will be unusable after archiving. If you want to use it, you will need to call first the
unarchive command

Options:

usage: autosubmit archive [-h] expid

expid experiment identifier

-h, --help show this help message and exit

Example:

autosubmit archive cxxx

28 Chapter 4. Usage

autosubmit Documentation, Release 3.7.0

Hint: Archived experiment will be stored as a tar.gz file on a folder named after the year of the last COMPLETED
file date. If not COMPLETED file is present, it will be stored in the folder matching the date at the time the archive
command was run.

4.21 How to unarchive an experiment

To unarchive an experiment, use the command:

autosubmit unarchive EXPID

EXPID is the experiment identifier.

Options:

usage: autosubmit unarchive [-h] expid

expid experiment identifier

-h, --help show this help message and exit

Example:

autosubmit unarchive cxxx

4.22 How to configure email notifications

To configure the email notifications, you have to follow two configuration steps:

1. First you have to enable email notifications and set the accounts where you will receive it.

Edit autosubmit_cxxx.conf in the conf folder of the experiment.

Hint: Remember that you can define more than one email address divided by a whitespace.

Example:

vi <experiments_directory>/cxxx/conf/autosubmit_cxxx.conf

[mail]
Enable mail notifications
Default = False
NOTIFICATIONS = True
Mail address where notifications will be received
TO = jsmith@example.com rlewis@example.com

2. Then you have to define for which jobs you want to be notified.

Edit jobs_cxxx.conf in the conf folder of the experiment.

Hint: You will be notified every time the job changes its status to one of the statuses defined on the parameter
NOTIFY_ON

4.21. How to unarchive an experiment 29

autosubmit Documentation, Release 3.7.0

Hint: Remember that you can define more than one job status divided by a whitespace.

Example:

vi <experiments_directory>/cxxx/conf/jobs_cxxx.conf

[LOCAL_SETUP]
FILE = LOCAL_SETUP.sh
PLATFORM = LOCAL
NOTIFY_ON = FAILED COMPLETED

4.23 How to request exclusivity or reservation

To request exclusivity or reservation for your jobs, you can configure two platform variables:

Edit platforms_cxxx.conf in the conf folder of the experiment.

Hint: Until now, it is only available for MareNostrum.

Hint: To define some jobs with exclusivity/reservation and some others without it, you can define twice a platform,
one with this parameters and another one without it.

Example:

vi <experiments_directory>/cxxx/conf/platforms_cxxx.conf

[marenostrum3]
TYPE = LSF
HOST = mn-bsc32
PROJECT = bsc32
ADD_PROJECT_TO_HOST = false
USER = bsc32XXX
SCRATCH_DIR = /gpfs/scratch
TEST_SUITE = True
EXCLUSIVITY = True

Of course, you can configure only one or both. For example, for reservation it would be:

Example:

vi <experiments_directory>/cxxx/conf/platforms_cxxx.conf

[marenostrum3]
TYPE = LSF
...
RESERVATION = your-reservation-id

30 Chapter 4. Usage

CHAPTER 5

Defining the workflow

One of the most important step that you have to do when planning to use autosubmit for an experiment is the definition
of the workflow the experiment will use. On this section you will learn about the workflow definition syntax so you
will be able to exploit autosubmit’s full potential

Warning: This section is NOT intended to show how to define your jobs. Please go to Tutorial section for a
comprehensive list of job options.

5.1 Simple workflow

The simplest workflow that can be defined it is a sequence of two jobs, with the second one triggering at the end of the
first. To define it, we define the two jobs and then add a DEPENDECIES attribute on the second job referring to the
first one.

It is important to remember when defining workflows that DEPENDENCIES on autosubmit always refer to jobs that
should be finished before launching the job that has the DEPENDENCIES attribute.

[One]
FILE = one.sh

[Two]
FILE = two.sh
DEPENDENCIES = One

The resulting workflow can be seen on figure 5.1

5.1: Example showing a simple workflow with two sequential jobs

31

autosubmit Documentation, Release 3.7.0

5.2 Running jobs once per startdate, member or chunk

Autosubmit is capable of running ensembles made of various startdates and members. It also has the capability to
divide member execution on different chunks.

To set at what level a job has to run you have to use the RUNNING attribute. It has four posible values: once, date,
member and chunk corresponding to running once, once per startdate, once per member or once per chunk respectively.

[once]
FILE = Once.sh

[date]
FILE = date.sh
DEPENDENCIES = once
RUNNING = date

[member]
FILE = Member.sh
DEPENDENCIES = date
RUNNING = member

[chunk]
FILE = Chunk.sh
DEPENDENCIES = member
RUNNING = chunk

The resulting workflow can be seen on figure 5.2 for a experiment with 2 startdates, 2 members and 2 chunks.

5.2: Example showing how to run jobs once per startdate, member or chunk.

5.3 Dependencies

Dependencies on autosubmit were introduced on the first example, but in this section you will learn about some special
cases that will be very useful on your workflows.

5.3.1 Dependencies with previous jobs

Autosubmit can manage dependencies between jobs that are part of different chunks, members or startdates. The next
example will show how to make wait a simulation job for the previous chunk of the simulation. To do that, we add
sim-1 on the DEPENDENCIES attribute. As you can see, you can add as much dependencies as you like separated by
spaces

[ini]
FILE = ini.sh
RUNNING = member

32 Chapter 5. Defining the workflow

autosubmit Documentation, Release 3.7.0

[sim]
FILE = sim.sh
DEPENDENCIES = ini sim-1
RUNNING = chunk

[postprocess]
FILE = postprocess.sh
DEPENDENCIES = sim
RUNNING = chunk

The resulting workflow can be seen on figure 5.3

Warning: Autosubmit simplifies the dependencies, so the final graph usually does not show all the lines that you
may expect to see. In this example you can see that there are no lines between the ini and the sim jobs for chunks
2 to 5 because that dependency is redundant with the one on the previous sim

5.3: Example showing dependencies between sim jobs on different chunks.

5.3.2 Dependencies between running levels

On the previous examples we have seen that when a job depends on a job on a higher level (a running chunk job
depending on a member running job) all jobs wait for the higher running level job to be finished. That is the case on
the ini sim dependency on the next example.

In the other case, a job depending on a lower running level job, the higher level job will wait for ALL the lower level
jobs to be finished. That is the case of the postprocess combine dependency on the next example.

[ini]
FILE = ini.sh
RUNNING = member

[sim]
FILE = sim.sh
DEPENDENCIES = ini sim-1
RUNNING = chunk

5.3. Dependencies 33

autosubmit Documentation, Release 3.7.0

[postprocess]
FILE = postprocess.sh
DEPENDENCIES = sim
RUNNING = chunk

[combine]
FILE = combine.sh
DEPENDENCIES = postprocess
RUNNING = member

The resulting workflow can be seen on figure 5.4

5.4: Example showing dependencies between jobs running at different levels.

5.4 Job frequency

Some times you just don’t need a job to be run on every chunk or member. For example, you may want to launch the
postprocessing job after various chunks have completed. This behaviour can be achieved by using the FREQUENCY
attribute. You can specify an integer I on this attribute and the job will run only once for each I iterations on the
running level.

Hint: You don’t need to adjust the frequency to be a divisor of the total jobs. A job will always execute at the last
iteration of its running level

[ini]
FILE = ini.sh
RUNNING = member

[sim]
FILE = sim.sh
DEPENDENCIES = ini sim-1
RUNNING = chunk

[postprocess]
FILE = postprocess.sh
DEPENDENCIES = sim

34 Chapter 5. Defining the workflow

autosubmit Documentation, Release 3.7.0

RUNNING = chunk
FREQUENCY = 3

[combine]
FILE = combine.sh
DEPENDENCIES = postprocess
RUNNING = member

The resulting workflow can be seen on figure 5.5

5.5: Example showing dependencies between jobs running at different frequencies.

5.5 Job synchronize

Some times when you have a job running at chunk level, and this job has dependencies, you could want not to run a
job for each experiment chunk, but to run once for all member/date dependencies, maintaining the chunk granularity,
in this cases you can use the SYNCHRONIZE job parameter to determine which kind of synchronization do you want.
See the below examples with and without this parameter.

Hint: This job parameter was thought to work with jobs with RUNNING parameter equals to ‘chunk’.

[ini]
FILE = ini.sh
RUNNING = member

[sim]
FILE = sim.sh
DEPENDENCIES = INI SIM-1

5.5. Job synchronize 35

autosubmit Documentation, Release 3.7.0

RUNNING = chunk

[ASIM]
FILE = asim.sh
DEPENDENCIES = SIM
RUNNING = chunk

The resulting workflow can be seen on figure 5.6

5.6: Example showing dependencies between chunk jobs running without synchronize.

[ASIM]
SYNCHRONIZE = member

The resulting workflow of setting SYNCHRONIZE parameter to ‘member’ can be seen on figure 5.7

5.7: Example showing dependencies between chunk jobs running with member synchronize.

[ASIM]
SYNCHRONIZE = date

The resulting workflow of setting SYNCHRONIZE parameter to ‘date’ can be seen on figure 5.8

36 Chapter 5. Defining the workflow

autosubmit Documentation, Release 3.7.0

5.8: Example showing dependencies between chunk jobs running with date synchronize.

5.6 Rerun dependencies

Autosubmit has the possibility to rerun some chunks of the experiment without affecting everything else. In this case,
autosubmit will automatically rerun all jobs of that chunk. If some of this jobs need another one on the workflow you
have to add the RERUN_DEPENDENCIES attribute and specify which jobs to rerun.

It is also usual that you will have some code that it is needed only in the case of a rerun. You can add this jobs to the
workflow as usual and set the attribute RERUN_ONLY to true. This jobs will be omitted from the workflow in the
normal case, but will appear on the reruns.

[prepare_rerun]
FILE = prepare_rerun.sh
RERUN_ONLY = true
RUNNING = member

[ini]
FILE = ini.sh
RUNNING = member

[sim]
FILE = sim.sh
DEPENDENCIES = ini combine prepare_rerun
RERUN_DEPENDENCIES = combine prepare_rerun
RUNNING = chunk

[postprocess]
FILE = postprocess.sh
DEPENDENCIES = sim
RUNNING = chunk

[combine]
FILE = combine.sh
DEPENDENCIES = postprocess

5.6. Rerun dependencies 37

autosubmit Documentation, Release 3.7.0

RUNNING = member

The resulting workflow can be seen on figure 5.9 for a rerun of chunks 2 and 3 of member 2.

5.9: Example showing a rerun workflow for chunks 2 and 3.

38 Chapter 5. Defining the workflow

CHAPTER 6

Troubleshooting

6.1 How to change the job status stopping autosubmit

This procedure allows you to modify the status of your jobs.

Warning: Beware that Autosubmit must be stopped to use setstatus. Otherwise a running instance of
Autosubmit, at some point, will overwritte any change you may have done.

You must execute:

autosubmit setstatus EXPID -fs STATUS_ORIGINAL -t STATUS_FINAL -s

EXPID is the experiment identifier. STATUS_ORIGINAL is the original status to filter by the list of jobs. STA-
TUS_FINAL the desired target status.

Options:

usage: autosubmit setstatus [-h] [-np] [-s] -t
{READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN,QUEUING,RUNNING}
(-fl LIST
| -fc FILTER_CHUNKS
| -fs {Any,READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}
| -ft FILTER_TYPE)
[--hide]
expid

expid experiment identifier
-h, --help show this help message and exit
-np, --noplot omit plot
-s, --save Save changes to disk
-t {READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN},

--status_final {READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}
Supply the target status

-fl LIST, --list LIST Supply the list of job names to be changed. Default =
"Any". LIST = "cxxx_20101101_fc3_21_sim
cxxx_20111101_fc4_26_sim"

-fc FILTER_CHUNKS, --filter_chunks FILTER_CHUNKS
Supply the list of chunks to change the status.
Default = "Any". LIST = "[19601101 [fc0 [1 2 3 4]
fc1 [1]] 19651101 [fc0 [16-30]]]"

-fs {Any,READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN},
--filter_status {Any,READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}

Select the original status to filter the list of jobs

39

autosubmit Documentation, Release 3.7.0

-ft FILTER_TYPE, --filter_type FILTER_TYPE
Select the job type to filter the list of jobs

Examples:

autosubmit setstatus cxxx -fl "cxxx_20101101_fc3_21_sim cxxx_20111101_fc4_26_sim" -t READY -s
autosubmit setstatus cxxx -fc [19601101 [fc1 [1]]] -t READY -s
autosubmit setstatus cxxx -fs FAILED -t READY -s
autosubmit setstatus cxxx -ft TRANSFER -t SUSPENDED -s

This script has two mandatory arguments.

The -t where you must specify the target status of the jobs you want to change to:

{READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}

The second argument has four alternatives, the -fl, -fc, -fs and -ft; with those we can apply a filter for the jobs we want
to change:

• The -fl variable recieves a list of jobnames separated by blank spaces: e.g.:

"cxxx_20101101_fc3_21_sim cxxx_20111101_fc4_26_sim"

If we supply the key word “Any”, all jobs will be changed to the target status.

• The variable -fc should be a list of individual chunks or ranges of chunks in the following format:

[19601101 [fc0 [1 2 3 4] fc1 [1]] 19651101 [fc0 [16-30]]]

• The variable -fs can be one of the following status for job:

{Any,READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN}

• The variable -ft can be one of the defined types of job.

Hint: When we are satisfied with the results we can use the parameter -s, which will save the change to the pkl file.

6.2 How to change the job status without stopping autosubmit

This procedure allows you to modify the status of your jobs without having to stop Autosubmit.

You must create a file in <experiments_directory>/<expid>/pkl/ named:

updated_list_<expid>.txt

Format:

This file should have two columns: the first one has to be the job_name and the second one the status.

Options:

READY,COMPLETED,WAITING,SUSPENDED,FAILED,UNKNOWN

Example:

vi updated_list_cxxx.txt

cxxx_20101101_fc3_21_sim READY
cxxx_20111101_fc4_26_sim READY

40 Chapter 6. Troubleshooting

autosubmit Documentation, Release 3.7.0

If Autosubmit finds the above file, it will process it. You can check that the processing was OK at a given date and
time, if you see that the file name has changed to:

update_list_<expid>_<date>_<time>.txt

Note: A running instance of Autosubmit will check the existance of avobe file after checking already submitted jobs.
It may take some time, depending on the setting SAFETYSLEEPTIME.

Warning: Keep in mind that autosubmit reads the file automatically so it is suggested to create the file in another
location like /tmp or /var/tmp and then copy/move it to the pkl folder. Alternativelly you can create the file
with a different name an rename it when you have finished.

6.2. How to change the job status without stopping autosubmit 41

autosubmit Documentation, Release 3.7.0

42 Chapter 6. Troubleshooting

CHAPTER 7

Developing a project

Autosubmit is used at BSC to run EC-Earth. To do that, a git repository has been created that contains the model
source code and the scripts used to run the tasks.

7.1: Example of monitoring plot for EC-Earth run with Autosubmit for 1 start date, 1 member and 3 chunks.

The workflow is defined using seven job types, as shown in the figure above. These job types are:

• Local_setup: prepares a patch for model changes and copies it to HPC.

• Remote_setup: creates a model copy and applies the patch to it.

• Ini: prepares model to start the simulation of one member.

• Sim: runs a simulation chunk (usually 1 to 3 months).

• Post: post-process outputs for one simulation chunk.

• Clean: removes unnecessary outputs from the simulated chunk.

• Transfer: transfers post-processed outputs to definitive storage.

43

autosubmit Documentation, Release 3.7.0

Since Autosubmit 2.2 the user can select the desired source repository for the experiment project and using a given
concrete branch is possible. This introduce a better version control system for project and more options to create new
experiments based on different developments by the user. The different projects contain the shell script to run, for each
job type (local setup, remote setup, ini, sim, post, clean and transfer) that are platform independent. Additionally the
user can modify the sources under proj folder. The executable scripts are created at runtime so the modifications on
the sources can be done on the fly.

Warning: Autosubmit automatically adds small shell script code blocks in the header and the tailer of your
scripts, to control the workflow. Please, remove any exit command in the end of your scripts, e.g. exit 0.

Important: For a complete reference on how to develop an EC-Earth project, please have a look in the following
wiki page: https://earth.bsc.es/wiki/doku.php?id=models:models

44 Chapter 7. Developing a project

https://earth.bsc.es/wiki/doku.php?id=models:models

CHAPTER 8

Variables reference

Autosubmit uses a variable substitution system to facilitate the development of the templates. This variables can be
used on the template in the form %VARIABLE_NAME%.

8.1 Job variables

This variables are relatives to the current job.

• TASKTYPE: type of the job, as given on job configuration file.

• JOBNAME: current job full name.

• FAIL_COUNT: number of failed attempts to run this job.

• SDATE: current startdate.

• MEMBER: current member.

• CHUNK: current chunk.

• DAY_BEFORE: day before the startdate

• Chunk_End_IN_DAYS: chunk’s length in days

• Chunk_START_DATE: chunk’s start date

• Chunk_START_YEAR: chunk’s start year

• Chunk_START_MONTH: chunk’s start month

• Chunk_START_DAY: chunk’s start day

• Chunk_START_HOUR: chunk’s start hout

• Chunk_END_DATE: chunk’s end date

• Chunk_END_YEAR: chunk’s end year

• Chunk_END_MONTH: chunk’s end month

• Chunk_END_DAY: chunk’s end day

• Chunk_END_HOUR: chunk’s end hour

• PREV: days since startdate at the chunk’s start

• Chunk_FIRST: True if the current chunk is the first, false otherwise.

• Chunk_LAST: True if the current chunk is the last, false otherwise.

45

autosubmit Documentation, Release 3.7.0

• NUMPROC: Number of processors that the job will use.

• NUMTHREADS: Number of threads that the job will use.

• NUMTASK: Number of tasks that the job will use.

• WALLCLOCK: Number of processors that the job will use.

• NOTIFY_ON: Determine the job statuses you want to be notified.

8.2 Platform variables

This variables are relative to the platoforms defined on the jobs conf. A full set of the next variables are defined
for each platform defined on the platforms configuration file, substituting {PLATFORM_NAME} for each platform’s
name. Also, a suite of varables is defined for the current platform where {PLATFORM_NAME} is substituted by
CURRENT.

• {PLATFORM_NAME}_ARCH: Platform name

• {PLATFORM_NAME}_HOST: Platform url

• {PLATFORM_NAME}_USER: Platform user

• {PLATFORM_NAME}_PROJ: Platform project

• {PLATFORM_NAME}_BUDG: Platform budget

• {PLATFORM_NAME}_RESERVATION: You can configure your reservation id for the given platform.

• {PLATFORM_NAME}_EXCLUSIVITY: True if you want to request exclusivity nodes.

• {PLATFORM_NAME}_TYPE: Platform scheduler type

• {PLATFORM_NAME}_VERSION: Platform scheduler version

• {PLATFORM_NAME}_SCRATCH_DIR: Platform’s scratch folder path

• {PLATFORM_NAME}_ROOTDIR: Platform’s experiment folder path

Hint: The variables _USER, _PROJ and _BUDG has no value on the LOCAL platform.

Hint: Until now, the variables _RESERVATION and _EXCLUSIVITY are only available for MN.

It is also defined a suite of variables for the experiment’s default platform:

• HPCARCH: Default HPC platform name

• HPCHOST: Default HPC platform url

• HPCUSER: Default HPC platform user

• HPCPROJ: Default HPC platform project

• HPCBUDG: Default HPC platform budget

• HPCTYPE: Default HPC platform scheduler type

• HPCVERSION: Default HPC platform scheduler version

• SCRATCH_DIR: Default HPC platform scratch folder path

• HPCROOTDIR: Default HPC platform experiment’s folder path

46 Chapter 8. Variables reference

autosubmit Documentation, Release 3.7.0

8.3 Project variables

• NUMMEMBERS: number of members of the experiment

• NUMCHUNKS: number of chunks of the experiment

• CHUNKSIZE: size of each chunk

• CHUNKSIZEUNIT: unit of the chuk size. Can be hour, day, month or year.

• CALENDAR: calendar used for the experiment. Can be standard or noleap.

• ROOTDIR: local path to experiment’s folder

• PROJDIR: local path to experiment’s proj folder

8.3. Project variables 47

autosubmit Documentation, Release 3.7.0

48 Chapter 8. Variables reference

CHAPTER 9

Module documentation

9.1 autosubmit

9.2 autosubmit.config

9.2.1 autosubmit.config.basicConfig

class autosubmit.config.basicConfig.BasicConfig
Class to manage configuration for autosubmit path, database and default values for new experiments

static read()
Reads configuration from .autosubmitrc files, first from /etc, then for user directory and last for current
path.

9.2.2 autosubmit.config.config_common

9.2.3 autosubmit.config.log

class autosubmit.config.log.Log
Static class to manage the log for the application. Messages will be sent to console and to file if it is configured.
Levels can be set for each output independently. These levels are (from lower to higher priority):

•EVERYTHING : this level is just defined to show every output

•DEBUG

•INFO

•RESULT

•USER_WARNING

•WARNING

•ERROR

•CRITICAL

•NO_LOG : this level is just defined to remove every output

static critical(msg, *args)
Sends critical errors to the log. It will be shown in red in the console.

49

autosubmit Documentation, Release 3.7.0

Parameters

• msg – message to show

• args – arguments for message formatting (it will be done using format() method on str)

static debug(msg, *args)
Sends debug information to the log

Parameters

• msg – message to show

• args – arguments for message formating (it will be done using format() method on str)

static error(msg, *args)
Sends errors to the log. It will be shown in red in the console.

Parameters

• msg – message to show

• args – arguments for message formatting (it will be done using format() method on str)

static info(msg, *args)
Sends information to the log

Parameters

• msg – message to show

• args – arguments for message formatting (it will be done using format() method on str)

static result(msg, *args)
Sends results information to the log. It will be shown in green in the console.

Parameters

• msg – message to show

• args – arguments for message formating (it will be done using format() method on str)

static set_console_level(level)
Sets log level for logging to console. Every output of level equal or higher to parameter level will be
printed on console

Parameters level – new level for console

Returns None

static set_file(file_path)
Configure the file to store the log. If another file was specified earlier, new messages will only go to the
new file.

Parameters file_path (str) – file to store the log

static set_file_level(level)
Sets log level for logging to file. Every output of level equal or higher to parameter level will be added to
log file

Parameters level – new level for log file

static user_warning(msg, *args)
Sends warnings for the user to the log. It will be shown in yellow in the console.

Parameters

• msg – message to show

50 Chapter 9. Module documentation

autosubmit Documentation, Release 3.7.0

• args – arguments for message formating (it will be done using format() method on str)

static warning(msg, *args)
Sends program warnings to the log. It will be shown in yellow in the console.

Parameters

• msg – message to show

• args – arguments for message formatting (it will be done using format() method on str)

class autosubmit.config.log.LogFormatter(to_file=False)
Class to format log output.

Parameters to_file (bool) – If True, creates a LogFormatter for files; if False, for console

format(record)
Format log output, adding labels if needed for log level. If logging to console, also manages font color. If
logging to file adds timestamp

Parameters record (LogRecord) – log record to format

Returns formatted record

Return type str

9.3 autosubmit.database

Module containing functions to manage autosubmit’s database.

exception autosubmit.database.db_common.DbException(message)
Exception class for database errors

autosubmit.database.db_common.base36decode(number)
Converts a base36 string to a positive integer

Parameters number (str) – base36 string to convert

Returns number’s integer value

Return type int

autosubmit.database.db_common.base36encode(number, alpha-
bet=‘0123456789abcdefghijklmnopqrstuvwxyz’)

Convert positive integer to a base36 string.

Parameters

• number (int) – number to convert

• alphabet (str) – set of characters to use

Returns number’s base36 string value

Return type str

autosubmit.database.db_common.check_db()
Checks if database file exist

Returns None if exists, terminates program if not

autosubmit.database.db_common.check_experiment_exists(name, er-
ror_on_inexistence=True)

Checks if exist an experiment with the given name.

9.3. autosubmit.database 51

autosubmit Documentation, Release 3.7.0

Parameters

• error_on_inexistence (bool) – if True, adds an error log if experiment does not
exists

• name (str) – Experiment name

Returns If experiment exists returns true, if not returns false

Return type bool

autosubmit.database.db_common.check_name(name)
Checks if it is a valid experiment identifier

Parameters name (str) – experiment identifier to check

Returns name if is valid, terminates program otherwise

Return type str

autosubmit.database.db_common.close_conn(conn, cursor)
Commits changes and close connection to database

Parameters

• conn (sqlite3.Connection) – connection to close

• cursor (sqlite3.Cursor) – cursor to close

autosubmit.database.db_common.copy_experiment(name, description, version, test=False)
Creates a new experiment by copying an existing experiment

Parameters

• test (bool) – specifies if it is a test experiment

• version (str) – experiment’s associated autosubmit version

• name (str) – identifier of experiment to copy

• description (str) – experiment’s description

Returns experiment id for the new experiment

Return type str

autosubmit.database.db_common.create_db(qry)
Creates a new database for autosubmit

Parameters qry (str) – query to create the new database

autosubmit.database.db_common.delete_experiment(name)
Removes experiment from database

Parameters name (str) – experiment identifier

Returns True if delete is succesful

Return type bool

autosubmit.database.db_common.get_autosubmit_version(expid)
Get the minimun autosubmit version needed for the experiment

Parameters expid (str) – Experiment name

Returns If experiment exists returns the autosubmit version for it, if not returns None

Return type str

52 Chapter 9. Module documentation

autosubmit Documentation, Release 3.7.0

autosubmit.database.db_common.last_name_used(test=False)
Gets last experiment identifier used

Parameters test (bool) – flag for test experiments

Returns last experiment identifier used, ‘empty’ if there is none

Return type str

autosubmit.database.db_common.new_experiment(description, version, test=False)
Stores a new experiment on the database and generates its identifier

Parameters

• version (str) – autosubmit version associated to the experiment

• test (bool) – flag for test experiments

• description (str) – experiment’s description

Returns experiment id for the new experiment

Return type str

autosubmit.database.db_common.open_conn(check_version=True)
Opens a connection to database

Parameters check_version (bool) – If true, check if the database is compatible with this au-
tosubmit version

Returns connection object, cursor object

Return type sqlite3.Connection, sqlite3.Cursor

9.4 autosubmit.date

9.5 autosubmit.git

9.6 autosubmit.job

class autosubmit.job.job_common.StatisticsSnippetBash
Class to handle the statistics snippet of a job. It contains header and tailer for local and remote jobs

class autosubmit.job.job_common.StatisticsSnippetPython
Class to handle the statistics snippet of a job. It contains header and tailer for local and remote jobs

class autosubmit.job.job_common.StatisticsSnippetR
Class to handle the statistics snippet of a job. It contains header and tailer for local and remote jobs

class autosubmit.job.job_common.Status
Class to handle the status of a job

class autosubmit.job.job_common.Type
Class to handle the status of a job

9.4. autosubmit.date 53

autosubmit Documentation, Release 3.7.0

9.7 autosubmit.monitor

9.8 autosubmit.platform

54 Chapter 9. Module documentation

Python Module Index

a
autosubmit.config.basicConfig, 49
autosubmit.config.log, 49
autosubmit.database.db_common, 51
autosubmit.job.job_common, 53

55

autosubmit Documentation, Release 3.7.0

56 Python Module Index

Index

A
autosubmit.config.basicConfig (module), 49
autosubmit.config.log (module), 49
autosubmit.database.db_common (module), 51
autosubmit.job.job_common (module), 53

B
base36decode() (in module autosub-

mit.database.db_common), 51
base36encode() (in module autosub-

mit.database.db_common), 51
BasicConfig (class in autosubmit.config.basicConfig), 49

C
check_db() (in module autosub-

mit.database.db_common), 51
check_experiment_exists() (in module autosub-

mit.database.db_common), 51
check_name() (in module autosub-

mit.database.db_common), 52
close_conn() (in module autosub-

mit.database.db_common), 52
copy_experiment() (in module autosub-

mit.database.db_common), 52
create_db() (in module autosub-

mit.database.db_common), 52
critical() (autosubmit.config.log.Log static method), 49

D
DbException, 51
debug() (autosubmit.config.log.Log static method), 50
delete_experiment() (in module autosub-

mit.database.db_common), 52

E
error() (autosubmit.config.log.Log static method), 50

F
format() (autosubmit.config.log.LogFormatter method),

51

G
get_autosubmit_version() (in module autosub-

mit.database.db_common), 52

I
info() (autosubmit.config.log.Log static method), 50

L
last_name_used() (in module autosub-

mit.database.db_common), 52
Log (class in autosubmit.config.log), 49
LogFormatter (class in autosubmit.config.log), 51

N
new_experiment() (in module autosub-

mit.database.db_common), 53

O
open_conn() (in module autosub-

mit.database.db_common), 53

R
read() (autosubmit.config.basicConfig.BasicConfig static

method), 49
result() (autosubmit.config.log.Log static method), 50

S
set_console_level() (autosubmit.config.log.Log static

method), 50
set_file() (autosubmit.config.log.Log static method), 50
set_file_level() (autosubmit.config.log.Log static

method), 50
StatisticsSnippetBash (class in autosub-

mit.job.job_common), 53
StatisticsSnippetPython (class in autosub-

mit.job.job_common), 53
StatisticsSnippetR (class in autosub-

mit.job.job_common), 53
Status (class in autosubmit.job.job_common), 53

57

autosubmit Documentation, Release 3.7.0

T
Type (class in autosubmit.job.job_common), 53

U
user_warning() (autosubmit.config.log.Log static

method), 50

W
warning() (autosubmit.config.log.Log static method), 51

58 Index

	Introduction
	What is Autosubmit ?
	Why is Autosubmit needed ?
	How does Autosubmit work ?
	Experiment creation
	Experiment configuration
	Experiment run

	Tutorial
	Quick start guide
	First Step: Experiment creation
	Second Step: Experiment configuration
	Third Step: Experiment run
	Fourth Step: Experiment monitor

	Installation
	How to install
	How to configure

	Usage
	Command list
	How to create an experiment
	How to create a copy of an experiment
	How to create a dummy experiment
	How to configure the experiment
	How to check the experiment configuration
	How to run the experiment
	How to test the experiment
	How to monitor the experiment
	How to monitor job statistics
	How to stop the experiment
	How to restart the experiment
	How to rerun a part of the experiment
	How to clean the experiment
	How to refresh the experiment project
	How to delete the experiment
	How to add a new job
	How to add a new platform
	How to change the communications library
	How to archive an experiment
	How to unarchive an experiment
	How to configure email notifications
	How to request exclusivity or reservation

	Defining the workflow
	Simple workflow
	Running jobs once per startdate, member or chunk
	Dependencies
	Dependencies with previous jobs
	Dependencies between running levels

	Job frequency
	Job synchronize
	Rerun dependencies

	Troubleshooting
	How to change the job status stopping autosubmit
	How to change the job status without stopping autosubmit

	Developing a project
	Variables reference
	Job variables
	Platform variables
	Project variables

	Module documentation
	autosubmit
	autosubmit.config
	autosubmit.config.basicConfig
	autosubmit.config.config_common
	autosubmit.config.log

	autosubmit.database
	autosubmit.date
	autosubmit.git
	autosubmit.job
	autosubmit.monitor
	autosubmit.platform

	Python Module Index

