
http://www.SynthWorks.com jim@SynthWorks.com © 2015 by SynthWorks Design Inc. 1506

SynthWorks
VHDL Training Experts

ResolutionPkg Quick
Reference

1. ZeroOneHot, OneHot

signal SA, SB, SC, SD : std_logic;
signal ZOH, OH : Boolean ;

ZeroOneHot returns true when the std_logic_vector
input either has a single one or is all zero.

ZOH <= ZeroOneHot((SA & SB & SC & SD)) ;

OneHot returns true when the std_logic_vector input
either has a single one.

OH <= OneHot((SA & SB & SC & SD)) ;

2. Transaction Handshaking
Used for handshaking between the client side of a
transaction interface and the model.

2.1 RequestTransaction
Request a transaction from the client side (TestCtrl).

procedure DoTransaction(
 ModelRec : inout ModelRecType ;
 DataIn : in DataType
)_ is
begin
 ModelRec.Data <= DataIn ;
 RequestTransaction(
 Req => ModelRec.CmdReq,
 Ack => ModelRec.CmdAck) ;
end procedure DoTransaction ;

2.2 WaitForTransaction
Model side control to wait for client side (TestCtrl) to
request a transaction

ExecuteTransProc : process
begin
 WaitForTransaction(
 Clk => Clk,
 Req => ModelRec.CmdReq,
 Ack => ModelRec.CmdAck
) ;

 -- decode and execute transaction

2.3 WaitForTransaction with Timeout
Model side control to wait for client side (TestCtrl) to
request a transaction with Timeout. The timeout is to
handle applications where the flow needs to be
disrupted by an alternate stream of transactions (such
as an interrupt handler).

ExecuteTransProc : process
begin
 WaitForTransaction(
 Clk => Clk,
 Req => ModelRec.CmdReq,
 Ack => ModelRec.CmdAck,
 TimeOut => InterruptReq,
 Polarity => '1'
) ;

2.4 Finish Transaction Handshaking
Used when handshaking with multiple streams of
transactions.

Finish(Ack => ModelRec.CmdAck) ;

2.5 TransactionPending
Returns true when a steam of transaction has a
transaction ready.

If TransactionPending(Rdy =>
ModelRec.CmdRdy) then
 . . .

3. Process to Process Synchronization
One process toggles a signal using the toggle
procedure, the other process waits until the signal
changes.

3.1 Toggle
Toggle a signal between 0 and 1. Signal type dcan be
either bit or std_ulogic.

Toggle(Sync1) ;
Toggle(Sync2, 2*tperiod_Clk);

3.2 WaitForToggle
Wait until a signal changes. Signal type can be either
bit or std_ulogic.

WaitForToggle(Sync1) ;

4. Barier Synchronization
All processes stop until all processes have reached the
barrier and called WaitForBarrier.

WaitForBarrier(Sync1) ;
WaitForBarrier(Sync2, 25 ms) ;

Type of Sync1 and Sync2 may be either std_logic or

integer_barrier.

signal sync1 : std_logic := '0' ;
Signal sync2 : integer_barrier := 1 ;

5. Waiting for Clock
Wait for clock periods specified in either time units or an
integral number of clock cycles. Is aligned to clock
when it finishes.

WaitForClock(Clk, 5 * Tperiod_Clk);
WaitForClock(Clk, 5) ;

6. Wait for Level
Wait until a signal is at a level.

WaitForLevel(A, '1') ; -- A='1'
WaitForLevel(Bool) ; -- TRUE

7. Create Clock
Create clock with designated period and duty cycle.

CreateClock(
 Clk => Clk,
 Period => 10 ns, -- 100 MHz
 DutyCycle => 0.5 -- Default
) ;

8. Create Reset
Create clock with designated period and duty cycle.
 CreateReset (
 Reset => nReset,
 ResetActive => '0', -- active low
 Clk => Clk,
 Period => 5 * Tperiod_Clk,
 tpd => 2 ns
) ;

9. Clock Polarity
Clock polarity is controlled by the constant
CLK_ACTIVE. This will be changed to a generic in a
future revision.

constant CLK_ACTIVE : std_logic := '1' ;

http://www.SynthWorks.com jim@SynthWorks.com © 2015 by SynthWorks Design Inc. 1506

9.1 CheckFinish
For test completion when using alerts.

SB.CheckFinish(
 FinishCheckCount => 1,
 FinishEmpty => TRUE) ;

If CheckCount < FinishCheckCount then signal an alert
and increment the internal error count. If FinishEmpty is
TRUE and Empty is FALSE then signal an alert and
increment the internal error count.

9.2 GetErrorCount
Only intended for non-alert flows. If not using separate
AlertLogIDs and ReportAlerts, GetErrorCount returns
the current error count.

ErrCnt := SB.GetErrorCount ;

9.3 GetItemCount
Get number of items put into the scoreboard.

print("…" & to_string(SB.GetItemCount));

9.4 GetCheckCount
Get number of items checked by the scoreboard.

print("…" & to_string(SB.GetCheckCount));

9.5 GetDropCount
Get number of items dropped by the scoreboard.

print("…" & to_string(SB.GetDropCount));

9.6 SetName
Gives the scoreboard a name for reporting. Use if using
a single ALertLogID for multiple items (scoreboards or
other).

SB.SetName("Uart Scoreboard") ;

9.7 GetName
Get the scoreboard name

print("…" & SB.GetName) ;

© 2013 by SynthWorks Design Inc. Reproduction of entire
document in whole permitted. All other rights reserved.

SynthWorks Design Inc.
VHDL Design and Verification Training

11898 SW 128th Ave. Tigard OR 97223 (800)-505-8435

http://www.SynthWorks.com jim@synthworks.com

http://www.SynthWorks.com jim@SynthWorks.com © 2015 by SynthWorks Design Inc. 1506

SynthWorks
VHDL Training Experts

10. Tagged Scoreboards
Tagged Scoreboards are used for systems that allow
transactions to execute out of order.

Tags are represented as string values (since most types
convert to string using to_string). A tag value is
specified as the first value in the calls to push, check,
and pop, such as shown below. In all examples,
ExpectedVal has the type ExpectedType, and
ReceiveVal has the type ActualType.

SB.Push("WriteOp", ExpectedVal) ;
SB.Check("WriteOp", ReceiveVal) ;
SB.Pop("WriteOp", ExpectedVal) ;

if SB.Empty("MyTag") then …

For Check (and Pop), the item checked (or returned) is
the oldest item with the matching tag.

ItemNum := SB.Find("ReadOp", ReceiveVal);
SB.Flush("ReadOp", ItemNum) ;

For Flush, only items matching the tag are removed. In
some systems, it may be appropriate to do the Find with
the tag and the flush without the tag.

11. Indexed Scoreboards
Indexed scoreboards emulates arrays of protected
types, since the language does not support this.

Indexed scoreboards are for systems, such as a
network switch that have multiple scoreboards that are
most conveniently represented as an array.

11.1 Setting Array Indices
Use SetArrayIndex to create the array indices. The
following creates an array with indices 1 to 5:

SB.SetArrayIndex(5) ;

To create array indices with a different range, such as 3
to 8, use the following.

SB.SetArrayIndex(3, 8) ;

Slicing and null arrays of scoreboards are not
supported. Negative indices are supported.

11.2 Getting Array Indices
Use GetArrayIndex to get the indices as an
integer_vector.

Index_IV := SB.GetArrayIndex ;

Use GetArrayLength to determine the number of
scoreboards (effectively the length of the array).

Index_int := SB.GetArrayLength ;

11.3 Arrays of Scoreboards
The following operations are appropriate for any array of
scoreboards. Procedures and functions not
documented here are from AlertLogPkg.

-- Create 3 indexed scoreboards
SB.SetArrayIndex(1, 3);

-- TB_ID via AlertLogPkg
TB_ID := GetAlertLogID("TB") ;
SB.SetAlertLogID(1, "SB1", TB_ID) ;
SB.SetAlertLogID(2, "SB2", TB_ID) ;
SB.SetAlertLogID(3, "SB3", TB_ID) ;

-- display PASSED logs via AlertLogPkg
SetLogEnable(TB_ID, PASSED, TRUE) ;

-- Turn off Error messages for SB1
SB1_ID := GetAlertLogID(1) ;
SetAlertEnable(SB1_ID, ERROR, FALSE) ;

-- Check at least 100 items and
-- Finish Empty
SB.CheckFinish(1, 100, TRUE) ;
SB.CheckFinish(2, 100, TRUE) ;
SB.CheckFinish(3, 100, TRUE) ;

-- test completion via AlertLogPkg
ReportAlerts ;

-- Getting Error Counts (non-Alert)
TotalErrorCount :=
 SB.GetErrorCount(1) +
 SB.GetErrorCount(2) +
 SB.GetErrorCount(3);

TotalErrorCountAlt := SB.GetErrorCount ;

11.4 Arrays of Simple Scoreboards
The following are operations appropriate for arrays of
simple scoreboards. In all examples, 4 is the index,
ExpectedVal has the type ExpectedType, and
ReceiveVal has the type ActualType.

SB.Push(4, ExpectedVal) ;
SB.Check(4, ReceiveVal) ;
SB.Pop(4, ExpectedVal) ;

if SB.Empty(4) then …

ItemNum := SB.Find(4, ReceiveVal);
SB.Flush(4, ItemNum) ;

11.5 Arrays of Tagged Scoreboards
The following are operations appropriate for arrays of
tagged scoreboards. In all examples, 4 is the index,
values in quotes are the tag value, ExpectedVal has the
type ExpectedType, and ReceiveVal has the type
ActualType. Operations where either using a tag or not
is appropriate are marked with "**".

SB.Push(4, "WriteOp", ExpectedVal) ;
SB.Check(4, "WriteOp", ReceiveVal) ;
SB.Pop(4, "WriteOp", ExpectedVal) ;

if SB.Empty(4, "MyTag") then … -- **
if SB.Empty(4) then … -- **

ItemNum := SB.Find(4, "Red", ReceiveVal);
-- two possible alternatives
SB.Flush(4, "Red", ItemNum) ; -- **
SB.Flush(4, ItemNum) ; -- **

© 2010 - 2015 by SynthWorks Design Inc. Reproduction of
entire document in whole permitted. All other rights reserved.

SynthWorks Design Inc.
VHDL Design and Verification Training

11898 SW 128th Ave. Tigard OR 97223 (800)-505-8435

http://www.SynthWorks.com jim@synthworks.com

