Memo: Phasing in pyuvdata

Bryna Hazelton, Miguel Morales and the pyuvdata team

June 28, 2018

1 Introduction

This memo discusses the phase types that are supported in pyuvdata, the implementation
of phasing in pyuvdata (based on the authors’ conceptual understanding of phasing in
radio interferometry) and the testing that has been done on the pyuvdata phasing code.

2 Types of phasing supported in pyuvdata

pyuvdata supports two primary kinds of phasing, zenith drift phasing (drift) and data
that are phased to one particular RA and Dec defined at a particular epoch (phased)
with very limited support for labelling and handling other or unknown phasing situa-
tions (unknown). Which kind of phasing any given UVData object has is stored in the
phase_type attribute (allowed values: drift, phased, unknown).

Zenith drift phasing is the phasing type that natively comes off of many low-frequency
radio telescope correlators (e.g. MWA, PAPER), meaning that the correlations for each
time are calculated phased to zenith (i.e. with no baseline-dependent phase applied). The
baseline location vectors, the uvw_array attribute, are then just given by the antenna
separations in a local East-North-Up (ENU, also called topocentric) coordinate system for
all times.

Phased data sets have had rotations applied to the u, v, w coordinates (the ENU
baseline location vectors) and baseline-dependent phasing applied to the visibilities to make
the visibilities add coherently toward a particular RA and Dec defined at a particular epoch
(typically J2000). Phased data sets have thus been corrected to account for the motion of
the earth (rotation, precession, nutation and aberration due to the earth’s motion around
the sun). This is generally required for imaging and to save the data in some file formats
(e.g. uvfits).

Moving between these phase types requires functionality to phase zenith drift data to
any given RA and Dec (defined at an epoch) and the ability to undo the phasing to get
back to zenith drift. Changing between different phase centers can be achieved by first
unphasing to drift and then phasing to the new phase center.



3 Conceptual description of phasing

Phasing seems like it should be straightforward, but is actually quite subtle. The phasing
implemented in pyuvdata should handle most imaging and widefield radio telescopes to
good accuracy, but is not accurate enough for VLBI. For a full description of astrometry
and phasing the reader is encouraged to read the USNO Circular 179 [1], the astropy doc-
umentation, and the paper by Kaplan [2] relating optical and radio astrometric traditions
and nomenclature. Here we give a very abbreviated conceptual description of phasing as
implemented in pyuvdata.

We find it useful to think about a pair of antennas on the ground with a fixed physical
separation. The baseline between the antennas with respect to the fixed stars (well, really
AGN) of course depends on LST as the Earth spins, but over longer periods of time the
orientation also changes with the precession and nutation of the Earth’s spin axis. So at
the same LST separated by a sidereal year the orientation of the antennas will change due
to the motion of the Earth’s pole. A widefield camera will see both the field center (phase
center) and field orientation (rotation) change due to this effect.

However, there is a additional relativistic effect that depends on the velocity of the
antennas at the time of observation. An observer at the barycenter of the solar system will
see the distance between the antennas relativistically shorten and rotate (Terrell rotation)
due to the velocity of the Earth around the solar system (and to a lesser degree the
movement of the antennas due to Earth rotation). This effect is known as ‘aberration’ and
is a 20” scale effect over the course of a year. From the radio perspective, if we define the
location of distant AGN relative to the solar system barycenter (so they don’t move with
time during a year), then the baseline is shortened and rotated in this barycentric frame
relative to the locations on the ground due to the special relativistic transform between
the frames.'

So “J2000 coordinates” is more properly known as the ICRS frame: a set of coordinates
defined by the locations of distant quasars in the barycenter inertial frame. ICRS coordi-
nates do not change with time. To phase properly we need to translate the baselines into
the ICRS frame. We start with the uvw or antenna positions on the ground relative to the
array center (East-North-Up). This is then translated into coordinates fixed to the earth
and centered at the earth’s center (ITRS, also referred to as ITRF or Earth Centered Earth
Fixed ECEF). Conceptually we can then unwind the Earth’s rotation (approximately LST)
and the motion of the pole to put this into a coordinate system that is centered on the
Earth but does not rotate and is aligned with J2000—the GCRS frame. But the GCRS
frame is still orbiting with the earth, so has a large velocity. To correct for relativistic
aberration we must apply the relativistic length contractions to transform to the barycen-
tric ICRS frame. In practice astropy goes directly from ITRS coordinates locked to the

!The barycenter is actually not an inertial frame due to motion of the solar system around the galaxy,
and this is not a small effect (e.g. 200”). However, this is hard to measure and changes slowly, so the
barycenter is assumed to be inertial. But travelers over StarTrek distances should beware.



Earth to ICRS barycentric J2000 coordinates, without going through GCRS.

At this point we finally have what the baseline distances and orientations appear to be
for light from distant astronomical sources. We can then pick a phase center (direction of
zero delay), and phase the data correctly in that J2000 direction.

It should be noted that this calculation ignores a couple of important effects. First, we
assumed the same observation time for both antennas. While the antennas don’t move a
large distance between when the wavefront hits one antenna and when it hits the other, this
is an important effect for VLBI. This leads to a small baseline correction that depends on
the direction of the source, and as such does not fit will into the mental model of pyuvdata.
Or said another way, the pyuvdata corrections should correctly apply relativistic aberration
at the field center and the first order-stretch across the field, but higher order distortions
are not included. Similarly doppler shifts and relative doppler shifts are not accounted for
in pyuvdata phasing.

4 How phasing is done in pyuvdata

pyuvdata’s phasing uses astropy to do all the coordinate conversions between earth
referenced and solar-system barycenter referenced coordinate systems (called ‘frames’ in
astropy). Of particular interest are the ITRS frame, which is fixed to the earth and rotates
with the earth, useful for describing antenna and telescope locations, and the ICRS frame
which is a non-rotating frame referenced to the solar system barycenter with axes aligned
with J2000 axes, useful for defining fixed celestial sources like radio galaxies. One other
frame that can be useful is the GCRS frame which is non-rotating with axes aligned with
ICRS but geo-center referenced so that it moves with the earth around the solar system
barycenter.

Phasing and unphasing in pyuvdata works from the existing uvw_array by default,
but can optionally work from the antenna positions (by setting use_ant_pos=True). By
default, phasing and unphasing use the ICRS frame for the phased uvws, but the code
can optionally phase to and from GCRS (by setting phase_frame=GCRS). This is not as
accurate, but is included to support testing against other codes (e.g. MWA_tools) and to
support unphasing data sets that were originally phased to GCRS (e.g. MWA uvfits files).

To phase zenith drift data, the code performs the following steps:

e Define the phase center in an astropy ICRS frame. If the epoch is ‘J2000” or ‘2000’
use the RA and Dec to define a SkyCoord in the ICRS frame. Otherwise define a
SkyCoord in the ‘FK5’ frame at the given RA, Dec and epoch and convert it to an
ICRS frame for phasing. This means that all phasing is done in the ICRS (J2000)
frame, but if the RA and Dec are specified at another epoch, the RA and Dec are
converted to ICRS before phasing. Optionally transform the phase center to the
GCRS frame if phasing to GCRS.



e For each time in the time_array attribute: Define the telescope location as a Sky-
Coord object in the ITRS frame with obstime equal to the time.

e For each time in the time_array attribute: Define the antenna positions or uvws as
a SkyCoord object in the ITRS frame with obstime equal to the time. For antenna
positions, this requires combining the telescope_location attribute (which holds
the telescope location in the ITRS frame) and antenna_positions attribute (which
holds the antenna positions relative to the telescope location in the ITRS frame). For
uvws (which are intrinsically in an ENU frame) this requires converting from ENU
to ITRS using pyuvdata.utils.ECEF_from_ENU using the telescope_location
attribute as well as the uvw_array attribute.

e For each time in the time_array attribute: Transform the telescope location and the
antenna positions or uvws to the ICRS frame (or GCRS if phasing to GCRS).

e Calculate the relative antenna positions or uvws in the ICRS (or GCRS) frame by
subtracting the telescope location in the ICRS (or GCRS) frame.

e Calculate the phased antenna positions or uvws using the pyuvdata.utils.phase_uvw
function®. If using antenna positions, difference these phased positions to calculate
the uvws for each baseline.

To unphase to drift, the steps are essentially followed in reverse order and unit testing
guarantees that phasing followed by unphasing gets back to nearly the same answer. A
cycle of phasing and unphasing does incur some error, differences between the u, v, w
coordinates before and after such a cycle are about 3 — 7 x 107° and these errors scale
linearly with the number of cycles. This error comes from astropy, which can be seen
by a cycle of converting antenna positions from ITRS to ICRS and back to ITRS, which
introduces errors on the same scale. The investigations of these errors are documented in
two Jupyter notebooks®.

5 Testing pyuvdata’s phasing

The primary external testing reference for pyuvdata’s phasing code is the MWA phasing
code found in the MWA_tools repository under CONV2UVFITS (also in the MWA Cotter

20ne way to think about what this function does is that is mathematically identical to calculating ENU
values, except that it is in the ICRS (or GCRS) frame and the center of the ENU coordinate system is
given by the phase center. This makes sense in that if you choose a phase center which is aligned with
zenith at the observation time, the changes to the uvws are small and are just due to the changes in the
earth spin axis (due to precession and nutation) and the length contraction due to earth’s motion around
the sun (aberration, excluded if phasing to GCRS).

3https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/phase_unphase_
match_mwa.ipynb and https://github.com/bhazelton/random_stuff/blob/master/jupyter_
notebooks/phase_unphase_match_5Skm_sim.ipynb


https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/phase_unphase_match_mwa.ipynb
https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/phase_unphase_match_mwa.ipynb
https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/phase_unphase_match_5km_sim.ipynb
https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/phase_unphase_match_5km_sim.ipynb

code?). The MWA code uses the SLA C Library which is proprietary. The authors of this
memo and of the pyuvdata code did not attempt to copy or replicate parts of the SLA
library, they simply compared calculations done using astropy to calculations performed
in the MWA code (which calls the SLA library routines in various ways).

The calculation comparisons made in this process are documented in a Jupyter note-
book® and the ones most relevant to the phasing code have been extracted into unit tests
(in test_utils.py).

5.1 Limitations of the MWA reference code

By comparing the values calculated by the MWA code at various stages to values calculated
using various astropy conversions, the authors of this memo determined that the MWA
code is only correcting the u, v, w coordinates for precession and nutation and not for
aberration. This is supported by a few lines of evidence, one is that the uvw correction is
done using a rotation matrix, which cannot account for length contraction and the other is
that the corrected values closely match the values generated using astropy conversions to
the GCRS frame, but not to conversions to the ICRS frame (which differ by the inclusion
of the effects of earth’s motion around the sun, also called aberration).

In addition, there are some discrepancies in the LST calculations done in the MWA code
and in astropy. The MWA code uses the mean LST to calculate the RA of zenith in the
True Equator and Equinox frame (TEE, also referred to as the current epoch). The mean
LST calculated by astropy differs from the mean LST calculated in the MWA code by
about 4 arcseconds at the particular time used for testing (mjd = 55780.1). Furthermore,
the authors believe that the LST used in this calculation should actually be the apparent
LST (which corrects for nutation in addition to precession). The apparent LST calculated
by astropy differs from the mean LST calculated in the MWA code by about 12 arceseconds
at the same testing time. Note that the LST is not used in pyuvdata’s phasing code, instead
all the precession and nutation corrections are applied in the astropy frame conversions.

5.2 External phasing test

We received a couple uvfits files from David Kaplan containing identical MWA data phased
to two different phase centers. The authors presume that the phasing was done with
the MWA phasing code (likely as implemented in Cotter). To test our phasing code,
we compared the u, v, w coordinates from each file after unphasing both files and after
unphasing and rephasing one of the files to the phase center of the other file (all us-
ing phase_frame=GCRS). The results show that the uvws in each comparison (drift and
rephased) agree to better than 2 cm. We also did the unphase and rephase test with cal-

‘https://github.com/MWATelescope/cotter
Shttps://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/phasing_
compare_mwatools.ipynb


https://github.com/MWATelescope/cotter
https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/phasing_compare_mwatools.ipynb
https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/phasing_compare_mwatools.ipynb

culating the uvws based on the antenna positions (rather than working with the uvws in
the file) and in that test the uvws agree to better than 5 mm. These tests are documented
in a Jupyter notebook®.

We extracted a single time and 10 frequencies from these files and used the cut-down
files in unit tests (in test_uvdata.py).

6 Future directions

The VLBI calc program is probably the most accurate code available for comparing phas-
ing against. It is possible that it includes some effects that we don’t wish to include,
however. The information we have about calc comes from the following email from Ran-
dall Wayth on other ways to test phasing calculations:

Way back when we were trying to sort out the precession corrections for
MWA, I was comparing the output from Al’s new code to that of the VLBI
program called ‘calc’. ‘calc’ is the tool that most (all?) VLBI observatories
use to calculate delays and u, v, w coords for data, and as far as I know is a
fully complete system with all known effects. For low frequencies it is overkill
of course, but as a reference system it is probably ideal.

The way calc works is slightly clunky, but it is fairly easy to use. You set it
up as a server, then programs make requests to the server by passing required
info and calc returns all the info and derivatives so that you can interpolate
between two time intervals. I probably have some notes and code somewhere
for how to set it up and use it if you are interested.

On a related note, when MWA and ASKAP were being set up and com-
missioned around 2012/2013 I asked CSIRO if they were planning to set up a
calc server for ASKAP and they responded that they have (somehow) pulled
the core functionality out of calc and set it up as a C library. I remember they
sent me some code, but I never got it to work and they didn’t respond when I
asked for help. But there are probably other examples of good libraries floating
around if you’re willing to ask. Presumably the VLA has a core library that
does all this stuff also.

The test code that Randall developed with calc is available in MWA_tools under
CONV2UVFITS/mwacalc.c

Shttps://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/external _
phasing_test.ipynb


https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/external_phasing_test.ipynb
https://github.com/bhazelton/random_stuff/blob/master/jupyter_notebooks/external_phasing_test.ipynb

References

[1] George Kaplan, USNO Circular 179, http://aa.usno.navy.mil/publications/
docs/Circular_179.php, 2005

[2] George H. Kaplan, High-Precision Algorithms for Astrometry: A Comparison of Two
Approaches, The Astronomical Journal, 115, 1, 1998


http://aa.usno.navy.mil/publications/docs/Circular_179.php
http://aa.usno.navy.mil/publications/docs/Circular_179.php
http://aa.usno.navy.mil/publications/docs/Circular_179.php
http://aa.usno.navy.mil/publications/docs/Circular_179.php

	Introduction
	Types of phasing supported in pyuvdata
	Conceptual description of phasing
	How phasing is done in pyuvdata
	Testing pyuvdata's phasing
	Limitations of the MWA reference code
	External phasing test

	Future directions

