

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 1
Verbatim copies of this document may be used and distributed without restriction.

Scoreboard Generic
Package

User Guide

User Guide for Release 2017.05

By

Jim Lewis

SynthWorks VHDL Training

Jim@SynthWorks.com

http://www.SynthWorks.com

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 2
Verbatim copies of this document may be used and distributed without restriction.

Table of Contents

1 ScoreboardGenericPkg Overview ... 3

2 Using ScoreboardGenericPkg Package Generics .. 4

3 My Simulator Does Not Support Package Generics .. 5

4 Scoreboard Command Reference ... 6

4.1 Basic Operations .. 6

4.1.1 Scoreboard = Shared Variable ... 6

4.1.2 Push ... 6

4.1.3 Check .. 6

4.1.4 Pop ... 6

4.1.5 SetAlertLogID .. 7

4.1.6 GetAlertLogID .. 7

4.1.7 Find .. 7

4.1.8 Flush ... 7

4.1.9 Empty ... 7

4.1.10 GetItemCount .. 8

4.1.11 GetCheckCount .. 8

4.1.12 GetDropCount .. 8

4.1.13 SetName ... 8

4.1.14 GetName ... 8

4.1.15 Getting the Scoreboard Error Count ... 8

4.2 Tagged Scoreboards .. 9

4.3 Indexed Scoreboards ... 9

4.3.1 Setting Array Indices .. 9

4.3.2 Getting Array Indices ...10

4.3.3 Arrays of Scoreboards ...10

4.3.4 Arrays of Simple Scoreboards ...10

4.3.5 Arrays of Tagged Scoreboards ..11

5 Compiling ScoreboardGenericPkg and Friends ..11

6 About ScoreboardGenericPkg ...11

7 Future Work ...12

8 About the Author - Jim Lewis ...12

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 3
Verbatim copies of this document may be used and distributed without restriction.

1 ScoreboardGenericPkg Overview

A scoreboard is a data structure used for self-checking in an environment where inputs
are closely related to outputs, such as in data transmission (serial ports, networking, …).

Internal to a scoreboard there is a FIFO for holding values and a data checker. The use
model is simple. When the testbench stimulus generation process generates a
transaction, it first sends the transaction (via push) to the scoreboard and then sends the
transaction to the DUT. As a result of the push operation, the scoreboard stores the
transaction value in the scoreboard. When the testbench checking process receives a
transaction, it sends that value to the scoreboard (via check) to be checked. Internally
the scoreboard pops the top value off the FIFO and compares it to the value sent via
check using AffirmIf from the AlertLogPkg.

Pictorially scoreboard operations are as shown in the following block diagram.

DUT: MemIO
Generation Process

SB.Push(…)
UartSend(...)

Check Process

CpuRead (...)
SB.Check(…)

Scoreboard 4A, 4B, 4C, ...4A, 4B, 4C, ...

T

From a VHDL code perspective, this is as follows.

architecture Uart_Test1 of TestCtrl is

 shared variable SB : ScoreboardPType ;

 . . .

begin

 GenerateProc : process

 begin

 SetAlertLogName("UART_Test1") ;

 SB.SetAlertLogId("UART_SB", TB_ID) ;

 SB.Push(X"10") ;

 UartSend(UartTxRec, X"10") ;

 . . .

 SB.Push(X"FF") ;

 UartSend(UartTxRec, X"FF") ;

 TestDone <= TRUE ;

 wait ;

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 4
Verbatim copies of this document may be used and distributed without restriction.

 end process GenerateProc ;

 CheckProc : process

 variable RcvD : std_logic_vector(7 downto 0);

 begin

 while not TestDone loop

 UartGet(UartRxRec, RcvD) ;

 SB.Check(RcvD) ;

 wait for UART_BAUD_PERIOD ;

 end loop ;

 ReportAlerts ;

 end process CheckProc ;

end architecture UART_Test1 ;

Note that the test generation process generates numerous values in using either directed
(shown) or random methods, the checking side is a simple loop. Hence, the big
advantage of using a scoreboard is that the checking side remains simple and has no
need to know what the test generation side is doing.

2 Using ScoreboardGenericPkg Package Generics

The scoreboard package uses package generics to allow the test value type and receive
value type to be changed. Furthermore the function to compare the test value with the
receive value is passed as a subprogram generic to allow more complicated checking than
a simple "=" to be done. In addition there are functions expected_to_string and
actual_to_string to help printing values of ExpectedType and ActualType respectively.
Hence, the interface to the package is:

package ScoreBoardGenericPkg is

generic(

 type ExpectedType ;

 type ActualType ;

 function Match(Actual : ActualType ;

 Expected : ExpectedType) return boolean ;

 function expected_to_string(A: ExpectedType) return string;

 function actual_to_string (A: ActualType) return string

) ;

To use the scoreboard for your tests, you will need to create a package instance. The
following example creates a scoreboard for integer. Note often you will need to reference
the package that defines your types and functions that correspond to ExpectedType,

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 5
Verbatim copies of this document may be used and distributed without restriction.

ActualType, match, expected_to_string, and actual_to_string, however, here for integer
all types and functions are available in package std.standard which is implicitly visible.

-- reference the package that define types and functions.

-- use std.standard.all ; -- implicitly included

package ScoreBoardPkg_integer is new

 osvvm.ScoreBoardGenericPkg

 generic map (

 ExpectedType => integer,

 ActualType => integer,

 match => std.standard."=",

 expected_to_string => to_string,

 actual_to_string => to_string

) ;

3 My Simulator Does Not Support Package Generics

All the simulators we test with support package generics. However, we still have you
covered. Copy ScoreboardGenericPkg.vhd to ScoreboardPkg_integer_c.vhd. Comment
out the generics. Uncomment the subtype and alias declarations that correspond (have
the same name as) to the generics. Configure these aliases exactly as described in the
section titled "Using Scoreboard Package Generics".

The top of your resulting package should look as follows:

-- reference the package that define types and functions.

-- use std.standard.all ; -- implicitly included

package ScoreBoardPkg_integer is

 subtype ExpectedType is integer ;

 subtype ActualType is integer ;

 alias match is std.standard."=" [integer, integer

 return boolean] ;

 alias expected_to_string is

 to_string [integer return string];

 alias actual_to_string is

 to_string [integer return string] ;

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 6
Verbatim copies of this document may be used and distributed without restriction.

4 Scoreboard Command Reference

ScoreboardGenericPkg also supports arrays of scoreboards (via indicies) and out of order
execution (via tags). These are tersely documented in the following command reference
guide.

Caution, anything not documented here is considered experimental (or has been
deprecated) and may be removed in a future version. If you decide to use it and want
it to stay around, be sure to let us know.

4.1 Basic Operations

4.1.1 Scoreboard = Shared Variable

A scoreboard is a shared variable.

shared variable SB : ScoreBoardPType ;

If using more than one scoreboard package instance, disambiguate the types by using a
fully selected name.

shared variable SB_uart :

 work.ScoreBoardPkg_Uart.ScoreBoardPType;

4.1.2 Push

Add expected value (ExpectedType) to the scoreboard.

SB.Push(ExpectedVal) ;

4.1.3 Check

Check a received value (ActualType) with value in scoreboard. If error, increment internal
error count.

SB.Check(ReceiveVal) ;

4.1.4 Pop

Use scoreboard as FIFO, get oldest value. Uses an out mode variable parameter of
ExpectedType.

SB.Pop(ExpectedVal) ;

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 7
Verbatim copies of this document may be used and distributed without restriction.

4.1.5 SetAlertLogID

Create an AlertLogID internal to the Scoreboard. The scoreboard will use this ID for
reporting errors to the AlertLog data structure.

SB.SetAlertLogID(

 Name => "SB_UART",

 ParentID => OSVVM_ALERTLOG_ID -- use your TB_TOP_ID

) ;

There is an alternative form of SetAlertLogID that allows you to pass in an AlertLogID.
This is useful if you want the scoreboard to report errors using the models AlertLogID.

signal ModelID : AlertLogIDType ;

. . .

ModelID <= GetAlertLogID ("Model Instance Name") ;

. . .

SB.SetAlertLogID(ModelID) ;

4.1.6 GetAlertLogID

Get the AlertLogID from the scoreboard internals.

SB_ID := SB.GetAlertLogID ;

4.1.7 Find

Return the ItemNumber of the oldest expected value that matches the received value.
Find + Flush support systems that drop items before they are synchronized.

ItemNum := SB.Find(ReceiveVal) ;

4.1.8 Flush

Quietly drop all values whose item number is less than the specified item number. Find
+ Flush support systems that drop items before they are synchronized.

SB.Flush(ItemNum) ;

4.1.9 Empty

Check if the Scoreboard is empty.

if not SB.Empty then …

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 8
Verbatim copies of this document may be used and distributed without restriction.

4.1.10 GetItemCount

Get number of items put into the scoreboard.

print("…" & to_string(SB.GetItemCount));

4.1.11 GetCheckCount

Get number of items checked by the scoreboard.

print("…" & to_string(SB.GetCheckCount));

4.1.12 GetDropCount

Get number of items dropped by the scoreboard.

print("…" & to_string(SB.GetDropCount));

4.1.13 SetName

Gives the scoreboard a name for reporting. Use if using a single ALertLogID for multiple
items (scoreboards or other).

SB.SetName("Uart Scoreboard") ;

4.1.14 GetName

Get the scoreboard name

print("…" & SB.GetName) ;

4.1.15 Getting the Scoreboard Error Count

The scoreboard reports errors to the AlertLog data structure. Hence, the error count will
be reported with ReportAlerts.

If you require a unique count for each scoreboard, be sure to give the the scoreboard a
unique name when calling SetAlertLogID. Then call GetAlertCount from the AlertLogPkg.
This is shown below.

ScoreboardErrorCount := GetAlertCount(SB.GetAlertLogID) ;

There is also a method, GetErrorCount, that returns this value.

ErrCnt := SB.GetErrorCount ;

In release 2016.07 and earlier releases, GetErrorCount returns the value stored in an
internal error counter. In a future revision, it will return the value
GetAlertCount(SB.GetAlertLogID). Hence, be sure to SetAlertLogID.

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 9
Verbatim copies of this document may be used and distributed without restriction.

4.2 Tagged Scoreboards

Tagged Scoreboards are used for systems that allow transactions to execute out of order.

Tags are represented as string values (since most types convert to string using to_string).
A tag value is specified as the first value in the calls to push, check, and pop, such as
shown below. In all examples, ExpectedVal has the type ExpectedType, and ReceiveVal
has the type ActualType.

SB.Push("WriteOp", ExpectedVal) ;

SB.Check("WriteOp", ReceiveVal) ;

SB.Pop("WriteOp", ExpectedVal) ;

if SB.Empty("MyTag") then …

For Check (and Pop), the item checked (or returned) is the oldest item with the matching
tag.

ItemNum := SB.Find("ReadOp", ReceiveVal);

SB.Flush("ReadOp", ItemNum) ;

For Flush, only items matching the tag are removed. In some systems, it may be
appropriate to do the Find with the tag and the flush without the tag.

4.3 Indexed Scoreboards

Indexed scoreboards emulates arrays of protected types, since the language does not
support this.

Indexed scoreboards are for systems, such as a network switch that have multiple
scoreboards that are most conveniently represented as an array.

4.3.1 Setting Array Indices

Use SetArrayIndex to create the array indices. The following creates an array with indices
1 to 5:

SB.SetArrayIndex(5) ;

To create array indices with a different range, such as 3 to 8, use the following.

SB.SetArrayIndex(3, 8) ;

Slicing and null arrays of scoreboards are not supported. Negative indices are supported.

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 10
Verbatim copies of this document may be used and distributed without restriction.

4.3.2 Getting Array Indices

Use GetArrayIndex to get the indices as an integer_vector.

Index_IV := SB.GetArrayIndex ;

Use GetArrayLength to determine the number of scoreboards (effectively the length of
the array).

Index_int := SB.GetArrayLength ;

4.3.3 Arrays of Scoreboards

The following operations are appropriate for any array of scoreboards. Procedures and
functions not documented here are from AlertLogPkg.

-- Create 3 indexed scoreboards

SB.SetArrayIndex(1, 3);

-- SB_TOP_ID via AlertLogPkg

SB_TOP_ID := GetAlertLogID("Scoreboard TOP") ;

SB.SetAlertLogID(1, "SB1", SB_TOP_ID) ;

SB.SetAlertLogID(2, "SB2", SB_TOP_ID) ;

SB.SetAlertLogID(3, "SB3", SB_TOP_ID) ;

-- display PASSED logs via AlertLogPkg

SetLogEnable(SB_TOP_ID, PASSED, TRUE) ;

-- Turn off Error messages for SB1

SB1_ID := GetAlertLogID(1) ;

SetAlertEnable(SB1_ID, ERROR, FALSE) ;

-- test completion via AlertLogPkg (the easy way)

ReportAlerts ;

4.3.4 Arrays of Simple Scoreboards

The following are operations appropriate for arrays of simple scoreboards. In all
examples, 3 is the index, ExpectedVal has the type ExpectedType, and ReceiveVal has
the type ActualType.

SB.Push(3, ExpectedVal) ;

SB.Check(3, ReceiveVal) ;

SB.Pop(3, ExpectedVal) ;

if SB.Empty(3) then …

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 11
Verbatim copies of this document may be used and distributed without restriction.

ItemNum := SB.Find(3, ReceiveVal);

SB.Flush(3, ItemNum) ;

4.3.5 Arrays of Tagged Scoreboards

The following are operations appropriate for arrays of tagged scoreboards. In all
examples, 3 is the index, values in quotes are the tag value, ExpectedVal has the type
ExpectedType, and ReceiveVal has the type ActualType. Operations where either using
a tag or not is appropriate are marked with "**".

SB.Push(3, "WriteOp", ExpectedVal) ;

SB.Check(3, "WriteOp", ReceiveVal) ;

SB.Pop(3, "WriteOp", ExpectedVal) ;

if SB.Empty(3, "MyTag") then … -- **

if SB.Empty(3) then … -- **

ItemNum := SB.Find(3, "Red", ReceiveVal);

-- two possible alternatives

SB.Flush(3, "Red", ItemNum) ; -- **

SB.Flush(3, ItemNum) ; -- **

5 Compiling ScoreboardGenericPkg and Friends

See OSVVM_release_notes.pdf for the current compilation directions. Rather than
referencing individual packages, we recommend using the context declaration:

library OSVVM ;

 context osvvm.OsvvmContext ;

6 About ScoreboardGenericPkg

ScoreboardGernericPkg was developed and is maintained by Jim Lewis of SynthWorks.
It has been used for years in our Advanced VHDL Testbenches and Verification class.

We held it back from the OSVVM library waiting for current tool releases to support VHDL-
2008 generic packages and resolve some of the bugs. At this point, main stream VHDL
simulators seem to be ready.

Please support our effort in supporting ScoreboardGernericPkg and OSVVM by purchasing
your VHDL training from SynthWorks.

ScoreboardGernericPkg is released under the Perl Artistic open source license. It is free
(both to download and use - there are no license fees).

Copyright © 2016 by SynthWorks Design Inc. All rights reserved. 12
Verbatim copies of this document may be used and distributed without restriction.

If you add features to the package, please donate them back under the same license as
candidates to be added to the standard version of the package. If you need features, be
sure to contact us. I blog about the packages at http://www.synthworks.com/blog. We
also support the OSVVM user community and blogs through http://www.osvvm.org.

Currently the OSVVM family of packages can be downloaded from either osvvm.org or
from our GitHub site: https://github.com/JimLewis/OSVVM.

Find any innovative usage for the package? Let us know, you can blog about it at
osvvm.org.

7 Future Work

ScoreboardGernericPkg is a work in progress and will be updated from time to time.

Caution, undocumented items are experimental and may be removed in a future version.

8 About the Author - Jim Lewis

Jim Lewis, the founder of SynthWorks, has thirty plus years of design, teaching, and
problem solving experience. In addition to working as a Principal Trainer for SynthWorks,
Mr Lewis has done ASIC and FPGA design, custom model development, and consulting.

Mr. Lewis is chair of the IEEE 1076 VHDL Working Group (VASG) and is the primary
developer of the Open Source VHDL Verification Methodology (OSVVM.org) packages.
Neither of these activities generate revenue. Please support our volunteer efforts by
buying your VHDL training from SynthWorks.

If you find bugs these packages or would like to request enhancements, you can reach
me at jim@synthworks.com.

