
http://www.SynthWorks.com     jim@SynthWorks.com   © 2015 by SynthWorks Design Inc. 1506  

SynthWorks  
VHDL Training Experts 

 
CoveragePkg Quick Ref 

 
1. Item Coverage 
Item coverage tracks relationships within a single 
object.  For example, tracking bins of values for a 
transfer may look at the ranges, 1, 2, 3, 4 to 127, 128 to 
252, 253, 254, and 255.   The steps to model coverage 
are: 

 Reference packages 
 Declare the coverage object 
 Model coverage  
 Accumulate coverage 
 Detecting when done 
 Print Results 

2. Reference Packages 
Using CoveragePkg requires the following references.  
To compile these see section Error! Reference source 
not found. Error! Reference source not found.. 
 

library osvvm ;  
use osvvm.CoveragePkg.all ;  
 

3. Declare the Coverge Object 
Coverage is modeled using a data structure stored 
inside of a coverage object. The coverage object is a 
shared variable of type CovPType, such as Cov below.   
 

architecture Test1 of tb is 
  shared variable Cov : CovPType ;   
 

4. Model Coverage: Item Coverage 
A coverage model is constructed by using one or more 
calls to the method AddBins and the function GenBin.  
GenBin takes a range and breaks it into a set of bins.   
AddBins inserts these bins into the coverage model.  
The version of GenBin shown below has three 
parameters: min value, max value, and number of bins.  
The call, GenBin(1,3,3), breaks the range 1 to 3 into the 
3 separate bins with ranges 1 to 1, 2 to 2, 3 to 3.   
 

Cov1.AddBins(GenBin(1, 3, 3)) ;   
 

Additional calls to AddBins appends additional bins to 
the data structure.  As a result, the call, GenBin(4, 252, 
2), appends two bins with the ranges 4 to 127 and 128 
to 252 respectively to the coverage model. 
     

Cov1.AddBins(GenBin(  4, 252, 2)) ;  
 

GenBin with two parameter, min value and max value, 
creates one bin per value.  As a result, the call 
GenBin(253, 255) appends three bins with the ranges 
253 to 253, 254 to 254, and 255 to 255. 
 

Cov1.AddBins(GenBin(253, 255)) ;  
 

5. Accumulate Coverage: Item Coverage 
Coverage is accumulated using the method ICover.  
The following example uses clock based sampling. 
 

loop  
  wait until rising_edge(Clk) and E='1'; 
  Cov1.ICover(to_integer(Data_slv)) ;  
end loop ; 
 

6. Detecting when Done 
The method IsCovered returns true when the functional 
coverage reaches 100%.  The example below uses 
IsCovered to exit when done  
 

while not Cov1.IsCovered loop  
  wait until rising_edge(Clk) and E='1'; 
  Cov1.ICover(to_integer(Data_slv)) ;  
end loop ; 
 

7. Print Results 
WriteBin is used to print the coverage results.   
 

Cov1.WriteBin ; -- Print Results 
 

WriteCovHoles is used to print just the hole information. 
 

Cov1.WriteCovHoles ; -- Print Holes 

8. Item Coverage, Complete Example 
 

library osvvm ;  
use osvvm.CoveragePkg.all ;  
architecture Test1 of tb is 
  shared variable Cov1 : CovPType ;   
begin 
  TestProc : process 
  begin 
    Cov1.AddBins(GenBin(1, 3)) ;   
    Cov1.AddBins(GenBin(4, 252, 2)) ; 
    Cov1.AddBins(GenBin(253, 255 )) ;  
    while not Cov1.IsCovered loop --Done? 
      wait until rising_edge(Clk) ; 
      Cov1.ICover(to_integer(RxData)) ;  

    end loop ; 
    Cov1.WriteBin ; -- Print Results 
    wait ;  
  end process ; 
 

9. Cross Coverage 
Cross coverage examines the relationships between 
different objects, such as making sure that each register 
source has been used with an ALU.   
 

The steps for modeling cross coverage are the same 
steps used for item coverage: declare, model, 
accumulate, interact, and report.   Collecting cross 
coverage only differs in the model and accumulate 
steps. 
10. Model Coverage: Cross Coverage 
The method AddCross creates the cross product of the 
set of bins (created by GenBin) on its inputs.  The code 
below creates an 8 x 8 cross.  Each call to GenBin(0,7) 
creates the 8 bins: 0, 1, 2, 3, 4, 5, 6, 7.  The AddCross 
creates the 64 bin cross product of these bins.  
 

Cov.AddCross( GenBin(0,7), GenBin(0,7) );  
 

AddCross supports crossing from 2 to 20 items.   
11. Accumulate Coverage: Cross Coverage 
To accumulate cross coverage the ICover parameter 
becomes an integer_vector, with one integer value per 
element in the cross product. 
 

Cov.ICover( (Src1, Src2) ) ;   
 

12. Cross Coverage, Complete Example 
 

In the following example, coverage is accumulated on a 
transaction basis. 
architecture Test2 of tb is 
  shared variable Cov : CovPType ;  
begin 
  TestProc : process  
    variable Src1, Src2 : integer ; 
  begin 
   Cov.AddCross(GenBin(0,7),GenBin(0,7));   
    while not Cov.IsCovered loop  
      -- Generate test values,  
      -- see 14 Intelligent Coverage 
      (Src1, Src2) := Cov.RandCovPoint ; 
      DoAluOp(TRec, Src1, Src2) ;     
      Cov.ICover( (Src1, Src2) ) ;   
    end loop ; 



http://www.SynthWorks.com     jim@SynthWorks.com   © 2015 by SynthWorks Design Inc. 1506  

    ACov.WriteBin ;  -- Report  
    EndStatus(. . . ) ;    
  end process ;    
 

13. Constrained Random is Slower 
Constrained random uses uniform randomization to 
generate tests.  For example in the last example, we 
could have used two calls RandInt to generate the test 
values. 
 

Src1 := RV.RandInt(0, 7) ;      
Src2 := RV.RandInt(0, 7) ;  
 

The problem with constrained random testbenches is 
that they repeat test cases before generating all test 
cases.  In general to generate N cases, it takes "N * log 
N" randomizations.  The "log N" represents repeated 
test cases and significantly adds to simulation run 
times.   The above calls result in around 5X redundant 
vectors.   
14. Intelligent Coverage 
Ideally when we randomize a test we would like to only 
generate the N test cases we need.  Intelligent 
Coverage does this by doing a random walk across the 
coverage model. 
 

The method RandCovPoint randomly selects a hole in 
the coverage model and passes this to the stimulus 
generation.  For item coverage it returns an integer 
value and for cross coverage it returns an 
integer_vector value.  The previous cross coverage 
example uses the following call to generate stimulus.  
 

(Src1, Src2) := Cov.RandCovPoint ; 

15. Weighted Intelligent Coverage 
By default, the coverage goal is 1.  AddBins and 
AddCross are overloaded to support coverage goals 
larger than 1.  For example, the following sets each bin 
in the cross to have a coverage goal of 10. 
 

Cov.AddCross(10,GenBin(0,7),GenBin(0,7)); 
 

The coverage goal is specified as the first parameter to 
AddBins or AddCross. 
 

The coverage goal is also used as the randomization 
weight.  Hence, bins with larger coverage goals are 
generated more often.  This can be used to generate 
some conditions, transactions, or sequences more than 
others.  Such as more normal transactions than error 
transactions.  The following generates the value 0 70% 
of the time, a 1 20% of the time, and a 2 10% of the 
time. 
 

Cov1.AddBins( 70, GenBin(0) ) ;  
Cov1.AddBins( 20, GenBin(1) ) ; 
Cov1.AddBins( 10, GenBin(2) ) ; 
 

16. Randomization Weights 
Randomization Weights help balance randomization 
when coverage goals are > 1.  By default the coverage 
goal is used at the randomization weight.  This behavior 
can be changed by the method SetWeightMode.  There 
are currently two relevant values:  AT_LEAST (default, 
use coverage goal as weight) and REMAIN (use 
coverage goal – current coverage as the weight).   
 

Cov.SetWeightModel(REMAIN); 
 

See also Thresholds. 
17. Thresholds 
Thresholds are designed to balance randomization 
when coverage goals are > 1.  Rather than randomly 
selecting any bin whose coverage < 100%, only bins 
that are <= (MinCov + Threshold) are randomly 
selected. 
 

Cov.SetCovThreshold(30.0); -- default 45 
 

Thresholding can be disabled (FALSE) or enabled 
(TRUE) by using SetThresholding. 
 

Cov.SetThresholding(FALSE);  
 

See also Randomization Weights.   
18. Increasing / Decreasing run length 
Adjusting coverage target increases or decreases run 
length.  Coverage target is a multiplier that impacts 
each coverage goal.  Default value is 100.0 which 
indicates use the coverage goal as it is.   The following 
increases run length by 10X: 
 

Cov.SetCovTarget( 1000.0 ); -- = 100 * 10 
 

The following decreases run length by 10X: 
 

Cov.SetCovTarget( 10.0 ); -- = 100 / 10 
 

19. Illegal Bins 
Illegal bins signal the receipt of illegal (invalid) values.  
Illegal bins are not for handled errors (such as parity 
errors).  Illegal bins are never generated by Intelligent 
Coverage.   
 

The method IllegalBin (similar to GenBin) designates a 
bin to be an illegal bin.   The following creates the range 
1 to 9 in a single illegal bin. 
 

IllegalBin(1,9) 
 

The method SetIllegalMode controls signaling when a 
value is in an illegal bin.  See the CoveragePkg User 
Guide for details 
 
 

Errors detected by the coverage model are reported as 
alerts and can reported using ReportAlerts.   
20. Setting the Internal AlertLogID 
Errors signaled by CoveragePkg use Alerts and the 
internal AlertLogIDVar.  By default the value is 
OSVVM_ALERT_LOG_ID.  It can be set to something 
different by SetAlertLogID.  There are two forms of 
SetAlertLogID.  The first form is intended to be used 
when an AlertLogID is shared with other items in the 
testbench.  It is called as follows.   
 

Cov.SetAlertLogID(UartID) ;  
 

The second form is intended to create an AlertLogID 
that is exclusive to the coverage model.  It is called as 
follows.   
 

Cov.SetAlertLogID("UartCov", UartID);  
 

21. Constants Coverage Type 
The return value from GenBin is of type CovBinType.  It 
is defined as follows. 
 

type CovBinType is array  
  (natural range <>) of CovBinBaseType;  
 

This allows the definition of constants. 
 

constant REG_COV :  
CovBinType := GenBin(0,7) ;  

 

22. Reports and Files 
By default WriteBin and WriteCovHoles use the file 
specified by TranscriptPkg (either TranscriptFile, 
OUTPUT, or both if Mirroring is enabled).   
 
They also support usage of local file by using a string 
based file parameter:   
 

Cov1.WriteBin("Test1.txt", WRITE_MODE)  ;  



http://www.SynthWorks.com     jim@SynthWorks.com   © 2015 by SynthWorks Design Inc. 1506  

 

See the user guide for more options. 
23. Additional Features 
See CoveragePkg_Users_Guide.pdf for more 
information.    
 
 

 

© 2015 by SynthWorks Design Inc.  Reproduction of entire 
document in whole permitted.  All other rights reserved. 

SynthWorks Design Inc. 
VHDL Intro, RTL, and Verification Training 
 

11898 SW 128th  Ave.  Tigard OR  97223      (800)-505-8435 
 

http://www.SynthWorks.com    jim@synthworks.com 


