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CHAPTER
ONE

TUTORIAL

1.1 Introduction

Class vegas.Integrator gives Monte Carlo estimates of arbitrary multidimensional integrals using the vegas
algorithm (G. P. Lepage, J. Comput. Phys. 27 (1978) 192). The algorithm has two components. First an automatic
transformation is applied to to the integration variables in an attempt to flatten the integrand. Then a Monte Carlo
estimate of the integral is made using the transformed variables. Flattening the integrand makes the integral easier and
improves the estimate. The transformation applied to the integration variables is optimized over several iterations of the
algorithm: information about the integrand that is collected during one iteration is used to improve the transformation
used in the next iteration.

Monte Carlo integration makes few assumptions about the integrand — it needn’t be analytic nor even continuous.
This makes Monte Carlo integation unusually robust. It also makes it well suited for adaptive integration. Adaptive
strategies are essential for multidimensional integration, especially in high dimensions, because multidimensional
space is large, with lots of corners.

Monte Carlo integration also provides efficient and reliable methods for estimating the accuracy of its results. In
particular, each Monte Carlo estimate of an integral is a random number from a distribution whose mean is the correct
value of the integral. This distribution is Gaussian or normal provided the number of integrand samples is sufficiently
large. In practive one generates multiple estimates of the integral in order to verify that the distribution is indeed
Gaussian. Error analysis is straightforward if the integral estimates are Gaussian.

The vegas algorithm has been in use for decades and implementations are available in may programming languages,
including Fortran (the original version), C and C++. The algorithm used here is significantly improved over the original
implementation, and that used in most other implementations. This module is written in Cython, so it is almost as fast
as optimized Fortran or C, particularly when the integrand is also coded in Cython (or some other compiled language),
as discussed below.

1.2 Basic Integrals

Here we illustrate vegas by estimating the integral

1 1 1 1
C/ dxo/ dwl/ dxg/ dxs 671002#(%70.5)27
-1 0 0 0

where constant C' is chosen so that the exact value is 1. The following code shows how this can be done:

import vegas
import math

def f (x):
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dx2 = 0
for d in range(4):
dx2 += (x[d] - 0.5) %% 2

return math.exp(-dx2 % 100.) » 1013.2118364296088

integ = vegas.Integrator([([-1., 1.1, [0., 1.1, [O., 1.1, [O., 1.11)

result = integ(f, nitn=10, neval=1000)
print (result.summary () )
print (' result = Q = " % (result, result.Q))

First we define the integrand f (x) where x specifies a point in the 4-dimensional space. We then create an integrator,
integ, which is an integration operator that can be applied to any 4-dimensional function. It is where we specify
the integration volume. Finally we apply integ to our integrand f (x), telling the integrator to estimate the integral
using nitn=10 iterations of the vegas algorithm, each of which uses no more than neval=1000 evaluations of
the integrand. Each iteration produces an independent estimate of the integral. The final estimate is the weighted
average of the results from all 10 iterations, and is returned by integ (£

returns a summary of results from each iteration.

This code produces the following output:

itn integral wgt average chi2/dof Q

1 2.4(1.9) 2.4(1.9) 0.00 1.00

2 1.19(32) 1.23(32) 0.42 0.52

3 0.910(90) 0.934(87) 0.68 0.51

4 1.041(70) 0.999(55) 0.76 0.52

5 1.090(43) 1.055(34) 1.00 0.41

6 0.984(34) 1.020(24) 1.24 0.29

7 1.036(27) 1.027(18) 1.07 0.38

8 0.987(22) 1.011(14) 1.20 0.30

9 0.995(18) 1.005(11) 1.11 0.35

10 0.993(17) 1.0015(91) 1.02 0.42
result = 1.0015(91) Q = 0.42

There are several things worth noting here:

Adaptation: Integration estimates are shown for each of the 10 iterations, giving both the estimate from
just that iteration, and the weighted average of results from all iterations up to that point. The estimates
from the first two iterations are not accurate at all, with errors equal to 30-190% of the final result.
vegas initially has no information about the integrand and so does a relatively poor job of estimating the
integral. It uses information from the samples in one iteration, however, to remap the integration variables
for subsequent iterations, concentrating samples where the function is largest and reducing errors. As a
result, the per iteration error is reduced to 3.4% by the fifth iteration, and below 2% by the end — an
improvement by almost two orders of magnitude from the start.

Weighted Average: The final result, 1.0015 3= 0.0091, is obtained from a weighted average of the separate
results from each iteration. The individual estimates are statistical: each is a random number drawn from
a distribution whose mean equals the correct value of the integral, and the errors quoted are estimates
of the standard deviations of those distributions. The distributions are Gaussian provided the number of
integrand evaluations per iteration (neval) is sufficiently large, in which case the standard deviation is a
reliable estimate of the error. The weighted average I minimizes

5 I, —I)?
N :Z¥

i

where I; = o; are the estimates from individual iterations. If the I; are Gaussian, X2 should be of order the
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number of degrees of freedom (plus or minus the square root of that number); here the number of degrees
of freedom is the number of iterations minus 1.

The distributions are likely non-Gaussian, and error estimates unreliable, if x? is much larger than the
number of iterations. This criterion is quantified by the Q or p-value of the x2, which is the probability
that a larger x? could result from random (Gaussian) fluctuations. A very small Q (less than 0.05-0.1)
indicates that the y? is too large to be accounted for by statistical fluctuations — that is, the estimates of
the integral from different iterations do not agree with each other to within errors. This means that neval
is not sufficiently large to guarantee Gaussian behavior, and must be increased if the error estimates are to
be trusted.

integ(f...) returns a weighted-average object, of type vegas.RunningWAvg, that has the fol-
lowing attributes:

result .mean — weighted average of all estimates of the integral;
result.sdev — standard deviation of the weighted average;
result.chi2 — x? of the weighted average;

result.dof — number of degrees of freedom;

result.Q — Q or p-value of the weighted average’s x?;
result.itn_results — list of the integral estimates from each iteration.

In this example the final Q is 0.42, indicating that the x? for this average is not particularly unlikely and
thus the error estimate is most likely reliable.

Precision: The precision of vegas estimates is determined by nitn, the number of iterations of the
vegas algorithm, and by neval, the maximum number of integrand evaluation made per iteration. The
computing cost is typically proportional to the product of nitn and neval. The number of integrand
evaluations per iteration varies from iteration to iteration, here between 486 and 959. Typically vegas
needs more integration points in early iterations, before it has fully adapted to the integrand.

We can increase precision by increasing either nitn or neval, but it is generally far better to increase
neval. For example, adding the following lines to the code above

result = integ(f, nitn=100, neval=1000)

print (' larger nitn => Q = " % (result, result.Q))
result = integ(f, nitn=10, neval=le4)
print (' larger neval => Q = " % (result, result.Q))

generates the following results:

larger nitn => 0.9968(15) Q = 0.43
larger neval => 0.99978(67) QO = 0.42

The total number of integrand evaluations, nitn * neval, is about the same in both cases, but increas-
ing neval is more than twice as accurate as increasing nitn. Typically one wants to use no more than
10 or 20 iterations beyond the point where vegas has fully adapted. You want some number of iterations
so that you can verify Gaussian behavior by checking the x? and Q, but not too many.

It is also generally useful to compare two or more results from values of neval that differ by a significant
factor (4-10, say). These should agree within errors. If they do not, it could be due to non-Gaussian
artifacts caused by a small neval. vegas estimates have two sources of error. One is the statistical
error, which is what is quoted by vegas. The other is a systematic error due to residual non-Gaussian
effects. The systematic error vanishes like 1/neval and so becomes negligible compared with the
statistical error as neval increases. The systematic error can bias the Monte Carlo estimate, however,
if neval is insufficiently large. This usually results in a large x? (and small Q), but a more reliable

1.2. Basic Integrals 5
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check is to compare results that use signficantly different values of neval. The systematic errors due to
non-Gaussian behavior are likely negligible if the different estimates agree to within the statistical errors.

The possibility of systematic biases is another reason for increasing neval rather than nitn to obtain
more precision. Making neval larger and larger is guaranteed to improve the Monte Carlo estimate, with
the systematic error vanishing quickly. Making nitn larger and larger, on the other hand, is guaranteed
eventually to give the wrong answer. This is because at some point the statistical error (which falls as
sqrt (1/nitn)) will no longer mask the systematic error (which is affected by neval but not nitn).
The systematic error for the integral above (with neval=1000) is about -0.00073(7), which is negligible
compared to the statistical error unless nitn is of order 1500 or larger — so systematic errors aren’t a
problem with nitn=10.

Early Iterations: Integral estimates from early iterations, before vegas has adapted, can be quite crude.
With very peaky integrands, these are often far from the correct answer with highly unreliable error
estimates. For example, the integral above becomes more difficult if we double the length of each side of
the integration volume by redefining integ as:

integ = vegas.Integrator (
(t-2., 2.1, (0, 2.1, (0, 2.1, [0., 2.17,
)

The code above then gives:

itn integral wgt average chi2/dof 0

1 0.013(13) 0.013(13) 0.00 1.00

2 0.018(11) 0.0159(82) 0.13 0.72

3 1.74(80) 0.0161(82) 2.36 0.09

4 0.83(20) 0.0174(82) 6.97 0.00

5 0.934(87) 0.0255(82) 32.60 0.00

6 0.905(53) 0.0463(81) 80.46 0.00

7 1.010(42) 0.0805(80) 150.57 0.00

8 0.964 (30) 0.1385(77) 244 .64 0.00

9 1.023(29) 0.1985(74) 326.07 0.00

10 0.987(22) 0.2777(70) 415.67 0.00
result = 0.2777(70) Q = 0.00

vegas misses the peak completely in the first two iterations, giving estimates that are completely wrong
(by 76 and 89 standard deviations!). Some of its samples hit the peak’s shoulders, so vegas is eventually
able to find the peak (by iterations 5-6), but the integrand estimates are wildly non-Gaussian before that
point. This results in a non-sensical final result, as indicated by the 9 = 0.00.

It is common practice in using vegas to discard estimates from the first several iterations, before the
algorithm has adapted, in order to avoid ruining the final result in this way. This is done by replacing the
single call to integ (£...) in the original code with two calls:

# step 1 adapt to f; discard results
integ(f, nitn=7, neval=1000)

# step 2 integ has adapted to f; keep results
result = integ(f, nitn=10, neval=1000)

print (result.summary () )

print (' result = Q = " % (result, result.Q))

The results from the second step are well adapted from the start, and the final result is good:

itn integral wgt average chi2/dof 0

6 Chapter 1. Tutorial
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1 1.015(27) 1.015(27)
2 1.024(24) 1.020(18)
3 0.991(15) 1.003(12)
4 0.989(17) 0.9989(97)
5 1.002(16) 0.9998(83)
6 1.019(18) 1.0030(76)
7 1.016(16) 1.0053(69)
8 0.988(16) 1.0028(63)
9 0.978(15) 0.9990(58)
10 1.004(14) 0.9997(54)
result = 0.9997(54) Q = 0.66

O O O OO OO o oo

.00
.06
.81
.70
.53
.60
.59
.63
.84
.75

O O O O OO oo o+

.00
.80
.44
.55
.71
.70
.74
.73
.57
.66

Other Integrands: Once integ has been trained on f (x), it can be usefully applied to other functions
with similar structure. For example, adding the following at the end of the original code,

def g(x):
return x[0] * f(x)

result = integ(g, nitn=10, neval=1000)

gives the following new output:

chi2/dof

itn integral wgt average
1 0.5089(72) 0.5089(72)
2 0.5001(70) 0.5044 (50)
3 0.4955(66) 0.5011(40)
4 0.4960(68) 0.4998(35)
5 0.5128(79) 0.5019(32)
6 0.5038(69) 0.5022(29)
7 0.5025(71) 0.5023(27)
8 0.4885(72) 0.5006(25)
9 0.4933(65) 0.4997(23)
10 0.500(15) 0.4997(23)
result = 0.4997(23) Q = 0.44

O P OORFr OO O O

O O O O O O O o o

The grid is almost optimal for g (x) from the start because g (x) peaks in the same region as £ (x) . The

exact value for this integral is 0.5.

Note that vegas . Integrators can be saved in files and reloaded later using Python’s pickle mod-

ule: for example, pickle.dump (integ,

openfile) saves integrator inteq in file openfile,

and integ = pickle.load (openfile) reloads it. The is useful for costly integrations that might
need to be reanalyzed later since the integrator remembers the variable transformations made to minimize

errors, and so need not be readapted to the integrand when used later.

Non-Rectangular Volumes: vegas can integrate over volumes of non-rectangular shape. For example,
we can replace integrand £ (x) above by the same Gaussian, but restricted to a 4-sphere of radius 0.2,

centered on the Gaussian:

import vegas
import math

def f_sph(x):
dx2 = 0
for d in range(4):
dx2 += (x[d] — 0.5) *% 2
if dx2 < 0.2 ** 2:

1.2

Basic Integrals
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return math.exp(-dx2 % 100.) = 1115.3539360527281318

else:
return 0.0

integ = vegas.Integrator([[-1., 1.], [O.,

integ (f_sph, nitn=10, neval=1000)

result = integ(f_sph, nitn=10, neval=1000)
print (result.summary () )

print (' result = Q = " % (result,

-1y

# adapt the grid

-1

# estimate the integral

result.Q))

The normalization is adjusted to again make the exact integral equal 1. Integrating as before gives:

O O O O O O O o o

itn integral wgt average chi2/dof

1 1.057(81) 1.057(81) 0.00

2 0.984(34) 0.995(31) 0.69

3 1.001(39) 0.997(24) 0.35

4 1.003(32) 0.999(19) 0.24

5 0.974(25) 0.990(15) 0.34

6 0.973(34) 0.987(14) 0.31

7 1.65(46) 0.987(14) 0.60

8 1.049(60) 0.991(14) 0.65

9 1.049(83) 0.992(13) 0.63

10 1.055(51) 0.996(13) 0.72
result = 0.996(13) Q = 0.69

This result can be improved somewhat by slowing down vegas’s adaptation:

integ (f_sph, nitn=10, neval=1000, alpha=0.1)
alpha=0.1)

result = integ(f_sph, nitn=10, neval=1000,

Parameter alpha controls the speed with which vegas adapts, with smaller alphas giving slower
adaptation. Here we reduce it to 0.1, from its default value of 0.5, and get the following output:

O O O O O O oo o+

itn integral wgt average chi2/dof

1 1.026(23) 1.026(23) 0.00

2 0.968(22) 0.995(16) 3.38

3 1.039(23) 1.009(13) 2.89

4 0.991(22) 1.004(11) 2.09

5 1.022(26) 1.007(10) 1.67

6 0.964(22) 0.9995(94) 1.96

7 0.992(19) 0.9980(84) 1.65

8 1.007(22) 0.9991(79) 1.44

9 1.002(22) 0.9995(74) 1.26

10 0.969(18) 0.9952 (68) 1.38
result = 0.9952(68) Q =0.19

Notice how the errors fluctuate less from iteration to iteration with the smaller alpha. vegas finds
and holds onto the edge of the actual integration volume (at radius 0.2) more effectively when it is less

precipitous about adapting. This leads to better results in this case.

It is a good idea to make the actual integration volume as large a fraction as possible of the total volume
used by vegas, so vegas doesn’t spend lots of effort on regions where the integrand is exactly 0. Also,
it can be challenging for vegas to find the region of non-zero integrand in high dimensions: integrating

Chapter 1. Tutorial
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f_sph (%) in 20 dimensions instead of 4, for example, would require neval=1el6 integrand evalua-
tions per iteration to have any chance of finding the region of non-zero integrand, because the volume of
the 20-dimensional sphere is a tiny fraction of the total integration volume.

Note, finally, that integration to infinity is also possible: map the relevant variable into a different variable
of finite range. For example, an integral over z = tan(6) from O to infinity is easily reexpressed as an
integral over 6 from 0 to /2.

1.3 Faster Integrands

The computational cost of a realistic multidimensional integral comes mostly from the cost of evaluating the integrand
at the Monte Carlo sample points. Integrands written in pure Python are probably fast enough for problems where
neval=1e3 or neval=1e4 gives enough precision. Some problems, however, require hundreds of thousands or
millions of function evaluations, or more.

The cost of evaluating the integrand can be reduced significantly by vectorizing it, if that is possible. For example,
replacing

import vegas
import math

dim = 4
norm = 1013.2118364296088

def f scalar (x):

dx2 = 0.0
for d in range(dim) :
dx2 += (x[d] — 0.5) *x* 2

return math.exp(-100. * dx2) =% norm
integ = vegas.Integrator(dim » [[0, 1]1])

integ(f_scalar, nitn=10, neval=200000)

result integ(f_scalar, nitn=10, neval=200000)
print (' result = Q = " % (result, result.Q))
by

import vegas
import numpy as np

dim = 4

class £ vector (vegas.VecIntegrand):
def _ init_ (self, dim):
self.dim = dim
self.norm = 1013.2118364296088

def _ call_ (self, x, f, nx):

# convert integration points x[i, d] to numpy array
X = np.asarray(x) [:nx, :]

# convert array for answer into a numpy array
f = np.asarray (f) [:nx]

# evaluate integrand for all values of 1 simultaneously

1.3. Faster Integrands 9
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dx2 = 0.0
for d in range(self.dim) :
dx2 += (x[:, d]l — 0.5) #*x 2
# copy answer into f (ie, don’t use f = np.exp(...))

fl[:] = np.exp(-100. % dx2) =* self.norm
integ = vegas.Integrator(dim = [[0, 1]], nhcube_vec=1000)

f = f vector (dim=dim)

integ(f, nitn=10, neval=200000)

result = integ(f, nitn=10, neval=200000)

print (' result = Q0 = " % (result, result.Q))

reduces the cost of the integral by about an order of magnitude. An instance of class f_vector behaves like a
function of three variables:

x[1i, d] — integration points for each i=0...nx-1 (d=0. .. labels the direction);
f [1] — buffer to hold the integrand values for each integration point;
nx — number of integration points.

We derive class f_vector from vegas.VecIntegrand to signal to vegas that it should present integration
points in batches to the integrand function. Parameter nhcube_vec tells vegas how many hypercubes to put in a
batch; the bigger this parameter is, the larger the vectors.

Unfortunately many realistic problems are difficult to vectorize. The fastest option in such cases (and actually every
case) is to write the integrand in Cython, which is a compiled hybrid of Python and C. The Cython version of this
code, which we put in a separate file we call cython_integrand.pyx, is simpler than the vector version:

cimport vegas
from libc.math cimport exp

import wvegas

cdef class f_cython(vegas.VecIntegrand) :
cdef double norm
cdef int dim

def _ _init_ (self, dim):
self.dim = dim
self.norm = 1013.2118364296088 %% (dim / 4.)

def _ call_ (self, double[:, ::1] x, double[::1] f, int nx):

cdef int i, d
cdef double dx2
for i in range (nx):

dx2 = 0.0

for d in range(self.dim) :

dx2 += (x[1i, d] - 0.5) #*x% 2

f[i] = exp(-100. * dx2) = self.norm

return

The main code is then
import pyximport; pyximport.install()

import vegas
from cython_integrand import f_cython

10 Chapter 1. Tutorial
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dim = 4
integ = vegas.Integrator(dim + [[0, 1]], nhcube_vec=1000)

f = f_cython (dim=dim)
integ(f, nitn=10, neval=200000)
result = integ(f, nitn=10, neval=200000)

[

print (' result = Q = " % (result, result.Q))
where the first line (import pyximport; ...) causes the Cython module cython_integrand.pyx to be

compiled the first time it is called. The compiled code is stored and used in subsequent calls, so compilation occurs
only once.

Cython code can also link easily to compiled C or Fortran code, so integrands written in these languages can be used
as well (and would be faster than pure Python).

1.4 Implementation Notes

This implementation relies upon Cython for its speed and numpy for vector processing. It also uses matplotlib for
graphics, but this is optional.

vegas also uses the gvar module from the Isqfit package if that package is installed (pip install lsqgfit).
Integration results are returned as objects of type gvar .GVar, which is a class representing Gaussian random vari-
ables (i.e., something with a mean and standard deviation). These objects can be combined with numbers and with each
other in arbitrary arithmetic expressions to get new gvar .GVars with the correct standard deviations (and properly
correlated with other gvar . GVars — that is the tricky part).

If it is not installed, vegas uses a limited substitute that supports arithmetic between gvar . GVars and numbers, but
not between gvar .GVars and other gvar.GVars. It also supports 1og, sqrt and exp of gvar.GVars, but not
trig functions — for these install the 1sqfit package.

1.4. Implementation Notes 11
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CHAPTER
TWO

HOW vEcas WORKS

2.1 Importance Sampling

The most important adaptive strategy vegas uses is its remapping of the integration variables in each direction,
before it makes Monte Carlo estimates of the integral. This is equivalent to a standard Monte Carlo optimization
called “importance sampling.”

The idea in one-dimension, for example, is to replace the original integral over z,

I/abdx f(@),

by an equivalent integral over a new variable y,

I= /0 dy J(y) f(x(y)),

where the transformation x(y) is chosen to minimize the uncertainty in a Monte Carlo estimate of the transformed
integral. A simple Monte Carlo estimate of that integral is given by

1
I~S8W=2% 0 J) Fa)
Y
where the sum is over M random points uniformly distributed between 0 and 1.

The estimate S1) is a itself a random number from a distribution whose mean is the exact integral and whose variance
is:

b= ([ 7w P - )

b
- < | o st ) - f?)

The standard deviation o is an estimate of the possible error in the Monte Carlo estimate. A simple variational
calculation, constrained by
/b do
o Jylx)

shows that o7 is minimized if

13
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Such transformations greatly reduce the standard deviation when the integrand has high peaks. Since

dy

1/ = x|f@),

the regions in = space where |f(z)| is large are stretched out in y space. Consequently, a uniform Monte Carlo
in y space places more samples in the peak regions than it would if were we integrating in z space — its samples
are concentrated in the most important regions, which is why this is called “importance sampling.” The product
J(y) f(z(y)) has no peaks when the transformation is optimal.

The distribution of the Monte Carlo estimates S(!) becomes Gaussian in the limit of large M. Non-Gaussian correc-
tions vanish like 1/M. For example, it is easy to show that

(SM — 1)ty =307 (1 —~ ]\14) + %/0 dy (J(y) f(x(y) = 1)

This moment would equal 30‘}, which falls like 1/M 2, if the distribution was Gaussian. The corrections to the
Gaussian result fall as 1/M? and so become negligible at large M. These results assume that (J(y) f(z(y)))" is
integrable for all n, which need not be the case if f(x) has (integrable) singularities.

2.2 The vegas Grid

vegas implements the transformation of an integration variable x into a new variable y using a grid in x space:

o= a
1 = xo + Axg
To = T1 + Axy

TN =TN—1+Axn_1 =D

The grid specifies the transformation function at the points y = ¢/N fori = 0,1... N:

2(y=i/N) = z;

Linear interpolation is used between those points. The Jacobian for this transformation function is piecewise constant:

J(y) :Ji :NAJ,‘i

fori/N <y < (i+1)/N.

The variance for a Monte Carlo estimate using this transformation becomes

Treating the J; as independent variables, with the constraint

azi _ ZAyi =1,

Ti+1

dx f*(x) — I2>

i

Ji

14 Chapter 2. How vegas Works
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it is trivial to show that the standard deviation is minimized when

J2
A.Ii

Li41 Tit1
/ da f*(z) = NQAJCZ-/ dx f*(x) o constant
x x

for all 7.

vegas adjusts the grid until this last condition is satisfied. As a result grid increments Ax; are small in regions where
| f(x)] is large. vegas typically has no knowledge of the integrand initially, and so starts with a uniform x grid. As it
samples the integrand it also estimates the integrals

/I " ),

i

and use this information to refine its choice of Ax;s, bringing them closer to their optimal values, for use in subsequent
iterations. The grid usually converges, after several iterations, to the optimal grid.

This analysis generalizes easily to multi-dimensional integrals. vegas applies a similar transformation in each direc-
tion, and the grid increments along an axis are made smaller in regions where the projection of the integral onto that
axis is larger. For example, the optimal grid for the four-dimensional Gaussian integral in the previous section looks
like:

10 axes 0,1 (press'n','p','q' or a digit)
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10 axes 2,3 (press'n','p', 'q" or a digit)
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02} 1
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0.0 0.2 0.4 0.6 0.8 1.0

x[2]

Every rectangle in these plots receives an equal amount of attention from vegas, irrespective of its size. Consequently
vegas concentrates on regions where the rectangles are small and therefore numerous: here in the region around x
= [0.5, 0.5, 0.5, 0.5], where the peak is.

These plots were obtained by including the line

integ.map.show_grid(30)

in the integration code after the integration is finished. It causes matplotlib (if it is installed) to create images
showing the locations of 30 nodes of the grid in each direction. (The grid uses 99 nodes in all on each axis, but that is
too many to display at low resolution.)

2.3 Adaptive Stratified Sampling

A limitation of vegas’s remapping strategy becomes obvious if we look at the grid for the following integral, which
has two Gaussians arranged along the diagonal of the hypercube:

import vegas
import math

def f2(x):
dx2 = 0
for i in range(4):
dx2 += (x[i] - 1/3.) ** 2
ans = math.exp(-dx2 » 100.) %= 1013.2167575422921535
dx2 = 0
for i in range(4):
dx2 += (x[1] — 2/3.) ** 2

ans += math.exp(-dx2 » 100.) % 1013.2167575422921535
return ans / 2.

16 Chapter 2. How vegas Works
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integ = vegas.Integrator(4 = [[0, 111])

integ(f2, nitn=10, neval=4e4)

result = integ(f2, nitn=30, neval=4e4)

print (' result = Q = " % (result, result.Q))

integ.map.show_grid(70)

This code gives the following grid, now showing 70 nodes in each direction:

10 axes 0,1 (press'n','p', 'q' or a digit)

x[1]

x[0]

The grid shows that vegas is concentrating on the regions around x=[0.33, 0.33, 0.33, 0.33] and
x=[0.67, 0.67, 0.67, 0.67],where the peaks are. Unfortunately it is also concentrating on regions around
points like x=[0.67, 0.33, 0.33, 0.33] where the integrand is very close to zero. There are 14 such phan-
tom peaks that vegas’s new integration variables emphasize, in addition to the 2 regions where the integrand actually
is large. This grid gives much better results than using a uniform grid, but it obviously wastes integration resources. It
is a consequence of the fact that vega s remaps the integration variables in each direction separately. Projected on the
x [0] axis, for example, this integrand appears to have two peaks and so vegas will focus on both regions of x [0],
independently of what it does along the x [1] axis.

vegas uses axis-oriented remappings because other alternatives are much more complicated and expensive; and
vegas’s principal adaptive strategy has proven very effective in many realistic applications.

An axis-oriented strategy will always have difficulty adapting to structures that lie along diagonals of the integration
volume. To address such problems, the new version of vegas introduces a second adaptive strategy, based upon an-
other standard Monte Carlo technique called “stratified sampling.” vegas divides the d-dimensional y-space volume
into hypercubes using a uniform y-space grid with Mg, stratifications on each axis. It estimates the integral by
doing a separate Monte Carlo integration in each of the M2 . hypercubes, and adding the results together to provide
an estimate for the integral over the entire integration region. Typically this y-space grid is much coarser than the
z-space grid used to remap the integration variables. This is because vegas needs at least two integrand evaluations
in each y-space hypercube, and so must keep the number of hypercubes M2 . smaller than neval/2. This can
restrict Mgq¢ severely when d is large.

2.3. Adaptive Stratified Sampling 17
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Older versions of vegas also divide y-space into hypercubes and do Monte Carlo estimates in the separate hyper-
cubes. These versions, however, use the same number of integrand evaluations in each hypercube. In the new version,
vegas adjusts the number of evaluations used in a hypercube in proportion to the standard deviation of the integrand
estimates (in y space) from that hypercube. It uses information about the hypercube’s standard deviation in one iter-
ation to set the number of evaluations for that hypercube in the next iteration. In this way it concentrates integrand
evaluations where the potential statistical errors are largest.

In the two-Gaussian example above, for example, the new vegas shifts integration evaluations away from the phan-
tom peaks, into the regions occupied by the real peaks since this is where all the error comes from. This improves
vegas'’s ability to estimate the contributions from the peaks and reduces statistical errors, provided neval is large
enough to permit a large number (more than 2 or 3) Mg, of stratifications on each axis. With neval=4ed4, sta-
tistical errors for the two-Gaussian integral are reduced by more than a factor of 3 relative to what older versions of
vegas give. This is a relatively easy integral; the difference can be more than an order of magnitude for more difficult
(and realistic) integrals.
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CHAPTER
THREE

VEGAS PACKAGE

3.1 Introduction

This package provides tools for estimating multidimensional integrals numerically using an enhanced version of the
adaptive Monte Carlo vegas algorithm (G. P. Lepage, J. Comput. Phys. 27(1978) 192).

A vegas code generally involves two objects, one representing the integrand and the other representing an integration
operator for a particular multidimensional volume. A typical code sequence for a D-dimensional integral has the
structure:

# create the integrand
def f(x):
compute the integrand at point x[d] d=0,1...D-1

# create an integrator for volume with

# x10 <= x[0] <= xul0, x11 <= x[1] <= xul
integration_region = [[x10, xu0], [x11, xull, ...]
integrator = vegas.Integrator (integration_region)

# do the integral and print out the result
result = integrator (f, nitn=10, neval=10000)
print (result)

The algorithm iteratively adapts to the integrand over nitn iterations, each of which uses at most neval integrand
samples to generate a Monte Carlo estimate of the integral. The final result is the weighted average of the results fom
all iterations.

The integrator remembers how it adapted to f (x) and uses this information as its starting point if it is reapplied to
f (x) or applied to some other function g (x). An integrator’s state can be archived for future applications using
Python’s pickle module.

See the extensive Tutorial in the first section of the vegas documentation.

3.2 Integrator Objects

The central component of the vegas package is the integrator class:

class vegas.Integrator
Adaptive multidimensional Monte Carlo integration.

vegas. Integrator objects make Monte Carlo estimates of multidimensional functions f (x) where x [d]
is a point in the integration volume:

19
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integ = vegas.Integrator (integration_region)

result = integ(f, nitn=10, neval=10000)

The integator makes nitn estimates of the integral, each using at most neval samples of the integrand, as
it adapts to the specific features of the integrand. Successive estimates typically improve in accuracy until the
integrator has fully adapted. The integrator returns the weighted average of all nitn estimates, together with
an estimate of the statistical (Monte Carlo) uncertainty in that estimate of the integral. The result is an object of

type RunningWAvg (which is derived from gvar .GVar).

Parameters

map (array or vegas .AdaptiveMap or vegas.Integrator) — The integration re-
gion as specified by an array x1imit [d, 1] where d is the direction and i=0, 1 specify
the lower and upper limits of integration in direction d.

map could also be the integration map from another vegas.Integrator, or that
vegas.Integrator itself. In this case the grid is copied from the existing integrator.

nitn (positive int) — The maximum number of iterations used to adapt to the integrand and
estimate its value. The default value is 10.

neval (positive int) — The maximum number of integrand evaluations in each iteration of the
vegas algorithm. Increasing neval increases the precision: statistical errors should fall
at least as fast as sqrt (1./neval) and often fall much faster. The default value is 1000;
realistic problems often require 10—100 times more evaluations than this.

alpha (float) — Damping parameter controlling the remapping of the integration variables as
vegas adapts to the integrand. Smaller values slow adaptation, which may be desirable for
difficult integrands. Small alphas are also sometimes useful after the grid has adapted, to
minimize fluctuations away from the optimal grid. The default value is 0.5.

beta (float) — Damping parameter controlling the redistribution of integrand evaluations
across hypercubes in the stratified sampling of the integrand (over transformed variables).
Smaller values limit the amount of redistribution. The theoretically optimal value is 1;
setting beta=0 prevents any redistribution of evaluations. The default value is 0.75.

nhcube_vec (positive int) — The number of hypercubes (in y space) whose integration points
are combined into a single vector to be passed to the integrand, in a single batch, when
using vegas in vector mode (see fcntype=’vector’ below). The default value is 100.
Larger values may be lead to faster evaluations, but at the cost of more memory for internal
work areas.

maxinc_axis (positive int) — The maximum number of increments per axis allowed for the
x-space grid. The default value is 1000; there is probably little need to use other values.

adapt_to_errors — adapt_to_errors=False causes vegas to remap the integration
variables to emphasize regions where | £ (x) | is largest. This is the default mode.

adapt_to_errors=True causes vegas to remap variables to emphasize regions
where the Monte Carlo error is largest. This might be superior when the number of the
number of stratifications in the y grid is large (> 507?). It is typically useful only in one or
two dimensions.

max_nhcube (positive int) — Maximum number of hypercubes allowed for stratification.
The default value is 5e8. Larger values can allow for more adaptation (when neval is
larger than 2 » max_nhcube), but also can result in very large internal work arrays. The
maximum setting is a function of the RAM available to the processor used.

20
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* max_neval_hcube (positive inf) — Maximum number of integrand evaluations per hyper-
cube in the stratification. The default value is 1e7. Larger values might allow for more
adaptation (when neval is larger than 2 * max_neval_hcube), but also can result in
very large internal work arrays.

* fentype — Specifies the default type of integrand.

fcntype='scalar’ imples that the integrand is a function £ (x) of a single integration
point x [d].

fcntype='vector’ implies that the integrand function takes three arguments: a list of
integration points x [1, d], where i=0...nx—1 labels the integration point and d labels
the direction; a buffer £ [ 1] into which the corresponding integrand values are written; and
the number nx of integration points provided.

The default is fcntype=scalar, but this is overridden if the integrand has a fcntype
attribute. It is also overridden for classes derived from VecIntegrand, which are treated
as fcntype=' vector’ integrands.

* rtol (float less than 1) — Relative error in the integral estimate at which point the integrator
can stop. The default value is 0.0 which means that the integrator will complete all iterations
specified by nitn.

* atol (floar) — Absolute error in the integral estimate at which point the integrator can stop.
The default value is 0.0 which means that the integrator will complete all iterations specified
by nitn.

 analyzer — An object with methods
analyzer.begin(itn, integrator)
analyzer.end (itn_result, result)

where: begin (itn, integrator) is called at the start of each vegas iteration with
itn equal to the iteration number and integrator equal to the integrator itself; and
end (itn_result, result) is called at the end of each iteration with itn_result
equal to the result for that iteration and result equal to the cummulative result of all
iterations so far. Setting analyzer=vegas.reporter (), for example, causes ve-
gas to print out a running report of its results as they are produced. The default is
analyzer=None.

vegas.Integrator objects have attributes for each of these parameters. In addition they have the following
methods:

set (ka={}, **kargs)
Reset default parameters in integrator.

Usage is analogous to the constructor for vegas . Integrator: for example,
old_defaults = integ.set (neval=1le6, nitn=20)
resets the default values for neval and nitn in vegas.Integrator integ. A dictionary, here
old_defaults,is returned. It can be used to restore the old defaults using, for example:
integ.set (old_defaults)
settings (ngrid=0)
Assemble summary of integrator settings into string.

Parameters ngrid (inf) — Number of grid nodes in each direction to include in summary. The
default is 0.

Returns String containing the settings.

3.2. Integrator Objects 21
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3.3 AdaptiveMap Objects

vegas’s remapping of the integration variables is handled by a vegas.AdaptiveMap object, which maps the
original integration variables x into new variables y in a unit hypercube. Each direction has its own map specified by
a grid in x space:

Iog=a
T1 = g + Az
T2 = T1 + Axy

TN =TN—1+Azn_1 =D

where a and b are the limits of integration. The grid specifies the transformation function at the points y = i/N for
i=0,1...N:

2(y=i/N) = z;

Linear interpolation is used between those points. The Jacobian for this transformation is:

J(y) = J; = NAz;

vegas adjusts the increments sizes to optimize its Monte Carlo estimates of the integral. This involves training the
grid. To illustrate how this is done with vegas.Adapt iveMaps consider a simple two dimensional integral over a
unit hypercube with integrand:

def f(x):
return x[0] * x[1] #** 2

We want to create a grid that optimizes uniform Monte Carlo estimates of the integral in y space. We do this by sam-
pling the integrand at a large number ny of random points y [ j, dJ], where j=0...ny—-1 and d=0, 1, uniformly
distributed throughout the integration volume in y space. These samples be used to train the grid using the following
code:

import vegas
import numpy as np

def f(x):
return x[0] * x[1] #** 2

m = vegas.AdaptiveMap ([[0, 11, [0, 1]], ninc=5)

ny = 1000
y = np.random.uniform(0., 1., (ny, 2)) # 1000 random y’s

x = np.empty(y.shape, float) # work space
jac = np.empty (y.shape[0], float)
f2 = np.empty(y.shape[0], float)

print (' intial grid:’")
print (m.settings())
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for itn in range (5): # 5 iterations to adapt
m.map (y, X, jac) # compute x’s and jac
for j in range(ny): # compute training data
£2[3] = (Jacljl » £(x[3J])) ==* 2
m.add_training_data(y, £f2) # adapt

m.adapt (alpha=1.5)

print (' iteration 7% 1tn)
print (m.settings())

In each of the 5 iterations, the vegas.AdaptiveMap adjusts the map, making increments smaller where £2 is
larger and larger where £2 is smaller. The map converges after only 2 or 3 iterations, as is clear from the output:

initial grid:

grid[ 0] = [ O. 0.2 0.4 0.6 0.8 1. ]

grid[ 1] = [ O. 0.2 0.4 0.6 0.8 1. ]
iteration O:

grid[ 0] = [ O. 0.411 0.618 0.772 0.89 1. ]

grid[ 1] = [ O. 0.508 0.694 0.822 0.911 1. ]
iteration 1:

grid[ 0] = [ O. 0.408 0.611 0.76 0.887 1. ]

grid[ 1] = [ O. 0.542 0.718 0.835 0.922 1. ]
iteration 2:

grid[ 0] = [ O. 0.411 0.612 0.76 0.887 1. ]

grid[ 1] = [ O. 0.551 0.721 0.835 0.924 1. ]
iteration 3:

grid[ 0] = [ O. 0.411 0.612 0.76 0.887 1. ]

grid[ 1] = [ O. 0.554 0.721 0.836 0.924 1. ]
iteration 4:

grid[ 0] = [ O. 0.411 0.612 0.76 0.887 1. ]

grid[ 1] = [ O. 0.555 0.722 0.836 0.925 1. ]

The grid increments along direction O shrink at larger values x[0], varying as 1/x[0]. Along direction 1 the
increments shrink more quickly varying like 1 /x [1] 2.

vegas samples the integrand in order to estimate the integral. It uses those same samples to train its
vegas.AdaptiveMap in this fashion, for use in subsequent iterations of the algorithm.

class vegas .AdaptiveMap
Adaptive map y—>x (y) for multidimensional y and x.

An Adapt iveMap defines a multidimensional map y —> x (y) from the unit hypercube, with 0 <= vy [d]
<= 1, to an arbitrary hypercube in x space. Each direction is mapped independently with a Jacobian that is
tunable (i.e., “adaptive”).

The map is specified by a grid in x-space that, by definition, maps into a uniformly spaced grid in y-space. The
nodes of the grid are specified by grid[d, i] where d is the direction (d=0,1...dim-1)and i labels the
grid point (1=0, 1. . .N). The mapping for a specific point y into x space is:

yld] -> x[d] = grid(d, i(y[d])] + incld, i(y[d])] » delta(y[d])

where 1 (y)=floor (yx*N), delta(y)=y*N - i(y), and inc[d, 1] = grid[d, i+1] -
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grid[d, i]. The Jacobian for this map,
dx[d]/dy[d] = inc[d, i(y[d])] * N,
is piece-wise constant and proportional to the x-space grid spacing. Each increment in the x-space grid maps

into an increment of size 1 /N in the corresponding y space. So regions in x space where inc[d, 1] issmall
are stretched out in y space, while larger increments are compressed.

The x grid for an Adapt iveMap can be specified explicitly when the map is created: for example,
m = AdaptiveMap([[O0, 0.1, 11, [-1, O, 111)
creates a two-dimensional map where the x [0] interval (0, 0.1) and (0.1, 1) map into the y [0] intervals

(0,0.5) and (0.5, 1) respectively, while x [1] intervals (-1, 0) and (0, 1) map into y [1] intervals
(0,0.5) and (0.5,1).

More typically an initially uniform map is trained with data £ [ j] corresponding to ny points y [j, d], with
j=0...ny-1, uniformly distributed in y space: for example,

m.add_training_data(y, £f)
m.adapt (alpha=1.5)

m.adapt (alpha=1.5) shrinks grid increments where £ [j] is large, and expands them where £[j] is
small. Typically one has to iterate over several sets of ys and fs before the grid has fully adapted.

The speed with which the grid adapts is determined by parameter alpha. Large (positive) values imply rapid
adaptation, while small values (much less than one) imply slow adaptation. As in any iterative process, it is
usually a good idea to slow adaptation down in order to avoid instabilities.

Parameters
* grid — Initial x grid, where grid[d, 1i] isthe i-th node in direction d.

* ninc (int or None) — Number of increments along each axis of the x grid. A new grid is
generated if ninc differs from grid.shape[1]. The new grid is designed to give the
same Jacobian dx (y) /dy as the original grid. The default value, ninc=None, leaves the
grid unchanged.

dim
Number of dimensions.
ninc
Number of increments along each grid axis.

grid
The nodes of the grid defining the maps are self.grid[d, i] where d=0. .. specifies the direction
and 1=0...self.ninc the node.

inc

The increment widths of the grid:

self.inc[d, i] = self.grid[d, i + 1] - self.grid[d, 1i]
adapt (alpha=0.0, ninc=None)

Adapt grid to accumulated training data.

self.adapt (...) projects the training data onto each axis independently and maps it into x space.
It shrinks x-grid increments in regions where the projected training data is large, and grows increments
where the projected data is small. The grid along any direction is unchanged if the training data is constant
along that direction.

The number of increments along a direction can be changed by setting parameter ninc.

24
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The grid does not change if no training data has been accumulated, unless ninc is specified, in which
case the number of increments is adjusted while preserving the relative density of increments at different
values of x.

Parameters

* alpha (double or None) — Determines the speed with which the grid adapts to training data.
Large (postive) values imply rapid evolution; small values (much less than one) imply slow
evolution. Typical values are of order one. Choosing alpha<0 causes adaptation to the
unmodified training data (usually not a good idea).

e ninc (int or None) — Number of increments along each direction in the new grid. The
number is unchanged from the old grid if ninc is omitted (or equals None).

add_training_data (y,f, ny=-1)
Add training data f for y-space points y.

Accumulates training data for later use by self.adapt (). Grid increments will be made smaller in
regions where f is larger than average, and larger where £ is smaller than average. The grid is unchanged
(converged?) when £ is constant across the grid.

Parameters

* y (contiguous 2-d array of floats) — y values corresponding to the training data. vy is a
contiguous 2-d array, where y [ j, d] is for points along direction d.

* f (contiguous 2-d array of floats) — Training function values. £ [ j] corresponds to point
v [J, d] in y-space.

* ny (int) — Number of y points: y[j, d] ford=0...dim-1and j=0...ny-1. nyis
setto y.shape [0] if it is omitted (or negative).

__call__ (y)
Return x values corresponding to y.

y can be a single dim-dimensional point, or it can be an array y[i,j, ..., d] of such points
(d=0..dim-1).

jac (y)
Return the map’s Jacobian at y.

y can be a single dim-dimensional point, or it can be an array y[d, i, Jj, ...] of such points
(d=0..dim-1).

make_ uniform (ninc=None)
Replace the grid with a uniform grid.

The new grid has ninc increments along each direction if ninc is specified. Otherwise it has the same
number of increments as the old grid.

map (y, X, jac, ny=-1)
Map y to x, where jac is the Jacobian.

vy [J, d] isanarray of ny y-values for direction d. x [ j, d] is filled with the corresponding x values,
and jac[j] is filled with the corresponding Jacobian values. x and jac must be preallocated: for
example,

X = numpy.empty (y.shape, float)
jac = numpy.empty (y.shape[0], float)

Parameters

3.3.
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* y (contiguous 2-d array of floats) — y values to be mapped. y is a contiguous 2-d array,
where v [j, d] contains values for points along direction d.

* X (contiguous 2-d array of floats) — Container for x values corresponding to y.
* jac (contiguous 1-d array of floats) — Container for Jacobian values corresponding to y.
* ny (int) — Number of y points: y[J, d] ford=0...dim-1and j=0...ny-1. nyis
setto y.shape [0] if it is omitted (or negative).
show_grid (ngrid=40, shrink=False)
Display plots showing the current grid.

Parameters

* ngrid (int) — The number of grid nodes in each direction to include in the plot. The default
is 40.

« shrink — Display entire range of each axis if False; otherwise shrink range to include
just the nodes being displayed. The defaultis False.

Nparam axes List of pairs of directions to use in different views of the grid. Using None in
place of a direction plots the grid for only one direction. Omitting axes causes a default set
of pairings to be used.

settings (ngrid=>5)
Create string with information about grid nodes.

Creates a string containing the locations of the nodes in the map grid for each direction. Parameter ngrid
specifies the maximum number of nodes to print (spread evenly over the grid).

3.4 Other Objects

class vegas .RunningWAvg

Running weighted average of Monte Carlo estimates.

This class accumulates independent Monte Carlo estimates (e.g., of an integral) and combines them into a single
weighted average. It is derived from gvar.GVar (from the 1sgfit module if it is present) and represents a
Gaussian random variable.

mean
The mean value of the weighted average.

sdev
The standard deviation of the weighted average.

chi2
chi**2 of weighted average.

dof
Number of degrees of freedom in weighted average.

Q or p-value of weighted average’s chi**2.
itn_results
A list of the results from each iteration.

add (g)
Add estimate g to the running average.

26
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summary ()
Assemble summary of independent results into a string.

class vegas.VecIntegrand
Base class for classes providing vectorized integrands.

A class derived from vegas.VecInterand should providea ___call__ (x, f, nx) member where:

x[i, d] isacontiguous array where 1=0. . .nx-1 labels different integrtion points and d=0. . .
labels different directions in the integration space.

£ [1i] is a buffer that is filled with the integrand values for points 1=0. . .nx-1.
nx is the number of integration points.

Deriving from vegas.VecIntegrand is the easiest way to construct integrands in Cython, and gives the
fastest results.
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