
Perun Documentation
Release 0.21.6

Tomas Fiedor, Jiri Pavela, et al.

Nov 06, 2023

CONTENTS:

1 Perun: Performance Under Control 1
1.1 What is Perun? . 1
1.2 Installation . 3
1.3 Lifetime of a profile . 3
1.4 Perun architecture . 4
1.5 List of Features . 5
1.6 Overview of Customization . 7
1.7 Acknowledgements . 8

2 Perun’s Profile Format 9
2.1 Specification of Profile Format . 10
2.2 Profile API . 15
2.3 Profile Conversions API . 17
2.4 Profile Query API . 18

3 Command Line Interface 21
3.1 perun . 21
3.2 Perun Commands . 23
3.3 Collect Commands . 37
3.4 Postprocess Commands . 44
3.5 Show Commands . 61
3.6 Utility Commands . 68

4 Collectors Overview 75
4.1 Supported Collectors . 76
4.2 Creating your own Collector . 95

5 Postprocessors Overview 97
5.1 Supported Postprocessors . 98
5.2 Creating your own Postprocessor . 127

6 Visualizations Overview 131
6.1 Supported Visualizations . 132
6.2 Creating your own Visualization . 148

7 Automating Runs 151
7.1 Runner CLI . 152
7.2 Overview of Jobs . 154
7.3 Job Matrix Format . 155
7.4 List of Supported Workload Generators . 157

i

8 Detecting Performance Changes 161
8.1 Results of Detection . 162
8.2 Detection Methods . 163
8.3 Configuring Degradation Detection . 166
8.4 Create Your Own Degradation Checker . 167
8.5 Degradation CLI . 168

9 Performance Fuzz-testing 171
9.1 Overview . 171
9.2 Mutation Strategies . 173
9.3 Passing Input Sample . 178
9.4 Selecting Mutation Methods . 178
9.5 Initial Testing . 178
9.6 Evaluation of Mutations . 179
9.7 Fuzzing Loop . 180
9.8 Interpretation of Fuzzing Results . 182

10 Examples 185
10.1 Regular Expression Denial of Service (ReDoS). 185
10.2 Hash Collisions . 187
10.3 Fuzz-testing CLI . 188

11 Perun Configuration files 191
11.1 Configuration types . 191
11.2 List of Supported Options . 192
11.3 Predefined Configuration Templates . 196
11.4 Command Line Interface . 197

12 Customize Logs and Statuses 201
12.1 Customizing Statuses . 201
12.2 Customizing Logs . 202

13 Perun Internals 205
13.1 Version Control Systems . 206
13.2 Perun Storage . 209

14 Changelog 215
14.1 0.21.6 (2023-11-06) . 215
14.2 0.20.4 (2022-06-28) . 215
14.3 0.20.3 (2022-06-28) . 215
14.4 0.20.2-hotfix2 (2022-06-28) . 216
14.5 0.20.2-hotfix (2022-06-21) . 216
14.6 0.20.2 (2021-05-12) . 216
14.7 0.20.1 (2021-05-12) . 216
14.8 0.20 (2021-03-05) . 217
14.9 0.19 (2021-02-08) . 217
14.10 0.18.3-hotfix2 (2020-08-31) . 217
14.11 0.18.3-hotfix (2020-05-11) . 217
14.12 0.18.3 (2020-03-20) . 218
14.13 0.18.2 (2020-02-13) . 218
14.14 0.18.1 (2020-02-13) . 218
14.15 0.18 (2020-02-11) . 219
14.16 0.17.4 (2020-01-28) . 219
14.17 0.17.3 (2020-01-09) . 219
14.18 0.17.2 (2019-08-16) . 219

ii

14.19 0.17.1 (2019-07-24) . 220
14.20 0.17 (2019-07-09) . 220
14.21 0.16.9-hotfix (2019-06-18) . 220
14.22 0.16.9 (2019-06-18) . 220
14.23 0.16.8 (2019-05-18) . 220
14.24 0.16.7-hotfix (2019-04-15) . 221
14.25 0.16.7 (2019-04-15) . 221
14.26 0.16.6 (2019-03-25) . 221
14.27 0.16.5 (2019-03-22) . 221
14.28 0.16.4 (2019-03-14) . 222
14.29 0.16.3 (2019-03-02) . 222
14.30 0.16.2 (2019-03-02) . 222
14.31 0.16.1 (2019-03-01) . 222
14.32 0.16 (2019-02-16) . 223
14.33 0.15.4 (2018-08-13) . 223
14.34 0.15.3-hotfix (2018-08-02) . 223
14.35 0.15.3 (2018-08-01) . 223
14.36 0.15.2 (2018-07-20) . 223
14.37 0.15.1 (2018-07-17) . 224
14.38 0.15 (2018-06-20) . 224
14.39 0.14.4 (2018-06-17) . 224
14.40 0.14.3 (2018-06-12) . 225
14.41 0.14.2 (2018-05-15) . 225
14.42 0.14.1 (2018-04-19) . 226
14.43 0.14 (2018-03-27) . 227
14.44 0.13 (2018-03-27) . 227
14.45 0.12.1 (2018-03-08) . 227
14.46 0.12 (2018-03-05) . 227
14.47 0.11.1 (2018-02-28) . 228
14.48 0.11 (2017-11-27) . 228
14.49 0.10.1 (2017-10-24) . 229
14.50 0.10 (2017-10-10) . 229
14.51 0.9.2 (2017-09-28) . 229
14.52 0.9.1 (2017-09-24) . 229
14.53 0.9 (2017-08-31) . 230
14.54 0.8.3 (2017-08-31) . 230
14.55 0.8.2 (2017-07-31) . 230
14.56 0.8.1 (2017-07-30) . 230
14.57 0.8 (2017-07-03) . 231
14.58 0.7.2 (2017-07-03) . 231
14.59 0.7.1 (2017-06-30) . 231
14.60 0.7 (2017-06-26) . 232
14.61 0.6 (2017-06-26) . 232
14.62 0.5.1 (2016-06-22) . 232
14.63 0.5 (2016-06-21) . 232
14.64 0.4.2 (2017-05-31) . 233
14.65 0.4.1 (2017-05-15) . 233
14.66 0.4 (2017-03-17) . 233
14.67 0.3 (2017-03-14) . 233
14.68 0.2 (2017-03-07) . 234
14.69 0.1 (2017-02-22) . 235
14.70 0.0 (2016-12-10) . 235

Python Module Index 237

iii

Index 239

iv

CHAPTER

ONE

PERUN: PERFORMANCE UNDER CONTROL

1.1 What is Perun?

Have you ever encountered a sudden performance degradation and could not figure out, when and where the degrada-
tion was introduced?

Do you think that you have no idea whether the overall performance of your application is getting better or not over
the time?

Is it hard for you to set performance regression testing everytime you create a new project?

Do you ever feel that you completely loose the control of the performance of your projects?

There exists solutions for managing changes of ones project—Version Control Systems (VCS)—but precise managing
of performance is harder. This calls for solutions tuned to support performance management—Performance Versioning
Systems.

Perun is an open source light-weight Performance Version System. While revision (or version) control systems track
how your code base is changing, what features were added and keeps snapshots of versions of projects, they are mostly
generic in order to satisfy needs of broad range of project types. And actually you can run all of the performance
regressions tests manually and then use, e.g. git, to store the actual profiles for each minor version (e.g. commits) of your
project. However, you are forced to do all of the profiling, annotations with tags and basic informations about collected
resources, and many more by yourself, otherwise you lose the precise history of the performance your application.

1

Perun Documentation, Release 0.21.6

Or you can use database, but lose the flexibility and easy usage of the versioning systems and you have to design and
implement some user interface yourself.

Perun is in summary a wrapper over existing Version Systems and takes care of managing profiles for different versions
of projects. Moreover, it offers a tool suite allowing one to automate the performance regression test runs, postprocess
existing profiles or interpret the results. In particular, it has the following advantages over databases and sole Version
Control Systems:

1. Context—each performance profile is assigned to a concrete minor version adding the missing context to your
profiles—what was changed in the code base, when it was changed, who made the changes, etc. The profiles
themselves contains collected data and addition information about the performance regression run or application
configurations.

2. Automation—Perun allows one to easily automate the process of profile collection, eventually reducing the
whole process to a single command and can be hence hooked, e.g. when one commits new changes, in supported
version control system to make sure one never misses to generate new profiles for each new minor or major
version of project. The specification of jobs is inspired by continuous integration systems, and is designed as
YAML file, which serves as a natural format for specifying the automated jobs.

3. Genericity—supported format of the performance profiles is based on JSON notation and has just a minor
requirements and restrictions. Perun tool suite contains a basic set of generic (and several specific) visualizations,
postprocessing and collection modules which can be used as building blocks for automating jobs and interpreting
results. Perun itself poses only a minor requirements for creating and registering new modules, e.g. when one
wants to register new profiling data collectors, data postprocessors, customized visualiations or different version
control systems.

4. Easy to use—the workflow, interface and storage of Perun is heavily inspired by the git systems aiming at nat-
ural use (at least for majority of potential users). Current version has a Command Line Interface consisting
of commands similar to git (such as e.g. add, status, log). Interactive Graphical User Interface is currently in
development.

Collectors

Postprocessing

Visualizations

(time, memory,

(regression analysis, filters,

(bars, scatter plots, heat maps,

Server

Developer 2Developer 1

(.git) (.perun)(.git) (.perun) (.git) (.perun)(.git) (.perun)

(.git) (.perun)(.git) (.perun)

Perun

Suite

git init --bare

Perun is meant to be used in two ways: (1) for a single developer (or a small team) as a complete solution for automating,
storing and interpreting performance of ones project or (2) as a dedicated store for a bigger projects and teams. Its git-

2 Chapter 1. Perun: Performance Under Control

https://www.json.org/

Perun Documentation, Release 0.21.6

like design aims at easy distribution and simple interface makes it a simple store of profiles along with the context.

Currently we are considering making a storage layer abstracting the storing of the profile either in filesystem (in git) or
in database. This is currently in discussion in case the filesystem storage will not scale enough.

1.2 Installation

You can install Perun as follows:

make init
make install

These commands installs Perun to your system as a python package. You can then run perun safely from the command
line using the perun command. Run either perun --help or see the Command Line Interface documentation for
more information about running Perun commands from command line.

Note: Depending on your OS and the location of Python libraries, you might require root permissions to install Perun.

Alternatively you can install Perun in development mode:

make init
make dev

This method of installation allows you to make a changes to the code, which will be then reflected by the installation.

In order to partially verify that Perun runs correctly in your environment, run the automated tests as follows:

make test

In case you run in some unexpected behaviour, error or anything suspicious, either contact us directly through mail or
create a new Issue.

1.3 Lifetime of a profile

Format of performance profiles is based on JSON format. It tries to unify various performance metrics and methods
for collecting and postprocessing of profiling data. Profiles themselves are stored in a storage (parallel to vcs storage;
currently in filesystem), compressed using the zlib compression method along with the additional information, such
as how the profile was collected, how profiling resources were postprocessed, which metric units are used, etc. For
learning how the profiles are stored in the storage and the internals of Perun refer to Perun Internals. For exact format
of the supported profile refer to Specification of Profile Format.

1.2. Installation 3

https://github.com/tfiedor/perun/issues/new
https://www.json.org/

Perun Documentation, Release 0.21.6

The Figure above shows the lifetime of one profile. Profiles can be generated by set of collectors (such as Trace Collector
which collects time durations depending on sizes of data structures, or simple Time Collector for basic timing) and can
be further refined and transformed by sequence of postprocessing steps (like e.g. Regression Analysis for estimating
regression models of dependent variables based on independent variables, or Normalizer Postprocessor, etc.).

Stored profiles then can be interpreted by set of visualization techniques like e.g. Flame Graph, Scatter Plot, or generic
Bars Plot and Flow Plot. Refer to Visualizations Overview for more concise list and documentation of interpretation
capabilities of Perun’s tool suite.

1.4 Perun architecture

Internal architecture of Perun can be divided into several units—logic (commands, jobs, runners, store), data (vcs
and profile), and the tool suite (collectors, postprocessors and visualizers). Data includes the core of the Perun—the
profile manipulation and supported wrappers (currently git and simple custom vcs) over the existing version control
systems. The logic is in charge of automation, higher-logic manipulations and takes care of actual generation of the
profiles. Moreover, the whole Perun suite contains set of collectors for generation of profiles, set of postprocessors for
transformation and various visualization techniques and wrappers for graphical and command line interface.

4 Chapter 1. Perun: Performance Under Control

Perun Documentation, Release 0.21.6

VIEW

DATALOGIC

PERUN

HEAP
MAP

GUI CLI
FLAME
GRAPH

...

VCS

GIT

SVN

...

PVCS

PROFILE
Regex

...

Memory

Time

...

Filter

Normalizer

HOOKS

GIT ...

IN

IS
 V

IS
U

A
LI

ZE
D

SVN

COLLECTORS

POSTPROCESS

The scheme above shows the basic decomposition of Perun suite into sole units. Architecture of Perun was designed to
allow simple extension of both internals and tool suite. In order to register new profiling data collector, profile postpro-
cessor, or new visual interpretation of results refer to Creating your own Collector, Creating your own Postprocessor
and Creating your own Visualization respectively.

1.5 List of Features

In the following, we list the foremost features and advantages of Perun:

• Unified format—we base our format on JSON with several minor limitations, e.g. one needs to specify header
region or set of resources under fixed keys. This allows us to reuse existing postprocessors and visualisers to
achieve great flexibility and easily design new methods. For full specification of our format refer to Specification
of Profile Format.

• Natural specification of Profiling Runs—we base the specification of profiling jobs in Yaml format. In project
configuration we let the user choose the set of collectors, set of postprocessors and configure runnable applica-
tions along with different parameter combinations and input workloads. Based on this specification we build a job
matrix, which is then sequentially run and generates list of performance profiles. After the functional changes to
project one then just needs to run perun run matrix to genereate new batch of performance profiles for latest
(or currently checked-out) minor version of project.

• Git-inspired Interface—the Command Line Interface is inspired by git version control systems and specifies
commands like e.g. add, remove, status, or log, well-known to basic git users. Moreover, the interface is built

1.5. List of Features 5

https://www.json.org/
http://yaml.org/

Perun Documentation, Release 0.21.6

using the Click library providing flexible option and argument handling. The overall interface was designed to
have a natural feeling when executing the commands.

• Efficient storage—performance profiles are stored compressed in the storage in parallel to versions of the profiled
project. Each stored object is then identified by its hash indentificator allowing quick lookup and reusing of object
blobs. Storage in this form is rather packed and allows easy distribution.

• Multiplatform-support—Perun is implemented in Python 3 and its implementation is supported both by Win-
dows and Unix-like platforms.

• Regression Analysis—Perun’s suite contains a postprocessing module for Regression Analysis, which supports
several different strategies for finding the best model for given data (such as linear, quadratic, or constant model).
Moreover, it contains switch for a more fine analysis of the data e.g. by performing regression analysis on smaller
intervals, or using bisective method on whole data interval. Such analyses allows one to effectively interpret
trends in data (e.g. that the duration of list search is lineary dependent on the size of the list) and help with
detecting performance regressions.

• Interactive Visualizations—Perun’s tool suite includes several visualization modules, some of them based on
Bokeh visualization library, which provides nice and interactive plots, in exchange of scalability (note that we
are currently exploring libraries that can scale better) —in browser, resizable and manipulable.

• Useful API for profile manipulation—helper modules are provided for working with our profiles in external
applications (besides loading and basic usage)—we have API for executing simple queries over the resources
or other parts of the profiles, or convert and transform the profiles to different representations (e.g. pandas
data frame, or flame-graph format). This way, Perun can be used, e.g. together with python and pandas, as
interactive interpret with support of statistical analysis.

• Automatic Detection of Performance Degradation—we are currently exploring effective heuristics for auto-
matic detection of performance degradation between two project versions (e.g. between two commits). Our
methodology is based on statistical methods and outputs of Regression Analysis. More details about degradation
detection can be found at Detecting Performance Changes

Currently we are working on several extensions of Perun, that could be integrated in near future. Namely, in we are
exploring the following possible features into Perun:

• Regular Expression Driven Collector—one planned collectors should be based on parsing the standard text
output for a custom specified metrics, specified by regular expressions. We believe this could allow generic and
quick usage to generate the performance profiles without the need of creating new specific collectors.

• Fuzzing Collector—other planned collector should be based on method of fuzz testing—i.e. modifying inputs in
order to force error or, in our case, a performance change. We believe that this collector could generate interesting
profiles and lead to a better understanding of ones applications.

• Clustering Postprocessor—we are exploring now how to make any profile usable for regression analysis. The
notion of clustering is based on assumption, that there exists an independent variable (but unknown to us) that
can be used to model the dependent variable (in our case the amount of resources). This postprocessor should
try to find the optimal clustering of the dependent values in order to be usable by Regression Analysis.

• Automatic Hooks—in near future, we want to include the initially planned feature of Perun, namely the auto-
matic hooks, that will allow to automate the runs of job matrix, automatic detection of degradation and efficient
storage. Hooks would then trigger the profile collection e.g. on_commit, on_push, etc.

6 Chapter 1. Perun: Performance Under Control

http://click.pocoo.org/5/
https://bokeh.pydata.org/en/latest/

Perun Documentation, Release 0.21.6

1.6 Overview of Customization

In order to extend the tool suite with custom modules (collectors, postprocessors and visualizations) one needs to
implement run.py module inside the custom package stored in appropriate subdirectory (perun.collect, perun.
postprocess and perun.view respectively). For more information about registering new profiling data collector,
profile postprocessor, or new visual interpretation of results refer to Creating your own Collector, Creating your own
Postprocessor and Creating your own Visualization respectively.

If you think your custom module could help others, please send us PR, we will review the code and in case it is suitable
for wider audience, we will include it in our upstream.

1.6.1 Custom Collector

Collectors serves as a unit for generating profiles containing captured resources. In general the collection process can
be broken into three phases:

1. Before—optional phase before the actual collection of profiling data, which is meant to prepare the profiled
project for the actual collection. This phases corresponds to various initializations, custom compilations, etc.

2. Collect—the actual collection of profiling data, which should capture the profiled resources and ideally generate
the profile w.r.t. Specification of Profile Format.

3. After—last and optional phase after resources has been successfully collected (either in raw or supported format).
This phase includes e.g. corresponds filters or transformation of the profile.

Each collector should be registered in perun.collect package and needs to implement the proposed interfaced inside
the run.pymodule. In order to register and use a new collector one needs to implement the following api in the run.py
module:

def before(**kwargs):
"""(optional) Phase before execution of collector"""
return status_code, status_msg, kwargs

def collect(**kwargs):
"""Collection of the profile---returned profile is in kwargs['profile']"""
kwargs['profile'] = collector.do_collection()
return status_code, status_msg, kwargs

def after(**kwargs):
"""(optional) Final postprocessing of the generated profile"""
return status_code, status_msg, kwargs

For full explanation how to register and create a new collector module refer to Creating your own Collector.

1.6.2 Custom Postprocessor

Postprocessors in general work the same as collectors and can be broken to three phases as well. The required API to
be implemented has a similar requirements and one needs to implement the following in the run.py module:

def before(**kwargs):
"""(optional) Phase before execution of postprocessor"""
return status_code, status_msg, kwargs

def postprocess(**kwargs):
(continues on next page)

1.6. Overview of Customization 7

https://github.com/tfiedor/perun/pull/new/develop
https://github.com/tfiedor/perun

Perun Documentation, Release 0.21.6

(continued from previous page)

"""Postprocessing of the profile---returned profile is in kwargs['profile']"""
kwargs['profile'] = postprocessor.do_postprocessing()
return status_code, status_msg, kwargs

def after(**kwargs):
"""(optional) Final postprocessing of the generated profile"""
return status_code, status_msg, kwargs

For full explanation how to register and create a new postprocessor module refer to Creating your own Postprocessor.

1.6.3 Custom Visualization

New visualizations have to be based on the Specification of Profile Format (or its supported conversions, see Profile
Conversions API) and has to just implement the following in the run.py module:

import click
import perun.utils.helpers as helpers

@click.command()
@helpers.pass_profile
def visualization_name(profile, **kwargs):

"""Display the profile in custom format"""
pass

The Click library is used for command line interface. For full explanation how to register and create a new collector
module refer to Creating your own Visualization.

1.7 Acknowledgements

We thank for the support received from Red Hat (especially branch of Brno), Brno University of Technology (BUT
FIT) and H2020 ECSEL project Aquas.

Further we would like to thank the following individuals (in the alphabetic order) for their (sometimes even just a little)
contributions:

• Jan Fiedor (Honeywell)—for feedback, and technical discussions;

• Martin Hruska (BUT FIT)—for feedback, and technical discussions;

• Petr Müller (SAP)—for nice discussion about the project;

• Michal Kotoun (BUT FIT)—for feedback, and having faith in this repo;

• Hanka Pluhackova (BUT FIT)—for awesome logo, theoretical discussions about statistics, feedback, and lots
of ideas;

• Adam Rogalewicz (BUT FIT)—for support, theoretical discussions, feedback;

• Tomas Vojnar (BUT FIT)—for support, theoretical discussions, feedback;

• Jan Zeleny (Red Hat)—for awesome support, and feedback.

8 Chapter 1. Perun: Performance Under Control

http://click.pocoo.org/5/
https://www.redhat.com/en/global/czech-republic
https://www.fit.vutbr.cz/
https://www.fit.vutbr.cz/
https://aquas-project.eu/

CHAPTER

TWO

PERUN’S PROFILE FORMAT

Supported format is based on JSON with several restrictions regarding the keys (or regions) that needs to be defined
inside. The intuition of JSON-like notation usage stems from its human readability and well-established support in
leading programming languages (namely Python and JavaScript). Note, that however, the current version of format
may generate huge profiles for some collectors, since it can contain redundancies. We are currently exploring several
techniques to reduce the size of the profile.

The scheme above shows the basic lifetime of one profile. Performance profiles are generated by units called collectors
(or profilers). One can either generate the profiles by its own methods or use one of the collectors from Perun’s tool
suite (see Supported Collectors for list of supported collectors). Generated profile can then be postprocessed multiple
times using postprocessing units (see Supported Postprocessors for list of supported postprocessors), in order to e.g.
normalize the values. Once you are finished with the profiles, you can store it in the persistent storage (see Perun

9

https://www.json.org/
https://www.json.org/

Perun Documentation, Release 0.21.6

Internals for details how profiles are stored), where it will be compressed and assigned to appropriate minor version
origin, e.g. concrete commit. Both stored and freshly generated profiles can be interpreted by various visualization
techniques (see Supported Visualizations for list of visualization techniques).

2.1 Specification of Profile Format

The generic scheme of the format can be simplified in the following regions.

{
"origin": "",
"header": {},
"collector_info": {},
"postprocessors": [],
"snapshots": [],
"chunks": {}

}

Chunks region is currently in development, and is optional. Snapshots region contains the actual collected resources
and can be changed through the further postprocessing phases, like e.g. by Regression Analysis. List of postprocessors
specified in postprocessors region can be updated by subsequent postprocessing analyses. Finally the origin region is
only present in non-assigned profiles. In the following we will decribe the regions in more details.

origin

{
"origin": "f7f3dcea69b97f2b03c421a223a770917149cfae",

}

Origin specifies the concrete minor version to which the profile corresponds. This key is present only, when the profile
is not yet assigned in the control system. Such profile is usually found in .perun/jobs directory. Before storing the
profile in persistent storage, origin is removed and serves as validation that we are not assigning profiles to different
minor versions. Assigning of profiles corresponding to different minor versions would naturally screw with the project
history.

The example region above specifies, that the profile corresponded to a minor version f7f3dc and thus links the resources
to the changes of this commit.

header

{
"header": {

"type": "time",
"units": {

"time": "s"
},
"cmd": "perun",
"args": "status",
"workload": "--short",

}
}

Header is a key-value dictionary containing basic specification of the profile, like e.g. rough type of the performance
profile, the actual command which was profiled, its parameters and input workload (giving full project configuration).
The following keys are included in this region:

10 Chapter 2. Perun’s Profile Format

Perun Documentation, Release 0.21.6

The example above shows header of time profile, with resources measured in seconds. The profiled command was
perun status --short, which was broken down to a command perun, with parameter status and other parameter
--shortwas considered to be workload (note that the definition of workloads can vary and be used in different context).

type

Specifies rough type of the performance profile. Currently Perun consideres time, mixed and memory. We further plan
to expand the list of choices to include e.g. network, filesystem or utilization profile types.

units

Map of types (and possible subtypes) of resources to their used metric units. Note that collector should guarantee that
resources are unified in units. E.g. time can be measured in s or ms, memory of subtype malloc can be measured in B
or kB, read/write thoroughput can be measured in kB/s, etc.

cmd

Specifies the command which was profiled and yielded the generated the profile. This can be either some script (e.g.
perun), some command (e.g. ls), or execution of binary (e.g. ./out. In general this corresponds to a profiled
application. Note, that some collectors are working with their own binaries and thus do not require the command to be
specified at all (like e.g. Trace Collector and will thus omit the actual usage of the command), however, this key can
still be used e.g. for tagging the profiles.

args

Specifies list of arguments (or parameters) for command cmd. This is used for more fine distinguishing of profiles
regarding its parameters (e.g. when we run command with different optimizations, etc.). E.g. if take ls command as
an example, -al can be considered as parameter. This key is optional, can be empty string.

workload

Similarly to parameters, workloads refer to a different inputs that are supplied to profiled command with given argu-
ments. E.g. when one profiles text processing application, workload will refer to a concrete text files that are used
to profile the application. In case of the ls -al command with parameters, / or ./subdir can be considered as
workloads. This key is optional, can be empty string.

collector_info

{
"collector_info": {

"name": "complexity",
"params": {

"sampling": [
{

"func": "SLList_insert",
"sample": 1

},
],
"internal_direct_output": false,
"internal_storage_size": 20000,
"files": [

"../example_sources/simple_sll_cpp/main.cpp",
"../example_sources/simple_sll_cpp/SLList.h",
"../example_sources/simple_sll_cpp/SLListcls.h"

],
"target_dir": "./target",

(continues on next page)

2.1. Specification of Profile Format 11

Perun Documentation, Release 0.21.6

(continued from previous page)

"rules": [
"SLList_init",
"SLList_insert",
"SLList_search",

]
},

}
}

Collector info contains configuration of the collector, which was used to capture resources and generate the profile.

collector_info.name

Name of the collector (or profiler), which was used to generate the profile. This is used e.g. in displaying the list of the
registered and unregistered profiles in perun status, in order to differentiate between profiles collected by different
profilers.

collector_info.params

The configuration of the collector in the form of (key, value) dictionary.

The example above lists the configuration of Trace Collector (for full specification of parameters refer to Overview and
Command Line Interface). This configurations e.g. specifies, that the list of files will be compiled into the target_dir
with custom Makefile and these sources will be used create a new binary for the project (prepared for profiling), which
will profile function specified by rules w.r.t specified sampling.

postprocessors

{
"postprocessors": [

{
"name": "regression_analysis",
"params": {

"method": "full",
"models": [

"constant",
"linear",
"quadratic"

]
},

}
],

}

List of configurations of postprocessing units in order they were applied to the profile (with keys analogous to
collector_info).

The example above specifies list with one postprocessor, namely the Regression Analysis (for full specification refer to
Command Line Interface). This configuration applied regression analysis and using full method fully computed models
for constant, linear and quadratic models.

snapshots

{
"snapshots": [

(continues on next page)

12 Chapter 2. Perun’s Profile Format

Perun Documentation, Release 0.21.6

(continued from previous page)

{
"time": "0.025000",
"resources": [

{
"type": "memory",
"subtype": "malloc",
"address": 19284560,
"amount": 4,
"trace": [

{
"source": "../memory_collect_test.c",
"function": "main",
"line": 22

},
],
"uid": {

"source": "../memory_collect_test.c",
"function": "main",
"line": 22

}
},

],
"models": []

}, {
"time": "0.050000",
"resources": [

{
"type": "memory",
"subtype": "free",
"address": 19284560,
"amount": 0,
"trace": [

{
"source": "../memory_collect_test.c",
"function": "main",
"line": 22

},
],
"uid": {

"source": "../memory_collect_test.c",
"function": "main",
"line": 22

}
},

],
"models": []

},
]

}

Snapshots contains the list of actual resources that were collected by the specified collector (collector_info.name).
Each snapshot is represented by its time, list of captured resources and optionally list of models (refer to Regression
Analysis for more details). The actual specification of resources varies w.r.t to used collectors.

2.1. Specification of Profile Format 13

Perun Documentation, Release 0.21.6

time

Time specifies the timestamp of the given snapshot. The example above contains two snapshots, first captured after
0.025s and other after 0.05s of running time.

resources

Resources contains list of captured profiling data. Their actual format varies, and is rather flexible. In order to model
the actual amount of resources, we advise to use amount key to quantify the size of given metric and use type (and
possible subtype) in order to link resources to appropriate metric units.

The resources above were collected by Memory Collector, where amount specifies the number of bytes allocated of
given memory subtype at given address by specified trace of functions. The first snapshot contains one resources
corresponding ot 4B of memory allocated by malloc in function main on line 22 in memory_collect_test.c file. The
other snapshots contains record of deallocation of the given resource by free.

{
"amount": 0.59,
"type": "time",
"uid": "sys"

}

These resources were collected by Time Collector, where amount specifies the sys time of the profile application (as
obtained by time utility).

{
"amount": 11,
"subtype": "time delta",
"type": "mixed",
"uid": "SLList_init(SLList*)",
"structure-unit-size": 0

}

These resources were collected by Trace Collector. Amount here represents the difference between calling and returning
the function uid in miliseconds, on structure of size given by structure-unit-size. Note that these resources are suitable
for Regression Analysis.

models

{
"uid": "SLList_insert(SLList*, int)",
"r_square": 0.0017560012128507133,
"coeffs": [

{
"value": 0.505375215875552,
"name": "b0"

},
{

"value": 9.935159839322705e-06,
"name": "b1"

}
],
"x_start": 0,
"x_end": 11892,
"model": "linear",

(continues on next page)

14 Chapter 2. Perun’s Profile Format

Perun Documentation, Release 0.21.6

(continued from previous page)

"method": "full",
}

Models is a list of models obtained by Regression Analysis. Note that the ordering of models in the list has no meaning at
all. The model above corresponds to behaviour of the function SLList_insert, and corresponds to a linear function of
𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑏0+𝑏1 *𝑠𝑖𝑧𝑒 (where size corresponds to the structure-unit-size key of the resource) on interval (0, 11892).
Hence, we can estimate the complexity of function SLList_insert to be linear.

chunks

This region is currently in proposal. Chunks are meant to be a look-up table which maps unique identifiers to a larger
portions of JSON regions. Since lots of informations are repeated through the profile (e.g. the traces in Memory
Collector), replacing such regions with reference to the look-up table should greatly reduce the size of profiles.

2.2 Profile API

perun.profile.factory specifies collective interface for basic manipulation with profiles.

The format of profiles is w.r.t. Specification of Profile Format. This module contains helper functions for loading
and storing of the profiles either in the persistent memory or in filesystem (in this case, the profile is in uncompressed
format).

For further manipulations refer either to Profile Conversions API (implemented in perun.profile.convertmodule)
or Profile Query API (implemented in perun.profile.query module). For full specification how to handle the
JSON objects in Python refer to Python JSON library. Profile factory optimizes the previous profile format

In particular, in the new format we propose to merge some regions into so called resource types, which are dictionaries
of persistent less frequently changed aspects of resources. Moreover, we optimize other regions and flatten the format.

class perun.profile.factory.Profile(*args: Any, **kwargs: Any)

Variables

• _storage (dict) – internal storage of the profile

• _tuple_to_resource_type_map (dict) – map of tuple of persistent records of resources
to unique identifier of those resources

• _uid_counter (Counter) – counter of how many resources type uid has

all_filtered_models(models_strategy: str)→ dict[str, ModelRecord]
The function obtains models according to the given strategy.

This function according to the given strategy and group derived from it obtains the models from the current
profile. The function creates the relevant dictionary with required models or calls the responded functions,
that returns the models according to the specifications.

Parameters
models_strategy (str) – name of detection models strategy to obtains relevant models

Return ModelRecord
required models

all_models(group: str = 'model')→ Iterable[tuple[int, dict[str, Any]]]
Generator of all ‘models’ records from the performance profile w.r.t. Specification of Profile Format.

2.2. Profile API 15

https://www.json.org/
https://docs.python.org/3.7/library/json.html

Perun Documentation, Release 0.21.6

Form a profile, postprocessed by e.g. Regression Analysis and iterates through all of its models (for more
details about models refer to models or Regression Analysis).

E.g. given some trace profile complexity_prof, we can iterate its models as follows:

>>> gen = complexity_prof.all_models()
>>> gen.__next__()
(0, {'x_start': 0, 'model': 'constant', 'method': 'full',
'coeffs': [{'name': 'b0', 'value': 0.5644496762801648}, {'name': 'b1',
'value': 0.0}], 'uid': 'SLList_insert(SLList*, int)', 'r_square': 0.0,
'x_end': 11892})
>>> gen.__next__()
(1, {'x_start': 0, 'model': 'exponential', 'method': 'full',
'coeffs': [{'name': 'b0', 'value': 0.9909792049684152}, {'name': 'b1',
'value': 1.000004056250301}], 'uid': 'SLList_insert(SLList*, int)',
'r_square': 0.007076437903106431, 'x_end': 11892})

Parameters
group (str) – the kind of requested models to return

Returns
iterable stream of (int, dict) pairs, where first yields the positional number of model and
latter correponds to one ‘models’ record (for more details about models refer to models or
Regression Analysis)

all_resources(flatten_values: bool = False)→ Iterable[tuple[int, dict[str, Any]]]
Generator for iterating through all the resources contained in the performance profile.

Generator iterates through all the snapshots, and subsequently yields collected resources. For more thor-
ough description of format of resources refer to resources. Resources are not flattened and, thus, can
contain nested dictionaries (e.g. for traces or uids).

Parameters
flatten_values (bool) – if set to true, then the persistent values will be flattened to one
level.

Returns
iterable stream of resources represented as pair (int, dict) of snapshot number and the
resources w.r.t. the specification of the resources

all_snapshots()→ Iterable[tuple[int, list[dict[str, Any]]]]
Iterates through all the snapshots in resources

Note this is required e.g. for heap map, which needs to group the resources by snapshots.

Returns
iterable of snapshot numbers and snapshot resources

16 Chapter 2. Perun’s Profile Format

Perun Documentation, Release 0.21.6

2.3 Profile Conversions API

perun.profile.convert is a module which specifies interface for conversion of profiles from Specification of Profile
Format to other formats.

Run the following in the Python interpreter to extend the capabilities of Python to different formats of profiles:

import perun.profile.convert

Combined with perun.profile.factory, perun.profile.query and e.g. pandas library one can obtain efficient
interpreter for executing more complex queries and statistical tests over the profiles.

perun.profile.convert.resources_to_pandas_dataframe(profile: Profile)→ pandas.DataFrame
Converts the profile (w.r.t Specification of Profile Format) to format supported by pandas library.

Queries through all of the resources in the profile, and flattens each key and value to the tabular representation.
Refer to pandas library for more possibilities how to work with the tabular representation of collected resources.

E.g. given time and memory profiles tprof and mprof respectively, one can obtain the following formats:

>>> convert.resources_to_pandas_dataframe(tprof)
amount snapshots uid

0 0.616s 0 real
1 0.500s 0 user
2 0.125s 0 sys

>>> convert.resources_to_pandas_dataframe(mmprof)
address amount snapshots subtype trace type

0 19284560 4 0 malloc malloc:unreachabl... memory
1 19284560 0 0 free free:unreachable:... memory

uid uid:function uid:line uid:source
0 main:../memo...:22 main 22 ../memory_collect_test.c
1 main:../memo...:27 main 27 ../memory_collect_test.c

Parameters
profile (Profile) – dictionary with profile w.r.t. Specification of Profile Format

Returns
converted profile to pandas.DataFramelist with resources flattened as a pandas dataframe

perun.profile.convert.to_flame_graph_format(profile: Profile)→ list[str]
Transforms the memory profile w.r.t. Specification of Profile Format into the format supported by perl script of
Brendan Gregg.

Flame Graph can be used to visualize the inclusive consumption of resources w.r.t. the call trace of the resource.
It is useful for fast detection, which point at the trace is the hotspot (or bottleneck) in the computation. Refer to
Flame Graph for full capabilities of our Wrapper. For more information about flame graphs itself, please check
Brendan Gregg’s homepage.

Example of format is as follows:

>>> print(''.join(convert.to_flame_graph_format(memprof)))
malloc()~unreachable~0;main()~/home/user/dev/test.c~45 4
valloc()~unreachable~0;main()~/home/user/dev/test.c~75;__libc_start_main()~

(continues on next page)

2.3. Profile Conversions API 17

https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
http://www.brendangregg.com/index.html

Perun Documentation, Release 0.21.6

(continued from previous page)

→˓unreachable~0 8
main()~/home/user/dev/test02.c~79 156

Each line corresponds to some collected resource (in this case amount of allocated memory) preceeded by its
trace (i.e. functions or other unique identifiers joined using ; character.

Parameters
profile (Profile) – the memory profile

Returns
list of lines, each representing one allocation call stack

perun.profile.convert.plot_data_from_coefficients_of(model: dict[str, Any])→ dict[str, Any]
Transform coefficients computed by Regression Analysis into dictionary of points, plotable as a function or curve.
This function serves as a public wrapper over regression analysis transformation function.

Parameters
model (dict) – the models dictionary from profile (refer to models)

Returns dict
updated models dictionary extended with plot_x and plot_y lists

2.4 Profile Query API

perun.profile.query is a module which specifies interface for issuing queries over the profiles w.r.t Specification
of Profile Format.

Run the following in the Python interpreter to extend the capabilities of profile to query over profiles, iterate over
resources or models, etc.:

import perun.profile.query

Combined with perun.profile.factory, perun.profile.convert and e.g. Pandas library one can obtain effi-
cient interpreter for executing more complex queries and statistical tests over the profiles.

perun.profile.query.all_items_of(resource: dict[str, Any])→ Iterable[tuple[str, str | float]]
Generator for iterating through all of the flattened items contained inside the resource w.r.t resources specifi-
cation.

Generator iterates through all of the items contained in the resource in flattened form (i.e. it does not contain
nested dictionaries). Resources should be w.r.t resources specification.

E.g. the following resource:

{
"type": "memory",
"amount": 4,
"uid": {

"source": "../memory_collect_test.c",
"function": "main",
"line": 22

}
}

yields the following stream of resources:

18 Chapter 2. Perun’s Profile Format

https://docs.python.org/3.7/library/json.html

Perun Documentation, Release 0.21.6

("type", "memory")
("amount", 4)
("uid", "../memory_collect_test.c:main:22")
("uid:source", "../memory_collect_test.c")
("uid:function", "main")
("uid:line": 22)

Parameters
resource (dict) – dictionary representing one resource w.r.t resources

Returns
iterable stream of (str, value) pairs, where the value is flattened to either a string, or decimal
representation and str corresponds to the key of the item

perun.profile.query.all_numerical_resource_fields_of(profile: Profile)→ Iterable[str]
Generator for iterating through all the fields (both flattened and original) that are occuring in the resources and
takes as domain integer values.

Generator iterates through all the resources and checks their flattened keys and yields them in case they were not
yet processed. If the instance of the key does not contain integer values, it is skipped.

E.g. considering the example profiles from resources, the function yields the following for memory, time and
trace profiles respectively (considering we convert the stream to list):

memory_num_resource_fields = ['address', 'amount', 'uid:line']
time_num_resource_fields = ['amount']
complexity_num_resource_fields = ['amount', 'structure-unit-size']

Parameters
profile (Profile) – performance profile w.r.t Specification of Profile Format

Returns
iterable stream of resource fields key as str, that takes integer values

perun.profile.query.unique_resource_values_of(profile: Profile, resource_key: str)→ Iterable[str]
Generator of all unique key values occurring in the resources, w.r.t. resources specification of resources.

Iterates through all the values of given resource_keys and yields only unique values. Note that the key can
contain ‘:’ symbol indicating another level of dictionary hierarchy or ‘::’ for specifying keys in list or set level,
e.g. in case of traces one uses trace::function.

E.g. considering the example profiles from resources, the function yields the following for memory, time and
trace profiles stored in variables mprof, tprof and cprof respectively:

>>> list(query.unique_resource_values_of(mprof, 'subtype')
['malloc', 'free']
>>> list(query.unique_resource_values_of(tprof, 'amount')
[0.616, 0.500, 0.125]
>>> list(query.unique_resource_values_of(cprof, 'uid')
['SLList_init(SLList*)', 'SLList_search(SLList*, int)',
'SLList_insert(SLList*, int)', 'SLList_destroy(SLList*)']

Parameters

• profile (Profile) – performance profile w.r.t Specification of Profile Format

2.4. Profile Query API 19

Perun Documentation, Release 0.21.6

• resource_key (str) – the resources key identifier whose unique values will be iterated

Returns
iterable stream of unique resource key values

perun.profile.query.all_key_values_of(resource: dict[str, Any], resource_key: str)→ Iterable[Any]
Generator of all (not essentially unique) key values in resource, w.r.t resources specification of resources.

Iterates through all of the values of given resource_key and yields every value it finds. Note that the key can
contain ‘:’ symbol indicating another level of dictionary hierarchy or ‘::’ for specifying keys in list or set level,
e.g. in case of traces one uses trace::function.

E.g. considering the example profiles from resources and the resources mres from the profile of memory type,
we can obtain all of the values of trace::function key as follows:

>>> query.all_key_values_of(mres, 'trace::function')
['free', 'main', '__libc_start_main', '_start']

Note that this is mostly useful for iterating through list or nested dictionaries.

Parameters

• resource (dict) – dictionary representing one resource w.r.t resources

• resource_key (str) – the resources key identifier whose unique values will be iterated

Returns
iterable stream of all resource key values

perun.profile.query.unique_model_values_of(profile: Profile, model_key: str)→ Iterable[Any]
Generator of all unique key values occurring in the models in the resources of given performance profile w.r.t.
Specification of Profile Format.

Iterates through all of the values of given resource_keys and yields only unique values. Note that the key can
contain ‘:’ symbol indicating another level of dictionary hierarchy or ‘::’ for specifying keys in list or set level,
e.g. in case of traces one uses trace::function. For more details about the specification of models refer to
models or Regression Analysis).

E.g. given some trace profile complexity_prof, we can obtain unique values of keys from models as follows:

>>> list(query.unique_model_values_of('model')
['constant', 'exponential', 'linear', 'logarithmic', 'quadratic']
>>> list(query.unique_model_values_of('r_square'))
[0.0, 0.007076437903106431, 0.0017560012128507133,
0.0008704119815403224, 0.003480627284909902, 0.001977866710139782,
0.8391363620083871, 0.9840099999298596, 0.7283427343995424,
0.9709120064750161, 0.9305786182556899]

Parameters

• profile (Profile) – performance profile w.r.t Specification of Profile Format

• model_key (str) – key identifier from models for which we query its unique values

Returns
iterable stream of unique model key values

20 Chapter 2. Perun’s Profile Format

CHAPTER

THREE

COMMAND LINE INTERFACE

Perun can be run from the command line (if correctly installed) using the command interface inspired by git.

The Command Line Interface is implemented using the Click library, which allows both effective definition of new
commands and finer parsing of the command line arguments. The intefrace can be broken into several groups:

1. Core commands: namely init, config, add, rm, status, log, run commands (which consists of
commands run job and run matrix) and check commands (which consists of commands check all,
check head and check profiles). These commands automate the creation of performance profiles,
detection of performance degradation and are used for management of the Perun repository. Refer to
Perun Commands for details about commands.

2. Collect commands: group of collect COLLECTOR commands, where COLLECTOR stands for one of
the collector of Supported Collectors. Each COLLECTOR has its own API, refer to Collect units for thorough
description of API of individual collectors.

3. Postprocessby commands: group of postprocessby POSTPROCESSOR commands, where
POSTPROCESSOR stands for one of the postprocessor of Supported Postprocessors. Each POSTPROCESSOR
has its own API, refer to Postprocess units for thorough description of API of individual postprocessors.

4. View commands: group of view VISUALIZATION commands, where VISUALIZATION stands for one
of the visualizer of Supported Visualizations. Each VISUALIZATION has its own API, refer to Show units
for thorough description of API of individual views.

5. Utility commands: group of commands used for developing Perun or for maintenance of the Perun
instances. Currently, this group contains create command for faster creation of new modules.

Graphical User Interface is currently in development and hopefully will extend the flexibility of Perun’s usage.

3.1 perun

Perun is an open source light-weight Performance Versioning System.

In order to initialize Perun in current directory run the following:

perun init

This initializes basic structure in .perun directory, together with possible reinitialization of git repository in current
directory. In order to set basic configuration and define jobs for your project run the following:

perun config --edit

This opens editor and allows you to specify configuration of your project and choose set of collectors for capturing
resources. See Automating Runs and Perun Configuration files for more details.

21

http://click.pocoo.org/5/

Perun Documentation, Release 0.21.6

In order to generate first set of profiles for your current HEAD run the following:

perun run matrix

perun [OPTIONS] COMMAND [ARGS]...

Options

-d, --dev-mode

Suppresses the catching of all exceptions from the CLI and generating of the dump.

--no-pager

Disables the paging of the long standard output (currently affects only status and log outputs). See paging
to change the default paging strategy.

-nc, --no-color

Disables the colored output.

-v, --verbose

Increases the verbosity of the standard output. Verbosity is incremental, and each level increases the extent of
output.

--version

Prints the current version of Perun.

-m, --metrics <metrics>

Enables the collection of metrics into the given temp file(first argument) under the supplied ID (second argument).

Commands

add

Links profile to concrete minor version. . .

check

Applies for the points of version history. . .

collect

Generates performance profile using. . .

config

Manages the stored local and shared. . .

fuzz

Performs fuzzing for the specified command. . .

init

Initializes performance versioning system. . .

log

Shows history of versions and associated. . .

postprocessby

Postprocesses the given stored or pending. . .

22 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

rm

Unlinks the profile from the given minor. . .

run

Generates batch of profiles w.r.t.

show

Interprets the given profile using the. . .

status

Shows the status of vcs, associated. . .

utils

Contains set of developer commands,. . .

3.2 Perun Commands

3.2.1 perun init

Initializes performance versioning system at the destination path.

perun init command initializes the perun’s infrastructure with basic file and directory structure inside the .perun
directory. Refer to Perun Internals for more details about storage of Perun. By default, following directories are created:

1. .perun/jobs: storage of performance profiles not yet assigned to concrete minor versions.

2. .perun/objects: storage of packed contents of performance profiles and additional information about minor
version of wrapped vcs system.

3. .perun/cache: fast access cache of selected latest unpacked profiles

4. .perun/local.yml: local configuration, storing specification of wrapped repository, jobs configuration, etc.
Refer to Perun Configuration files for more details.

The infrastructure is initialized at <path>. If no <path> is given, then current working directory is used instead. In case
there already exists a performance versioning system, the infrastructure is only reinitialized.

By default, a control system is initialized as well. This can be changed by setting the --vcs-type parameter (currently
we support git and tagit—a lightweight git-based wrapped based on tags). Additional parameters can be passed to
the wrapped control system initialization using the --vcs-params.

perun init [OPTIONS] <path>

Options

--vcs-type <type>

In parallel to initialization of Perun, initialize the vcs of <type> as well (by default git).

Options
git

--vcs-path <path>

Sets the destination of wrapped vcs initialization at <path>.

3.2. Perun Commands 23

Perun Documentation, Release 0.21.6

--vcs-param <param>

Passes additional (key, value) parameter to initialization of version control system, e.g. separate-git-dir
dir.

--vcs-flag <flag>

Passes additional flag to a initialization of version control system, e.g. bare.

-c, --configure

After successful initialization of both systems, opens the local configuration using the editor set in shared
config.

-t, --config-template <config_template>

States the configuration template that will be used for initialization of local configuration. See Predefined Con-
figuration Templates for more details about predefined configurations.

Arguments

<path>

Optional argument

3.2.2 perun config

Manages the stored local and shared configuration.

Perun supports two external configurations:

1. local.yml: the local configuration stored in .perun directory, containing the keys such as specification of
wrapped repository or job matrix used for quick generation of profiles (run perun run matrix --help or
refer to Automating Runs for information how to construct the job matrix).

2. shared.yml: the global configuration shared by all perun instances, containing shared keys, such as text editor,
formatting string, etc.

The syntax of the <key> in most operations consists of section separated by dots, e.g. vcs.type specifies type key
in vcs section. The lookup of the <key> can be performed in three modes, --local, --shared and --nearest,
locating or setting the <key> in local, shared or nearest configuration respectively (e.g. when one is trying to get some
key, there may be nested perun instances that do not contain the given key). By default, perun operates in the nearest
config mode.

Refer to Perun Configuration files for full description of configurations and Configuration types for full list of config-
uration options.

E.g. using the following one can retrieve the type of the nearest perun instance wrapper:

$ perun config get vcs.type
vcs.type: git

perun config [OPTIONS] COMMAND [ARGS]...

24 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

Options

-l, --local

Sets the local config, i.e. .perun/local.yml, as the source config.

-h, --shared

Sets the shared config, i.e. shared.yml., as the source config

-n, --nearest

Sets the nearest suitable config as the source config. The lookup strategy can differ for set and get/edit.

Commands

edit

Edits the configuration file in the. . .

get

Looks up the given <key> within the. . .

reset

Resets the configuration file to a sane. . .

set

Sets the value of the <key> to the. . .

3.2.3 perun config get

Looks up the given <key> within the configuration hierarchy and returns the stored value.

The syntax of the <key> consists of section separated by dots, e.g. vcs.type specifies type key in vcs section. The
lookup of the <key> can be performed in three modes, --local, --shared and --nearest, locating the <key> in
local, shared or nearest configuration respectively (e.g. when one is trying to get some key, there may be nested perun
instances that do not contain the given key). By default, perun operates in the nearest config mode.

Refer to Perun Configuration files for full description of configurations and Configuration types for full list of config-
uration options.

E.g. using the following can retrieve the type of the nearest perun wrapper:

$ perun config get vcs.type
vcs.type: git

$ perun config --shared get general.editor
general.editor: vim

perun config get [OPTIONS] <key>

3.2. Perun Commands 25

Perun Documentation, Release 0.21.6

Arguments

<key>

Required argument

3.2.4 perun config set

Sets the value of the <key> to the given <value> in the target configuration file.

The syntax of the <key> corresponds of section separated by dots, e.g. vcs.type specifies type key in vcs section.
Perun sets the <key> in three modes, --local, --shared and --nearest, which sets the <key> in local, shared or
nearest configuration respectively (e.g. when one is trying to get some key, there may be nested perun instances that
do not contain the given key). By default, perun will operate in the nearest config mode.

The <value> is arbitrary depending on the key.

Refer to Perun Configuration files for full description of configurations and Configuration types for full list of config-
uration options and their values.

E.g. using the following can set the log format for nearest perun instance wrapper:

$ perun config set format.shortlog "| %source% | %collector% |"
format.shortlog: | %source% | %collector% |

perun config set [OPTIONS] <key> <value>

Arguments

<key>

Required argument

<value>

Required argument

3.2.5 perun config edit

Edits the configuration file in the external editor.

The used editor is specified by the general.editor option, specified in the nearest perun configuration..

Refer to Perun Configuration files for full description of configurations and Configuration types for full list of config-
uration options.

perun config edit [OPTIONS]

26 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

3.2.6 perun add

Links profile to concrete minor version storing its content in the .perun dir and registering the profile in internal minor
version index.

In order to link <profile> to given minor version <hash> the following steps are executed:

1. We check in <profile> that its origin key corresponds to <hash>. This serves as a check, that we do not assign
profiles to different minor versions.

2. The origin is removed and contents of <profile> are compresed using zlib compression method.

3. Binary header for the profile is constructed.

4. Compressed contents are appended to header, and this blob is stored in .perun/objects directory.

5. New blob is registered in <hash> minor version’s index.

6. Unless --keep-profile is set, the original profile is deleted.

If no <hash> is specified, then current HEAD of the wrapped version control system is used instead. Massaging of
<hash> is taken care of by underlying version control system (e.g. git uses git rev-parse).

<profile> can either be a pending tag, pending tag range or a fullpath. Pending tags are in form of i@p,
where i stands for an index in the pending profile directory (i.e. .perun/jobs) and @p is literal suffix. The pending
tag range is in form of i@p-j@p, where both i and j stands for indexes in the pending profiles. The pending tag
range then represents all the profiles in the interval <i, j>. When i > j, then no profiles will be added; when j; when
j is bigger than the number of pending profiles, then all the non-existing pending profiles will be obviously skipped.
Run perun status to see the tag anotation of pending profiles. Tags consider the sorted order as specified by the
following option format.sort_profiles_by.

Example of adding profiles:

$ perun add mybin-memory-input.txt-2017-03-01-16-11-04.perf

This command adds the profile collected by memory collector during profiling mybin command with input.txt
workload on 1st March at 16:11 to the current HEAD.

An error is raised if the command is executed outside of range of any perun, if <profile> points to incorrect profile (i.e.
not w.r.t. Specification of Profile Format) or <hash> does not point to valid minor version ref.

See Perun Internals for information how perun handles profiles internally.

perun add [OPTIONS] <profile>

Options

-m, --minor <hash>

<profile> will be stored at this minor version (default is HEAD).

--keep-profile

Keeps the profile in filesystem after registering it in Perun storage. Otherwise it is deleted.

-f, --force

If set to true, then the profile will be registered in the <hash> minor versionindex, even if its origin <hash> is
different. WARNING: This can screw the performance history of your project.

3.2. Perun Commands 27

Perun Documentation, Release 0.21.6

Arguments

<profile>

Required argument(s)

3.2.7 perun rm

Unlinks the profile from the given minor version, keeping the contents stored in .perun directory.

<profile> is unlinked in the following steps:

1. <profile> is looked up in the <hash> minor version’s internal index.

2. In case <profile> is not found. An error is raised.

3. Otherwise, the record corresponding to <hash> is erased. However, the original blob is kept in .perun/objects.

If no <hash> is specified, then current HEAD of the wrapped version control system is used instead. Massaging of
<hash> is taken care of by underlying version control system (e.g. git uses git rev-parse).

<profile> can either be a index tag, pending tag or a path specifying the profile either in index or in the pending
jobs. Index tags are in form of i@i, where i stands for an index in the minor version’s index and @i is literal suffix.
Run perun status to see the tags of current HEAD’s index. The index tag range is in form of i@i-j@i, where
both i and j stands for indexes in the minor version’s index. The index tag range then represents all the profiles in
the interval <i, j>. registered in index. When i > j, then no profiles will be removed; when j; when j is bigger than
the number of pending profiles, then all the non-existing pending profiles will be obviously skipped. The pending
tags and pending tag range are defined analogously to index tags, except they use the p character, i.e. 0@p and
0@p-2@p are valid pending tag and pending tag range. Otherwise, one can use the path to represent the removed
profile. If the path points to existing profile in pending jobs (i.e. .perun/jobs directory) the profile is removed from
the jobs, otherwise it is looked-up in the index. Tags consider the sorted order as specified by the following option
format.sort_profiles_by.

Examples of removing profiles:

$ perun rm 2@i

This commands removes the third (we index from zero) profile in the index of registered profiles of current HEAD.

An error is raised if the command is executed outside of range of any Perun or if <profile> is not found inside the
<hash> index.

See Perun Internals for information how perun handles profiles internally.

perun rm [OPTIONS] <profile>

Options

-m, --minor <hash>

<profile> will be stored at this minor version (default is HEAD).

28 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

Arguments

<profile>

Required argument(s)

3.2.8 perun status

Shows the status of vcs, associated profiles and perun.

Shows the status of both the nearest perun and wrapped version control system. For vcs this outputs e.g. the current
minor version HEAD, current major version and description of the HEAD. Moreover, status prints the lists of tracked
and pending (found in .perun/jobs) profiles lexicographically sorted along with additional information such as their
types and creation times.

Unless perun --no-pager status is issued as command, or appropriate paging option is set, the outputs of status
will be paged (by default using less).

An error is raised if the command is executed outside of range of any perun, or configuration misses certain configura-
tion keys (namely format.status).

Profiles (both registered in index and stored in pending directory) are sorted according to the format.
sort_profiles_by. The option --sort-by sets this key in the local configuration for further usage. This means that
using the pending or index tags will consider this order.

Refer to Customizing Statuses for information how to customize the outputs of status or how to set format.status
in nearest configuration.

perun status [OPTIONS]

Options

-s, --short

Shortens the output of status to include only most necessary information.

-sb, --sort-by <format__sort_profiles_by>

Sets the <key> in the local configuration for sorting profiles. Note that after setting the <key> it will be used for
sorting which is considered in pending and index tags!

Options
realpath | type | time | cmd | args | workload | collector | checksum | source

3.2.9 perun log

Shows history of versions and associated profiles.

Shows the history of the wrapped version control system and all the associated profiles starting from the <hash> point,
outputing the information about number of profiles, about descriptions ofconcrete minor versions, their parents, parents
etc.

If perun log --short is issued, the shorter version of the log is outputted.

In no <hash> is given, then HEAD of the version control system is used as a starting point.

Unless perun --no-pager log is issued as command, or appropriate paging option is set, the outputs of log will
be paged (by default using less).

3.2. Perun Commands 29

Perun Documentation, Release 0.21.6

Refer to Customizing Logs for information how to customize the outputs of log or how to set format.shortlog in
nearest configuration.

perun log [OPTIONS] <hash>

Options

-s, --short

Shortens the output of log to include only most necessary information.

Arguments

<hash>

Optional argument

3.2.10 perun run

Generates batch of profiles w.r.t. specification of list of jobs.

Either runs the job matrix stored in local.yml configuration or lets the user construct the job run using the set of
parameters.

perun run [OPTIONS] COMMAND [ARGS]...

Options

-ot, --output-filename-template <output_filename_template>

Specifies the template for automatic generation of output filename This way the file with collected data will have
a resulting filename w.r.t to this parameter. Refer to format.output_profile_template for more details
about the format of the template.

-m, --minor-version <minor_version_list>

Specifies the head minor version, for which the profiles will be collected.

-c, --crawl-parents

If set to true, then for each specified minor versions, profiles for parents will be collected as well

-f, --force-dirty

If set to true, then even if the repository is dirty, the changes will not be stashed

Commands

job

Run specified batch of perun jobs to. . .

matrix

Runs the jobs matrix specified in the. . .

30 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

3.2.11 perun run job

Run specified batch of perun jobs to generate profiles.

This command correspond to running one isolated batch of profiling jobs, outside of regular profiling. Run perun run
matrix, after specifying job matrix in local configuration to automate regular profiling of your project. After the batch
is generated, each profile is tagged with origin set to current HEAD. This serves as check to not assign such profiles
to different minor versions.

By default, the profiles computed by this batch job are stored inside the .perun/jobs/ directory as a files in form of:

bin-collector-workload-timestamp.perf

In order to store generated profiles run the following, with i@p corresponding to pending tag, which can be obtained
by running perun status:

perun add i@p

perun run job -c time -b ./mybin -w file.in -w file2.in -p normalizer

This command profiles two commands ./mybin file.in and ./mybin file2.in and collects the profiling data
using the Time Collector. The profiles are then normalized with the Normalizer Postprocessor.

perun run job -c complexity -b ./mybin -w sll.cpp -cp complexity targetdir=./src

This commands runs one job ‘./mybin sll.cpp’ using the Trace Collector, which uses custom binaries targeted at ./src
directory.

perun run job -c mcollect -b ./mybin -b ./otherbin -w input.txt -p normalizer -p␣
→˓clusterizer

This commands runs two jobs ./mybin input.txt and ./otherbin input.txt and collects the profiles using
the Memory Collector. The profiles are then postprocessed, first using the Normalizer Postprocessor and then with
Regression Analysis.

Refer to Automating Runs and Perun’s Profile Format for more details about automation and lifetimes of profiles. For
list of available collectors and postprocessors refer to Supported Collectors and Supported Postprocessors respectively.

perun run job [OPTIONS]

Options

-b, --cmd <cmd>

Required Command that is being profiled. Either corresponds to some script, binary or command, e.g. ./mybin
or perun.

-a, --args <args>

Additional parameters for <cmd>. E.g. status or -al is command parameter.

-w, --workload <workload>

Inputs for <cmd>. E.g. ./subdir is possible workloadfor ls command.

-c, --collector <collector>

Required Profiler used for collection of profiling data for the given <cmd>

3.2. Perun Commands 31

Perun Documentation, Release 0.21.6

Options
trace | memory | time | complexity | bounds

-cp, --collector-params <collector_params>

Additional parameters for the <collector> read from the file in YAML format

-p, --postprocessor <postprocessor>

After each collection of data will run <postprocessor> to postprocess the collected resources.

Options
clusterizer | normalizer | regression-analysis | regressogram | moving-average | kernel-regression

-pp, --postprocessor-params <postprocessor_params>

Additional parameters for the <postprocessor> read from the file in YAML format

3.2.12 perun run matrix

Runs the jobs matrix specified in the local.yml configuration.

This commands loads the jobs configuration from local configuration, builds the job matrix and subsequently runs the
jobs collecting list of profiles. Each profile is then stored in .perun/jobs directory and moreover is annotated using
by setting origin key to current HEAD. This serves as check to not assing such profiles to different minor versions.

The job matrix is defined in the yaml format and consists of specification of binaries with corresponding arguments,
workloads, supported collectors of profiling data and postprocessors that alter the collected profiles.

Refer to Automating Runs and Job Matrix Format for more details how to specify the job matrix inside local configu-
ration and to Perun Configuration files how to work with Perun’s configuration files.

perun run matrix [OPTIONS]

Options

-q, --without-vcs-history

Will not print the VCS history tree during the collection of the data.

3.2.13 perun check

Applies for the points of version history checks for possible performance changes.

This command group either runs the checks for one point of history (perun check head) or for the whole history
(perun check all). For each minor version (called the target) we iterate over all of the registered profiles and try
to find a predecessor minor version (called the baseline) with profile of the same configuration (by configuration we
mean the tuple of collector, postprocessors, command, arguments and workloads) and run the checks according to the
rules set in the configurations.

The rules are specified as an ordered list in the configuration by degradation.strategies, where the keys corre-
spond to the configuration (or the type) and key method specifies the actual method used for checking for performance
changes. The applied methods can then be either specified by the full name or by its short string consisting of all first
letter of the function name.

The example of configuration snippet that sets rules and strategies for one project can be as follows:

degradation:
apply: first

32 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

strategies:
- type: mixed
postprocessor: regression_analysis
method: bmoe

- cmd: mybin
type: memory
method: bmoe

- method: aat

Currently we support the following methods:

1. Best Model Order Equality (BMOE)

2. Average Amount Threshold (AAT)

3. Polynomial Regression (PREG)

4. Linear Regression (LREG)

5. Fast Check (FAST)

6. Integral Comparison (INT)

7. Local Statistics (LOC)

8. Exclusive Time Outliers (ETO)

perun check [OPTIONS] COMMAND [ARGS]...

Options

-f, --force

Force comparison of the selected profiles even if their configurationdoes not match. This may be necessary when,
e.g., different projectversions build binaries with version information in their name(python3.10 and python3.11),
thus failing the consistency check.

-c, --compute-missing

whenever there are missing profiles in the given point of history the matrix will be rerun and new generated
profiles assigned.

-m, --models-type <models_type>

The detection models strategies predict the way of executing the detection between two profiles, respectively
between relevant kinds of its models. Available only in the following detection methods: Integral Comparison
(IC) and Local Statistics (LS).

Options
best-model | best-param | best-nonparam | all-param | all-nonparam | all-models | best-both

3.2. Perun Commands 33

Perun Documentation, Release 0.21.6

Commands

all

Checks for changes in performance for the. . .

head

Checks for changes in performance between. . .

profiles

Checks for changes in performance between. . .

3.2.14 perun check head

Checks for changes in performance between between specified minor version (or current head) and its predecessor
minor versions.

The command iterates over all of the registered profiles of the specified minor version (target; e.g. the head), and tries
to find the nearest predecessor minor version (baseline), where the profile with the same configuration as the tested
target profile exists. When it finds such a pair, it runs the check according to the strategies set in the configuration (see
Configuring Degradation Detection or Perun Configuration files).

By default the hash corresponds to the head of the current project.

perun check head [OPTIONS] <hash>

Arguments

<hash>

Optional argument

3.2.15 perun check all

Checks for changes in performance for the specified interval of version history.

The commands crawls through the whole history of project versions starting from the specified <hash> and for all of
the registered profiles (corresponding to some target minor version) tries to find a suitable predecessor profile (corre-
sponding to some baseline minor version) and runs the performance check according to the set of strategies set in the
configuration (see Configuring Degradation Detection or Perun Configuration files).

perun check all [OPTIONS] <hash>

Arguments

<hash>

Optional argument

34 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

3.2.16 perun check profiles

Checks for changes in performance between two profiles.

The command checks for the changes between two isolate profiles, that can be stored in pending profiles, registered in
index, or be simply stored in filesystem. Then for the pair of profiles <baseline> and <target> the command runs the
performance check according to the set of strategies set in the configuration (see Configuring Degradation Detection
or Perun Configuration files).

<baseline> and <target> profiles will be looked up in the following steps:

1. If profile is in form i@i (i.e, an index tag), then ith record registered in the minor version <hash> index will be
used.

2. If profile is in form i@p (i.e., an pending tag), then ith profile stored in .perun/jobs will be used.

3. Profile is looked-up within the minor version <hash> index for a match. In case the <profile> is registered there,
it will be used.

4. Profile is looked-up within the .perun/jobs directory. In case there is a match, the found profile will be used.

5. Otherwise, the directory is walked for any match. Each found match is asked for confirmation by user.

perun check profiles [OPTIONS] <baseline> <target>

Options

-m, --minor <hash>

Will check the index of different minor version <hash> during the profile lookup.

Arguments

<baseline>

Required argument

<target>

Required argument

3.2.17 perun fuzz

Performs fuzzing for the specified command according to the initial sample of workload.

perun fuzz [OPTIONS]

Options

-b, --cmd <cmd>

Required The command which will be fuzzed.

-a, --args <args>

Arguments for the fuzzed command.

3.2. Perun Commands 35

Perun Documentation, Release 0.21.6

-w, --input-sample <input_sample>

Required Initial sample of workloads (the so called corpus).These will serve as initial workloads to evaluate the
baseline for performance testing.The parameter expects either paths to files (which will be directly added), or
paths to directories (which will be recursively searched).

-c, --collector <collector>

Collector that will be used to collect performance data and used to infer baseline or target performance profiles.
The profiles are further used for performance testing.

Options
trace | memory | time | complexity | bounds

-cp, --collector-params <collector_params>

Additional parameters for the <collector>: can be specified as a file in YAML format or as YAML string

-p, --postprocessor <postprocessor>

After each collection of performance data, the fuzzer can run <postprocessor> to postprocess the collected re-
sources (e.g. to create models of resources). This can be used for more thorough performance analysis.

Options
clusterizer | normalizer | regression-analysis | regressogram | moving-average | kernel-regression

-pp, --postprocessor-params <postprocessor_params>

Additional parameters for the <postprocessor>: can be specified as a file in YAML format or as YAML string

-m, --minor-version <minor_version_list>

Specifies the head minor version in the wrapped repository. The fuzzing will be performed for this particular
version of the project.

-wf, --workloads-filter <regexp>

Regular expression that will the filter input workloads/corpus. E.g. to restrict to certain filetypes, filenames or
subdirectories.

--skip-coverage-testing

If set to true, then the evaluation of mutations based on coverage testing will not be performed. The coverage
testing is a fast heuristic to filter out mutations that will probably not lead to severe real degradation. The testing
through perun is costly, though very precise.

-s, --source-path <path>

The path to the directory of the project source files.

-g, --gcno-path <path>

The path to the directory where .gcno files are stored.

-o, --output-dir <path>

Required The path to the directory where generated outputs will be stored.

-t, --timeout <float>

Time limit for fuzzing (in seconds). Default value is 1800s.

-h, --hang-timeout <float>

The time limit before the input is classified as a hang/timeout (in seconds). Default value is 10s.

-N, --max-size <int>

Absolute value of the maximum size of the generated mutation wrt parent corpus. The value will be adjusted wrt
to the maximal size of the workloads in corpus. Using this option, the maximal size of the generated mutation
will be set to max(size of the largest workload in corpus, <int>).

36 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

-mi, --max-size-increase <int>

Absolute value of the maximal increase in the size of the generated mutation wrt parent corpus. Using this option,
the maximal size of generated mutation will be set to (size of the largest corpus in workload + <INT>). Default
value is 1 000 000 B = 1MB.

-mp, --max-size-ratio <float>

Relative value of the maximal increase in the size of the generated mutation wrt parent corpus. Using this option,
the maximal size of generated mutation will be set to (size of the largest corpus in workload * <INT>). E.g. 1.5,
max size=largest workload size * 1.5

-e, --exec-limit <int>

The maximum number of fuzzing iteration while gathering interesting inputs. By interesting inputs we mean
files that might potentially lead to timeouts, hang or severe severe performance degradation.

-l, --interesting-files-limit <int>

The minimum number of gathered mutations, that are so called interesting, before perun testing is performed.
By interesting inputs we mean files that might potentially lead to timeouts, hang or severe severe performance
degradation.

-cr, --coverage-increase-rate <int>

The threshold of coverage increase against base coverage, which is used to evaluate, whether the generated
mutation is interesting for further evaluation by performance testing. E.g 1.5, base coverage = 100 000, so
threshold = 150 000.

-mpr, --mutations-per-rule <str>

Strategy which determines how many mutations will be generated by certain fuzzing rule in one iteration: unitary,
proportional, probabilistic, mixed

Options
unitary | proportional | probabilistic | mixed

-r, --regex-rules <file>

Option for adding custom fuzzing rules specified by regular expressions, written in YAML format file.

-np, --no-plotting

Will not plot the interpretation of the fuzzing in form of graphs.

3.3 Collect Commands

3.3.1 perun collect

Generates performance profile using selected collector.

Runs the single collector unit (registered in Perun) on given profiled command (optionaly with given arguments and
workloads) and generates performance profile. The generated profile is then stored in .perun/jobs/ directory as a
file, by default with filename in form of:

bin-collector-workload-timestamp.perf

Generated profiles will not be postprocessed in any way. Consult perun postprocessby --help in order to post-
process the resulting profile.

The configuration of collector can be specified in external YAML file given by the -p/--params argument.

3.3. Collect Commands 37

Perun Documentation, Release 0.21.6

For a thorough list and description of supported collectors refer to Supported Collectors. For a more subtle running
of profiling jobs and more complex configuration consult either perun run matrix --help or perun run job
--help.

perun collect [OPTIONS] COMMAND [ARGS]...

Options

-pn, --profile-name <profile_name>

Specifies the name of the profile, which will be collected, e.g. profile.perf.

-m, --minor-version <minor_version_list>

Specifies the head minor version, for which the profiles will be collected.

-cp, --crawl-parents

If set to true, then for each specified minor versions, profiles for parents will be collected as well

-c, --cmd <cmd>

Command that is being profiled. Either corresponds to some script, binary or command, e.g. ./mybin or perun.

-a, --args <args>

Additional parameters for <cmd>. E.g. status or -al is command parameter.

-w, --workload <workload>

Inputs for <cmd>. E.g. ./subdir is possible workloadfor ls command.

-p, --params <params>

Additional parameters for called collector read from file in YAML format.

-ot, --output-filename-template <output_filename_template>

Specifies the template for automatic generation of output filename This way the file with collected data will have
a resulting filename w.r.t to this parameter. Refer to format.output_profile_template for more details
about the format of the template.

-op, --optimization-pipeline <optimization_pipeline>

Pre-configured combinations of collection optimization methods.

Options
custom | basic | advanced | full

-on, --optimization-on <optimization_on>

Enable the specified collection optimization method.

Options
baseline-static | baseline-dynamic | cg-shaping | dynamic-sampling | diff-tracing | dynamic-
probing | timed-sampling

-off, --optimization-off <optimization_off>

Disable the specified collection optimization method.

Options
baseline-static | baseline-dynamic | cg-shaping | dynamic-sampling | diff-tracing | dynamic-
probing | timed-sampling

-oa, --optimization-args <optimization_args>

Set parameter values for various optimizations.

38 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

--optimization-cache-off

Ignore cached optimization data (e.g., cached call graph).

--optimization-reset-cache

Remove the cached optimization resources and data.

-cg, --use-cg-type <use_cg_type>

Options
static | dynamic | mixed

3.3.2 Collect units

perun collect trace

Generates trace performance profile, capturing running times of function depending on underlying structural sizes.

* Limitations: C/C++ binaries
* Metric: mixed (captures both time and size consumption)
* Dependencies: SystemTap (+ corresponding requirements e.g. kernel -dbgsym version)
* Default units: us for time, element number for size

Example of collected resources is as follows:

{
"amount": 11,
"subtype": "time delta",
"type": "mixed",
"uid": "SLList_init(SLList*)",
"structure-unit-size": 0

}

Trace collector provides various collection strategies which are supposed to provide sensible default settings for col-
lection. This allows the user to choose suitable collection method without the need of detailed rules / sampling speci-
fication. Currently supported strategies are:

* userspace: This strategy traces all userspace functions / code blocks without
the use of sampling. Note that this strategy might be resource-intensive.

* all: This strategy traces all userspace + library + kernel functions / code blocks
that are present in the traced binary without the use of sampling. Note that this strategy
might be very resource-intensive.

* u_sampled: Sampled version of the userspace strategy. This method uses sampling
to reduce the overhead and resources consumption.

* a_sampled: Sampled version of the all strategy. Its goal is to reduce the
overhead and resources consumption of the all method.

* custom: User-specified strategy. Requires the user to specify rules and sampling
manually.

3.3. Collect Commands 39

Perun Documentation, Release 0.21.6

Note that manually specified parameters have higher priority than strategy specification and it is thus possible to override
concrete rules / sampling by the user.

The collector interface operates with two seemingly same concepts: (external) command and binary. External com-
mand refers to the script, executable, makefile, etc. that will be called / invoked during the profiling, such as ‘make
test’, ‘run_script.sh’, ‘./my_binary’. Binary, on the other hand, refers to the actual binary or executable file that will be
profiled and contains specified functions / USDT probes etc. It is expected that the binary will be invoked / called as
part of the external command script or that external command and binary are the same.

The interface for rules (functions, USDT probes) specification offers a way to specify profiled locations both with
sampling or without it. Note that sampling can reduce the overhead imposed by the profiling. USDT rules can be
further paired - paired rules act as a start and end point for time measurement. Without a pair, the rule measures
time between each two probe hits. The pairing is done automatically for USDT locations with convention <name>
and <name>_end or <name>_END - or other commonly found suffixes. Otherwise, it is possible to pair rules by the
delimiter ‘#’, such as <name1>#<name2>.

Trace profiles are suitable for postprocessing by Regression Analysis since they capture dependency of time consump-
tion depending on the size of the structure. This allows one to model the estimation of trace of individual functions.

Scatter plots are suitable visualization for profiles collected by trace collector, which plots individual points along with
regression models (if the profile was postprocessed by regression analysis). Run perun show scatter --help or
refer to Scatter Plot for more information about scatter plots.

Refer to Trace Collector for more thorough description and examples of trace collector.

perun collect trace [OPTIONS]

Options

-e, --engine <engine>

Sets the data collection engine to be used: - stap: the SystemTap framework - ebpf: the eBPF framework

Options
stap | ebpf

-s, --strategy <strategy>

Required Select strategy for probing the binary. See documentation for detailed explanation for each strategy.

Options
userspace | all | u_sampled | a_sampled | custom

-f, --func <func>

Set the probe point for the given function as <lib>#<func>#<sampling>.

-u, --usdt <usdt>

Set the probe point for the given USDT location as <lib>#<usdt>#<sampling>.

-d, --dynamic <dynamic>

Set the probe point for the given dynamic location as <lib>#<cl>#<sampling>.

-g, --global-sampling <global_sampling>

Set the global sample for all probes, sampling parameter for specific rules have higher priority.

--with-usdt, --no-usdt

The selected strategy will also extract and profile USDT probes.

40 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

-b, --binary <binary>

The profiled executable. If not set, then the command is considered to be the profiled executable and is used as
a binary parameter.

-l, --libs <libs>

Additional libraries that should also be profiled.

-t, --timeout <timeout>

Set time limit (in seconds) for the profiled command, i.e. the command will be terminated after reaching the
time limit. Useful for, e.g., endless commands.

-z, --zip-temps

Zip and compress the temporary files (SystemTap log, raw performance data, watchdog log, etc.) into the Perun
log directory before deleting them.

-k, --keep-temps

Do not delete the temporary files in the file system.

-vt, --verbose-trace

Set the trace file output to be more verbose, useful for debugging.

-q, --quiet

Reduces the verbosity of the collector info messages.

-w, --watchdog

Enable detailed logging of the whole collection process.

-o, --output-handling <output_handling>

Sets the output handling of the profiled command: - default: the output is displayed in the terminal - capture: the
output is being captured into a file as well as displayed in the terminal (note that buffering causes a delay in the
terminal output) - suppress: redirects the output to the DEVNULL

Options
default | capture | suppress

-i, --diagnostics

Enable detailed surveillance mode of the collector. The collector turns on detailed logging (watchdog), verbose
trace, capturing output etc. and stores the logs and files in an archive (zip-temps) in order to provide as much
diagnostic data as possible for further inspection.

-sc, --stap-cache-off

Disables the SystemTap caching of compiled scripts.

-np, --no-profile

Tracer will not transform and save processed data into a perun profile.

-mcg, --extract-mixed-cg

DEBUG: Extract mixed CG.

-cg, --only-extract-cg

Tracer will only extract the CG of the current project version and terminate.

-mt, --max-simultaneous-threads <max_simultaneous_threads>

DEBUG: Maximum number of expected simultaneous threads when sampling is on.

-nds, --no-ds-update

DEBUG: Disables Dynamic Stats updates

3.3. Collect Commands 41

Perun Documentation, Release 0.21.6

perun collect memory

Generates memory performance profile, capturing memory allocations of different types along with target address and
full call trace.

* Limitations: C/C++ binaries
* Metric: memory
* Dependencies: libunwind.so and custom libmalloc.so

* Default units: B for memory

The following snippet shows the example of resources collected by memory profiler. It captures allocations done by
functions with more detailed description, such as the type of allocation, trace, etc.

{
"type": "memory",
"subtype": "malloc",
"address": 19284560,
"amount": 4,
"trace": [

{
"source": "../memory_collect_test.c",
"function": "main",
"line": 22

},
],
"uid": {

"source": "../memory_collect_test.c",
"function": "main",
"line": 22

}
},

Refer to Memory Collector for more thorough description and examples of memory collector.

perun collect memory [OPTIONS]

Options

-s, --sampling <sampling>

Sets the sampling interval for profiling the allocations. I.e. memory snapshots will be collected each <sampling>
seconds.

--no-source <no_source>

Will exclude allocations done from <no_source> file during the profiling.

--no-func <no_func>

Will exclude allocations done by <no func> function during the profiling.

-a, --all

Will record the full trace for each allocation, i.e. it will include all allocators and even unreachable records.

42 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

perun collect time

Generates time performance profile, capturing overall running times of the profiled command.

* Limitations: none
* Metric: running time
* Dependencies: none
* Default units: s

This is a wrapper over the time linux unitility and captures resources in the following form:

{
"amount": 0.59,
"type": "time",
"subtype": "sys",
"uid": cmd
"order": 1

}

Refer to Time Collector for more thorough description and examples of trace collector.

perun collect time [OPTIONS]

Options

-w, --warmup <int>

Before the actual timing, the collector will execute <int> warm-up executions.

-r, --repeat <int>

The timing of the given binaries will be repeated <int> times.

perun collect bounds

Generates memory performance profile, capturing memory allocations of
different types along with target address and full call trace.

• Limitations: C/C++ binaries

• Metric: memory

• Dependencies: libunwind.so and custom libmalloc.so

• Default units: B for memory

The following snippet shows the example of resources collected by memory profiler. It captures allocations done
by functions with more detailed description, such as the type of allocation, trace, etc.

{
"uid": {

"source": "../test.c",
"function": "main",
"line": 22

3.3. Collect Commands 43

Perun Documentation, Release 0.21.6

"column": 40
}
"bound": "1 + max(0, (k + -1))",
"class": "O(n^1)"
"type": "bound",

}

Refer to :ref:`collectors-bounds` for more thorough description and
examples of `bounds` collector.

perun collect bounds [OPTIONS]

Options

-s, --source, --src <path>

Source C file that will be analyzed.

-d, --source-dir <dir>

Directory, where source C files are stored. All of the existing files with valid extensions (.c).

3.4 Postprocess Commands

3.4.1 perun postprocessby

Postprocesses the given stored or pending profile using selected postprocessor.

Runs the single postprocessor unit on given looked-up profile. The postprocessed file will be then stored in .perun/
jobs/ directory as a file, by default with filanem in form of:

bin-collector-workload-timestamp.perf

The postprocessed <profile> will be looked up in the following steps:

1. If <profile> is in form i@i (i.e, an index tag), then ith record registered in the minor version <hash> index will
be postprocessed.

2. If <profile> is in form i@p (i.e., an pending tag), then ith profile stored in .perun/jobs will be postprocessed.

3. <profile> is looked-up within the minor version <hash> index for a match. In case the <profile> is registered
there, it will be postprocessed.

4. <profile> is looked-up within the .perun/jobs directory. In case there is a match, the found profile will be
postprocessed.

5. Otherwise, the directory is walked for any match. Each found match is asked for confirmation by user.

Tags consider the sorted order as specified by the following option format.sort_profiles_by.

For checking the associated tags to profiles run perun status.

Example 1. The following command will postprocess the given profile stored at given path by normalizer, i.e. for each
snapshot, the resources will be normalized to the interval <0, 1>:

perun postprocessby ./echo-time-hello-2017-04-02-13-13-34-12.perf normalizer

44 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

Example 2. The following command will postprocess the second profile stored in index of commit preceeding the
current head using interval regression analysis:

perun postprocessby -m HEAD~1 1@i regression-analysis --method=interval

For a thorough list and description of supported postprocessors refer to Supported Postprocessors. For a more subtle
running of profiling jobs and more complex configuration consult either perun run matrix --help or perun run
job --help.

perun postprocessby [OPTIONS] <profile> COMMAND [ARGS]...

Options

-ot, --output-filename-template <output_filename_template>

Specifies the template for automatic generation of output filename This way the postprocessed file will have a
resulting filename w.r.t to this parameter. Refer to format.output_profile_template for more details about
the format of the template.

-m, --minor <minor>

Will check the index of different minor version <hash> during the profile lookup

Arguments

<profile>

Required argument

3.4.2 Postprocess units

perun postprocessby normalizer

Normalizes performance profile into flat interval.

* Limitations: none
* Dependencies: none

Normalizer is a postprocessor, which iterates through all of the snapshots and normalizes the resources of same type
to interval (0, 1), where 1 corresponds to the maximal value of the given type.

Consider the following list of resources for one snapshot generated by Time Collector:

[
{

'amount': 0.59,
'uid': 'sys'

}, {
'amount': 0.32,
'uid': 'user'

}, {
'amount': 2.32,
'uid': 'real'

3.4. Postprocess Commands 45

Perun Documentation, Release 0.21.6

}
]

Normalizer yields the following set of resources:

[
{

'amount': 0.2543103448275862,
'uid': 'sys'

}, {
'amount': 0.13793103448275865,
'uid': 'user'

}, {
'amount': 1.0,
'uid': 'real'

}
]

Refer to Normalizer Postprocessor for more thorough description and examples of normalizer postprocessor.

perun postprocessby normalizer [OPTIONS]

perun postprocessby regression_analysis

Finds fitting regression models to estimate models of profiled resources.

* Limitations: Currently limited to models of amount depending on
structural-unit-size

* Dependencies: Trace Collector

Regression analyzer tries to find a fitting model to estimate the amount of resources depending on structural-unit-size.

The following strategies are currently available:

1. Full Computation uses all of the data points to obtain the best fitting model for each type of model from the
database (unless --regression_models/-r restrict the set of models)

2. Iterative Computation uses a percentage of data points to obtain some preliminary models together with their
errors or fitness. The most fitting model is then expanded, until it is fully computed or some other model becomes
more fitting.

3. Full Computation with initial estimate first uses some percent of data to estimate which model would be best
fitting. Given model is then fully computed.

4. Interval Analysis uses more finer set of intervals of data and estimates models for each interval providing more
precise modeling of the profile.

5. Bisection Analysis fully computes the models for full interval. Then it does a split of the interval and computes
new models for them. If the best fitting models changed for sub intervals, then we continue with the splitting.

Currently we support linear, quadratic, power, logaritmic and constant models and use the coeficient of determina-
tion (𝑅2) to measure the fitness of model. The models are stored as follows:

{
"uid": "SLList_insert(SLList*, int)",
"r_square": 0.0017560012128507133,

46 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

"coeffs": [
{

"value": 0.505375215875552,
"name": "b0"

},
{

"value": 9.935159839322705e-06,
"name": "b1"

}
],
"x_start": 0,
"x_end": 11892,
"model": "linear",
"method": "full",

}

Note that if your data are not suitable for regression analysis, check out Clusterizer to postprocess your profile to be
analysable by this analysis.

For more details about regression analysis refer to Regression Analysis. For more details how to collect suitable re-
sources refer to Trace Collector.

perun postprocessby regression_analysis [OPTIONS]

Options

-m, --method <method>

Required Will use the <method> to find the best fitting models for the given profile.

Options
full | iterative | interval | initial_guess | bisection

-r, --regression_models <regression_models>

Restricts the list of regression models used by the specified <method> to fit the data. If omitted, all regression
models will be used in the computation.

Options
all | constant | exponential | linear | logarithmic | power | quadratic

-s, --steps <steps>

Restricts the number of number of steps / data parts used by the iterative, interval and initial guess methods

-dp, --depending-on <depending_on>

Sets the key that will be used as a source of independent variable.

-o, --of <of_resource_key>

Sets key for which we are finding the model.

3.4. Postprocess Commands 47

Perun Documentation, Release 0.21.6

perun postprocessby clusterizer

Clusters each resource to an appropriate cluster in order to be postprocessable by regression analysis.

* Limitations: none
* Dependencies: none

Clusterizer tries to find a suitable cluster for each resource in the profile. The clusters are either computed w.r.t the sort
order of the resource amounts, or are computed according to the sliding window.

The sliding window can be further adjusted by setting its width (i.e. how many near values on the x axis will we fit to
a cluster) and its height (i.e. how big of an interval of resource amounts will be consider for one cluster). Both width
and height can be further augmented. Width can either be absolute, where we take in maximum the absolute number
of resources, relative, where we take in maximum the percentage of number of resources for each cluster, or weighted,
where we take the number of resource depending on the frequency of their occurrences. Similarly, the height can either
be absolute, where we set the interval of amounts to an absolute size, or relative, where we set the interval of amounts
relative to the to the first resource amount in the cluster (so e.g. if we have window of height 0.1 and the first resource
in the cluster has amount of 100, we will cluster every resources in interval 100 to 110 to this cluster).

For more details about regression analysis refer to Clusterizer.

perun postprocessby clusterizer [OPTIONS]

Options

-s, --strategy <strategy>

Specifies the clustering strategy, that will be applied for the profile

Options
sort_order | sliding_window

-wh, --window-height <window_height>

Specifies the height of the window (either fixed or proportional)

-rwh, --relative-window-height

Specifies that the height of the window is relative to the point

-fwh, --fixed-window-height

Specifies that the height of the window is absolute to the point

-ww, --window-width <window_width>

Specifies the width of the window, i.e. how many values will be taken by window.

-rww, --relative-window-width

Specifies whether the width of the window is weighted or fixed

-fww, --fixed-window-width

Specifies whether the width of the window is weighted or fixed

-www, --weighted-window-width

Specifies whether the width of the window is weighted or fixed

48 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

perun postprocessby regressogram

Execution of the interleaving of profiled resources by regressogram models.

* Limitations: none
* Dependencies: none

Regressogram belongs to the simplest non-parametric methods and its properties are the following:

Regressogram: can be described such as step function (i.e. constant function by parts). Regressogram
uses the same basic idea as a histogram for density estimate. This idea is in dividing the set of values of
the x-coordinates (<per_key>) into intervals and the estimate of the point in concrete interval takes the
mean/median of the y-coordinates (<of_resource_key>), respectively of its value on this sub-interval. We
currently use the coefficient of determination (𝑅2) to measure the fitness of regressogram. The fitness of
estimation of regressogram model depends primarily on the number of buckets into which the interval
will be divided. The user can choose number of buckets manually (<bucket_window>) or use one of the
following methods to estimate the optimal number of buckets (<bucket_method>):

- sqrt: square root (of data size) estimator, used for its speed and simplicity
- rice: does not take variability into account, only data size and commonly overestimates
- scott: takes into account data variability and data size, less robust estimator
- stone: based on leave-one-out cross validation estimate of the integrated squared error
- fd: robust, takes into account data variability and data size, resilient to outliers
- sturges: only accounts for data size, underestimates for large non-gaussian data
- doane: generalization of Sturges’ formula, works better with non-gaussian data
- auto: max of the Sturges’ and ‘fd’ estimators, provides good all around performance

For more details about these methods to estimate the optimal number of buckets or to view the code of
these methods, you can visit SciPy.

For more details about this approach of non-parametric analysis refer to Regressogram method.

perun postprocessby regressogram [OPTIONS]

Options

-bn, --bucket_number <bucket_number>

Restricts the number of buckets to which will be placed the values of the selected statistics.

-bm, --bucket_method <bucket_method>

Specifies the method to estimate the optimal number of buckets.

Options
auto | doane | fd | rice | scott | sqrt | sturges

-sf, --statistic_function <statistic_function>

Will use the <statistic_function> to compute the values for points within each bucket of regressogram.

Options
mean | median

-of, --of-key <of_resource_key>

Sets key for which we are finding the model (y-coordinates).

3.4. Postprocess Commands 49

https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bucket_edges

Perun Documentation, Release 0.21.6

-per, --per-key <per_resource_key>

Sets the key that will be used as a source variable (x-coordinates).

perun postprocessby moving_average

Execution of the interleaving of profiled resources by moving average models.

* Limitations: none
* Dependencies: none

Moving average methods are the natural generalizations of regressogram method. This method uses the local av-
erages/medians of y-coordinates (<of_resource_key>), but the estimate in the x-point (<per_key>) is based on the
centered surroundings of this points, more precisely:

Moving Average: is a widely used estimator in the technical analysis, that helps smooth the dataset by
filtering out the ‘noise’. Among the basic properties of this methods belongs the ability to reduce the effect
of temporary variations in data, better improvement of the fitness of data to a line, so called smoothing, to
show the data’s trend more clearly and highlight any value below or above the trend. The most important
task with this type of non-parametric approach is the choice of the <window-width>. If the user does not
choose it, we try approximate this value by using the value of coefficient of determination (𝑅2). At the
begin of the analysis is set the initial value of window width and then follows the interleaving of the current
dataset, which runs until the value of coefficient of determination will not reach the required level. By this
way is guaranteed the desired smoothness of the resulting models. The two basic and commonly used
<moving-methods> are the simple moving average (sma) and the exponential moving average (ema).

For more details about this approach of non-parametric analysis refer to Moving Average Methods.

perun postprocessby moving_average [OPTIONS] COMMAND [ARGS]...

Options

-mp, --min_periods <min_periods>

Provides the minimum number of observations in window required to have a value. If the number of possible
observations smaller then result is NaN.

-of, --of-key <of_resource_key>

Sets key for which we are finding the model (y-coordinates).

-per, --per-key <per_resource_key>

Sets the key that will be used as a source variable (x-coordinates).

50 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

Commands

ema

Exponential Moving Average

sma

Simple Moving Average

smm

Simple Moving Median

perun postprocessby moving_average sma

Simple Moving Average

In the most of cases, it is an unweighted Moving Average, this means that the each x-coordinate in the data set (profiled
resources) has equal importance and is weighted equally. Then the mean is computed from the previous n data (<no-
center>), where the n marks <window-width>. However, in science and engineering the mean is normally taken from
an equal number of data on either side of a central value (<center>). This ensures that variations in the mean are
aligned with the variations in the mean are aligned with variations in the data rather than being shifted in the x-axis
direction. Since the window at the boundaries of the interval does not contain enough count of points usually, it is
necessary to specify the value of <min-periods> to avoid the NaN result. The role of the weighted function in this
approach belongs to <window-type>, which represents the suite of the following window functions for filtering:

- boxcar: known as rectangular or Dirichlet window, is equivalent to no window at all: –
- triang: standard triangular window
- blackman: formed by using three terms of a summation of cosines, minimal leakage, close to optimal
- hamming: formed by using a raised cosine with non-zero endpoints, minimize the nearest side lobe
- bartlett: similar to triangular, endpoints are at zero, processing of tapering data sets
- parzen: can be regarded as a generalization of k-nearest neighbor techniques
- bohman: convolution of two half-duration cosine lobes
- blackmanharris: minimum in the sense that its maximum side lobes are minimized (symmetric
4-term)
- nuttall: minimum 4-term Blackman-Harris window according to Nuttall (so called ‘Nuttall4c’)
- barthann: has a main lobe at the origin and asymptotically decaying side lobes on both sides
- kaiser: formed by using a Bessel function, needs beta value (set to 14 - good starting point)

For more details about this window functions or for their visual view you can see SciPyWindow.

perun postprocessby moving_average sma [OPTIONS]

Options

-wt, --window_type <window_type>

Provides the window type, if not set then all points are evenly weighted. For further information about window
types see the notes in the documentation.

Options
boxcar | triang | blackman | hamming | bartlett | parzen | bohman | blackmanharris | nuttall |
barthann

--center, --no-center

If set to False, the result is set to the right edge of the window, else is result set to the center of the window

3.4. Postprocess Commands 51

https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows

Perun Documentation, Release 0.21.6

-ww, --window_width <window_width>

Size of the moving window. This is a number of observations used for calculating the statistic. Each window
will be a fixed size.

perun postprocessby moving_average smm

Simple Moving Median

The second representative of Simple Moving Average methods is the Simple Moving Median. For this method are
applicable to the same rules like in the first described method, except for the option for choosing the window type,
which do not make sense in this approach. The only difference between these two methods are the way of computation
the values in the individual sub-intervals. Simple Moving Median is not based on the computation of average, but as
the name suggests, it based on the median.

perun postprocessby moving_average smm [OPTIONS]

Options

--center, --no-center

If set to False, the result is set to the right edge of the window, else is result set to the center of the window

-ww, --window_width <window_width>

Size of the moving window. This is a number of observations used for calculating the statistic. Each window
will be a fixed size.

perun postprocessby moving_average ema

Exponential Moving Average

This method is a type of moving average methods, also know as Exponential Weighted Moving Average, that places
a greater weight and significance on the most recent data points. The weighting for each far x-coordinate decreases
exponentially and never reaching zero. This approach of moving average reacts more significantly to recent changes
than a Simple Moving Average, which applies an equal weight to all observations in the period. To calculate an EMA
must be first computing the Simple Moving Average (SMA) over a particular sub-interval. In the next step must be
calculated the multiplier for smoothing (weighting) the EMA, which depends on the selected formula, the following
options are supported (<decay>):

- com: specify decay in terms of center of mass: 𝛼 = 1 / (1 + com), for com >= 0
- span: specify decay in terms of span: 𝛼 = 2 / (span + 1), for span >= 1
- halflife: specify decay in terms of half-life, 𝛼 = 1 - exp(log(0.5) / halflife), for halflife > 0
- alpha: specify smoothing factor 𝛼 directly: 0 < 𝛼 <= 1

The computed coefficient 𝛼 represents the degree of weighting decrease, a constant smoothing factor, The higher value
of 𝛼 discounts older observations faster, the small value to the contrary. Finally, to calculate the current value of
EMA is used the relevant formula. It is important do not confuse Exponential Moving Average with Simple Moving
Average. An Exponential Moving Average behaves quite differently from the second mentioned method, because it is
the function of weighting factor or length of the average.

perun postprocessby moving_average ema [OPTIONS]

52 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

Options

-d, --decay <decay>

Exactly one of “com”, “span”, “halflife”, “alpha” can be provided. Allowed values and relationship between the
parameters are specified in the documentation (e.g. –decay=com 3).

perun postprocessby kernel-regression

Execution of the interleaving of profiles resources by kernel models.

* Limitations: none
* Dependencies: none

In statistics, the kernel regression is a non-parametric approach to estimate the conditional expectation of a random
variable. Generally, the main goal of this approach is to find non-parametric relation between a pair of random variables
X <per-key> and Y <of-key>. Different from parametric techniques (e.g. linear regression), kernel regression does not
assume any underlying distribution (e.g. linear, exponential, etc.) to estimate the regression function. The main idea of
kernel regression is putting the kernel, that have the role of weighted function, to each observation point in the dataset.
Subsequently, the kernel will assign weight to each point in depends on the distance from the current data point. The
kernel basis formula depends only to the bandwidth from the current (‘local’) data point X to a set of neighboring data
points X.

Kernel Selection does not important from an asymptotic point of view. It is appropriate to choose the
optimal kernel since this group of the kernels are continuously on the whole definition field and then the
estimated regression function inherit smoothness of the kernel. For example, a suitable kernels can be the
epanechnikov or normal kernel. This postprocessor offers the kernel selection in the kernel-smoothing
mode, where are available five different types of kernels. For more information about these kernels or this
kernel regression mode you can see perun postprocessby kernel-regression kernel-smoothing.

Bandwidth Selection is the most important factor at each approach of kernel regression, since this value
significantly affects the smoothness of the resulting estimate. In case, when is choose the inappropriate
value, in the most cases can be expected the following two situations. The small bandwidth value reproduce
estimated data and vice versa, the large value leads to over-leaving, so to average of the estimated data.
Therefore are used the methods to determine the bandwidth value. One of the most widespread and most
commonly used methods is the cross-validation method. This method is based on the estimate of the
regression function in which will be omitted i-th observation. In this postprocessor is this method available
in the estimator-setting mode. Another methods to determine the bandwidth, which are available in the
remaining modes of this postprocessor are scott and silverman method. More information about these
methods and its definition you cas see in the part perun postprocessby kernel-regression method-selection.

This postprocessor in summary offers five different modes, which does not differ in the resulting estimate, but in the
way of computation the resulting estimate. Better said, it means, that the result of each mode is the kernel estimate
with relevant parameters, selected according to the concrete mode. In short we will describe the individual methods,
for more information about it, you can visit the relevant parts of documentation:

* Estimator-Settings: Nadaraya-Watson kernel regression with specific settings for estimate
* User-Selection: Nadaraya-Watson kernel regression with user bandwidth
* Method-Selection: Nadaraya-Watson kernel regression with supporting bandwidth selection method
* Kernel-Smoothing: Kernel regression with different types of kernel and regression methods
* Kernel-Ridge: Nadaraya-Watson kernel regression with automatic bandwidth selection

For more details about this approach of non-parametric analysis refer to Kernel Regression Methods.

3.4. Postprocess Commands 53

Perun Documentation, Release 0.21.6

perun postprocessby kernel-regression [OPTIONS] COMMAND [ARGS]...

Options

-of, --of-key <of_resource_key>

Sets key for which we are finding the model (y-coordinates).

-per, --per-key <per_resource_key>

Sets the key that will be used as a source variable (x-coordinates).

Commands

estimator-settings

Nadaraya-Watson kernel regression with. . .

kernel-ridge

Nadaraya-Watson kernel regression with. . .

kernel-smoothing

Kernel regression with different types of. . .

method-selection

Nadaraya-Watson kernel regression with. . .

user-selection

Nadaraya-Watson kernel regression with. . .

perun postprocessby kernel-regression estimator-settings

Nadaraya-Watson kernel regression with specific settings for estimate.

As has been mentioned above, the kernel regression aims to estimate the functional relation between explanatory vari-
able y and the response variable X. This mode of kernel regression postprocessor calculates the conditional mean
E[y|X] = m(X), where y = m(X) + 𝜖. Variable X is represented in the postprocessor by <per-key> option and the
variable y is represented by <of-key> option.

Regression Estimator <reg-type>:

This mode offer two types of regression estimator <reg-type>. Local Constant (`ll`) type of
regression provided by this mode is also known as Nadaraya-Watson kernel regression:

Nadaraya-Watson: expects the following conditional expectation: E[y|X] = m(X),
where function m(*) represents the regression function to estimate. Then we can
alternatively write the following formula: y = m(X) + 𝜖, E (𝜖) = 0. Then we can
suppose, that we have the set of independent observations {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}
and the Nadaraya-Watson estimator is defined as:

𝑚ℎ(𝑥) =

𝑛∑︁
𝑖=1

𝐾ℎ(𝑥− 𝑥𝑖)𝑦𝑖/

𝑛∑︁
𝑗=1

𝐾ℎ(𝑥− 𝑥𝑗)

54 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

where 𝐾ℎ is a kernel with bandwidth h. The denominator is a weighting term with
sum 1. It easy to see that this kernel regression estimator is just a weighted sum of
the observed responses 𝑦𝑖. There are many other kernel estimators that are various in
compare to this presented estimator. However, since all are asymptotic equivalently,
we will not deal with them closer. Kernel Regression postprocessor works in all
modes only with Nadaraya-Watson estimator.

The second supported regression estimator in this mode of postprocessor is Local Linear (`lc`). This type
is an extension of that which suffers less from bias issues at the edge of the support.

Local Linear: estimator, that offers various advantages compared with other kernel-type esti-
mators, such as the Nadaraya-Watson estimator. More precisely, it adapts to both random and
fixed designs, and to various design densities such as highly clustered designs and nearly uni-
form designs. It turns out that the local linear smoother repairs the drawbacks of other kernel
regression estimators. An regression estimator m of m is a linear smoother if, for each x, there
is a vector 𝑙(𝑥) = (𝑙1(𝑥), ..., 𝑙𝑛(𝑥))

𝑇 such that:

𝑚(𝑥) =

𝑛∑︁
𝑖=1

𝑙𝑖(𝑥)𝑌𝑖 = 𝑙(𝑥)𝑇𝑌

where 𝑌 = (𝑌1, ..., 𝑌𝑛)
𝑇 . For kernel estimators:

𝑙𝑖(𝑥) = 𝐾(||𝑥−𝑋𝑖||/ℎ)/
𝑛∑︁

𝑗=1

𝐾(||𝑥−𝑋𝑗 ||/ℎ)

where K represents kernel and h its bandwidth.

For a better imagination, there is an interesting fact, that the following estimators are linear
smoothers too: Gaussian process regression, splines.

Bandwidth Method <bandwidth-method>:

As has been said in the general description of the kernel regression, once of the most important factors
of the resulting estimate is the kernel bandwidth. When the inappropriate value is selected may occur to
under-laying or over-laying fo the resulting kernel estimate. Since the bandwidth of the kernel is a free
parameter which exhibits a strong influence on the resulting estimate postprocessor offers the method for
its selection. Two most popular data-driven methods of bandwidth selection that have desirable properties
are least-squares cross-validation (cv_ls) and the AIC-based method of Hurvich et al. (1998), which is
based on minimizing a modified Akaike Information Criterion (aic):

Cross-Validation Least-Squares: determination of the optimal kernel bandwidth for kernel
regression is based on minimizing

𝐶𝑉 (ℎ) = 𝑛−1
𝑛∑︁

𝑖=1

(𝑌𝑖 − 𝑔−𝑖(𝑋𝑖))
2,

where 𝑔−𝑖(𝑋𝑖) is the estimator of 𝑔(𝑋𝑖) formed by leaving out the i-th observation when gen-
erating the prediction for observation i.

Hurvich et al.’s (1998) approach is based on the minimization of

𝐴𝐼𝐶𝑐 = 𝑙𝑛(𝜎2) + ((1 + 𝑡𝑟(𝐻)/𝑛)/(1− (𝑡𝑟(𝐻) + 2)/𝑛),

where

𝜎2 = 1/𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑔(𝑋𝑖))
2 = 𝑌 ′(𝐼 −𝐻)′(𝐼 −𝐻)𝑌/𝑛

3.4. Postprocess Commands 55

Perun Documentation, Release 0.21.6

with 𝑔(𝑋𝑖) being a non-parametric regression estimator and H being an n x n matrix of ker-
nel weights with its (i, j)-th element given by 𝐻𝑖𝑗 = 𝐾ℎ(𝑋𝑖, 𝑋𝑗)/

∑︀𝑛
𝑙=1 𝐾ℎ(𝑋𝑖, 𝑋𝑙), where

𝐾ℎ(*) is a generalized product kernel.

Both methods for kernel bandwidth selection the least-squared cross-validation and the AIC have been
shown to be asymptotically equivalent.

The remaining options at this mode of kernel regression postprocessor are described within usage to it and you can see
this in the list below. All these options are parameters to EstimatorSettings (see EstimatorSettings), that optimizing the
kernel bandwidth based on the these specified settings.

In the case of confusion about this approach of kernel regression, you can visit StatsModels.

perun postprocessby kernel-regression estimator-settings [OPTIONS]

Options

-rt, --reg-type <reg_type>

Provides the type for regression estimator. Supported types are: “lc”: local-constant (Nadaraya-Watson) and “ll”:
local-linear estimator. Default is “ll”. For more information about these types you can visit Perun Documentation.

Options
ll | lc

-bw, --bandwidth-method <bandwidth_method>

Provides the method for bandwidth selection. Supported values are: “cv-ls”: least-squares cross validation and
“aic”: AIC Hurvich bandwidth estimation. Default is “cv-ls”. For more information about these methods you
can visit Perun Documentation.

Options
cv_ls | aic

--efficient, --uniformly

If True, is executing the efficient bandwidth estimation - by taking smaller sub-samples and estimating the scaling
factor of each sub-sample. It is useful for large samples and/or multiple variables. If False (default), all data is
used at the same time.

--randomize, --no-randomize

If True, the bandwidth estimation is performed by taking <n_res> random re-samples of size <n-sub-samples>
from the full sample. If set to False (default), is performed by slicing the full sample in sub-samples of <n-sub-
samples> size, so that all samples are used once.

-nsub, --n-sub-samples <n_sub_samples>

Size of the sub-samples (default is 50).

-nres, --n-re-samples <n_re_samples>

The number of random re-samples used to bandwidth estimation. It has effect only if <randomize> is set to True.
Default values is 25.

--return-median, --return-mean

If True, the estimator uses the median of all scaling factors for each sub-sample to estimate bandwidth of the full
sample. If False (default), the estimator used the mean.

56 Chapter 3. Command Line Interface

https://www.statsmodels.org/dev/generated/statsmodels.nonparametric.kernel_density.EstimatorSettings.html
https://www.statsmodels.org/dev/generated/statsmodels.nonparametric.kernel_regression.KernelReg.html#statsmodels.nonparametric.kernel_regression.KernelReg

Perun Documentation, Release 0.21.6

perun postprocessby kernel-regression user-selection

Nadaraya-Watson kernel regression with user bandwidth.

This mode of kernel regression postprocessor is very similar to estimator-settings mode. Also offers two types of regres-
sion estimator <reg-type> and that the Nadaraya-Watson estimator, so known as local-constant (lc) and the local-linear
estimator (ll). Details about these estimators are available in perun postprocessby kernel-regression estimator-settings.
In contrary to this mode, which selected a kernel bandwidth using the EstimatorSettings and chosen parameters, in
this mode the user itself selects a kernel bandwidth <bandwidth-value>. This value will be used to execute the kernel
regression. The value of kernel bandwidth in the resulting estimate may change occasionally, specifically in the case,
when the bandwidth value is too low to execute the kernel regression. Then will be a bandwidth value approximated
to the closest appropriate value, so that is not decreased the accuracy of the resulting estimate.

perun postprocessby kernel-regression user-selection [OPTIONS]

Options

-rt, --reg-type <reg_type>

Provides the type for regression estimator. Supported types are: “lc”: local-constant (Nadaraya-Watson) and “ll”:
local-linear estimator. Default is “ll”. For more information about these types you can visit Perun Documentation.

Options
ll | lc

-bv, --bandwidth-value <bandwidth_value>

Required The float value of <bandwidth> defined by user, which will be used at kernel regression.

perun postprocessby kernel-regression method-selection

Nadaraya-Watson kernel regression with supporting bandwidth selection method.

The last method from a group of three methods based on a similar principle. Method-selection mode offers the same
type of regression estimators <reg-type> as the first two described methods. The first supported option is ll, which
represents the local-linear estimator. Nadaraya-Watson or local constant estimator represents the second option for
<reg-type> parameter. The more detailed description of these estimators is located in perun postprocessby kernel-
regression estimator-settings. The difference between this mode and the two first modes is in the way of determination
of a kernel bandwidth. In this mode are offered two methods to determine bandwidth. These methods try calculated
an optimal bandwidth from predefined formulas:

Scotts’s Rule of thumb to determine the smoothing bandwidth for a kernel estimation. It is very fast
compute. This rule was designed for density estimation but is usable for kernel regression too. Typically
produces a larger bandwidth and therefore it is useful for estimating a gradual trend:

𝑏𝑤 = 1.059 *𝐴 * 𝑛−1/5,

where n marks the length of X variable <per-key> and

𝐴 = 𝑚𝑖𝑛(𝜎(𝑥), 𝐼𝑄𝑅(𝑥)/1.349),

where 𝜎 marks the StandardDeviation and IQR marks the InterquartileRange.

Silverman’s Rule of thumb to determine the smoothing bandwidth for a kernel estimation. Belongs to
most popular method which uses the rule-of-thumb. Rule is originally designs for density estimation and
therefore uses the normal density as a prior for approximating. For the necessary estimation of the 𝜎 of

3.4. Postprocess Commands 57

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Interquartile_range

Perun Documentation, Release 0.21.6

X <per-key> he proposes a robust version making use of the InterquartileRange. If the true density is
uni-modal, fairly symmetric and does not have fat tails, it works fine:

𝑏𝑤 = 0.9 *𝐴 * 𝑛−1/5,

where n marks the length of X variable <per-key> and

𝐴 = 𝑚𝑖𝑛(𝜎(𝑥), 𝐼𝑄𝑅(𝑥)/1.349),

where 𝜎 marks the StandardDeviation and IQR marks the InterquartileRange.

perun postprocessby kernel-regression method-selection [OPTIONS]

Options

-rt, --reg-type <reg_type>

Provides the type for regression estimator. Supported types are: “lc”: local-constant (Nadaraya-Watson) and “ll”:
local-linear estimator. Default is “ll”. For more information about these types you can visit Perun Documentation.

Options
ll | lc

-bm, --bandwidth-method <bandwidth_method>

Provides the helper method to determine the kernel bandwidth. The <method_name> will be used to compute
the bandwidth, which will be used at kernel regression.

Options
scott | silverman

perun postprocessby kernel-regression kernel-smoothing

Kernel regression with different types of kernel and regression methods.

This mode of kernel regression postprocessor implements non-parametric regression using different kernel methods
and different kernel types. The calculation in this mode can be split into three parts. The first part is represented by
the kernel type, the second part by bandwidth computation and the last part is represented by regression method, which
will be used to interleave the given resources. We will look gradually at individual supported options in the each part
of computation.

Kernel Type <kernel-type>:

In non-parametric statistics a kernel is a weighting function used in estimation techniques. In kernel
regression is used to estimate the conditional expectation of a random variable. As has been said, kernel
width must be specified when running a non-parametric estimation. The kernel in view of mathematical
definition is a non-negative real-valued integrable function K. For most applications, it is desirable to define
the function to satisfy two additional requirements:

Normalization:

∫︁ +∞

−∞
𝐾(𝑢)𝑑𝑢 = 1,

Symmetry

58 Chapter 3. Command Line Interface

https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Interquartile_range

Perun Documentation, Release 0.21.6

𝐾(−𝑢) = 𝐾(𝑢),

for all values of u. The second requirement ensures that the average of the corresponding dis-
tribution is equal to that of the sample used. If K is a kernel, then so is the function 𝐾* defined
by 𝐾*(𝑢) = 𝜆𝐾(𝜆𝑢), where 𝜆 > 0. This can be used to select a scale that is appropriate for
the data. This mode offers several types of kernel functions:

Kernel Name Kernel Function, K(u) Efficiency
Gaussian (nor-
mal)

𝐾(𝑢) = (1/
√
2𝜋)𝑒−(1/2)𝑢2 95.1%

Epanechnikov 𝐾(𝑢) = 3/4(1− 𝑢2) 100%
Tricube 𝐾(𝑢) = 70/81(1− |𝑢3|)3 99.8%
Gaussian order4 𝜑4(𝑢) = 1/2(3− 𝑢2)𝜑(𝑢), where 𝜑 is the normal kernel not appli-

cable
Epanechnikov
order4

𝐾4(𝑢) = −(15/8)𝑢2 + (9/8), where K is the non-normalized
Epanechnikov kernel

not appli-
cable

Efficiency is defined as
√︁∫︀

𝑢2𝐾(𝑢)𝑑𝑢
∫︀
𝐾(𝑢)2𝑑𝑢, and its measured to the Epanechnikov kernel.

Smoothing Method <smoothing-method>:

Kernel-Smoothing mode of this postprocessor offers three different non-parametric regression methods to
execute kernel regression. The first of them is called spatial-average and perform a Nadaraya-Watson
regression (i.e. also called local-constant regression) on the data using a given kernel:

𝑚ℎ(𝑥) =

𝑛∑︁
𝑖=1

𝐾ℎ((𝑥− 𝑥𝑖)/ℎ)𝑦𝑖/

𝑛∑︁
𝑗=1

𝐾ℎ((𝑥− 𝑥𝑗)/ℎ),

where K(x) is the kernel and must be such that E(K(x)) = 0 and h is the bandwidth of the method. Local-
Constant regression was also described in perun postprocessby kernel-regression estimator-settings. The
second supported regression method by this mode is called local-linear. Compared with previous method,
which offers computational with different types of kernel, this method has restrictions and perform local-
linear regression using only Gaussian (Normal) kernel. The local-constant regression was described
in perun postprocessby kernel-regression estimator-settings and therefore will not be given no further
attention to it. Local Polynomial regression is the last method in this mode and perform regression in N-D
using a user-provided kernel. The local-polynomial regression is the function that minimizes, for each
position:

𝑚ℎ(𝑥) =

𝑛∑︁
𝑖=0

𝐾((𝑥− 𝑥𝑖)/ℎ)(𝑦𝑖 − 𝑎0 − 𝑃𝑞(𝑥𝑖 − 𝑥))2,

where K(x) is the kernel such that E(K(x)) = 0, q is the order of the fitted polynomial <polynomial-order>,
𝑃𝑞(𝑥) is a polynomial or order q in x, and h is the bandwidth of the method. The polynomial 𝑃𝑞(𝑥) is of
the form:

𝐹𝑑(𝑘) = 𝑛 ∈ 𝑁𝑑|
𝑑∑︁

𝑖=1

𝑛𝑖 = 𝑘

3.4. Postprocess Commands 59

Perun Documentation, Release 0.21.6

𝑃𝑞(𝑥1, ..., 𝑥𝑑) =

𝑞∑︁
𝑘=1

∑︁
𝑛∈𝐹𝑑(𝑘)

𝑎𝑘,𝑛

𝑑∏︁
𝑖=1

𝑥𝑛𝑖
𝑖

For example we can have:

𝑃2(𝑥, 𝑦) = 𝑎110𝑥+ 𝑎101𝑦 + 𝑎220𝑥
2 + 𝑎221𝑥𝑦 + 𝑎202𝑦

2

The last part of the calculation is the bandwidth computation. This mode offers to user enter the value directly with
use of parameter <bandwidth-value>. The parameter <bandwidth-method> offers to user the selection from the two
methods to determine the optimal bandwidth value. The supported methods are Scotts’s Rule and Silverman’s Rule,
which are described in perun postprocessby kernel-regression method-selection. This parameter cannot be entered in
combination with <bandwidth-value>, then will be ignored and will be accepted value from <bandwidth-value>.

perun postprocessby kernel-regression kernel-smoothing [OPTIONS]

Options

-kt, --kernel-type <kernel_type>

Provides the set of kernels to execute the kernel-smoothing with kernel selected by the user. For exact definitions
of these kernels and more information about it, you can visit the Perun Documentation.

Options
epanechnikov | tricube | normal | epanechnikov4 | normal4

-sm, --smoothing-method <smoothing_method>

Provides kernel smoothing methods to executing non-parametric regressions: local-polynomial perform a local-
polynomial regression in N-D using a user-provided kernel; local-linear perform a local-linear regression using
a gaussian (normal) kernel; and spatial-average perform a Nadaraya-Watson regression on the data (so called
local-constant regression) using a user-provided kernel.

Options
spatial-average | local-linear | local-polynomial

-bm, --bandwidth-method <bandwidth_method>

Provides the helper method to determine the kernel bandwidth. The <bandwidth_method> will be used to com-
pute the bandwidth, which will be used at kernel-smoothing regression. Cannot be entered in combination with
<bandwidth-value>, then will be ignored and will be accepted value from <bandwidth-value>.

Options
scott | silverman

-bv, --bandwidth-value <bandwidth_value>

The float value of <bandwidth> defined by user, which will be used at kernel regression. If is entered in the
combination with <bandwidth-method>, then method will be ignored.

-q, --polynomial-order <polynomial_order>

Provides order of the polynomial to fit. Default value of the order is equal to 3. Is accepted only by local-
polynomial <smoothing-method>, another methods ignoring it.

60 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

perun postprocessby kernel-regression kernel-ridge

Nadaraya-Watson kernel regression with automatic bandwidth selection.

This mode implements Nadaraya-Watson kernel regression, which was described above in perun postprocessby kernel-
regression estimator-settings. While the previous modes provided the methods to determine the optimal bandwidth with
different ways, this method provides a little bit different way. From a given range of potential bandwidths <gamma-
range> try to select the optimal kernel bandwidth with use of leave-one-out cross-validation. This approach was
described in perun postprocessby kernel-regression estimator-settings, where was introduced the least-squares cross-
validation and it is a modification of this approach. Leave-one-out cross validation is K-fold cross validation taken to
its logical extreme, with K equal to N, the number of data points in the set. The original gamma-range will be divided
on the base of size the given step <gamma-step>. The selection of specific value from this range will be executing
by minimizing mean-squared-error in leave-one-out cross-validation. The selected bandwidth-value will serves for
gaussian kernel in resulting estimate: 𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝑔𝑎𝑚𝑚𝑎 * ||𝑥− 𝑦||2).

perun postprocessby kernel-regression kernel-ridge [OPTIONS]

Options

-gr, --gamma-range <gamma_range>

Provides the range for automatic bandwidth selection of the kernel via leave-one-out cross-validation. One value
from these range will be selected with minimizing the mean-squared error of leave-one-out cross-validation. The
first value will be taken as the lower bound of the range and cannot be greater than the second value.

-gs, --gamma-step <gamma_step>

Provides the size of the step, with which will be executed the iteration over the given <gamma-range>. Cannot
be greater than length of <gamma-range>, else will be set to value of the lower bound of the <gamma_range>.

3.5 Show Commands

3.5.1 perun show

Interprets the given profile using the selected visualization technique.

Looks up the given profile and interprets it using the selected visualization technique. Some of the techniques outputs
either to terminal (using ncurses) or generates HTML files, which can be browseable in the web browser (using bokeh
library). Refer to concrete techniques for concrete options and limitations.

The shown <profile> will be looked up in the following steps:

1. If <profile> is in form i@i (i.e, an index tag), then ith record registered in the minor version <hash> index will
be shown.

2. If <profile> is in form i@p (i.e., an pending tag), then ith profile stored in .perun/jobs will be shown.

3. <profile> is looked-up within the minor version <hash> index for a match. In case the <profile> is registered
there, it will be shown.

4. <profile> is looked-up within the .perun/jobs directory. In case there is a match, the found profile will be
shown.

5. Otherwise, the directory is walked for any match. Each found match is asked for confirmation by user.

Tags consider the sorted order as specified by the following option format.sort_profiles_by.

3.5. Show Commands 61

https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833
https://en.wikipedia.org/wiki/Mean_squared_error

Perun Documentation, Release 0.21.6

Example 1. The following command will show the first profile registered at index of HEAD~1 commit. The resulting
graph will contain bars representing sum of amounts per each subtype of resources and will be shown in the browser:

perun show -m HEAD~1 0@i bars sum --of 'amount' --per 'subtype' -v

Example 2. The following command will show the profile at the absolute path using in raw JSON format:

perun show ./echo-time-hello-2017-04-02-13-13-34-12.perf raw

For a thorough list and description of supported visualization techniques refer to Supported Visualizations.

perun show [OPTIONS] <profile> COMMAND [ARGS]...

Options

-m, --minor <minor>

Will check the index of different minor version <hash> during the profile lookup

Arguments

<profile>

Required argument

3.5.2 Show units

perun show bars

Customizable interpretation of resources using the bar format.

* Limitations: none.
* Interpretation style: graphical
* Visualization backend: Bokeh

Bars graph shows the aggregation (e.g. sum, count, etc.) of resources of given types (or keys). Each bar shows <func>
of resources from <of> key (e.g. sum of amounts, average of amounts, count of types, etc.) per each <per> key (e.g.
per each snapshot, or per each type). Moreover, the graphs can either be (i) stacked, where the different values of <by>
key are shown above each other, or (ii) grouped, where the different values of <by> key are shown next to each other.
Refer to resources for examples of keys that can be used as <of>, <key>, <per> or <by>.

Bokeh library is the current interpretation backend, which generates HTML files, that can be opened directly in the
browser. Resulting graphs can be further customized by adding custom labels for axes, custom graph title or different
graph width.

Example 1. The following will display the sum of sum of amounts of all resources of given for each subtype, stacked
by uid (e.g. the locations in the program):

perun show 0@i bars sum --of 'amount' --per 'subtype' --stacked --by 'uid'

The example output of the bars is as follows:

62 Chapter 3. Command Line Interface

https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/

Perun Documentation, Release 0.21.6

<graph_title>
`
- .::. ````````
` :&&: ` # \ `
- .::. :::: .::. ` @ }-> <by>
` :##: :##: :&&: ` & / `

<func>(<of>) - :##: :##: .::. :&&: ````````
` :::: :##: :&&: ::::
- :@@: :::: :::: :##:
` :@@: :@@: :##: :##:
+````||````||````||````||````

<per>

Refer to Bars Plot for more thorough description and example of bars interpretation possibilities.

perun show bars [OPTIONS] <aggregation_function>

Options

-o, --of <of_resource_key>

Required Sets key that is source of the data for the bars, i.e. what will be displayed on Y axis.

-p, --per <per_resource_key>

Sets key that is source of values displayed on X axis of the bar graph.

-b, --by <by_resource_key>

Sets the key that will be used either for stacking or grouping of values

-s, --stacked

Will stack the values by <resource_key> specified by option –by.

-g, --grouped

Will stack the values by <resource_key> specified by option –by.

-f, --filename <html>

Sets the outputs for the graph to the file.

-xl, --x-axis-label <text>

Sets the custom label on the X axis of the bar graph.

-yl, --y-axis-label <text>

Sets the custom label on the Y axis of the bar graph.

-gt, --graph-title <text>

Sets the custom title of the bars graph.

-v, --view-in-browser

The generated graph will be immediately opened in the browser (firefox will be used).

3.5. Show Commands 63

Perun Documentation, Release 0.21.6

Arguments

<aggregation_function>

Optional argument

perun show flamegraph

Flame graph interprets the relative and inclusive presence of the resources according to the stack depth of the origin of
resources.

* Limitations: memory profiles generated by
Memory Collector.

* Interpretation style: graphical
* Visualization backend: HTML

Flame graph intends to quickly identify hotspots, that are the source of the resource consumption complexity. On X
axis, a relative consumption of the data is depicted, while on Y axis a stack depth is displayed. The wider the bars are
on the X axis are, the more the function consumed resources relative to others.

Acknowledgements: Big thanks to Brendan Gregg for creating the original perl script for creating flame graphs w.r.t
simple format. If you like this visualization technique, please check out this guy’s site (http://brendangregg.com) for
more information about performance, profiling and useful talks and visualization techniques!

The example output of the flamegraph is more or less as follows:

`
- .
` |
- .. | .
` || | |
- || || ||
` |%%| |--| |!|
- |## g() ##| |#g()#|***|
` |&&&& f() &&&&|===== h() =====|
+````||````||````||````||````||````

Refer to Flame Graph for more thorough description and examples of the interpretation technique. Refer to perun.
profile.convert.to_flame_graph_format() for more details how the profiles are converted to the flame graph
format.

perun show flamegraph [OPTIONS]

64 Chapter 3. Command Line Interface

http://brendangregg.com

Perun Documentation, Release 0.21.6

Options

-f, --filename <filename>

Sets the output file of the resulting flame graph.

-h, --graph-height <graph_height>

Increases the width of the resulting flame graph.

perun show flow

Customizable interpretation of resources using the flow format.

* Limitations: none.
* Interpretation style: graphical, textual
* Visualization backend: Bokeh, ncurses

Flow graph shows the values resources depending on the independent variable as basic graph. For each group of
resources identified by unique value of <by> key, one graph shows the dependency of <of> values aggregated by
<func> depending on the <through> key. Moreover, the values can either be accumulated (this way when displaying
the value of ‘n’ on x axis, we accumulate the sum of all values for all m < n) or stacked, where the graphs are output
on each other and then one can see the overall trend through all the groups and proportions between each of the group.

Bokeh library is the current interpretation backend, which generates HTML files, that can be opened directly in the
browser. Resulting graphs can be further customized by adding custom labels for axes, custom graph title or different
graph width.

Example 1. The following will show the average amount (in this case the function running time) of each function
depending on the size of the structure over which the given function operated:

perun show 0@i flow mean --of 'amount' --per 'structure-unit-size'
--acumulated --by 'uid'

The example output of the bars is as follows:

<graph_title>
`
- ______ ````````
` _____/ ` # \ `
- / __ ` @ }-> <by>
` ____/ ____/ ` & / `

<func>(<of>) - ___/ ___/ ````````
` ___/ ______/ ____
-/ ______/ _____/
`__/______________/
+````||````||````||````||````

<through>

Refer to Flow Plot for more thorough description and example of flow interpretation possibilities.

perun show flow [OPTIONS] <aggregation_function>

3.5. Show Commands 65

https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/

Perun Documentation, Release 0.21.6

Options

-o, --of <of_resource_key>

Required Sets key that is source of the data for the flow, i.e. what will be displayed on Y axis, e.g. the amount
of resources.

-t, --through <through_key>

Sets key that is source of the data value, i.e. the independent variable, like e.g. snapshots or size of the structure.

-b, --by <by_resource_key>

Required For each <by_resource_key> one graph will be output, e.g. for each subtype or for each location of
resource.

-s, --stacked

Will stack the y axis values for different <by> keys on top of each other. Additionaly shows the sum of the values.

--accumulate, --no-accumulate

Will accumulate the values for all previous values of X axis.

-f, --filename <html>

Sets the outputs for the graph to the file.

-xl, --x-axis-label <text>

Sets the custom label on the X axis of the flow graph.

-yl, --y-axis-label <text>

Sets the custom label on the Y axis of the flow graph.

-gt, --graph-title <text>

Sets the custom title of the flow graph.

-v, --view-in-browser

The generated graph will be immediately opened in the browser (firefox will be used).

Arguments

<aggregation_function>

Optional argument

perun show scatter

Interactive visualization of resources and models in scatter plot format.

Scatter plot shows resources as points according to the given parameters. The plot interprets <per> and <of> as x, y
coordinates for the points. The scatter plot also displays models located in the profile as a curves/lines.

* Limitations: none.
* Interpretation style: graphical
* Visualization backend: Bokeh

Features in progress:

• uid filters

66 Chapter 3. Command Line Interface

https://bokeh.pydata.org/en/latest/

Perun Documentation, Release 0.21.6

• models filters

• multiple graphs interpretation

Graphs are displayed using the Bokeh library and can be further customized by adding custom labels for axis, custom
graph title and different graph width.

The example output of the scatter is as follows:

<graph_title>
` o
- /
` /o ```````````````````
- _/ ` o o = <points> `
` _- o ` _ `

<of> - __--o ` _- = <models> `
` _______--o- o ` `
- o o o ```````````````````
`
+````||````||````||````||````

<per>

Refer to Scatter Plot for more thorough description and example of scatter interpretation possibilities. For more thor-
ough explanation of regression analysis and models refer to Regression Analysis.

perun show scatter [OPTIONS]

Options

-o, --of <of_key>

Data source for the scatter plot, i.e. what will be displayed on Y axis.

Default
amount

-p, --per <per_key>

Keys that will be displayed on X axis of the scatter plot.

Default
structure-unit-size

-f, --filename <html>

Outputs the graph to the file specified by filename.

-xl, --x-axis-label <text>

Label on the X axis of the scatter plot.

-yl, --y-axis-label <text>

Label on the Y axis of the scatter plot.

-gt, --graph-title <text>

Title of the scatter plot.

-v, --view-in-browser

Will show the graph in browser.

3.5. Show Commands 67

https://bokeh.pydata.org/en/latest/

Perun Documentation, Release 0.21.6

3.6 Utility Commands

3.6.1 perun utils

Contains set of developer commands, wrappers over helper scripts and other functions that are not the part of the main
perun suite.

perun utils [OPTIONS] COMMAND [ARGS]...

Commands

create

According to the given <template>. . .

stats

Provides a set of operations for. . .

temp

Provides a set of operations for. . .

3.6.2 perun utils create

According to the given <template> constructs a new modules in Perun for <unit>.

Currently, this supports creating new modules for the tool suite (namely collect, postprocess, view) or new algo-
rithms for checking degradation (check). The command uses templates stored in ../perun/templates directory and uses
_jinja as a template handler. The templates can be parametrized by the following by options (if not specified ‘none’ is
used).

Unless --no-edit is set, after the successful creation of the files, an external editor, which is specified by general.
editor configuration key.

perun utils create [OPTIONS] <template> <unit>

Options

-nb, --no-before-phase

If set to true, the unit will not have before() function defined.

-na, --no-after-phase

If set to true, the unit will not have after() function defined.

-ne, --no-edit

Will open the newly created files in the editor specified by general.editor configuration key.

-st, --supported-type <supported_types>

Sets the supported types of the unit (i.e. profile types).

68 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

Arguments

<template>

Required argument

<unit>

Required argument

3.6.3 perun temp

Provides a set of operations for maintaining the temporary directory (.perun/tmp/) of perun.

perun temp [OPTIONS] COMMAND [ARGS]...

Commands

delete

Deletes the temporary file or directory.

list

Lists the temporary files of the. . .

sync

Synchronizes the ‘.perun/tmp/’ directory. . .

3.6.4 perun temp list

Lists the temporary files of the ‘.perun/tmp/’ directory. It is possible to list only files in specific subdirectory by
supplying the ROOT path.

The path can be either absolute or relative - the base of the relative path is the tmp/ directory.

perun temp list [OPTIONS] [ROOT]

Options

-t, --no-total-size

Do not show the total size of all the temporary files combined.

-f, --no-file-size

Do not show the size of each temporary file.

-p, --no-protection-level

Do not show the protection level of the temporary files.

-s, --sort-by <sort_by>

Sorts the temporary files on the output.

Options
name | protection | size

3.6. Utility Commands 69

Perun Documentation, Release 0.21.6

-fp, --filter-protection <filter_protection>

List only temporary files with the given protection level.

Options
all | unprotected | protected

Arguments

ROOT

Optional argument

3.6.5 perun temp sync

Synchronizes the ‘.perun/tmp/’ directory contents with the internal tracking file. This is useful when some files or
directories were deleted manually and the resulting inconsistency is causing troubles - however, this should be a very
rare condition.

Invoking the ‘temp list’ command should also synchronize the internal state automatically.

perun temp sync [OPTIONS]

3.6.6 perun stats

Provides a set of operations for manipulating the stats directory (.perun/stats/) of perun.

perun stats [OPTIONS] COMMAND [ARGS]...

Commands

clean

Cleans the stats directory by. . .

delete

Allows the deletion of stat files, minor. . .

list-files

Show stat files stored in the stats. . .

list-versions

Show minor versions stored as directories. . .

sync

Synchronizes the actual contents of the. . .

70 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

3.6.7 perun stats list-files

Show stat files stored in the stats directory (.perun/stats/). This command shows only a limited number of the most
recent files by default. This can be, however, changed by the –top and –from-minor options.

The default output format is ‘file size | minor version | file name’.

perun stats list-files [OPTIONS]

Options

-N, --top <top>

Show only stat files from top N minor versions. Show all results if set to 0. The minor version to start at can be
changed using –from-minor.

Default
20

-m, --from-minor <hash>

Show stat files starting from a certain minor version (default is HEAD).

-i, --no-minor

Do not show the minor version headers in the output.

-f, --no-file-size

Do not show the size of each stat file.

-t, --no-total-size

Do not show the total size of all the stat files combined.

-s, --sort-by-size

Sort the files by size instead of the minor versions order.

3.6.8 perun stats list-versions

Show minor versions stored as directories in the stats directory (.perun/stats/). This command shows only a limited
number of the most recent versions by default. This can be, however, changed by the –top and –from-minor options.

The default output format is ‘directory size | minor version | file count’.

perun stats list-versions [OPTIONS]

Options

-N, --top <top>

Show only top N minor versions. Show all versions if set to 0. The minor version to start at can be changed using
–from-minor.

Default
20

-m, --from-minor <hash>

Show minor versions starting from a certain minor version (default is HEAD).

3.6. Utility Commands 71

Perun Documentation, Release 0.21.6

-d, --no-dir-size

Do not show the size of the version directory.

-f, --no-file-count

Do not show the number of files in each version directory.

-t, --no-total-size

Do not show the total size of all the versions combined.

-s, --sort-by-size

Sort the versions by size instead of their VCS order.

3.6.9 perun stats delete

Allows the deletion of stat files, minor versions or the whole stats directory.

perun stats delete [OPTIONS] COMMAND [ARGS]...

Commands

.

Deletes the whole content of the stats. . .

file

Deletes a stat file in either specific. . .

minor

Deletes the specified minor version. . .

3.6.10 perun stats delete file

Deletes a stat file in either specific minor version or across all the minor versions in the stats directory.

perun stats delete file [OPTIONS] NAME

Options

-m, --in-minor <hash>

Delete the stats file in the specified minor version (HEAD if not specified) or across all the minor versions if set
to “.”.

-k, --keep-directory

Possibly empty directory of minor version will be kept in the file system.

72 Chapter 3. Command Line Interface

Perun Documentation, Release 0.21.6

Arguments

NAME

Required argument

3.6.11 perun stats delete minor

Deletes the specified minor version directory in stats with all its content.

perun stats delete minor [OPTIONS] VERSION

Options

-k, --keep-directory

Resulting empty directory of minor version will be kept in the file system.

Arguments

VERSION

Required argument

3.6.12 perun stats delete ll

Deletes the whole content of the stats directory.

perun stats delete ll [OPTIONS]

Options

-k, --keep-directory

Resulting empty directories of minor versions will be kept in the file system.

3.6.13 perun stats clean

Cleans the stats directory by synchronizing the internal state, deleting distinguishable custom files and directories (i.e.
not all the custom-made or manually created files / directories can be identified as custom, e.g. when they comply the
correct format etc.) and by removing the empty minor version directories.

perun stats clean [OPTIONS]

3.6. Utility Commands 73

Perun Documentation, Release 0.21.6

Options

-c, --keep-custom

The custom stats directories will not be removed.

-e, --keep-empty

The empty version directories will not be removed.

3.6.14 perun stats sync

Synchronizes the actual contents of the stats directory with the internal ‘index’ file. The synchronization should be
needed only rarely - mainly in cases when the stats directory has been manually tampered with and some files or
directories were created or deleted by a user.

perun stats sync [OPTIONS]

74 Chapter 3. Command Line Interface

CHAPTER

FOUR

COLLECTORS OVERVIEW

Performance profiles originate either from the user’s own means (i.e. by building their own collectors and generating
the profiles w.r.t Specification of Profile Format) or using one of the collectors from Perun’s tool suite.

Perun can collect profiling data in two ways:

1. By Directly running collectors through perun collect command, that generates profile using a single col-
lector with given collector configuration. The resulting profiles are not postprocessed in any way.

2. By Using job specification either as a single run of batch of profiling jobs using perun run job or according
to the specification of the so called job matrix using perun run matrix command.

The format of resulting profiles is w.r.t. Specification of Profile Format. The origin is set to the current HEAD of the
wrapped repository. However, note that uncommited changes may skew the resulting profile and Perun cannot guard
your project against this. Further, collector_info is filled with configuration of the run collector.

All of the automatically generated profiles are stored in the .perun/jobs/ directory as a file with the .perf extension.
The filename is by default automatically generated according to the following template:

bin-collector-workload-timestamp.perf

Profiles can be further registered and stored in persistent storage using perun add command. Then both stored and
pending profiles (i.e. those not yet assigned) can be postprocessed using the perun postprocessby or interpreted us-
ing available interpretation techniques using perun show. Refer to Command Line Interface, Postprocessors Overview
and Visualizations Overview for more details about running command line commands, capabilities of postprocessors
and interpretation techniques respectively. Internals of perun storage is described in Perun Internals.

75

Perun Documentation, Release 0.21.6

VIEW

DATALOGIC

PERUN

HEAP
MAP

GUI CLI
FLAME
GRAPH

...

VCS

GIT

SVN

...

PVCS

PROFILE
Regex

...

Memory

Time

...

Filter

Normalizer

HOOKS

GIT ...

GENERATES
IN

IS
 V

IS
U

A
LI

ZE
D

SVN

COLLECTORS

POSTPROCESS

4.1 Supported Collectors

Perun’s tool suite currently contains the following three collectors:

1. Trace Collector (authored by Jirka Pavela), collects running times of C/C++ functions along with the size of
the structures they were executed on. E.g. this collects resources such that function search over the class
SingleLinkedList took 100ms on single linked list with one million elements. Examples shows concrete
examples of profiles generated by Trace Collector

2. Memory Collector (authored by Radima Podola), collects specifications of allocations in C/C++ programs, such
as the type of allocation or the full call trace. Examples shows concrete generated profiles by Memory Collector.

3. Time Collector, collects overall running times of arbitrary commands. Internally implemented as a simple wrap-
per over time utility

4. Bounds Collector, collects bounds of integer and, to some extent, heap-manipulating loops represented as so
called ranking function. The collectors works as a wrapper over the Loopus tool. The collection is limited to
source codes only, written in subset of C language, i.e. for some construction it might return wrong bounds (e.g.
for switch statement). Moreover, the runtime of bounds depends on Z3 library.

All of the listed collectors can be run from command line. For more information about command line interface for
individual collectors refer to Collect units.

Collector modules are implementation independent (hence, can be written in any language) and only requires simple

76 Chapter 4. Collectors Overview

https://forsyte.at/software/loopus/

Perun Documentation, Release 0.21.6

python interface registered within Perun. For brief tutorial how to create and register new collectors in Perun refer to
Creating your own Collector.

4.1.1 Trace Collector

Trace collector collects running times of C/C++ functions. The collected data are suitable for further postprocessing
using the regression analysis and visualization by scatter plots.

Overview and Command Line Interface

perun collect trace

Generates trace performance profile, capturing running times of function depending on underlying structural sizes.

* Limitations: C/C++ binaries
* Metric: mixed (captures both time and size consumption)
* Dependencies: SystemTap (+ corresponding requirements e.g. kernel -dbgsym version)
* Default units: us for time, element number for size

Example of collected resources is as follows:

{
"amount": 11,
"subtype": "time delta",
"type": "mixed",
"uid": "SLList_init(SLList*)",
"structure-unit-size": 0

}

Trace collector provides various collection strategies which are supposed to provide sensible default settings for col-
lection. This allows the user to choose suitable collection method without the need of detailed rules / sampling speci-
fication. Currently supported strategies are:

* userspace: This strategy traces all userspace functions / code blocks without
the use of sampling. Note that this strategy might be resource-intensive.

* all: This strategy traces all userspace + library + kernel functions / code blocks
that are present in the traced binary without the use of sampling. Note that this strategy
might be very resource-intensive.

* u_sampled: Sampled version of the userspace strategy. This method uses sampling
to reduce the overhead and resources consumption.

* a_sampled: Sampled version of the all strategy. Its goal is to reduce the
overhead and resources consumption of the all method.

* custom: User-specified strategy. Requires the user to specify rules and sampling
manually.

Note that manually specified parameters have higher priority than strategy specification and it is thus possible to override
concrete rules / sampling by the user.

4.1. Supported Collectors 77

Perun Documentation, Release 0.21.6

The collector interface operates with two seemingly same concepts: (external) command and binary. External com-
mand refers to the script, executable, makefile, etc. that will be called / invoked during the profiling, such as ‘make
test’, ‘run_script.sh’, ‘./my_binary’. Binary, on the other hand, refers to the actual binary or executable file that will be
profiled and contains specified functions / USDT probes etc. It is expected that the binary will be invoked / called as
part of the external command script or that external command and binary are the same.

The interface for rules (functions, USDT probes) specification offers a way to specify profiled locations both with
sampling or without it. Note that sampling can reduce the overhead imposed by the profiling. USDT rules can be
further paired - paired rules act as a start and end point for time measurement. Without a pair, the rule measures
time between each two probe hits. The pairing is done automatically for USDT locations with convention <name>
and <name>_end or <name>_END - or other commonly found suffixes. Otherwise, it is possible to pair rules by the
delimiter ‘#’, such as <name1>#<name2>.

Trace profiles are suitable for postprocessing by Regression Analysis since they capture dependency of time consump-
tion depending on the size of the structure. This allows one to model the estimation of trace of individual functions.

Scatter plots are suitable visualization for profiles collected by trace collector, which plots individual points along with
regression models (if the profile was postprocessed by regression analysis). Run perun show scatter --help or
refer to Scatter Plot for more information about scatter plots.

Refer to Trace Collector for more thorough description and examples of trace collector.

perun collect trace [OPTIONS]

Options

-e, --engine <engine>

Sets the data collection engine to be used: - stap: the SystemTap framework - ebpf: the eBPF framework

Options
stap | ebpf

-s, --strategy <strategy>

Required Select strategy for probing the binary. See documentation for detailed explanation for each strategy.

Options
userspace | all | u_sampled | a_sampled | custom

-f, --func <func>

Set the probe point for the given function as <lib>#<func>#<sampling>.

-u, --usdt <usdt>

Set the probe point for the given USDT location as <lib>#<usdt>#<sampling>.

-d, --dynamic <dynamic>

Set the probe point for the given dynamic location as <lib>#<cl>#<sampling>.

-g, --global-sampling <global_sampling>

Set the global sample for all probes, sampling parameter for specific rules have higher priority.

--with-usdt, --no-usdt

The selected strategy will also extract and profile USDT probes.

-b, --binary <binary>

The profiled executable. If not set, then the command is considered to be the profiled executable and is used as
a binary parameter.

78 Chapter 4. Collectors Overview

Perun Documentation, Release 0.21.6

-l, --libs <libs>

Additional libraries that should also be profiled.

-t, --timeout <timeout>

Set time limit (in seconds) for the profiled command, i.e. the command will be terminated after reaching the
time limit. Useful for, e.g., endless commands.

-z, --zip-temps

Zip and compress the temporary files (SystemTap log, raw performance data, watchdog log, etc.) into the Perun
log directory before deleting them.

-k, --keep-temps

Do not delete the temporary files in the file system.

-vt, --verbose-trace

Set the trace file output to be more verbose, useful for debugging.

-q, --quiet

Reduces the verbosity of the collector info messages.

-w, --watchdog

Enable detailed logging of the whole collection process.

-o, --output-handling <output_handling>

Sets the output handling of the profiled command: - default: the output is displayed in the terminal - capture: the
output is being captured into a file as well as displayed in the terminal (note that buffering causes a delay in the
terminal output) - suppress: redirects the output to the DEVNULL

Options
default | capture | suppress

-i, --diagnostics

Enable detailed surveillance mode of the collector. The collector turns on detailed logging (watchdog), verbose
trace, capturing output etc. and stores the logs and files in an archive (zip-temps) in order to provide as much
diagnostic data as possible for further inspection.

-sc, --stap-cache-off

Disables the SystemTap caching of compiled scripts.

-np, --no-profile

Tracer will not transform and save processed data into a perun profile.

-mcg, --extract-mixed-cg

DEBUG: Extract mixed CG.

-cg, --only-extract-cg

Tracer will only extract the CG of the current project version and terminate.

-mt, --max-simultaneous-threads <max_simultaneous_threads>

DEBUG: Maximum number of expected simultaneous threads when sampling is on.

-nds, --no-ds-update

DEBUG: Disables Dynamic Stats updates

4.1. Supported Collectors 79

Perun Documentation, Release 0.21.6

Examples

1 {
2 "resources": {
3 "SLList_insert(SLList*, int)#0": {
4 "amount": [
5 1, 0, 1, 1
6],
7 "structure-unit-size": [
8 0, 1, 2, 3
9]

10 },
11 "SLList_destroy(SLList*)#0": {
12 "amount": [
13 1
14],
15 "structure-unit-size": [
16 4
17]
18 },
19 "SLList_init(SLList*)#0": {
20 "amount": [
21 6
22],
23 "structure-unit-size": [
24 0
25]
26 },
27 "SLList_search(SLList*, int)#0": {
28 "amount": [
29 0
30],
31 "structure-unit-size": [
32 0
33]
34 }
35 },
36 "header": {
37 "workload": "",
38 "type": "mixed",
39 "units": {
40 "mixed(time delta)": "us"
41 },
42 "params": "",
43 "cmd": "../stap-collector/tst"
44 },
45 "models": [],
46 "collector_info": {
47 "params": {
48 "global_sampling": null,
49 "sampling": [
50 {
51 "func": "SLList_insert",

(continues on next page)

80 Chapter 4. Collectors Overview

Perun Documentation, Release 0.21.6

(continued from previous page)

52 "sample": 1
53 },
54 {
55 "func": "func1",
56 "sample": 1
57 }
58],
59 "rules": [
60 "SLList_init",
61 "SLList_insert",
62 "SLList_search",
63 "SLList_destroy"
64],
65 "method": "custom"
66 },
67 "name": "complexity"
68 },
69 "resource_type_map": {
70 "SLList_insert(SLList*, int)#0": {
71 "subtype": "time delta",
72 "uid": "SLList_insert(SLList*, int)",
73 "time": "6.8e-05s",
74 "type": "mixed"
75 },
76 "SLList_destroy(SLList*)#0": {
77 "subtype": "time delta",
78 "uid": "SLList_destroy(SLList*)",
79 "time": "6.8e-05s",
80 "type": "mixed"
81 },
82 "SLList_init(SLList*)#0": {
83 "subtype": "time delta",
84 "uid": "SLList_init(SLList*)",
85 "time": "6.8e-05s",
86 "type": "mixed"
87 },
88 "SLList_search(SLList*, int)#0": {
89 "subtype": "time delta",
90 "uid": "SLList_search(SLList*, int)",
91 "time": "6.8e-05s",
92 "type": "mixed"
93 }
94 },
95 "postprocessors": [],
96 "origin": "f7f3dcea69b97f2b03c421a223a770917149cfae"
97 }

The above is an example of profiled data for the simple manipulation with program with single linked list. Profile
captured running times of three functions—SLList_init (an initialization of single linked list), SLList_destroy (a
destruction of single linked list) and SLList_search (search over the single linked list).

Highlighted lines show important keys and regions in the profile, e.g. the origin, collector-info or resources.

4.1. Supported Collectors 81

Perun Documentation, Release 0.21.6

The Scatter Plot above shows the example of visualization of trace profile. Each points corresponds to the running
time of the SLList_search function over the single linked list with structure-unit-size elements. Elements
are further interleaved with set of models obtained by Regression Analysis. The light green line corresponds to linear
model, which seems to be the most fitting to model the performance of given function.

82 Chapter 4. Collectors Overview

Perun Documentation, Release 0.21.6

The Bars Plot above shows the overall sum of the running times for each structure-unit-size for the
SLList_search function. The interpretation highlights that the most of the consumed running time were over the
single linked lists with 41 elements.

4.1. Supported Collectors 83

Perun Documentation, Release 0.21.6

The Flow Plot above shows the trend of the average running time of the SLList_search function depending on the
size of the structure we execute the search on.

4.1.2 Memory Collector

Memory collector collects allocations of C/C++ functions, target addresses of allocations, type of allocations, etc.

Overview and Command Line Interface

perun collect memory

Generates memory performance profile, capturing memory allocations of different types along with target address and
full call trace.

* Limitations: C/C++ binaries
* Metric: memory
* Dependencies: libunwind.so and custom libmalloc.so

* Default units: B for memory

The following snippet shows the example of resources collected by memory profiler. It captures allocations done by
functions with more detailed description, such as the type of allocation, trace, etc.

{
"type": "memory",
"subtype": "malloc",
"address": 19284560,
"amount": 4,
"trace": [

{
"source": "../memory_collect_test.c",
"function": "main",
"line": 22

},
],
"uid": {

"source": "../memory_collect_test.c",
"function": "main",
"line": 22

}
},

Refer to Memory Collector for more thorough description and examples of memory collector.

perun collect memory [OPTIONS]

84 Chapter 4. Collectors Overview

Perun Documentation, Release 0.21.6

Options

-s, --sampling <sampling>

Sets the sampling interval for profiling the allocations. I.e. memory snapshots will be collected each <sampling>
seconds.

--no-source <no_source>

Will exclude allocations done from <no_source> file during the profiling.

--no-func <no_func>

Will exclude allocations done by <no func> function during the profiling.

-a, --all

Will record the full trace for each allocation, i.e. it will include all allocators and even unreachable records.

Examples

1 {
2 "resources": {
3 "../memory_collect_test.c:main:22#0": {
4 "amount": [
5 4
6],
7 "address": [
8 19284560
9]

10 },
11 "../memory_collect_test.c:main:27#0": {
12 "amount": [
13 0
14],
15 "address": [
16 19284560
17]
18 }
19 },
20 "header": {
21 "units": {
22 "memory": "B"
23 },
24 "cmd": "./mct",
25 "workload": "",
26 "params": "",
27 "type": "memory"
28 },
29 "models": [],
30 "collector_info": {
31 "params": {
32 "all": false,
33 "sampling": 0.025,
34 "no_func": null,
35 "no_source": null
36 },

(continues on next page)

4.1. Supported Collectors 85

Perun Documentation, Release 0.21.6

(continued from previous page)

37 "name": "memory"
38 },
39 "resource_type_map": {
40 "../memory_collect_test.c:main:22#0": {
41 "snapshot": 0,
42 "time": "0.025000",
43 "type": "memory",
44 "trace": [
45 {
46 "function": "malloc",
47 "line": 0,
48 "source": "unreachable"
49 },
50 {
51 "function": "main",
52 "line": 22,
53 "source": "../memory_collect_test.c"
54 },
55 {
56 "function": "__libc_start_main",
57 "line": 0,
58 "source": "unreachable"
59 },
60 {
61 "function": "_start",
62 "line": 0,
63 "source": "unreachable"
64 }
65],
66 "subtype": "malloc",
67 "uid": {
68 "function": "main",
69 "line": 22,
70 "source": "../memory_collect_test.c"
71 }
72 },
73 "../memory_collect_test.c:main:27#0": {
74 "snapshot": 0,
75 "time": "0.025000",
76 "type": "memory",
77 "trace": [
78 {
79 "function": "free",
80 "line": 0,
81 "source": "unreachable"
82 },
83 {
84 "function": "main",
85 "line": 27,
86 "source": "../memory_collect_test.c"
87 },
88 {

(continues on next page)

86 Chapter 4. Collectors Overview

Perun Documentation, Release 0.21.6

(continued from previous page)

89 "function": "__libc_start_main",
90 "line": 0,
91 "source": "unreachable"
92 },
93 {
94 "function": "_start",
95 "line": 0,
96 "source": "unreachable"
97 }
98],
99 "subtype": "free",

100 "uid": {
101 "function": "main",
102 "line": 27,
103 "source": "../memory_collect_test.c"
104 }
105 }
106 },
107 "postprocessors": [],
108 "origin": "74288675e4074f1ad5bbb0d3b3253911ab42267a"
109 }

The above is an example of profiled data on a simple binary, which makes several minor allocations. Profile shows a
simple allocation followed by deallocation and highlights important keys and regions in the memory profiles, e.g. the
origin, collector-info or resources

The Flow Plot above shows the mean of allocated amounts per each allocation site (i.e. uid) in stacked mode. The
stacking of the means clearly shows, where the biggest allocations where made during the program run.

4.1. Supported Collectors 87

Perun Documentation, Release 0.21.6

The Flame Graph is an efficient visualization of inclusive consumption of resources. The width of the base of one
flame shows the bottleneck and hotspots of profiled binaries.

4.1.3 Time Collector

Time collector collects is a simple wrapper over the time utility. There is nothing special about this, the profiles are
simple, and no visualization is especially suitable for this mode.

Overview and Command Line Interface

perun collect time

Generates time performance profile, capturing overall running times of the profiled command.

* Limitations: none
* Metric: running time
* Dependencies: none
* Default units: s

This is a wrapper over the time linux unitility and captures resources in the following form:

{
"amount": 0.59,
"type": "time",
"subtype": "sys",
"uid": cmd
"order": 1

}

88 Chapter 4. Collectors Overview

Perun Documentation, Release 0.21.6

Refer to Time Collector for more thorough description and examples of trace collector.

perun collect time [OPTIONS]

Options

-w, --warmup <int>

Before the actual timing, the collector will execute <int> warm-up executions.

-r, --repeat <int>

The timing of the given binaries will be repeated <int> times.

Examples

1 {
2 "origin": "8de6cd99e4dc36cd73a2af906cde12456e96d9f1",
3 "header": {
4 "type": "time",
5 "params": "",
6 "units": {
7 "time": "s"
8 },
9 "cmd": "./list_search",

10 "workload": "100000"
11 },
12 "collector_info": {
13 "params": {
14 "repeat": 2,
15 "warmup": 3
16 },
17 "name": "time"
18 },
19 "postprocessors": [],
20 "global": {
21 "timestamp": 0.565476655960083,
22 "resources": [
23 {
24 "subtype": "real",
25 "uid": "./list_search",
26 "order": 1,
27 "type": "time",
28 "amount": 0.26
29 },
30 {
31 "subtype": "user",
32 "uid": "./list_search",
33 "order": 1,
34 "type": "time",
35 "amount": 0.25
36 },
37 {

(continues on next page)

4.1. Supported Collectors 89

Perun Documentation, Release 0.21.6

(continued from previous page)

38 "subtype": "sys",
39 "uid": "./list_search",
40 "order": 1,
41 "type": "time",
42 "amount": 0.0
43 },
44 {
45 "subtype": "real",
46 "uid": "./list_search",
47 "order": 2,
48 "type": "time",
49 "amount": 0.27
50 },
51 {
52 "subtype": "user",
53 "uid": "./list_search",
54 "order": 2,
55 "type": "time",
56 "amount": 0.28
57 },
58 {
59 "subtype": "sys",
60 "uid": "./list_search",
61 "order": 2,
62 "type": "time",
63 "amount": 0.0
64 }
65]
66 },
67 }

The above is an example of profiled data using the time wrapper with important regions and keys highlighted. The
given command was profiled two times.

4.1.4 Bounds Collector

Automatic analysis of resource bounds of C programs.

Bounds collector employs a technique of Loopus tool (see loopus-site), which performs an amortized analysis of input
C program. Loopus is limited to integer programs only, and for each function and for each loop it computes a symbolic
bound (e.g. 2*n + max(0, m)). Moreover, it computes the big-O notation highlighting the main source of the complexity.

90 Chapter 4. Collectors Overview

https://forsyte.at/software/loopus/page/11/

Perun Documentation, Release 0.21.6

Overview and Command Line Interface

perun collect bounds

Generates memory performance profile, capturing memory allocations of
different types along with target address and full call trace.

• Limitations: C/C++ binaries

• Metric: memory

• Dependencies: libunwind.so and custom libmalloc.so

• Default units: B for memory

The following snippet shows the example of resources collected by memory profiler. It captures allocations done
by functions with more detailed description, such as the type of allocation, trace, etc.

{
"uid": {

"source": "../test.c",
"function": "main",
"line": 22
"column": 40

}
"bound": "1 + max(0, (k + -1))",
"class": "O(n^1)"
"type": "bound",

}

Refer to :ref:`collectors-bounds` for more thorough description and
examples of `bounds` collector.

perun collect bounds [OPTIONS]

Options

-s, --source, --src <path>

Source C file that will be analyzed.

-d, --source-dir <dir>

Directory, where source C files are stored. All of the existing files with valid extensions (.c).

Examples

1 {
2 "origin": "409dd7468a328038c9a1ea5a6a0f7baa89f8997a",
3 "header": {
4 "type": "bound",
5 "args": "",
6 "workload": "",
7 "units": {

(continues on next page)

4.1. Supported Collectors 91

Perun Documentation, Release 0.21.6

(continued from previous page)

8 "bound": "iterations"
9 },

10 "cmd": "partitioning"
11 },
12 "resources": {
13 "int_partitioning.c:partitioning:34:42#0": {},
14 "int_partitioning.c:partitioning:49:60#0": {},
15 "int_partitioning.c:partitioning:64:69#0": {},
16 "int_partitioning.c:partitioning:18:4#0": {},
17 "int_partitioning.c:partitioning:55:58#0": {}
18 },
19 "models": [],
20 "postprocessors": [],
21 "collector_info": {
22 "params": {
23 "sources": [
24 "int_partitioning.c"
25],
26 "workload": "",
27 "source_dir": [],
28 "source": [
29 "int_partitioning.c"
30]
31 },
32 "name": "bounds"
33 },
34 "resource_type_map": {
35 "int_partitioning.c:partitioning:34:42#0": {
36 "uid": {
37 "line": 34,
38 "column": 42,
39 "source": "int_partitioning.c",
40 "function": "partitioning"
41 },
42 "type": "local bound",
43 "bound": "1 + max(0, (k + -1))",
44 "time": "0.0",
45 "class": "O(n^1)"
46 },
47 "int_partitioning.c:partitioning:49:60#0": {
48 "uid": {
49 "line": 49,
50 "column": 60,
51 "source": "int_partitioning.c",
52 "function": "partitioning"
53 },
54 "type": "local bound",
55 "bound": "2 + max(0, (k + -1))",
56 "time": "0.0",
57 "class": "O(n^1)"
58 },
59 "int_partitioning.c:partitioning:64:69#0": {

(continues on next page)

92 Chapter 4. Collectors Overview

Perun Documentation, Release 0.21.6

(continued from previous page)

60 "uid": {
61 "line": 64,
62 "column": 69,
63 "source": "int_partitioning.c",
64 "function": "partitioning"
65 },
66 "type": "local bound",
67 "bound": "2 + max(0, (k + -1))",
68 "time": "0.0",
69 "class": "O(n^1)"
70 },
71 "int_partitioning.c:partitioning:18:4#0": {
72 "uid": {
73 "line": 18,
74 "column": 4,
75 "source": "int_partitioning.c",
76 "function": "partitioning"
77 },
78 "type": "total bound",
79 "bound": "6 + 4 × max(0, (k + -1))",
80 "time": "0.0",
81 "class": "O(n^1)"
82 },
83 "int_partitioning.c:partitioning:55:58#0": {
84 "uid": {
85 "line": 55,
86 "column": 58,
87 "source": "int_partitioning.c",
88 "function": "partitioning"
89 },
90 "type": "local bound",
91 "bound": "1 + max(0, (k + -1))",
92 "time": "0.0",
93 "class": "O(n^1)"
94 }
95 }
96 }

The above is an example of profiled data using the bounds with important regions and keys highlighted. The bounds
corresponds to the program listed below, which contains four highlighted loops. For each loop we have a local bound
that is represented as a ranking function based on input function parameters. For each bound, we also list its class,
i.e. the highest polynom of the ranking function, or Big-O complexity. In case, the complexity cannot be inferred, the
Loopus returns failure and we report infinite bound, which is safe approximation. Each function then gets a cummulative
total bound, that represents the whole complexity of the function.

1 int partitioning(unsigned int k) {
2 TList *list, *temp;
3

4 unsigned int list_next_NULL;
5 unsigned int list_next_p;
6 unsigned int p_next_NULL;
7 unsigned int x_next_NULL;

(continues on next page)

4.1. Supported Collectors 93

Perun Documentation, Release 0.21.6

(continued from previous page)

8 unsigned int y_next_x;
9 list = malloc(sizeof(TList));

10 list->next = NULL;
11

12 // Create nondeterminstic list
13 TList *p = list;
14 list_next_NULL = 1;
15 list_next_p = 0;
16 while(k > 1) {
17 temp = malloc(sizeof(TList));
18 temp->next = NULL;
19 p->next = temp;
20 p = temp;
21 list_next_NULL = list_next_p + 2;
22 list_next_p += 1;
23 --k;
24 }
25

26 // Traverse the list
27 TList* x = list;
28 TList* y = x;
29 x_next_NULL = list_next_NULL;
30 y_next_x = 0;
31 while(x_next_NULL > 0 && x != NULL) {
32 x = x->next;
33 x_next_NULL -= 1;
34 y_next_x += 1;
35 // The end will always jump out
36 if(NONDET) {
37 while(y_next_x > 0 && y != x) {
38 y = y->next;
39 y_next_x -= 1;
40 }
41 }
42 }
43

44 p = list;
45 p_next_NULL = list_next_NULL;
46 while(p_next_NULL > 0 && p != NULL) {
47 temp = p;
48 p = p->next;
49 free(temp);
50 p_next_NULL -= 1;
51 }
52

53 return 0;
54 }
55

94 Chapter 4. Collectors Overview

Perun Documentation, Release 0.21.6

4.2 Creating your own Collector

New collectors can be registered within Perun in several steps. Internally they can be implemented in any pro-
gramming language and in order to work with Perun requires three phases to be specified as given in Collectors
Overview—before(), collect() and after(). Each new collector requires a interface module run.py, which
contains the three functions and, moreover, a cli API for Click.

You can register your new collector as follows:

1. Run perun utils create collect mycollector to generate a new modules in perun/
collect directory with the following structure. The command takes a predefined templates for new
collectors and creates __init__.py and run.py according to the supplied command line arguments
(see Utility Commands for more information about interface of perun utils create command):

/perun
|-- /collect

|-- /mycollector
|-- __init__.py
|-- run.py

|-- /trace
|-- /memory
|-- /time
|-- __init__.py

2. First, implement the __init__.py file, including the module docstring with brief collector de-
scriptions and definitions of constants that are used for automatic setting of profiles (namely the
collector-info) which has the following structure:

1 """..."""
2

3 COLLECTOR_TYPE = "time|memory|mixed"
4 COLLECTOR_DEFAULT_UNITS = {"type": "unit"}

3. Next, implement the run.py module with collect() function, (optionally with before() and
after()). The collect() function should do the actual collection of the profiling data over the
given configuration. Each function should return the integer status of the phase, the status message
(used in case of error) and dictionary including params passed to additional phases and ‘profile’ with
dictionary w.r.t Specification of Profile Format.

1 def before(**kwargs):
2 """(optional)"""
3 return STATUS, STATUS_MSG, dict(kwargs)
4

5

6 def collect(**kwargs):
7 """..."""
8 return STATUS, STATUS_MSG, dict(kwargs)
9

10

11 def after(**kwargs):
12 """(optional)"""
13 return STATUS, STATUS_MSG, dict(kwargs)

4. Additionally implement the command line interface function in run.py, named the same as your
collector. This function will is called from command line as perun collect mycollector and is

4.2. Creating your own Collector 95

http://click.pocoo.org/5/

Perun Documentation, Release 0.21.6

based on Click library.

1 --- /mnt/e/phdwork/perun/perun/docs/_static/templates/collectors_run.py
2 +++ /mnt/e/phdwork/perun/perun/docs/_static/templates/collectors_run_api.py
3 @@ -1,3 +1,8 @@
4 +import click
5 +
6 +import perun.logic.runner as runner
7 +
8 +
9 def before(**kwargs):

10 """(optional)"""
11 return STATUS, STATUS_MSG, dict(kwargs)
12 @@ -11,3 +16,10 @@
13 def after(**kwargs):
14 """(optional)"""
15 return STATUS, STATUS_MSG, dict(kwargs)
16 +
17 +
18 +@click.command()
19 +@click.pass_context
20 +def mycollector(ctx, **kwargs):
21 + """..."""
22 + runner.run_collector_from_cli_context(ctx, "mycollector", kwargs)

5. Finally register your newly created module in get_supported_module_names() located in
perun.utils.__init__.py:

1 --- /mnt/e/phdwork/perun/perun/docs/_static/templates/supported_module_names.py
2 +++ /mnt/e/phdwork/perun/perun/docs/_static/templates/supported_module_names_

→˓collectors.py
3 @@ -6,7 +6,7 @@
4)
5 return {
6 "vcs": ["git"],
7 - "collect": ["trace", "memory", "time"],
8 + "collect": ["trace", "memory", "time", "mycollector"],
9 "postprocess": ["filter", "normalizer", "regression-analysis"],

10 "view": [
11 "alloclist",

6. Preferably, verify that registering did not break anything in the Perun and if you are not using the
developer installation, then reinstall Perun:

make test
make install

7. At this point you can start using your collector either using perun collect or using the following
to set the job matrix and run the batch collection of profiles:

perun config --edit
perun run matrix

8. If you think your collector could help others, please, consider making Pull Request.

96 Chapter 4. Collectors Overview

http://click.pocoo.org/5/
https://github.com/tfiedor/perun/pull/new/develop

CHAPTER

FIVE

POSTPROCESSORS OVERVIEW

Performance profiles originate either from the user’s own means (i.e. by building their own collectors and generating
the profiles w.r.t Specification of Profile Format) or using one of the collectors from Perun’s tool suite.

Perun can postprocess such profiling data in two ways:

1. By Directly running postprocessors through perun postprocessby command, that takes the profile (either
stored or pending) and uses a single postprocessor with given configuration.

2. By Using job specification either as a single run of batch of profiling jobs using perun run job or according
to the specification of the so called job matrix using perun run matrix command.

The format of input and resulting profiles has to be w.r.t. Specification of Profile Format. By default new profiles are
created. The origin set to the origin of the original profile. Further, postprocessors is extended with configuration
of the run postprocessor (appended at the end).

All of the postprocessed profiles are stored in the .perun/jobs/ directory as a file with the .perf extension. The
filename is by default automatically generated according to the following template:

bin-collector-workload-timestamp.perf

Profiles can be further registered and stored in persistent storage using perun add command. Then both stored and
pending profiles (i.e. those not yet assigned) can be interpreted using available interpretation techniques using perun
show. Refer to Command Line Interface and Visualizations Overview for more details about running command line
commands and capabilities fo interpretation techniques respectively. Internals of perun storage is described in Perun
Internals.

97

Perun Documentation, Release 0.21.6

VIEW

DATALOGIC

PERUN

HEAP
MAP

GUI CLI
FLAME
GRAPH

...

VCS

GIT

SVN

...

PVCS

PROFILE
Regex

...

Memory

Time

...

Filter

Normalizer

HOOKS

GIT ...

GENERATES
IN

IS
 V

IS
U

A
LI

ZE
D

SVN

COLLECTORS

POSTPROCESS

5.1 Supported Postprocessors

Perun’s tool suite currently contains the following five postprocessors:

1. Normalizer Postprocessor scales the resources of the given profile to the interval (0, 1). The main intuition
behind the usage of this postprocessor is to be able to compare profiles from different workloads or parameters,
which may have different scales of resource amounts.

2. Regression Analysis (authored by Jirka Pavela) attempts to do a regression analysis by finding the fitting model
for dependent variable based on other independent one. Currently the postprocessor focuses on finding a well
suited model (linear, quadratic, logarithmic, etc.) for the amount of time duration depending on size of the data
structure the function operates on.

3. Clusterizer tries to classify resources to uniquely identified clusters, which can be used for further postprocessing
(e.g. by regression analysis) or to group similar amounts of resources.

4. Regressogram method (authored by Simon Stupinsky) also known as the binning approach, is the simplest
non-parametric estimator. This method trying to fit models through data by dividing the interval into N equal-
width bucket and the resultant value in each bucket is equal to result of selected statistical aggregation function
(mean/median) within the values in the relevant bucket. In short, we can describe the regressogram as a step
function (i.e. constant function by parts).

5. Moving Average Methods (authored by Simon Stupinsky) also know as the rolling average or running average,
is the statistical analysis belongs to non-parametric approaches. This method is based on the analysis of the

98 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

given data points by creating a series of values based on the specific aggregation function, most often average or
possibly median. The resulting values are derived from the different subsets of the full data set. We currently
support the two main methods of this approach and that the Simple Moving Average and the Exponential Moving
Average. In the first method is an available selection from two aggregation function: mean or median.

All of the listed postprocessors can be run from command line. For more information about command line interface
for individual postprocessors refer to Postprocess units.

Postprocessors modules are implementation independent and only requires a simple python interface registered within
Perun. For brief tutorial how to create and register your own postprocessors refer to Creating your own Postprocessor.

5.1.1 Normalizer Postprocessor

Normalizer is a simple postprocessor that normalizes the values.

Command Line Interface

perun postprocessby normalizer

Normalizes performance profile into flat interval.

* Limitations: none
* Dependencies: none

Normalizer is a postprocessor, which iterates through all of the snapshots and normalizes the resources of same type
to interval (0, 1), where 1 corresponds to the maximal value of the given type.

Consider the following list of resources for one snapshot generated by Time Collector:

[
{

'amount': 0.59,
'uid': 'sys'

}, {
'amount': 0.32,
'uid': 'user'

}, {
'amount': 2.32,
'uid': 'real'

}
]

Normalizer yields the following set of resources:

[
{

'amount': 0.2543103448275862,
'uid': 'sys'

}, {
'amount': 0.13793103448275865,
'uid': 'user'

}, {
'amount': 1.0,

5.1. Supported Postprocessors 99

Perun Documentation, Release 0.21.6

'uid': 'real'
}

]

Refer to Normalizer Postprocessor for more thorough description and examples of normalizer postprocessor.

perun postprocessby normalizer [OPTIONS]

5.1.2 Regression Analysis

Postprocessing of input profiles using the regression analysis. The regression analysis offers several computational
methods and models for finding fitting models for trends in the captured profiling resources.

Command Line Interface

perun postprocessby regression_analysis

Finds fitting regression models to estimate models of profiled resources.

* Limitations: Currently limited to models of amount depending on
structural-unit-size

* Dependencies: Trace Collector

Regression analyzer tries to find a fitting model to estimate the amount of resources depending on structural-unit-size.

The following strategies are currently available:

1. Full Computation uses all of the data points to obtain the best fitting model for each type of model from the
database (unless --regression_models/-r restrict the set of models)

2. Iterative Computation uses a percentage of data points to obtain some preliminary models together with their
errors or fitness. The most fitting model is then expanded, until it is fully computed or some other model becomes
more fitting.

3. Full Computation with initial estimate first uses some percent of data to estimate which model would be best
fitting. Given model is then fully computed.

4. Interval Analysis uses more finer set of intervals of data and estimates models for each interval providing more
precise modeling of the profile.

5. Bisection Analysis fully computes the models for full interval. Then it does a split of the interval and computes
new models for them. If the best fitting models changed for sub intervals, then we continue with the splitting.

Currently we support linear, quadratic, power, logaritmic and constant models and use the coeficient of determina-
tion (𝑅2) to measure the fitness of model. The models are stored as follows:

{
"uid": "SLList_insert(SLList*, int)",
"r_square": 0.0017560012128507133,
"coeffs": [

{
"value": 0.505375215875552,
"name": "b0"

},

100 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

{
"value": 9.935159839322705e-06,
"name": "b1"

}
],
"x_start": 0,
"x_end": 11892,
"model": "linear",
"method": "full",

}

Note that if your data are not suitable for regression analysis, check out Clusterizer to postprocess your profile to be
analysable by this analysis.

For more details about regression analysis refer to Regression Analysis. For more details how to collect suitable re-
sources refer to Trace Collector.

perun postprocessby regression_analysis [OPTIONS]

Options

-m, --method <method>

Required Will use the <method> to find the best fitting models for the given profile.

Options
full | iterative | interval | initial_guess | bisection

-r, --regression_models <regression_models>

Restricts the list of regression models used by the specified <method> to fit the data. If omitted, all regression
models will be used in the computation.

Options
all | constant | exponential | linear | logarithmic | power | quadratic

-s, --steps <steps>

Restricts the number of number of steps / data parts used by the iterative, interval and initial guess methods

-dp, --depending-on <depending_on>

Sets the key that will be used as a source of independent variable.

-o, --of <of_resource_key>

Sets key for which we are finding the model.

Examples

1 {
2 "resources": {
3 "SLList_insert(SLList*, int)#0": {
4 "amount": [
5 1, 0, 1, 1
6],
7 "structure-unit-size": [
8 0, 1, 2, 3
9]

(continues on next page)

5.1. Supported Postprocessors 101

Perun Documentation, Release 0.21.6

(continued from previous page)

10 },
11 "SLList_destroy(SLList*)#0": {
12 "amount": [
13 1
14],
15 "structure-unit-size": [
16 4
17]
18 },
19 "SLList_init(SLList*)#0": {
20 "amount": [
21 6
22],
23 "structure-unit-size": [
24 0
25]
26 },
27 "SLList_search(SLList*, int)#0": {
28 "amount": [
29 0
30],
31 "structure-unit-size": [
32 0
33]
34 }
35 },
36 "header": {
37 "workload": "",
38 "type": "mixed",
39 "units": {
40 "mixed(time delta)": "us"
41 },
42 "params": "",
43 "cmd": "../stap-collector/tst"
44 },
45 "models": [
46 {
47 "coeffs": [
48 {
49 "value": 0.75,
50 "name": "b0"
51 },
52 {
53 "value": 0.0,
54 "name": "b1"
55 }
56],
57 "method": "full",
58 "r_square": 0.0,
59 "model": "constant",
60 "uid": "SLList_insert(SLList*, int)",
61 "x_interval_end": 3,

(continues on next page)

102 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

(continued from previous page)

62 "x_interval_start": 0
63 },
64 {
65 "coeffs": [
66 {
67 "value": 1.0,
68 "name": "b0"
69 },
70 {
71 "value": 1.0,
72 "name": "b1"
73 }
74],
75 "method": "full",
76 "r_square": 0.0,
77 "model": "exponential",
78 "uid": "SLList_insert(SLList*, int)",
79 "x_interval_end": 3,
80 "x_interval_start": 0
81 },
82 {
83 "coeffs": [
84 {
85 "value": 0.6,
86 "name": "b0"
87 },
88 {
89 "value": 0.1,
90 "name": "b1"
91 }
92],
93 "method": "full",
94 "r_square": 0.06666666666666667,
95 "model": "linear",
96 "uid": "SLList_insert(SLList*, int)",
97 "x_interval_end": 3,
98 "x_interval_start": 0
99 },

100 {
101 "coeffs": [
102 {
103 "value": 0.08877935258260898,
104 "name": "b0"
105 },
106 {
107 "value": 0.9675751528184126,
108 "name": "b1"
109 }
110],
111 "method": "full",
112 "r_square": 0.8668309711260865,
113 "model": "logarithmic",

(continues on next page)

5.1. Supported Postprocessors 103

Perun Documentation, Release 0.21.6

(continued from previous page)

114 "uid": "SLList_insert(SLList*, int)",
115 "x_interval_end": 3,
116 "x_interval_start": 0
117 },
118 {
119 "coeffs": [
120 {
121 "value": 1.0,
122 "name": "b0"
123 },
124 {
125 "value": 0.0,
126 "name": "b1"
127 }
128],
129 "method": "full",
130 "r_square": 0.0,
131 "model": "power",
132 "uid": "SLList_insert(SLList*, int)",
133 "x_interval_end": 3,
134 "x_interval_start": 0
135 },
136 {
137 "coeffs": [
138 {
139 "value": 0.5714285714285714,
140 "name": "b0"
141 },
142 {
143 "value": 0.05102040816326531,
144 "name": "b1"
145 }
146],
147 "method": "full",
148 "r_square": 0.17006802721088435,
149 "model": "quadratic",
150 "uid": "SLList_insert(SLList*, int)",
151 "x_interval_end": 3,
152 "x_interval_start": 0
153 }
154],
155 "collector_info": {
156 "params": {
157 "global_sampling": null,
158 "sampling": [
159 {
160 "func": "SLList_insert",
161 "sample": 1
162 },
163 {
164 "func": "func1",
165 "sample": 1

(continues on next page)

104 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

(continued from previous page)

166 }
167],
168 "rules": [
169 "SLList_init",
170 "SLList_insert",
171 "SLList_search",
172 "SLList_destroy"
173],
174 "method": "custom"
175 },
176 "name": "complexity"
177 },
178 "resource_type_map": {
179 "SLList_insert(SLList*, int)#0": {
180 "subtype": "time delta",
181 "uid": "SLList_insert(SLList*, int)",
182 "time": "6.8e-05s",
183 "type": "mixed"
184 },
185 "SLList_destroy(SLList*)#0": {
186 "subtype": "time delta",
187 "uid": "SLList_destroy(SLList*)",
188 "time": "6.8e-05s",
189 "type": "mixed"
190 },
191 "SLList_init(SLList*)#0": {
192 "subtype": "time delta",
193 "uid": "SLList_init(SLList*)",
194 "time": "6.8e-05s",
195 "type": "mixed"
196 },
197 "SLList_search(SLList*, int)#0": {
198 "subtype": "time delta",
199 "uid": "SLList_search(SLList*, int)",
200 "time": "6.8e-05s",
201 "type": "mixed"
202 }
203 },
204 "postprocessors": [],
205 "origin": "f7f3dcea69b97f2b03c421a223a770917149cfae"
206 }

The profile above shows the complexity profile taken from Examples and postprocessed using the full method. The
highlighted part shows all of the fully computed models of form 𝑦 = 𝑏0 + 𝑏1 * 𝑓(𝑥), represented by their types (e.g.
linear, quadratic, etc.), concrete found coeficients 𝑏0 and 𝑏1 and e.g. coeficient of determination 𝑅2 for measuring the
fitting of the model.

5.1. Supported Postprocessors 105

Perun Documentation, Release 0.21.6

The Scatter Plot above shows the interpreted models of different complexity example, computed using the full com-
putation method. In the picture, one can see that the depedency of running time based on the structural size is best
fitted by linear models.

The next scatter plot displays the same data as previous, but regressed using the initial guess strategy. This strategy first
does a computation of all models on small sample of data points. Such computation yields initial estimate of fitness of
models (the initial sample is selected by random). The best fitted model is then chosen and fully computed on the rest
of the data points.

The picture shows only one model, namely linear which was fully computed to best fit the given data points. The rest
of the models had worse estimation and hence was not computed at all.

106 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

5.1.3 Clusterizer

A postprocessor that attempts to classify resources to clusters.

The main usage of this postprocessors is to prepare any kind of profile for further postprocessing, mainly by Regression
Analysis. The clusterization is either realized w.r.t the sorted order of the resources or sliding window, with parametric
width and height.

Command Line Interface

perun postprocessby clusterizer

Clusters each resource to an appropriate cluster in order to be postprocessable by regression analysis.

* Limitations: none
* Dependencies: none

Clusterizer tries to find a suitable cluster for each resource in the profile. The clusters are either computed w.r.t the sort
order of the resource amounts, or are computed according to the sliding window.

The sliding window can be further adjusted by setting its width (i.e. how many near values on the x axis will we fit to
a cluster) and its height (i.e. how big of an interval of resource amounts will be consider for one cluster). Both width
and height can be further augmented. Width can either be absolute, where we take in maximum the absolute number
of resources, relative, where we take in maximum the percentage of number of resources for each cluster, or weighted,
where we take the number of resource depending on the frequency of their occurrences. Similarly, the height can either
be absolute, where we set the interval of amounts to an absolute size, or relative, where we set the interval of amounts
relative to the to the first resource amount in the cluster (so e.g. if we have window of height 0.1 and the first resource
in the cluster has amount of 100, we will cluster every resources in interval 100 to 110 to this cluster).

For more details about regression analysis refer to Clusterizer.

perun postprocessby clusterizer [OPTIONS]

Options

-s, --strategy <strategy>

Specifies the clustering strategy, that will be applied for the profile

Options
sort_order | sliding_window

-wh, --window-height <window_height>

Specifies the height of the window (either fixed or proportional)

-rwh, --relative-window-height

Specifies that the height of the window is relative to the point

-fwh, --fixed-window-height

Specifies that the height of the window is absolute to the point

-ww, --window-width <window_width>

Specifies the width of the window, i.e. how many values will be taken by window.

5.1. Supported Postprocessors 107

Perun Documentation, Release 0.21.6

-rww, --relative-window-width

Specifies whether the width of the window is weighted or fixed

-fww, --fixed-window-width

Specifies whether the width of the window is weighted or fixed

-www, --weighted-window-width

Specifies whether the width of the window is weighted or fixed

Examples

1 {
2 "snapshots": [
3 {
4 "time": "5.000000",
5 "resources": [
6 {
7 "amount": 0,
8 "trace": [
9 {

10 "line": 0,
11 "function": "malloc",
12 "source": "unreachable"
13 },
14 {
15 "line": 21,
16 "function": "main",
17 "source": "../memory_collect_test.c"
18 },
19 {
20 "line": 0,
21 "function": "__libc_start_main",
22 "source": "unreachable"
23 },
24 {
25 "line": 0,
26 "function": "_start",
27 "source": "unreachable"
28 }
29],
30 "address": 31584848,
31 "uid": "../memory_collect_test.c:main#22",
32 "cluster": 1,
33 "type": "memory",
34 "subtype": "malloc"
35 },
36]
37 }
38]
39 }

The profile above shows an example of profile postprocessed by clusterizer (note that this is only an excerpt of the
whole profile). Each resource is annotated by a new field named cluster, which can be used in further interpretation
of the profiles (either by Bars Plot, Scatter Plot or Regression Analysis).

108 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

The Scatter Plot above shows the memory profile of a simple example, which randomly allocates memory with linear
dependency and was collected by Memory Collector. Since Memory Collector does not collect any other information,
but memory rallocation records. Such profile cannot be used to infer any models. However the Scatter Plot above was
postprocessed by clusterizer and hence, we can plot the dependency of amount of allocated memory per each cluster.
The Scatter Plot itself ephasize the linear dependency of allocated memory depending on some unknown parameters
(here represented by cluster).

We can use Regression Analysis to prove our assumption, and on the plot below we can see that the best model for the
amount of allocated memory depending on clusters is indeed linear.

5.1. Supported Postprocessors 109

Perun Documentation, Release 0.21.6

5.1.4 Regressogram method

Postprocessing of input profiles using the non-parametric method: regressogram. This method serves for finding fitting
models for trends in the captured profiling resources using the constant function at the individual parts of the whole
interval.

Command Line Interface

perun postprocessby regressogram

Execution of the interleaving of profiled resources by regressogram models.

* Limitations: none
* Dependencies: none

Regressogram belongs to the simplest non-parametric methods and its properties are the following:

Regressogram: can be described such as step function (i.e. constant function by parts). Regressogram
uses the same basic idea as a histogram for density estimate. This idea is in dividing the set of values of
the x-coordinates (<per_key>) into intervals and the estimate of the point in concrete interval takes the
mean/median of the y-coordinates (<of_resource_key>), respectively of its value on this sub-interval. We
currently use the coefficient of determination (𝑅2) to measure the fitness of regressogram. The fitness of
estimation of regressogram model depends primarily on the number of buckets into which the interval
will be divided. The user can choose number of buckets manually (<bucket_window>) or use one of the
following methods to estimate the optimal number of buckets (<bucket_method>):

- sqrt: square root (of data size) estimator, used for its speed and simplicity
- rice: does not take variability into account, only data size and commonly overestimates
- scott: takes into account data variability and data size, less robust estimator
- stone: based on leave-one-out cross validation estimate of the integrated squared error
- fd: robust, takes into account data variability and data size, resilient to outliers
- sturges: only accounts for data size, underestimates for large non-gaussian data
- doane: generalization of Sturges’ formula, works better with non-gaussian data
- auto: max of the Sturges’ and ‘fd’ estimators, provides good all around performance

For more details about these methods to estimate the optimal number of buckets or to view the code of
these methods, you can visit SciPy.

For more details about this approach of non-parametric analysis refer to Regressogram method.

perun postprocessby regressogram [OPTIONS]

110 Chapter 5. Postprocessors Overview

https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bucket_edges

Perun Documentation, Release 0.21.6

Options

-bn, --bucket_number <bucket_number>

Restricts the number of buckets to which will be placed the values of the selected statistics.

-bm, --bucket_method <bucket_method>

Specifies the method to estimate the optimal number of buckets.

Options
auto | doane | fd | rice | scott | sqrt | sturges

-sf, --statistic_function <statistic_function>

Will use the <statistic_function> to compute the values for points within each bucket of regressogram.

Options
mean | median

-of, --of-key <of_resource_key>

Sets key for which we are finding the model (y-coordinates).

-per, --per-key <per_resource_key>

Sets the key that will be used as a source variable (x-coordinates).

Examples

{
"bucket_stats": [

13.0,
25.5

],
"uid": "linear::test2",
"bucket_method": "doane",
"method": "regressogram",
"r_square": 0.7575757575757576,
"x_end": 9.0,
"statistic_function": "mean",
"x_start": 0.0

}

The example above shows an example of profile post-processed by regressogram method (note that this is only an excerpt
of the whole profile). Each such model of shows the computed values in the individual buckets, that are represented
by bucket_stats. The next value in this example is statistic_function, which represented the statistic to compute the
value in each bucket. Further contains the name of the method (bucket_method) by which was calculated the optimal
number of buckets, in this case specifically computed with Doanes formula, and coefficient of determination (𝑅2) for
measuring the fitting of the model. Each such model can be used in the further interpretation of the models (either by
Scatter Plot or Average Amount Threshold).

5.1. Supported Postprocessors 111

https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bucket_edges

Perun Documentation, Release 0.21.6

The Scatter Plot above shows the interpreted model, computed using the regressogram method. In the picture, one
can see that the dependency of running time based on the structural size is best fitted by exponential models.

5.1.5 Moving Average Methods

Postprocessing of input profiles using the non-parametric method: moving average. This method serves to analyze data
points in the captured profiling resources by creating a series of averages, eventually medians, of different subsets of
the full data set.

Command Line Interface

perun postprocessby moving_average

Execution of the interleaving of profiled resources by moving average models.

* Limitations: none
* Dependencies: none

Moving average methods are the natural generalizations of regressogram method. This method uses the local av-
erages/medians of y-coordinates (<of_resource_key>), but the estimate in the x-point (<per_key>) is based on the
centered surroundings of this points, more precisely:

Moving Average: is a widely used estimator in the technical analysis, that helps smooth the dataset by
filtering out the ‘noise’. Among the basic properties of this methods belongs the ability to reduce the effect
of temporary variations in data, better improvement of the fitness of data to a line, so called smoothing, to
show the data’s trend more clearly and highlight any value below or above the trend. The most important
task with this type of non-parametric approach is the choice of the <window-width>. If the user does not
choose it, we try approximate this value by using the value of coefficient of determination (𝑅2). At the

112 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

begin of the analysis is set the initial value of window width and then follows the interleaving of the current
dataset, which runs until the value of coefficient of determination will not reach the required level. By this
way is guaranteed the desired smoothness of the resulting models. The two basic and commonly used
<moving-methods> are the simple moving average (sma) and the exponential moving average (ema).

For more details about this approach of non-parametric analysis refer to Moving Average Methods.

perun postprocessby moving_average [OPTIONS] COMMAND [ARGS]...

Options

-mp, --min_periods <min_periods>

Provides the minimum number of observations in window required to have a value. If the number of possible
observations smaller then result is NaN.

-of, --of-key <of_resource_key>

Sets key for which we are finding the model (y-coordinates).

-per, --per-key <per_resource_key>

Sets the key that will be used as a source variable (x-coordinates).

Commands

ema

Exponential Moving Average

sma

Simple Moving Average

smm

Simple Moving Median

perun postprocessby moving_average sma

Simple Moving Average

In the most of cases, it is an unweighted Moving Average, this means that the each x-coordinate in the data set (profiled
resources) has equal importance and is weighted equally. Then the mean is computed from the previous n data (<no-
center>), where the n marks <window-width>. However, in science and engineering the mean is normally taken from
an equal number of data on either side of a central value (<center>). This ensures that variations in the mean are
aligned with the variations in the mean are aligned with variations in the data rather than being shifted in the x-axis
direction. Since the window at the boundaries of the interval does not contain enough count of points usually, it is
necessary to specify the value of <min-periods> to avoid the NaN result. The role of the weighted function in this
approach belongs to <window-type>, which represents the suite of the following window functions for filtering:

- boxcar: known as rectangular or Dirichlet window, is equivalent to no window at all: –
- triang: standard triangular window
- blackman: formed by using three terms of a summation of cosines, minimal leakage, close to optimal
- hamming: formed by using a raised cosine with non-zero endpoints, minimize the nearest side lobe
- bartlett: similar to triangular, endpoints are at zero, processing of tapering data sets
- parzen: can be regarded as a generalization of k-nearest neighbor techniques
- bohman: convolution of two half-duration cosine lobes

5.1. Supported Postprocessors 113

Perun Documentation, Release 0.21.6

- blackmanharris: minimum in the sense that its maximum side lobes are minimized (symmetric
4-term)
- nuttall: minimum 4-term Blackman-Harris window according to Nuttall (so called ‘Nuttall4c’)
- barthann: has a main lobe at the origin and asymptotically decaying side lobes on both sides
- kaiser: formed by using a Bessel function, needs beta value (set to 14 - good starting point)

For more details about this window functions or for their visual view you can see SciPyWindow.

perun postprocessby moving_average sma [OPTIONS]

Options

-wt, --window_type <window_type>

Provides the window type, if not set then all points are evenly weighted. For further information about window
types see the notes in the documentation.

Options
boxcar | triang | blackman | hamming | bartlett | parzen | bohman | blackmanharris | nuttall |
barthann

--center, --no-center

If set to False, the result is set to the right edge of the window, else is result set to the center of the window

-ww, --window_width <window_width>

Size of the moving window. This is a number of observations used for calculating the statistic. Each window
will be a fixed size.

perun postprocessby moving_average smm

Simple Moving Median

The second representative of Simple Moving Average methods is the Simple Moving Median. For this method are
applicable to the same rules like in the first described method, except for the option for choosing the window type,
which do not make sense in this approach. The only difference between these two methods are the way of computation
the values in the individual sub-intervals. Simple Moving Median is not based on the computation of average, but as
the name suggests, it based on the median.

perun postprocessby moving_average smm [OPTIONS]

Options

--center, --no-center

If set to False, the result is set to the right edge of the window, else is result set to the center of the window

-ww, --window_width <window_width>

Size of the moving window. This is a number of observations used for calculating the statistic. Each window
will be a fixed size.

114 Chapter 5. Postprocessors Overview

https://docs.scipy.org/doc/scipy/reference/signal.windows.html#module-scipy.signal.windows

Perun Documentation, Release 0.21.6

perun postprocessby moving_average ema

Exponential Moving Average

This method is a type of moving average methods, also know as Exponential Weighted Moving Average, that places
a greater weight and significance on the most recent data points. The weighting for each far x-coordinate decreases
exponentially and never reaching zero. This approach of moving average reacts more significantly to recent changes
than a Simple Moving Average, which applies an equal weight to all observations in the period. To calculate an EMA
must be first computing the Simple Moving Average (SMA) over a particular sub-interval. In the next step must be
calculated the multiplier for smoothing (weighting) the EMA, which depends on the selected formula, the following
options are supported (<decay>):

- com: specify decay in terms of center of mass: 𝛼 = 1 / (1 + com), for com >= 0
- span: specify decay in terms of span: 𝛼 = 2 / (span + 1), for span >= 1
- halflife: specify decay in terms of half-life, 𝛼 = 1 - exp(log(0.5) / halflife), for halflife > 0
- alpha: specify smoothing factor 𝛼 directly: 0 < 𝛼 <= 1

The computed coefficient 𝛼 represents the degree of weighting decrease, a constant smoothing factor, The higher value
of 𝛼 discounts older observations faster, the small value to the contrary. Finally, to calculate the current value of
EMA is used the relevant formula. It is important do not confuse Exponential Moving Average with Simple Moving
Average. An Exponential Moving Average behaves quite differently from the second mentioned method, because it is
the function of weighting factor or length of the average.

perun postprocessby moving_average ema [OPTIONS]

Options

-d, --decay <decay>

Exactly one of “com”, “span”, “halflife”, “alpha” can be provided. Allowed values and relationship between the
parameters are specified in the documentation (e.g. –decay=com 3).

Examples

{
"bucket_stats": [

0.0,
3.0,
24.0,
81.0,
192.0,
375.0

],
"per_key": "structure-unit-size",
"uid": "pow::test3",
"x_end": 5,
"r_square": 1.0,
"method": "moving_average",
"moving_method": "sma",
"x_start": 0,
"window_width": 1

}

5.1. Supported Postprocessors 115

Perun Documentation, Release 0.21.6

The example above shows an example of profile post-processed by moving average postprocessor (note that this in
only an excerpt of the whole profile). Each such model of moving average model shows the computed values, that
are represented by bucket_stats. The important role has value moving_method, that represents the method, which was
used to create this model. In this field may be one from the following shortcuts SMA, SMM, EMA, which represents
above described methods. The value r_square serves to assess the suitability of the model and represents the coefficient
of determination (𝑅2). Another significant value in the context of the information about the moving average models
is the window_width. This value represents the width of the window, that was used at creating this model. Since
each model can be used in the further interpretation (either by Scatter Plot or Average Amount Threshold), another
values have auxiliary character and serves for a different purposes at its interpretation. Additional values that contain
the information about postprocess parameters can be found in the whole profile, specifically in the part about used
post-processors.

The Scatter Plot above shows the interpreted model, computed using the exponential moving average method, running
with default values of parameters. In the picture, one can see that the dependency of running time based on the structural
size is best fitted by exponential models.

5.1.6 Kernel Regression Methods

A postprocessor that executing the kernel regression over the resources.

Postprocessing of inputs profiles using the kernel regression. Postprocessor, implementing kernel regression offers
several computational methods with different approaches and different strategies to find optimal parameters.

116 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

Command Line Interface

perun postprocessby kernel-regression

Execution of the interleaving of profiles resources by kernel models.

* Limitations: none
* Dependencies: none

In statistics, the kernel regression is a non-parametric approach to estimate the conditional expectation of a random
variable. Generally, the main goal of this approach is to find non-parametric relation between a pair of random variables
X <per-key> and Y <of-key>. Different from parametric techniques (e.g. linear regression), kernel regression does not
assume any underlying distribution (e.g. linear, exponential, etc.) to estimate the regression function. The main idea of
kernel regression is putting the kernel, that have the role of weighted function, to each observation point in the dataset.
Subsequently, the kernel will assign weight to each point in depends on the distance from the current data point. The
kernel basis formula depends only to the bandwidth from the current (‘local’) data point X to a set of neighboring data
points X.

Kernel Selection does not important from an asymptotic point of view. It is appropriate to choose the
optimal kernel since this group of the kernels are continuously on the whole definition field and then the
estimated regression function inherit smoothness of the kernel. For example, a suitable kernels can be the
epanechnikov or normal kernel. This postprocessor offers the kernel selection in the kernel-smoothing
mode, where are available five different types of kernels. For more information about these kernels or this
kernel regression mode you can see perun postprocessby kernel-regression kernel-smoothing.

Bandwidth Selection is the most important factor at each approach of kernel regression, since this value
significantly affects the smoothness of the resulting estimate. In case, when is choose the inappropriate
value, in the most cases can be expected the following two situations. The small bandwidth value reproduce
estimated data and vice versa, the large value leads to over-leaving, so to average of the estimated data.
Therefore are used the methods to determine the bandwidth value. One of the most widespread and most
commonly used methods is the cross-validation method. This method is based on the estimate of the
regression function in which will be omitted i-th observation. In this postprocessor is this method available
in the estimator-setting mode. Another methods to determine the bandwidth, which are available in the
remaining modes of this postprocessor are scott and silverman method. More information about these
methods and its definition you cas see in the part perun postprocessby kernel-regression method-selection.

This postprocessor in summary offers five different modes, which does not differ in the resulting estimate, but in the
way of computation the resulting estimate. Better said, it means, that the result of each mode is the kernel estimate
with relevant parameters, selected according to the concrete mode. In short we will describe the individual methods,
for more information about it, you can visit the relevant parts of documentation:

* Estimator-Settings: Nadaraya-Watson kernel regression with specific settings for estimate
* User-Selection: Nadaraya-Watson kernel regression with user bandwidth
* Method-Selection: Nadaraya-Watson kernel regression with supporting bandwidth selection method
* Kernel-Smoothing: Kernel regression with different types of kernel and regression methods
* Kernel-Ridge: Nadaraya-Watson kernel regression with automatic bandwidth selection

For more details about this approach of non-parametric analysis refer to Kernel Regression Methods.

perun postprocessby kernel-regression [OPTIONS] COMMAND [ARGS]...

5.1. Supported Postprocessors 117

Perun Documentation, Release 0.21.6

Options

-of, --of-key <of_resource_key>

Sets key for which we are finding the model (y-coordinates).

-per, --per-key <per_resource_key>

Sets the key that will be used as a source variable (x-coordinates).

Commands

estimator-settings

Nadaraya-Watson kernel regression with. . .

kernel-ridge

Nadaraya-Watson kernel regression with. . .

kernel-smoothing

Kernel regression with different types of. . .

method-selection

Nadaraya-Watson kernel regression with. . .

user-selection

Nadaraya-Watson kernel regression with. . .

perun postprocessby kernel-regression estimator-settings

Nadaraya-Watson kernel regression with specific settings for estimate.

As has been mentioned above, the kernel regression aims to estimate the functional relation between explanatory vari-
able y and the response variable X. This mode of kernel regression postprocessor calculates the conditional mean
E[y|X] = m(X), where y = m(X) + 𝜖. Variable X is represented in the postprocessor by <per-key> option and the
variable y is represented by <of-key> option.

Regression Estimator <reg-type>:

This mode offer two types of regression estimator <reg-type>. Local Constant (`ll`) type of
regression provided by this mode is also known as Nadaraya-Watson kernel regression:

Nadaraya-Watson: expects the following conditional expectation: E[y|X] = m(X),
where function m(*) represents the regression function to estimate. Then we can
alternatively write the following formula: y = m(X) + 𝜖, E (𝜖) = 0. Then we can
suppose, that we have the set of independent observations {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}
and the Nadaraya-Watson estimator is defined as:

𝑚ℎ(𝑥) =

𝑛∑︁
𝑖=1

𝐾ℎ(𝑥− 𝑥𝑖)𝑦𝑖/

𝑛∑︁
𝑗=1

𝐾ℎ(𝑥− 𝑥𝑗)

where 𝐾ℎ is a kernel with bandwidth h. The denominator is a weighting term with
sum 1. It easy to see that this kernel regression estimator is just a weighted sum of
the observed responses 𝑦𝑖. There are many other kernel estimators that are various in
compare to this presented estimator. However, since all are asymptotic equivalently,
we will not deal with them closer. Kernel Regression postprocessor works in all
modes only with Nadaraya-Watson estimator.

118 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

The second supported regression estimator in this mode of postprocessor is Local Linear (`lc`). This type
is an extension of that which suffers less from bias issues at the edge of the support.

Local Linear: estimator, that offers various advantages compared with other kernel-type esti-
mators, such as the Nadaraya-Watson estimator. More precisely, it adapts to both random and
fixed designs, and to various design densities such as highly clustered designs and nearly uni-
form designs. It turns out that the local linear smoother repairs the drawbacks of other kernel
regression estimators. An regression estimator m of m is a linear smoother if, for each x, there
is a vector 𝑙(𝑥) = (𝑙1(𝑥), ..., 𝑙𝑛(𝑥))

𝑇 such that:

𝑚(𝑥) =

𝑛∑︁
𝑖=1

𝑙𝑖(𝑥)𝑌𝑖 = 𝑙(𝑥)𝑇𝑌

where 𝑌 = (𝑌1, ..., 𝑌𝑛)
𝑇 . For kernel estimators:

𝑙𝑖(𝑥) = 𝐾(||𝑥−𝑋𝑖||/ℎ)/
𝑛∑︁

𝑗=1

𝐾(||𝑥−𝑋𝑗 ||/ℎ)

where K represents kernel and h its bandwidth.

For a better imagination, there is an interesting fact, that the following estimators are linear
smoothers too: Gaussian process regression, splines.

Bandwidth Method <bandwidth-method>:

As has been said in the general description of the kernel regression, once of the most important factors
of the resulting estimate is the kernel bandwidth. When the inappropriate value is selected may occur to
under-laying or over-laying fo the resulting kernel estimate. Since the bandwidth of the kernel is a free
parameter which exhibits a strong influence on the resulting estimate postprocessor offers the method for
its selection. Two most popular data-driven methods of bandwidth selection that have desirable properties
are least-squares cross-validation (cv_ls) and the AIC-based method of Hurvich et al. (1998), which is
based on minimizing a modified Akaike Information Criterion (aic):

Cross-Validation Least-Squares: determination of the optimal kernel bandwidth for kernel
regression is based on minimizing

𝐶𝑉 (ℎ) = 𝑛−1
𝑛∑︁

𝑖=1

(𝑌𝑖 − 𝑔−𝑖(𝑋𝑖))
2,

where 𝑔−𝑖(𝑋𝑖) is the estimator of 𝑔(𝑋𝑖) formed by leaving out the i-th observation when gen-
erating the prediction for observation i.

Hurvich et al.’s (1998) approach is based on the minimization of

𝐴𝐼𝐶𝑐 = 𝑙𝑛(𝜎2) + ((1 + 𝑡𝑟(𝐻)/𝑛)/(1− (𝑡𝑟(𝐻) + 2)/𝑛),

where

𝜎2 = 1/𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑔(𝑋𝑖))
2 = 𝑌 ′(𝐼 −𝐻)′(𝐼 −𝐻)𝑌/𝑛

with 𝑔(𝑋𝑖) being a non-parametric regression estimator and H being an n x n matrix of ker-
nel weights with its (i, j)-th element given by 𝐻𝑖𝑗 = 𝐾ℎ(𝑋𝑖, 𝑋𝑗)/

∑︀𝑛
𝑙=1 𝐾ℎ(𝑋𝑖, 𝑋𝑙), where

𝐾ℎ(*) is a generalized product kernel.

Both methods for kernel bandwidth selection the least-squared cross-validation and the AIC have been
shown to be asymptotically equivalent.

5.1. Supported Postprocessors 119

Perun Documentation, Release 0.21.6

The remaining options at this mode of kernel regression postprocessor are described within usage to it and you can see
this in the list below. All these options are parameters to EstimatorSettings (see EstimatorSettings), that optimizing the
kernel bandwidth based on the these specified settings.

In the case of confusion about this approach of kernel regression, you can visit StatsModels.

perun postprocessby kernel-regression estimator-settings [OPTIONS]

Options

-rt, --reg-type <reg_type>

Provides the type for regression estimator. Supported types are: “lc”: local-constant (Nadaraya-Watson) and “ll”:
local-linear estimator. Default is “ll”. For more information about these types you can visit Perun Documentation.

Options
ll | lc

-bw, --bandwidth-method <bandwidth_method>

Provides the method for bandwidth selection. Supported values are: “cv-ls”: least-squares cross validation and
“aic”: AIC Hurvich bandwidth estimation. Default is “cv-ls”. For more information about these methods you
can visit Perun Documentation.

Options
cv_ls | aic

--efficient, --uniformly

If True, is executing the efficient bandwidth estimation - by taking smaller sub-samples and estimating the scaling
factor of each sub-sample. It is useful for large samples and/or multiple variables. If False (default), all data is
used at the same time.

--randomize, --no-randomize

If True, the bandwidth estimation is performed by taking <n_res> random re-samples of size <n-sub-samples>
from the full sample. If set to False (default), is performed by slicing the full sample in sub-samples of <n-sub-
samples> size, so that all samples are used once.

-nsub, --n-sub-samples <n_sub_samples>

Size of the sub-samples (default is 50).

-nres, --n-re-samples <n_re_samples>

The number of random re-samples used to bandwidth estimation. It has effect only if <randomize> is set to True.
Default values is 25.

--return-median, --return-mean

If True, the estimator uses the median of all scaling factors for each sub-sample to estimate bandwidth of the full
sample. If False (default), the estimator used the mean.

120 Chapter 5. Postprocessors Overview

https://www.statsmodels.org/dev/generated/statsmodels.nonparametric.kernel_density.EstimatorSettings.html
https://www.statsmodels.org/dev/generated/statsmodels.nonparametric.kernel_regression.KernelReg.html#statsmodels.nonparametric.kernel_regression.KernelReg

Perun Documentation, Release 0.21.6

perun postprocessby kernel-regression user-selection

Nadaraya-Watson kernel regression with user bandwidth.

This mode of kernel regression postprocessor is very similar to estimator-settings mode. Also offers two types of regres-
sion estimator <reg-type> and that the Nadaraya-Watson estimator, so known as local-constant (lc) and the local-linear
estimator (ll). Details about these estimators are available in perun postprocessby kernel-regression estimator-settings.
In contrary to this mode, which selected a kernel bandwidth using the EstimatorSettings and chosen parameters, in
this mode the user itself selects a kernel bandwidth <bandwidth-value>. This value will be used to execute the kernel
regression. The value of kernel bandwidth in the resulting estimate may change occasionally, specifically in the case,
when the bandwidth value is too low to execute the kernel regression. Then will be a bandwidth value approximated
to the closest appropriate value, so that is not decreased the accuracy of the resulting estimate.

perun postprocessby kernel-regression user-selection [OPTIONS]

Options

-rt, --reg-type <reg_type>

Provides the type for regression estimator. Supported types are: “lc”: local-constant (Nadaraya-Watson) and “ll”:
local-linear estimator. Default is “ll”. For more information about these types you can visit Perun Documentation.

Options
ll | lc

-bv, --bandwidth-value <bandwidth_value>

Required The float value of <bandwidth> defined by user, which will be used at kernel regression.

perun postprocessby kernel-regression method-selection

Nadaraya-Watson kernel regression with supporting bandwidth selection method.

The last method from a group of three methods based on a similar principle. Method-selection mode offers the same
type of regression estimators <reg-type> as the first two described methods. The first supported option is ll, which
represents the local-linear estimator. Nadaraya-Watson or local constant estimator represents the second option for
<reg-type> parameter. The more detailed description of these estimators is located in perun postprocessby kernel-
regression estimator-settings. The difference between this mode and the two first modes is in the way of determination
of a kernel bandwidth. In this mode are offered two methods to determine bandwidth. These methods try calculated
an optimal bandwidth from predefined formulas:

Scotts’s Rule of thumb to determine the smoothing bandwidth for a kernel estimation. It is very fast
compute. This rule was designed for density estimation but is usable for kernel regression too. Typically
produces a larger bandwidth and therefore it is useful for estimating a gradual trend:

𝑏𝑤 = 1.059 *𝐴 * 𝑛−1/5,

where n marks the length of X variable <per-key> and

𝐴 = 𝑚𝑖𝑛(𝜎(𝑥), 𝐼𝑄𝑅(𝑥)/1.349),

where 𝜎 marks the StandardDeviation and IQR marks the InterquartileRange.

5.1. Supported Postprocessors 121

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Interquartile_range

Perun Documentation, Release 0.21.6

Silverman’s Rule of thumb to determine the smoothing bandwidth for a kernel estimation. Belongs to
most popular method which uses the rule-of-thumb. Rule is originally designs for density estimation and
therefore uses the normal density as a prior for approximating. For the necessary estimation of the 𝜎 of
X <per-key> he proposes a robust version making use of the InterquartileRange. If the true density is
uni-modal, fairly symmetric and does not have fat tails, it works fine:

𝑏𝑤 = 0.9 *𝐴 * 𝑛−1/5,

where n marks the length of X variable <per-key> and

𝐴 = 𝑚𝑖𝑛(𝜎(𝑥), 𝐼𝑄𝑅(𝑥)/1.349),

where 𝜎 marks the StandardDeviation and IQR marks the InterquartileRange.

perun postprocessby kernel-regression method-selection [OPTIONS]

Options

-rt, --reg-type <reg_type>

Provides the type for regression estimator. Supported types are: “lc”: local-constant (Nadaraya-Watson) and “ll”:
local-linear estimator. Default is “ll”. For more information about these types you can visit Perun Documentation.

Options
ll | lc

-bm, --bandwidth-method <bandwidth_method>

Provides the helper method to determine the kernel bandwidth. The <method_name> will be used to compute
the bandwidth, which will be used at kernel regression.

Options
scott | silverman

perun postprocessby kernel-regression kernel-smoothing

Kernel regression with different types of kernel and regression methods.

This mode of kernel regression postprocessor implements non-parametric regression using different kernel methods
and different kernel types. The calculation in this mode can be split into three parts. The first part is represented by
the kernel type, the second part by bandwidth computation and the last part is represented by regression method, which
will be used to interleave the given resources. We will look gradually at individual supported options in the each part
of computation.

Kernel Type <kernel-type>:

In non-parametric statistics a kernel is a weighting function used in estimation techniques. In kernel
regression is used to estimate the conditional expectation of a random variable. As has been said, kernel
width must be specified when running a non-parametric estimation. The kernel in view of mathematical
definition is a non-negative real-valued integrable function K. For most applications, it is desirable to define
the function to satisfy two additional requirements:

Normalization:

∫︁ +∞

−∞
𝐾(𝑢)𝑑𝑢 = 1,

122 Chapter 5. Postprocessors Overview

https://en.wikipedia.org/wiki/Interquartile_range
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Interquartile_range

Perun Documentation, Release 0.21.6

Symmetry

𝐾(−𝑢) = 𝐾(𝑢),

for all values of u. The second requirement ensures that the average of the corresponding dis-
tribution is equal to that of the sample used. If K is a kernel, then so is the function 𝐾* defined
by 𝐾*(𝑢) = 𝜆𝐾(𝜆𝑢), where 𝜆 > 0. This can be used to select a scale that is appropriate for
the data. This mode offers several types of kernel functions:

Kernel Name Kernel Function, K(u) Efficiency
Gaussian (nor-
mal)

𝐾(𝑢) = (1/
√
2𝜋)𝑒−(1/2)𝑢2 95.1%

Epanechnikov 𝐾(𝑢) = 3/4(1− 𝑢2) 100%
Tricube 𝐾(𝑢) = 70/81(1− |𝑢3|)3 99.8%
Gaussian order4 𝜑4(𝑢) = 1/2(3− 𝑢2)𝜑(𝑢), where 𝜑 is the normal kernel not appli-

cable
Epanechnikov
order4

𝐾4(𝑢) = −(15/8)𝑢2 + (9/8), where K is the non-normalized
Epanechnikov kernel

not appli-
cable

Efficiency is defined as
√︁∫︀

𝑢2𝐾(𝑢)𝑑𝑢
∫︀
𝐾(𝑢)2𝑑𝑢, and its measured to the Epanechnikov kernel.

Smoothing Method <smoothing-method>:

Kernel-Smoothing mode of this postprocessor offers three different non-parametric regression methods to
execute kernel regression. The first of them is called spatial-average and perform a Nadaraya-Watson
regression (i.e. also called local-constant regression) on the data using a given kernel:

𝑚ℎ(𝑥) =

𝑛∑︁
𝑖=1

𝐾ℎ((𝑥− 𝑥𝑖)/ℎ)𝑦𝑖/

𝑛∑︁
𝑗=1

𝐾ℎ((𝑥− 𝑥𝑗)/ℎ),

where K(x) is the kernel and must be such that E(K(x)) = 0 and h is the bandwidth of the method. Local-
Constant regression was also described in perun postprocessby kernel-regression estimator-settings. The
second supported regression method by this mode is called local-linear. Compared with previous method,
which offers computational with different types of kernel, this method has restrictions and perform local-
linear regression using only Gaussian (Normal) kernel. The local-constant regression was described
in perun postprocessby kernel-regression estimator-settings and therefore will not be given no further
attention to it. Local Polynomial regression is the last method in this mode and perform regression in N-D
using a user-provided kernel. The local-polynomial regression is the function that minimizes, for each
position:

𝑚ℎ(𝑥) =

𝑛∑︁
𝑖=0

𝐾((𝑥− 𝑥𝑖)/ℎ)(𝑦𝑖 − 𝑎0 − 𝑃𝑞(𝑥𝑖 − 𝑥))2,

where K(x) is the kernel such that E(K(x)) = 0, q is the order of the fitted polynomial <polynomial-order>,
𝑃𝑞(𝑥) is a polynomial or order q in x, and h is the bandwidth of the method. The polynomial 𝑃𝑞(𝑥) is of
the form:

5.1. Supported Postprocessors 123

Perun Documentation, Release 0.21.6

𝐹𝑑(𝑘) = 𝑛 ∈ 𝑁𝑑|
𝑑∑︁

𝑖=1

𝑛𝑖 = 𝑘

𝑃𝑞(𝑥1, ..., 𝑥𝑑) =

𝑞∑︁
𝑘=1

∑︁
𝑛∈𝐹𝑑(𝑘)

𝑎𝑘,𝑛

𝑑∏︁
𝑖=1

𝑥𝑛𝑖
𝑖

For example we can have:

𝑃2(𝑥, 𝑦) = 𝑎110𝑥+ 𝑎101𝑦 + 𝑎220𝑥
2 + 𝑎221𝑥𝑦 + 𝑎202𝑦

2

The last part of the calculation is the bandwidth computation. This mode offers to user enter the value directly with
use of parameter <bandwidth-value>. The parameter <bandwidth-method> offers to user the selection from the two
methods to determine the optimal bandwidth value. The supported methods are Scotts’s Rule and Silverman’s Rule,
which are described in perun postprocessby kernel-regression method-selection. This parameter cannot be entered in
combination with <bandwidth-value>, then will be ignored and will be accepted value from <bandwidth-value>.

perun postprocessby kernel-regression kernel-smoothing [OPTIONS]

Options

-kt, --kernel-type <kernel_type>

Provides the set of kernels to execute the kernel-smoothing with kernel selected by the user. For exact definitions
of these kernels and more information about it, you can visit the Perun Documentation.

Options
epanechnikov | tricube | normal | epanechnikov4 | normal4

-sm, --smoothing-method <smoothing_method>

Provides kernel smoothing methods to executing non-parametric regressions: local-polynomial perform a local-
polynomial regression in N-D using a user-provided kernel; local-linear perform a local-linear regression using
a gaussian (normal) kernel; and spatial-average perform a Nadaraya-Watson regression on the data (so called
local-constant regression) using a user-provided kernel.

Options
spatial-average | local-linear | local-polynomial

-bm, --bandwidth-method <bandwidth_method>

Provides the helper method to determine the kernel bandwidth. The <bandwidth_method> will be used to com-
pute the bandwidth, which will be used at kernel-smoothing regression. Cannot be entered in combination with
<bandwidth-value>, then will be ignored and will be accepted value from <bandwidth-value>.

Options
scott | silverman

-bv, --bandwidth-value <bandwidth_value>

The float value of <bandwidth> defined by user, which will be used at kernel regression. If is entered in the
combination with <bandwidth-method>, then method will be ignored.

-q, --polynomial-order <polynomial_order>

Provides order of the polynomial to fit. Default value of the order is equal to 3. Is accepted only by local-
polynomial <smoothing-method>, another methods ignoring it.

124 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

perun postprocessby kernel-regression kernel-ridge

Nadaraya-Watson kernel regression with automatic bandwidth selection.

This mode implements Nadaraya-Watson kernel regression, which was described above in perun postprocessby kernel-
regression estimator-settings. While the previous modes provided the methods to determine the optimal bandwidth with
different ways, this method provides a little bit different way. From a given range of potential bandwidths <gamma-
range> try to select the optimal kernel bandwidth with use of leave-one-out cross-validation. This approach was
described in perun postprocessby kernel-regression estimator-settings, where was introduced the least-squares cross-
validation and it is a modification of this approach. Leave-one-out cross validation is K-fold cross validation taken to
its logical extreme, with K equal to N, the number of data points in the set. The original gamma-range will be divided
on the base of size the given step <gamma-step>. The selection of specific value from this range will be executing
by minimizing mean-squared-error in leave-one-out cross-validation. The selected bandwidth-value will serves for
gaussian kernel in resulting estimate: 𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝑔𝑎𝑚𝑚𝑎 * ||𝑥− 𝑦||2).

perun postprocessby kernel-regression kernel-ridge [OPTIONS]

Options

-gr, --gamma-range <gamma_range>

Provides the range for automatic bandwidth selection of the kernel via leave-one-out cross-validation. One value
from these range will be selected with minimizing the mean-squared error of leave-one-out cross-validation. The
first value will be taken as the lower bound of the range and cannot be greater than the second value.

-gs, --gamma-step <gamma_step>

Provides the size of the step, with which will be executed the iteration over the given <gamma-range>. Cannot
be greater than length of <gamma-range>, else will be set to value of the lower bound of the <gamma_range>.

Examples

{
"per_key": "structure-unit-size",
"uid": "quad::test1",
"kernel_mode": "estimator",
"r_square": 0.9990518378010778,
"method": "kernel_regression",
"x_start": 10,
"bandwidth": 2.672754640321602,
"x_end": 64,
"kernel_stats": [

115.6085941489687,
155.95838478107163,
190.27598428091824,
219.36576520977312,
252.80699243117965,
268.4600214673941,
283.3744716372719,
282.7535719770607,
276.27153279181573,
269.69580474542016,
244.451017529157,

(continues on next page)

5.1. Supported Postprocessors 125

https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833
https://en.wikipedia.org/wiki/Mean_squared_error

Perun Documentation, Release 0.21.6

(continued from previous page)

226.98819185034756,
180.72465187812492

]
}

The example above shows an example of profile post-processed by kernel regression (note that this is only an excerpt of
the whole profile). Each such kernel model shows the values of resulting kernel estimate, that are part of kernel_stats
list. Another fascinating value is stored in kernel_mode field and means the relevant mode, which executing the kernel
regression over this model. In this field may be one from the following words, which represents the individual modes of
kernel regression postprocessor. The value r_square serves to assess the suitability of the kernel model and represents
the coefficient of determination (𝑅2). In the context of another kernel estimates for decreasing or increasing the resulting
accuracy is important the field bandwidth, which represents the kernel bandwidth in the current kernel model. Since
each model can be used in the further interpretation (either by Scatter Plot or Average Amount Threshold), another
values have auxiliary character and serves for a different purposes at its interpretation. Additional values that contain
the information about selected parameters at kernel regression postprocessor and its modes, can be found in the whole
profile, specifically in the part about used post-processors.

The Scatter Plot above shows the interpreted model, computed using the kernel regression postprocessor, concretely
with default value of parameters in estimator-settings mode of this postprocessor. In the picture, can be see that the
dependency of running time based on the structural size.

126 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

5.2 Creating your own Postprocessor

New postprocessors can be registered within Perun in several steps. Internally they can be implemented in any program-
ming language and in order to work with perun requires one to three phases to be specified as given in Postprocessors
Overview—before(), postprocess() and after(). Each new postprocessor requires a interface module run.py,
which contains the three function and, moreover, a CLI function for Click framework.

You can register your new postprocessor as follows:

1. Run perun utils create postprocess mypostprocessor to generate a new modules in
perun/postprocess directory with the following structure. The command takes a predefined tem-
plates for new postprocessors and creates __init__.py and run.py according to the supplied com-
mand line arguments (see Utility Commands for more information about interface of perun utils
create command):

/perun
|-- /postprocess

|-- /mypostprocessor
|-- __init__.py
|-- run.py

|-- /normalizer
|-- /regression_analysis
|-- __init__.py

2. First, implement the __init__py file, including the module docstring with brief postprocessor de-
scription and definitions of constants that are used for internal checks which has the following struc-
ture:

1 """..."""
2

3 SUPPORTED_PROFILES = ["mixed|memory|time"]

3. Next, implement the run.pymodule with postprocess() fucntion, (and optionally with before()
and after() functions). The postprocess() function should do the actual postprocessing of the
profile. Each function should return the integer status of the phase, the status message (used in case
of error) and dictionary including params passed to additional phases and ‘profile’ with dictionary
w.r.t. Specification of Profile Format.

1 def before(**kwargs):
2 """(optional)"""
3 return STATUS, STATUS_MSG, dict(kwargs)
4

5

6 def postprocess(profile, **configuration):
7 """..."""
8 return STATUS, STATUS_MSG, dict(kwargs)
9

10

11 def after(**kwargs):
12 """(optional)"""
13 return STATUS, STATUS_MSG, dict(kwargs)

4. Additionally, implement the command line interface function in run.py, named the same as
your collector. This function will be called from the command line as perun postprocessby
mypostprocessor and is based on Click_libary.

5.2. Creating your own Postprocessor 127

http://click.pocoo.org/5/

Perun Documentation, Release 0.21.6

1 --- /mnt/e/phdwork/perun/perun/docs/_static/templates/postprocess_run.py
2 +++ /mnt/e/phdwork/perun/perun/docs/_static/templates/postprocess_run_api.py
3 @@ -1,3 +1,8 @@
4 +import click
5 +
6 +import perun.logic.runner as runner
7 +
8 +
9 def before(**kwargs):

10 """(optional)"""
11 return STATUS, STATUS_MSG, dict(kwargs)
12 @@ -11,3 +16,10 @@
13 def after(**kwargs):
14 """(optional)"""
15 return STATUS, STATUS_MSG, dict(kwargs)
16 +
17 +
18 +@click.command()
19 +@pass_profile
20 +def regression_analysis(profile, **kwargs):
21 + """..."""
22 + runner.run_postprocessor_on_profile(profile, "mypostprocessor", kwargs)

5. Finally register your newly created module in get_supported_module_names() located in
perun.utils.__init__.py:

1 --- /mnt/e/phdwork/perun/perun/docs/_static/templates/supported_module_names.py
2 +++ /mnt/e/phdwork/perun/perun/docs/_static/templates/supported_module_names_

→˓postprocess.py
3 @@ -7,7 +7,12 @@
4 return {
5 "vcs": ["git"],
6 "collect": ["trace", "memory", "time"],
7 - "postprocess": ["filter", "normalizer", "regression-analysis"],
8 + "postprocess": [
9 + "filter",

10 + "normalizer",
11 + "regression-analysis",
12 + "mypostprocessor",
13 +],
14 "view": [
15 "alloclist",
16 "bars",

6. Preferably, verify that registering did not break anything in the Perun and if you are not using the
developer installation, then reinstall Perun:

make test
make install

7. At this point you can start using your postprocessor either using perun postprocessby or using
the following to set the job matrix and run the batch collection of profiles:

128 Chapter 5. Postprocessors Overview

Perun Documentation, Release 0.21.6

perun config --edit
perun run matrix

8. If you think your postprocessor could help others, please, consider making Pull Request.

5.2. Creating your own Postprocessor 129

https://github.com/tfiedor/perun/pull/new/develop

Perun Documentation, Release 0.21.6

130 Chapter 5. Postprocessors Overview

CHAPTER

SIX

VISUALIZATIONS OVERVIEW

Performance profiles originate either from the user’s own means (i.e. by building their own collectors and generating
the profiles w.r.t Specification of Profile Format) or using one of the collectors from Perun’s tool suite.

Perun can can interpret the profiling data in several ways:

1. By directly running interpretation modules through perun show command, that takes the profile w.r.t. Spec-
ification of Profile Format and uses various output backends (e.g. Bokeh, ncurses or plain terminal). The output
method and format is up to the authors.

2. By using python interpreter together with internal modules for manipulation, conversion and querying the
profiles (refer to Profile API , Profile Query API , and Profile Conversions API) and external statistical libraries,
like e.g. using pandas.

The format of input profiles has to be w.r.t. Specification of Profile Format, in particular the intepreted profiles should
contain the resources region with data.

Automatically generated profiles are stored in the .perun/jobs/ directory as a file with the .perf extension. The
filename is by default automatically generated according to the following template:

bin-collector-workload-timestamp.perf

Refer to Command Line Interface, Automating Runs, Collectors Overview and Postprocessors Overview for more de-
tails about running command line commands, generating batch of jobs, capabilities of collectors and postprocessors
techniques respectively. Internals of perun storage is described in Perun Internals.

Note that interface of show allows one to use index and pending tags of form i@i and i@p respectively, which serve as
a quality-of-life feature for easy specification of visualized profiles.

131

https://bokeh.pydata.org/en/latest/
https://www.gnu.org/software/ncurses/ncurses.html
https://pandas.pydata.org/

Perun Documentation, Release 0.21.6

VIEW

DATALOGIC

PERUN

HEAP
MAP

GUI CLI
FLAME
GRAPH

...

VCS

GIT

SVN

...

PVCS

PROFILE
Regex

...

Memory

Time

...

Filter

Normalizer

HOOKS

GIT ...

GENERATES
IN

IS
 V

IS
U

A
LI

ZE
D

SVN

COLLECTORS

POSTPROCESS

6.1 Supported Visualizations

Perun’s tool suite currently contains the following visualizations:

1. Bars Plot visualizes the data as bars, with moderate customization possibilities. The output is generated as an
interactive HTML file using the Bokeh library, where one can e.g. move or resize the graph. Bars supports high
number of profile types.

2. Flow Plot visualizes the data as flow (i.e. classical continuous graph), with moderate customization possiblities.
The output is generated as an interactive HTML file using the Bokeh library, where one can move and resize the
graph. Flow supports high number of profile types.

3. Flame Graph is an interface for Perl script of Brendan Gregg, that converts the (currently limited to memory
profiles) profile to an internal format and visualize the resources as stacks of portional resource consumption
depending on the trace of the resources.

4. Scatter Plot visualizes the data as points on two dimensional grid, with moderate customization possibilities.
This visualization also display regression models, if the input profile was postprocessed by Regression Analysis.

5. Table Of transforms either the resources or models of the profile into a tabular representation. The table can
be further modified by (1) changing the format (see tabulate for table formats), (2) limiting rows or columns
displayed, or (3) sorting w.r.t specified keys.

132 Chapter 6. Visualizations Overview

https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/
https://pypi.org/project/tabulate/

Perun Documentation, Release 0.21.6

All of the listed visualizations can be run from command line. For more information about command line interface for
individual visualization either refer to Collect units or to corresponding subsection of this chapter.

For a brief tutorial how to create your own visualization module and register it in Perun for further usage refer to
Creating your own Visualization. The format and the output is of your choice, it only has to be built over the format
as described in Specification of Profile Format (or can be based over one of the conversions, see Profile Conversions
API).

6.1.1 Bars Plot

Bar graphs displays resources as bars, with moderate customization possibilities (regarding the sources for axes, or
grouping keys). The output backend of Bars is both Bokeh and ncurses (with limited possibilities though). Bokeh
graphs support either the stacked format (bars of different groups will be stacked on top of each other) or grouped
format (bars of different groups will be displayed next to each other).

Overview and Command Line Interface

perun show bars

Customizable interpretation of resources using the bar format.

* Limitations: none.
* Interpretation style: graphical
* Visualization backend: Bokeh

Bars graph shows the aggregation (e.g. sum, count, etc.) of resources of given types (or keys). Each bar shows <func>
of resources from <of> key (e.g. sum of amounts, average of amounts, count of types, etc.) per each <per> key (e.g.
per each snapshot, or per each type). Moreover, the graphs can either be (i) stacked, where the different values of <by>
key are shown above each other, or (ii) grouped, where the different values of <by> key are shown next to each other.
Refer to resources for examples of keys that can be used as <of>, <key>, <per> or <by>.

Bokeh library is the current interpretation backend, which generates HTML files, that can be opened directly in the
browser. Resulting graphs can be further customized by adding custom labels for axes, custom graph title or different
graph width.

Example 1. The following will display the sum of sum of amounts of all resources of given for each subtype, stacked
by uid (e.g. the locations in the program):

perun show 0@i bars sum --of 'amount' --per 'subtype' --stacked --by 'uid'

The example output of the bars is as follows:

<graph_title>
`
- .::. ````````
` :&&: ` # \ `
- .::. :::: .::. ` @ }-> <by>
` :##: :##: :&&: ` & / `

<func>(<of>) - :##: :##: .::. :&&: ````````
` :::: :##: :&&: ::::
- :@@: :::: :::: :##:
` :@@: :@@: :##: :##:

6.1. Supported Visualizations 133

https://bokeh.pydata.org/en/latest/
https://www.gnu.org/software/ncurses/ncurses.html
https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/

Perun Documentation, Release 0.21.6

+````||````||````||````||````

<per>

Refer to Bars Plot for more thorough description and example of bars interpretation possibilities.

perun show bars [OPTIONS] <aggregation_function>

Options

-o, --of <of_resource_key>

Required Sets key that is source of the data for the bars, i.e. what will be displayed on Y axis.

-p, --per <per_resource_key>

Sets key that is source of values displayed on X axis of the bar graph.

-b, --by <by_resource_key>

Sets the key that will be used either for stacking or grouping of values

-s, --stacked

Will stack the values by <resource_key> specified by option –by.

-g, --grouped

Will stack the values by <resource_key> specified by option –by.

-f, --filename <html>

Sets the outputs for the graph to the file.

-xl, --x-axis-label <text>

Sets the custom label on the X axis of the bar graph.

-yl, --y-axis-label <text>

Sets the custom label on the Y axis of the bar graph.

-gt, --graph-title <text>

Sets the custom title of the bars graph.

-v, --view-in-browser

The generated graph will be immediately opened in the browser (firefox will be used).

Arguments

<aggregation_function>

Optional argument

134 Chapter 6. Visualizations Overview

Perun Documentation, Release 0.21.6

Examples of Output

The Bars Plot above shows the overall sum of the running times for each structure-unit-size for the
SLList_search function collected by Trace Collector. The interpretation highlights that the most of the consumed
running time were over the single linked lists with 41 elements.

6.1. Supported Visualizations 135

Perun Documentation, Release 0.21.6

The bars above shows the stacked view of number of memory allocations made per each snapshot (with sampling of
1 second). Each bar shows overall number of memory operations, as well as proportional representation of different
types of memory (de)allocation. It can also be seen that free is called approximately the same time as allocations,
which signifies that everything was probably freed.

136 Chapter 6. Visualizations Overview

Perun Documentation, Release 0.21.6

The bars above shows the grouped view of sum of memory allocation of the same type per each snapshot (with sampling
of 0.5 seconds). Grouped pars allows fast comparison of total amounts between different types. E.g. malloc seems
to allocated the most memory per each snapshot.

6.1.2 Flame Graph

Flame graph shows the relative consumption of resources w.r.t. to the trace of the resource origin. Currently it is
limited to memory profiles (however, the generalization of the module is in plan). The usage of flame graphs is for
faster localization of resource consumption hot spots and bottlenecks.

Overview and Command Line Interface

perun show flamegraph

Flame graph interprets the relative and inclusive presence of the resources according to the stack depth of the origin of
resources.

* Limitations: memory profiles generated by
Memory Collector.

* Interpretation style: graphical
* Visualization backend: HTML

Flame graph intends to quickly identify hotspots, that are the source of the resource consumption complexity. On X
axis, a relative consumption of the data is depicted, while on Y axis a stack depth is displayed. The wider the bars are
on the X axis are, the more the function consumed resources relative to others.

6.1. Supported Visualizations 137

Perun Documentation, Release 0.21.6

Acknowledgements: Big thanks to Brendan Gregg for creating the original perl script for creating flame graphs w.r.t
simple format. If you like this visualization technique, please check out this guy’s site (http://brendangregg.com) for
more information about performance, profiling and useful talks and visualization techniques!

The example output of the flamegraph is more or less as follows:

`
- .
` |
- .. | .
` || | |
- || || ||
` |%%| |--| |!|
- |## g() ##| |#g()#|***|
` |&&&& f() &&&&|===== h() =====|
+````||````||````||````||````||````

Refer to Flame Graph for more thorough description and examples of the interpretation technique. Refer to perun.
profile.convert.to_flame_graph_format() for more details how the profiles are converted to the flame graph
format.

perun show flamegraph [OPTIONS]

Options

-f, --filename <filename>

Sets the output file of the resulting flame graph.

-h, --graph-height <graph_height>

Increases the width of the resulting flame graph.

The Flame Graph is an efficient visualization of inclusive consumption of resources. The width of the base of one
flame shows the bottleneck and hotspots of profiled binaries.

138 Chapter 6. Visualizations Overview

http://brendangregg.com

Perun Documentation, Release 0.21.6

Examples of Output

6.1.3 Flow Plot

Flow graphs displays resources as classic plots, with moderate customization possibilities (regarding the sources for
axes, or grouping keys). The output backend of Flow is both Bokeh and ncurses (with limited possibilities though).
Bokeh graphs support either the classic display of resources (graphs will overlap) or in stacked format (graphs of
different groups will be stacked on top of each other).

Overview and Command Line Interface

perun show flow

Customizable interpretation of resources using the flow format.

* Limitations: none.
* Interpretation style: graphical, textual
* Visualization backend: Bokeh, ncurses

Flow graph shows the values resources depending on the independent variable as basic graph. For each group of
resources identified by unique value of <by> key, one graph shows the dependency of <of> values aggregated by
<func> depending on the <through> key. Moreover, the values can either be accumulated (this way when displaying
the value of ‘n’ on x axis, we accumulate the sum of all values for all m < n) or stacked, where the graphs are output
on each other and then one can see the overall trend through all the groups and proportions between each of the group.

Bokeh library is the current interpretation backend, which generates HTML files, that can be opened directly in the
browser. Resulting graphs can be further customized by adding custom labels for axes, custom graph title or different
graph width.

Example 1. The following will show the average amount (in this case the function running time) of each function
depending on the size of the structure over which the given function operated:

perun show 0@i flow mean --of 'amount' --per 'structure-unit-size'
--acumulated --by 'uid'

The example output of the bars is as follows:

<graph_title>
`
- ______ ````````
` _____/ ` # \ `
- / __ ` @ }-> <by>
` ____/ ____/ ` & / `

<func>(<of>) - ___/ ___/ ````````
` ___/ ______/ ____
-/ ______/ _____/
`__/______________/
+````||````||````||````||````

<through>

Refer to Flow Plot for more thorough description and example of flow interpretation possibilities.

6.1. Supported Visualizations 139

https://bokeh.pydata.org/en/latest/
https://www.gnu.org/software/ncurses/ncurses.html
https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/

Perun Documentation, Release 0.21.6

perun show flow [OPTIONS] <aggregation_function>

Options

-o, --of <of_resource_key>

Required Sets key that is source of the data for the flow, i.e. what will be displayed on Y axis, e.g. the amount
of resources.

-t, --through <through_key>

Sets key that is source of the data value, i.e. the independent variable, like e.g. snapshots or size of the structure.

-b, --by <by_resource_key>

Required For each <by_resource_key> one graph will be output, e.g. for each subtype or for each location of
resource.

-s, --stacked

Will stack the y axis values for different <by> keys on top of each other. Additionaly shows the sum of the values.

--accumulate, --no-accumulate

Will accumulate the values for all previous values of X axis.

-f, --filename <html>

Sets the outputs for the graph to the file.

-xl, --x-axis-label <text>

Sets the custom label on the X axis of the flow graph.

-yl, --y-axis-label <text>

Sets the custom label on the Y axis of the flow graph.

-gt, --graph-title <text>

Sets the custom title of the flow graph.

-v, --view-in-browser

The generated graph will be immediately opened in the browser (firefox will be used).

Arguments

<aggregation_function>

Optional argument

140 Chapter 6. Visualizations Overview

Perun Documentation, Release 0.21.6

Examples of Output

The Flow Plot above shows the mean of allocated amounts per each allocation site (i.e. uid) in stacked mode. The
stacking of the means clearly shows, where the biggest allocations where made during the program run.

6.1. Supported Visualizations 141

Perun Documentation, Release 0.21.6

The Flow Plot above shows the trend of the average running time of the SLList_search function depending on the
size of the structure we execute the search on.

6.1.4 Scatter Plot

Scatter plot visualizes the data as points on two dimensional grid, with moderate customization possibilities. This
visualization also display regression models, if the input profile was postprocessed by Regression Analysis. The output
backend of Scatter plot is Bokeh library.

Overview and Command Line Interface

perun show scatter

Interactive visualization of resources and models in scatter plot format.

Scatter plot shows resources as points according to the given parameters. The plot interprets <per> and <of> as x, y
coordinates for the points. The scatter plot also displays models located in the profile as a curves/lines.

* Limitations: none.
* Interpretation style: graphical
* Visualization backend: Bokeh

Features in progress:

• uid filters

• models filters

• multiple graphs interpretation

Graphs are displayed using the Bokeh library and can be further customized by adding custom labels for axis, custom
graph title and different graph width.

The example output of the scatter is as follows:

<graph_title>
` o
- /
` /o ```````````````````
- _/ ` o o = <points> `
` _- o ` _ `

<of> - __--o ` _- = <models> `
` _______--o- o ` `
- o o o ```````````````````
`
+````||````||````||````||````

<per>

Refer to Scatter Plot for more thorough description and example of scatter interpretation possibilities. For more thor-
ough explanation of regression analysis and models refer to Regression Analysis.

perun show scatter [OPTIONS]

142 Chapter 6. Visualizations Overview

https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/

Perun Documentation, Release 0.21.6

Options

-o, --of <of_key>

Data source for the scatter plot, i.e. what will be displayed on Y axis.

Default
amount

-p, --per <per_key>

Keys that will be displayed on X axis of the scatter plot.

Default
structure-unit-size

-f, --filename <html>

Outputs the graph to the file specified by filename.

-xl, --x-axis-label <text>

Label on the X axis of the scatter plot.

-yl, --y-axis-label <text>

Label on the Y axis of the scatter plot.

-gt, --graph-title <text>

Title of the scatter plot.

-v, --view-in-browser

Will show the graph in browser.

Examples of Output

The Scatter Plot above shows the interpreted models of different complexity example, computed using the full com-
putation method. In the picture, one can see that the depedency of running time based on the structural size is best
fitted by linear models.

6.1. Supported Visualizations 143

Perun Documentation, Release 0.21.6

The next scatter plot displays the same data as previous, but regressed using the initial guess strategy. This strategy first
does a computation of all models on small sample of data points. Such computation yields initial estimate of fitness of
models (the initial sample is selected by random). The best fitted model is then chosen and fully computed on the rest
of the data points.

The picture shows only one model, namely linear which was fully computed to best fit the given data points. The rest
of the models had worse estimation and hence was not computed at all.

6.1.5 Table Of

Table interprets the data as a two dimensional array. The cells in the table can be limited to certain columns only and
allow output to the file.

Overview and Command Line Interface

perun show tableof

Textual representation of the profile as a table.

* Limitations: none.
* Interpretation style: textual
* Visualization backend: tabulate

The table is formatted using the tabulate library. Currently, we support only the simplest form, and allow output to file.

The example output of the tableof is as follows:

uid model r_square
--------------------------- ----------- -----------
SLlist_insert(SLlist*, int) logarithmic 0.000870412

144 Chapter 6. Visualizations Overview

https://pypi.org/project/tabulate/
https://pypi.org/project/tabulate/

Perun Documentation, Release 0.21.6

SLlist_insert(SLlist*, int) linear 0.001756
SLlist_insert(SLlist*, int) quadratic 0.00199925
SLlist_insert(SLlist*, int) power 0.00348063
SLlist_insert(SLlist*, int) exponential 0.00707644
SLlist_search(SLlist*, int) constant 0.0114714
SLlist_search(SLlist*, int) logarithmic 0.728343
SLlist_search(SLlist*, int) exponential 0.839136
SLlist_search(SLlist*, int) power 0.970912
SLlist_search(SLlist*, int) linear 0.98401
SLlist_search(SLlist*, int) quadratic 0.984263
SLlist_insert(SLlist*, int) constant 1

Refer to Table Of for more thorough description and example of table interpretation possibilities.

perun show tableof [OPTIONS] COMMAND [ARGS]...

Options

-tf, --to-file

The table will be saved into a file. By default, the name of the output file is automatically generated, unless
–output-file option does not specify the name of the output file.

-ts, --to-stdout

The table will be output to standard output.

-of, --output-file <output_file>

Target output file, where the transformed table will be saved.

-f, --format <tablefmt>

Format of the outputted table

Options
asciidoc | double_grid | double_outline | fancy_grid | fancy_outline | github | grid | heavy_grid
| heavy_outline | html | jira | latex | latex_booktabs | latex_longtable | latex_raw | mediawiki |
mixed_grid | mixed_outline | moinmoin | orgtbl | outline | pipe | plain | presto | pretty | psql |
rounded_grid | rounded_outline | rst | simple | simple_grid | simple_outline | textile | tsv | unsafe-
html | youtrack

Commands

models

Outputs the models of the profile as a table

resources

Outputs the resources of the profile as a. . .

6.1. Supported Visualizations 145

Perun Documentation, Release 0.21.6

perun show tableof resources

Outputs the resources of the profile as a table

perun show tableof resources [OPTIONS]

Options

-h, --headers <key>

Sets the headers that will be displayed in the table. If none are stated then all of the headers will be outputed

-s, --sort-by <key>

Sorts the table by <key>.

-f, --filter-by <key> <value>

Filters the table to rows, where <key> == <value>. If the –filter is set several times, then rows satisfying all rules
will be selected for different keys; and the rows satisfying some rule will be selected for same key.

perun show tableof models

Outputs the models of the profile as a table

perun show tableof models [OPTIONS]

Options

-h, --headers <key>

Sets the headers that will be displayed in the table. If none are stated then all of the headers will be outputed

-s, --sort-by <key>

Sorts the table by <key>.

-f, --filter-by <key> <value>

Filters the table to rows, where <key> == <value>. If the –filter is set several times, then rows satisfying all rules
will be selected for different keys; and the rows satisfying some rule will be sellected for same key.

Examples of Output

In the following, we show several outputs of the Table Of .

1 uid model coeffs:b1 coeffs:b0 r_square
2 ------------- ----------- ------------ ----------- -----------
3 SLList_insert logarithmic 0.0240681 0.362624 0.000870412
4 SLList_insert linear 9.93516e-06 0.505375 0.001756
5 SLList_insert power 0.00978141 0.93533 0.00348063
6 SLList_insert exponential 1 0.990979 0.00707644
7 SLList_search constant 0 23.7107 0.0114714
8 SLList_search logarithmic 11.6352 -73.8534 0.728343
9 SLList_search exponential 1.00023 4.6684 0.839136

10 SLList_search power 0.882763 0.0110015 0.970912
(continues on next page)

146 Chapter 6. Visualizations Overview

Perun Documentation, Release 0.21.6

(continued from previous page)

11 SLList_search linear 0.00393897 0.262121 0.98401
12 SLList_insert constant 0 0.56445 1

The table above shows list of models for SLList_insert and SLList_search functions for Singly-linked List implementa-
tion of test complexity repository sorted by the value of coefficient of determination r_square (see Regression Analysis
for more details about models and coefficient of determination). For each type of model (e.g. linear) we list the value
of its coefficients (e.g. for linear function b1 corresponds to the slope of the function and b0 to interception of the
function).

From the measured data the insert is estimated to be constant and search to be linear.

1 uid:function class
2 -------------------- -------
3 dwtint_decode_strip O(n^2)
4 dwtint_decode_band O(n^2)
5 dwtint_decode_block O(n^2)
6 dwtint_encode_band O(n^2)
7 dwtint_encode_block O(n^2)
8 dwtint_weight_band O(n^2)
9 dwtint_encode_strip O(n^2)

10 dwtint_unweight_band O(n^2)

The second table shows list of function with quadratic complexities inferred by Bounds Collector for dwtint.c module
of the CCSDS codec (will be publically available in near future). The rest of the function either could not be inferred
(e.g. due to unsupported construction, or requiring more elaborate static resource bounds analysis—e.g. due to the
missing heap analysis) or were linear or constant.

1 \begin{tabular}{llrr}
2 \hline
3 uid & model & coeffs:b1 & r_square \\
4 \hline
5 test_for_static & linear & 3.36163e-08 & 4.46927e-07 \\
6 expand_tag_fname & linear & 7.3574e-08 & 2.32882e-06 \\
7 vim_strncpy & linear & -1.23499e-08 & 9.71476e-06 \\
8 vim_strsave & linear & 2.10692e-08 & 1.10401e-05 \\
9 vim_free & linear & -1.15839e-08 & 0.000216828 \\

10 parse_tag_line & linear & 1.04969e-06 & 0.004604 \\
11 vim_strchr & linear & -8.84782e-08 & 0.00629398 \\
12 skiptowhite & linear & -0.00058116 & 0.00714483 \\
13 lalloc & linear & -1.19402e-07 & 0.0101609 \\
14 alloc & linear & -1.83755e-07 & 0.0136817 \\
15 ga_grow & linear & 3.86559e-06 & 0.0160297 \\
16 vim_regexec & linear & 2.398e-06 & 0.0161956 \\
17 ga_clear & linear & 0.535088 & 0.0187932 \\
18 vim_strnsave & linear & -0.000529842 & 0.0210357 \\
19 ga_init2 & linear & 0.00913043 & 0.0365217 \\
20 test_for_current & linear & 1.00515e-05 & 0.126627 \\
21 skipwhite & linear & 4.98823e-06 & 0.192099 \\
22 vim_isblankline & linear & 8.68793e-06 & 0.195017 \\
23 vim_regfree & linear & 5 & 0.75 \\
24 \hline
25 \end{tabular}

The last example, shows list of estimated linear functions for vim v7.4.2293 sorted by coefficient of determination

6.1. Supported Visualizations 147

Perun Documentation, Release 0.21.6

r_square. The output uses different format (latex).

6.2 Creating your own Visualization

New interpretation modules can be registered within Perun in several steps. The visualization methods has the least
requirements and only needs to work over the profiles w.r.t. Specification of Profile Format and implement method for
Click api in order to be used from command line.

You can register your new visualization as follows:

1. Run perun utils create view myview to generate a new modules in perun/view directory
with the following structure. The command takes a predefined templates for new visualization tech-
niques and creates __init__.py and run.py according to the supplied command line arguments
(see Utility Commands for more information about interface of perun utils create command):

/perun
|-- /view

|-- /myview
|-- __init__.py
|-- run.py

|-- /bars
|-- /flamegraph
|-- /flow
|-- /scatter

2. First, implement the __init__.py file, including the module docstring with brief description of the
visualization technique and definition of constants which has the following structure:

1 """..."""
2

3 SUPPORTED_PROFILES = ["mixed|memory|mixed"]

3. Next, in the run.py implement module with the command line interface function, named the same
as your visualization technique. This function is called from the command line as perun show
``perun show myview and is based on Click library.

4. Finally register your newly created module in get_supported_module_names() located in
perun.utils.__init__.py:

1 --- /mnt/e/phdwork/perun/perun/docs/_static/templates/supported_module_names.py
2 +++ /mnt/e/phdwork/perun/perun/docs/_static/templates/supported_module_names_

→˓views.py
3 @@ -16,5 +16,6 @@
4 "heapmap",
5 "raw",
6 "scatter",
7 + "myview",
8],
9 }[package]

5. Preferably, verify that registering did not break anything in the Perun and if you are not using the
developer installation, then reinstall Perun:

148 Chapter 6. Visualizations Overview

http://click.pocoo.org/5/
http://click.pocoo.org/5/

Perun Documentation, Release 0.21.6

make test
make install

6. At this point you can start using your visualization either using perun show.

7. If you think your collector could help others, please, consider making Pull Request.

6.2. Creating your own Visualization 149

https://github.com/tfiedor/perun/pull/new/develop

Perun Documentation, Release 0.21.6

150 Chapter 6. Visualizations Overview

CHAPTER

SEVEN

AUTOMATING RUNS

Profiles can be generated either manually on your own (either by individual profilers or using the perun collect and
perun postprocess commands), or you can use Perun’s runner infrastructure to partially automate the generation
process. Perun is capable either to run the jobs through the stored configuration which is meant for a regular project
profiling (either in local or shared configuration c.f. Perun Configuration files) or through a single job specifications
meant for irregular or specific profiling jobs.

Each profile generated by specified batch jobs will be stored in .perun/jobs directory with the following name of the
template:

command-collector-workload-Y-m-d-H-M-S.perf

Where command corresponds to the name of the application (or script), for which we collected the data using collector
on workload at given specified date. You can change the template for profile name generation by setting format.
output_profile_template. New profiles are annotated with the origin set to the current HEAD of the wrapped
repository. origin serves as a check during registering profiles in the indexes of minor versions. Profile with origin
different from the target minor version will not be assigned, as it would violate the correctness of the performance
history of the project. If you want to automatically register the newly generated profile into the corresponding minor
version index, then set profiles.register_after_run key to a true value.

RU
NN
ERS

.perun/local.yml

c1

cm

p1

p1

pn

pn

.perun/jobs.perun/jobs

.

.

.

.

.

.

.

.

.

Collection Postprocessing

bin

bin

.

.

.

GUI

CLI

cmd:
 - bin
collect ors :
 - c1
 - ...
 - cm

postpr ocessors :
 - p1
 - ...
 - pn

151

Perun Documentation, Release 0.21.6

The figure above show the overview of the jobs flow in Perun. The runner module is initialized form user interfaces
and from local (or shared) configurations and internally generates the matrix of jobs which are run in the sequence.
Each job is then finished with storing the generated profile in the internal storage.

Note: In order to obtain fine result, it is advised to run the benchmark several times (at least three times) and either
do the average over all runs or discard the first runs. This is because, initial benchmarks usually have skewed times.

Note: If you do not want to miss profiling, e.g. after each push, commit, etc., check out git hooks. git hooks allows
you to run custom scripts on certain git event triggers.

7.1 Runner CLI

Command Line Interface contains group of two commands for managing the jobs—perun run job for running one
specified batch of jobs (usually corresponding to irregular measuring or profilings) and perun run matrix for run-
ning the pre-configured matrix in Yaml format specifing the batch job (see Job Matrix Format for full specification).
Running the jobs by perun run matrix corresponds to regular measuring and profiling, e.g. during end of release
cycles, before push to origin/upstream or even after each commit.

7.1.1 perun run job

Run specified batch of perun jobs to generate profiles.

This command correspond to running one isolated batch of profiling jobs, outside of regular profiling. Run perun run
matrix, after specifying job matrix in local configuration to automate regular profiling of your project. After the batch
is generated, each profile is tagged with origin set to current HEAD. This serves as check to not assign such profiles
to different minor versions.

By default, the profiles computed by this batch job are stored inside the .perun/jobs/ directory as a files in form of:

bin-collector-workload-timestamp.perf

In order to store generated profiles run the following, with i@p corresponding to pending tag, which can be obtained
by running perun status:

perun add i@p

perun run job -c time -b ./mybin -w file.in -w file2.in -p normalizer

This command profiles two commands ./mybin file.in and ./mybin file2.in and collects the profiling data
using the Time Collector. The profiles are then normalized with the Normalizer Postprocessor.

perun run job -c complexity -b ./mybin -w sll.cpp -cp complexity targetdir=./src

This commands runs one job ‘./mybin sll.cpp’ using the Trace Collector, which uses custom binaries targeted at ./src
directory.

perun run job -c mcollect -b ./mybin -b ./otherbin -w input.txt -p normalizer -p␣
→˓clusterizer

152 Chapter 7. Automating Runs

https://git-scm.com/book/gr/v2/Customizing-Git-Git-Hooks
http://yaml.org/

Perun Documentation, Release 0.21.6

This commands runs two jobs ./mybin input.txt and ./otherbin input.txt and collects the profiles using
the Memory Collector. The profiles are then postprocessed, first using the Normalizer Postprocessor and then with
Regression Analysis.

Refer to Automating Runs and Perun’s Profile Format for more details about automation and lifetimes of profiles. For
list of available collectors and postprocessors refer to Supported Collectors and Supported Postprocessors respectively.

perun run job [OPTIONS]

Options

-b, --cmd <cmd>

Required Command that is being profiled. Either corresponds to some script, binary or command, e.g. ./mybin
or perun.

-a, --args <args>

Additional parameters for <cmd>. E.g. status or -al is command parameter.

-w, --workload <workload>

Inputs for <cmd>. E.g. ./subdir is possible workloadfor ls command.

-c, --collector <collector>

Required Profiler used for collection of profiling data for the given <cmd>

Options
trace | memory | time | complexity | bounds

-cp, --collector-params <collector_params>

Additional parameters for the <collector> read from the file in YAML format

-p, --postprocessor <postprocessor>

After each collection of data will run <postprocessor> to postprocess the collected resources.

Options
clusterizer | normalizer | regression-analysis | regressogram | moving-average | kernel-regression

-pp, --postprocessor-params <postprocessor_params>

Additional parameters for the <postprocessor> read from the file in YAML format

7.1.2 perun run matrix

Runs the jobs matrix specified in the local.yml configuration.

This commands loads the jobs configuration from local configuration, builds the job matrix and subsequently runs the
jobs collecting list of profiles. Each profile is then stored in .perun/jobs directory and moreover is annotated using
by setting origin key to current HEAD. This serves as check to not assing such profiles to different minor versions.

The job matrix is defined in the yaml format and consists of specification of binaries with corresponding arguments,
workloads, supported collectors of profiling data and postprocessors that alter the collected profiles.

Refer to Automating Runs and Job Matrix Format for more details how to specify the job matrix inside local configu-
ration and to Perun Configuration files how to work with Perun’s configuration files.

perun run matrix [OPTIONS]

7.1. Runner CLI 153

Perun Documentation, Release 0.21.6

Options

-q, --without-vcs-history

Will not print the VCS history tree during the collection of the data.

7.2 Overview of Jobs

Usually during the profiling of application, we first collect the data by the means of profiler (or profiling data collector
or whatever terminology we are using) and we can further augment the collected data by ordered list of postprocessing
phases (e.g. for filtering out unwanted data, normalizing or scaling the amounts, etc.). As results we generate one
profile for each application configuration and each profiling job. Thus, we can consider one profiling jobs as collection
of profiling data from application of one certain configuration using one collector and ordered set of postprocessors.

One configuration of application can be partitioned into three parts (two being optional):

1. The actual command that is being profiled, i.e. either the binary or wrapper script that is executed as one
command from the terminal and ends with success or failure. An example of command can be e.g. the perun
itself, ls or ./my_binary.

2. Set of arguments for command (optional), i.e. set of parameters or arguments, that are supplied to the profiled
command. The intuition behind arguments is to allow setting various optimization levels or profile different
configurations of one program. An example of argument (or parameter) can be e.g. log, -al or -O2 -v.

3. Input workloads (optional), i.e. different inputs for profiled command. While workloads can be considered as
arguments, separating them allows more finer specification of jobs, e.g. when we want to profile our program on
workloads with different sizes under different configurations (since degradations usually manifest under bigger
workloads). An example of workload can be e.g. HEAD or /dir/subdir or << "Hello world".

So from the user specification, commands, arguments and workloads can be combined using cartesian product which
yields the list of full application configurations. Then for each such configuration (like e.g. perun log HEAD, ls
-al /dir/subdir or ./my_binary -O2 -v << "Hello world") we run specified collectors and finally the list of
postprocessors. This process is automatic either using the perun run job or perun run matrix, which differ in
the way how the user specification is obtained.

Each collector (resp. postprocessor) runs in up to three phases (with pre and post phases being optional). First the
function before() is executed (if implemented by given collector or postprocessor), where the collector (resp. post-
processor) can execute additional preparation before the actual collection (resp. postprocessing) of the data, like e.g.
compiling custom binaries. Then the actual collect() (resp. postprocess()) is executed, which runs the given job
with specified collection (resp. postprocessing) unit and generatesj profile (potentially in raw or intermediate format).
Finally the after() phase is run, which can further postprocess the generated profile (after the success of collection),
e.g. by required filtering of data or by transforming raw profiles to Perun’s Profile Format. See (Collectors Overview
and Postprocessors Overview for more detailed description of units). During these phases kwargs are passed through
and share the specification, or can be used for passing additional information to following phases. The resulting kwargs
has to contain the profile key, which contains the profile w.r.t. Specification of Profile Format.

The overall process can described by the following pseudocode:

for (cmd, argument, workload) in jobs:
for collector in collectors:

collector.before(cmd, argument, workload)
collector.collect(cmd, argument, workload)
profile = collector.after()
for postprocessor in postprocessors:

postprocessor.before(profile)
(continues on next page)

154 Chapter 7. Automating Runs

Perun Documentation, Release 0.21.6

(continued from previous page)

postprocessor.postprocess(profile)
profile = postprocessor.after(profile)

Note that each phase should return the following tripple: (status code, status message, kwargs). The status
code is used for checking the success of the called phases and in case of error prints the status message.

Before this overall process, one can run a custom set of commands by stating the key execute.pre_run key. This is
mostly meant for compiling of new version or preparing other necessary requirements before actual collection.

For specification and details about collectors, postprocessors and internal storage of Perun refer to Collectors Overview,
Postprocessors Overview and Perun Internals.

7.3 Job Matrix Format

In order to maximize the automation of running jobs you can specify in Perun config the specification of commands,
arguments, workloads, collectors and postprocessors (and their internal configurations) as specified in the Overview
of Jobs. Job matrixes are meant for a regular profiling jobs and should reduce the profiling to a single perun run
matrix command. Both the config and the specification of job matrix is based on Yaml format.

Full example of one job matrix is as follows:

7.3. Job Matrix Format 155

http://yaml.org/

Perun Documentation, Release 0.21.6

cmds:
- perun

args:
- log
- log --short

workloads:
- HEAD
- HEAD~1

collectors:
- name: time

postprocessors:
- name: normalizer
- name: regression_analysis
params:
- method: full
- steps: 10

Given matrix will create four jobs (perun log HEAD, perun log HEAD~1, perun log --short HEAD and perun
log --short HEAD~1) which will be issued for runs. Each job will be collected by Time Collector and then postpro-
cessed first by Normalizer Postprocessor and then by Regression Analysis with specification {'method': 'full',
'steps': 10}.

Run the following to configure the job matrix of the current project:

perun config --edit

This will open the local configuration in editor specified by general.editor and lets you specify configuration for
your application and set of collectors and postprocessors. Unless the source configuration file was not modified, it
should contain a helper comments. The following keys can be set in the configuration:

cmds

List of names of commands which will be profiled by set of collectors. The commands should preferably not con-
tain any parameters or workloads, since they can be set by different configuration resulting into finer specification
of configuration.

cmds:
- perun
- ls
- ./myclientbinary
- ./myserverbinary

args

List of arguments (or parameters) which are supplied to profiled commands. It is advised to differentiate between
arguments/parameters and workloads. While their semantics may seem close, separation of this concern results
into more verbose performance history

args:
- log
- log --short

(continues on next page)

156 Chapter 7. Automating Runs

Perun Documentation, Release 0.21.6

(continued from previous page)

- -al
- -q -O2

workloads

List of workloads which are supplied to profiled commands. Workloads represents program inputs and supplied
files.

workloads:
- HEAD
- HEAD~1
- /usr/share
- << "Hello world!"

From version 15.1. you can use the workload generators instead. See List of Supported Workload Generators for
more information about supported workload generators and generators.workload for more information how
to specify the workload generators in the configuration files.

collectors

List of collectors used to collect data for the given configuration of application represented by commands, argu-
ments and workloads. Each collector is specified by its name and additional params which corresponds to the
dictionary of (key, value) parameters. Note that the same collector can be specified more than once (for cases,
when one needs different collector configurations). For list of supported collectors refer to Supported Collectors.

collectors:
- name: memory
params:

- sampling: 1
- name: time

postprocessors

List of postprocessors which are used after the successful collection of the profiling data. Each postprocessor
is specified by its name and additional params which corresponds to the dictionary of (key, value) parameters.
Note that the same postprocessor can be specified more than just once. For list of supported postprocessors refer
to Supported Postprocessors.

postprocessors:
- name: normalizer
- name: regression_analysis
params:
- method: full
- steps: 10

7.4 List of Supported Workload Generators

From version 0.15.1, Perun supports the specification of workload generators, instead of raw workload values specified
in workloads. These generators continuously generates workloads and internally Perun either merges the resources
into one single profile or gradually generates profile for each workload.

The generators are specified by generators.workload section. These specifications are collected through all of the
configurations in the hierarchy.

7.4. List of Supported Workload Generators 157

Perun Documentation, Release 0.21.6

You can use some basic generators specified in shared configurations called basic_strings (which generates strings
of lengths from interval (8, 128) with increment of 8), basic_integers (which generates integers from interval (100,
10000), with increment of 200) or basic_files (which generates text files with number of lines from interval (10,
10000), with increment of 1000).

7.4.1 Generic settings

All generators can be configured using the following generic settings:

• profile_for_each_workload: by default this option is set to false, and then when one uses the generator to
generate the workload, the collected resources will be merged into one single profile. If otherwise this option is
set to true value (true, 1, yes, etc.) then Perun will generate profile for each of the generated workload.

7.4.2 Singleton Generator

Singleton Generator generates only one single value. This generator corresponds to the default behaviour of Perun, i.e.
when each specified workload in workloads was passed to profiled program as string.

Currently be default, any string specified in workloads, that does not correspond to some generator specified in
generators.workload , is converted to Singleton Generator.

The Singleton Generator can be configured by following options:

• value: singleton value that is passed as workload.

7.4.3 Integer Generator

Integer Generator generates the range of the integers.

The Integer Generator starts from the min_rangeworkload, and continuously increments this value by step (by default
equal to 1) until it reaches max_range (including).

The following shows the example of integer generator, which continuously generates workloads 10, 20, . . . , 90, 100:

generators:
workload:
- id: integer_generator
type: integer
min_range: 10
max_range: 100
step: 10

The Integer Generator can be configured by following options:

• min_range: the minimal integer value that shall be generated.

• max_range: the maximal integer value that shall be generated.

• step: the step (or increment) of the range.

158 Chapter 7. Automating Runs

Perun Documentation, Release 0.21.6

7.4.4 String Generator

String Generator generates strings of changing length.

The String Generators starts generating random strings starting from the min_len, and continuously increments this
length by step_len (by default equal to 1), until it reaches the max_len (including).

The following shows the example of integer generator, which continuously generates workload strings of length 1, 2,
. . . , 9, 10:

generators:
workload:
- id: string_generator
type: string
min_len: 1
max_len: 10
step_len: 1

The String Generator can be configured by following options:

• min_len: the minimal length of the string that shall be generated.

• max_len: the maximal length of the string that shall be generated.

• step_len: the step (or increment) of the lengths.

7.4.5 Text File Generator

Text File Generator generates the range of random files.

The TextFile Generator generates files with random contents (lorem ipsum) starting from min_lines, and continuously
increments this value by step until the number of lines in the generated file reaches max_lines. Each row will
then either have maximal length of max_chars (if randomize_rows is set to false value), otherwise the length is
randomized from the interval (min_lines, max_lines).

The following shows the example of integer generator, which continuously generates workloads 10, 20, . . . , 90, 100:

generators:
workload:
- id: textfile_generator
type: textfile
min_lines: 10
max_lines: 100
step: 10

The TextFile Generator can be configured by following options:

• min_lines: the minimal number of lines in the file that shall be generated.

• max_lines: the maximal number of lines in the file that shall be generated.

• step: the step (or increment) of the range. By default set to 1.

• min_chars: the minimal number of characters on one line. By default set to 5.

• max_chars: the maximal number of characters on one line. By default set to 80.

• randomize_rows: by default set to True, the rows in the file have then randomized length from interval
(min_chars, max_chars). Otherwise (if set to false), the lines will always be of maximal length (max_chars).

7.4. List of Supported Workload Generators 159

Perun Documentation, Release 0.21.6

160 Chapter 7. Automating Runs

CHAPTER

EIGHT

DETECTING PERFORMANCE CHANGES

For every new minor version of project (or every project release), developers should usually generate new batch of
performance profiles with the same concrete configuration of resource collection (i.e. the set of collectors and post-
processors run on the same commands).These profiles are then assigned to the minor version to preserve the history of
the project performance. However, every change of the project, and every new minor version, can cause a performance
degradation of the project. And manual evaluation whether the degradation has happened is hard.

Perun allows one to automatically check the performance degradation between various minor versions within the history
and protect the project against potential degradation introduced by new minor versions. One can employ multiple
strategies for different configurations of profiles, each suitable for concrete types of degradation or performance bugs.
Potential changes of performance are then reported for pairs of profiles, together with more precise information, such
as the location, the rate or the confidence of the detected change. These information then help developer to evaluate
whether the detected changes are real or spurious. The spurious warnings can naturally happen, since the collection
of data is based on dynamic analysis and real runs of the program; and both of them can be influenced heavily by
environment or other various aspects, such as higher processor utilization.

The detection of performance change is always checked between two profiles with the same configuration (i.e collected
by same collectors, postprocessed using same postprocessors, and collected for the same combination of command,
arguments and workload). These profiles correspond to some minor version (so called target) and its parents (so called
baseline). But baseline profiles do not have to be necessarily the direct predecessor (i.e. the old head) of the target
minor version, and can be found deeper in the version hierarchy (e.g. the root of the project or minor version from two
days ago, etc.). During the check of degradation of one profile corresponding to the target, we find the nearest baseline
profile in the history. Then for one pair of target and baseline profiles we can use multiple methods and these methods
can then report multiple performance changes (such as optimizations and degradations).

NEW

COMMIT

HEAD

Profiles

Performance
Change

Detector

VCS
(.git)

VCS
(.git)

Perun
(.perun)

Perun
(.perun)

y = b1f(x) + b0

Models

y = b1f(x) + b0

Models

y = b1f(x) + b0

Models

y = b1f(x) + b0

Models

Profiles

Performance
Degradation

Performance
Optimization

Unknown

161

Perun Documentation, Release 0.21.6

8.1 Results of Detection

Between the pair of target and baseline profile one can use multiple methods, each suitable for specific type of change.
Each such method can then yield multiple reports about detected performance changes (however, some of these can be
spurious). Each degradation report can contain the following details:

1. Type of the change—the overall general classification of the performance change, which can be one of the
following six values representing both certain and uncertain answers:

No Change:

Represents that the performance of the given uniquely identified resource group was not changed
in any way and it stayed the same (within some bound of error). By default these changes are not
reported in the standard output, but can be made visible by increasing the verbosity of the command
line interface (see Command Line Interface how to increase the verbosity of the output).

Total Degradation or Total Optimization:

Represents an overall program degradation or optimization. The overall degradation or optimization
report may actually be further divided into per-binary or per-file reports (e.g., a standalone report for
mybin and its library mylib as done by Exclusive Time Outliers).

Not in Baseline or Not in Target:

Represents a performance change caused by new or deleted resources, e.g., functions that are newly
introduced (resp newly missing) in the new project version. Reporting these changes is useful since
even a simple function refactoring may introduce serious performance slowdown or speedup.

Severe Degradation or Severe Optimization:

Represents that the performance of resource group has severely degraded (resp optimized), i.e., got
severely worse (resp better) with a high confidence. Each report also usually shows the confidence
of this report, e.g. by the value of coefficient of determination (see Regression Analysis), which
quantifies how the prediction or regression models of both versions were fitting the data.

Degradation or Optimization:

Represents that the performance of resource group has degraded (resp optimized), i.e. got worse (resp
got better) with a fairly high confidence. Each report also usually shows the confidence of this report,
e.g. by the value of coefficient of determination (see Regression Analysis), which quantifies how the
prediction or regression models of both versions were fitting the data.

Maybe Degradation or Maybe Optimization:

Represents detected performance change which is either unverified or with a low confidence (so the
change can be either false positive or false negative). This classification of changes allows methods
to provide more broader evaluation of performance change.

Unknown:

Represents that the given method could not determine anything at all.

2. Subtype of the change—the description of the type of the change in more details, such as that the change was
in complexity order (e.g. the performance model degraded from linear model to power model) or ratio (e.g. the
average speed degraded two times)

3. Confidence—an indication how likely the degradation is real and not spurious or caused by badly collected
data. The actual form of confidence is dependent on the underlying detection method. E.g. for methods based
on Regression Analysis this can correspond to the coefficient of determination which shows the fitness of the
function models to the actually measured values.

162 Chapter 8. Detecting Performance Changes

Perun Documentation, Release 0.21.6

4. Location—the unique identification of the group of resources, such as the name of the function, the precise
chunk of the code or line in code.

If the underlying method does not detect any change between two profiles, by default nothing is reported at all. However,
this behaviour can be changed by increasing the verbosity of the output (see Command Line Interface how to increase
the verbosity of the output)

8.2 Detection Methods

Currently we support three simple strategies for detection of the performance changes:

1. Best Model Order Equality which is based on results of Regression Analysis and only checks for each uniquely
identified group of resources, whether the best performance (or prediction) model has changed (considering
lexicographic ordering of model types), e.g. that the best model changed from linear to quadratic.

2. Average Amount Threshold which computes averages as a representation of the performance for each uniquely
identified group of resources. Each average of the target is then compared with the average of the baseline and if
the their ration exceeds a certain threshold interval, the method reports the change.

3. Exclusive Time Outliers which identifies outliers within the function exclusive time deltas. The outliers are
identified using three different statistical techniques, resulting in three different change severity categories based
on which technique discovered the outlier.

Refer to Create Your Own Degradation Checker to create your own detection method.

8.2.1 Best Model Order Equality

The Best Model Order Equality chooses the best model (i.e. the one with the highest coefficient of determination) as
the representant of the performance of each group of uniquely identified resources (e.g. corresponding to the same
function). Then each pair of baseline and target models is compared lexicographically (e.g. the linear model is lexi-
cographically smaller than quadratic model), and any change in this ordering is detected as either Optimization or
Degradation if the minimal confidence of the models is above certain threshold.

• Detects: Order changes; Optimization and Degradation

• Confidence: Minimal coefficient of determination of best models of baseline and target minor versions

• Limitations: Profiles postprocessed by Regression Analysis

The example of the output generated by the BMOE method is as follows

* 1eb3d6: Fix the degradation of search
| | * 7813e3: Implement new version of search
| > collected by complexity+regression_analysis for cmd: '$ mybin'
| > applying 'best_model_order_equality' method
| - Optimization at SLList_search(SLList*, int)
| from: power -> to: linear (with confidence r_square = 0.99)
|
* 7813e3: Implement new version of search
| | * 503885: Fix minor issues
| > collected by complexity+regression_analysis for cmd: '$ mybin'
| > applying 'best_model_order_equality' method
| - Degradation at SLList_search(SLList*, int)
| from: linear -> to: power (with confidence r_square = 0.99)
|
* 503885: Fix minor issues

8.2. Detection Methods 163

Perun Documentation, Release 0.21.6

In the output above, we detected the Optimization between commits 1eb3d6 (target) and 7813e3 (baseline), where
the best performance model of running time of SLList_search function changed from power model to linear. For
the methods based on Regression Analysis we use the coefficient of determination (𝑟2) to represent a confidence, and
take the minimal coefficient of determination of target and baseline model as a confidence for this detected change.
Since 𝑟2 is almost close to the value 1.0 (which would mean, that the model precisely fits the measured values), this
signifies that the best model fit the data tightly and hence the detected optimization is not spurious.

8.2.2 Average Amount Threshold

The Average Amount Threshold groups all of the resources according to the unique identifier (uid; e.g. the function
name) and then computes the averages of resource amounts as performance representants of baseline and target profiles.
The computed averages are then compared (by division , and according to the set threshold the checker detects either
Optimization or Degradation (the threshold is 2.0 ratio for detecting degradation and 0.5 ratio for detecting
optimization, i.e. the threshold is two times speed-up or speed-down)

• Detects: Ratio changes; Optimization and Degradation

• Confidence: None

• Limitations: None

The example of output generated by AAT method is as follows:

* 1eb3d6: Fix the degradation of search
| | * 7813e3: Implement new version of search
| > collected by complexity+regression_analysis for cmd: '$ mybin'
| > applying 'average_amount_threshold' method
| - Optimization at SLList_search(SLList*, int)
| from: 60677.98ms -> to: 135.29ms
|
* 7813e3: Implement new version of search
| | * 503885: Fix minor issues
| > collected by complexity+regression_analysis for cmd: '$ mybin'
| > applying 'average_amount_threshold' method
| - Degradation at SLList_search(SLList*, int)
| from: 156.48ms -> to: 60677.98ms
|
* 503885: Fix minor issues

In the output above, we detected the Optimization between commits 1eb3d6 (target) and 7813e3 (baseline), where
the average amount of running time for SLList_search function changed from about six seconds to hundred milisec-
onds. For these detected changes we report no confidence at all.

8.2.3 Exclusive Time Outliers

Detection method that is based on finding outliers in deltas of function exclusive (self) times (i.e., function duration
without the duration of its callee functions). The exclusive time outliers method does not expect any pre-computed
models and works on profiles generated by the Tracer collector.

We use three different methods for detecting the outliers:

1. Modified z-score

2. IQR multiple

3. Standard deviation multiple

164 Chapter 8. Detecting Performance Changes

Perun Documentation, Release 0.21.6

The outliers identified by the mod. z-score are regarded as Severe Optimization or Severe Degradation changes
due to them being very distant from the expected values.

The outliers identified by the IQR multiple are regarded as ordinary Degradation or Optimization.

The outliers found by the stddev multiple are rather insignificant, thus we report them as only Maybe Degradation
or Maybe Optimization.

This method utilizes two configuration values from the perun config:

• degradation.location_filter: regex used to filter the checked locations (binaries),

• degradation.cutoff : float value that defines the cut-off threshold for relative degradation rate (total location
exclusive time delta in %)

Note that this method has certain limitations that stem from the usage of outliers. It might not work properly with
certain distributions of delta values. However, we always report the Total Degradation or Total Optimization,
thus even in such cases, the user is informed about the total change and may utilize other, more suitable, detection
method (e.g., the Average Amount Threshold).

• Detects: Exclusive time changes; Optimization and Degradation.

• Confidence: IQR multiple for severe and ordinary changes and StdDev multiple for potential changes.

• Limitations: Profiles collected by Trace Collector.

An example of the ETO method output

Python 3.11.0a7

...
at _ctypes.cpython-31:
136.92ms (9.19%): time Total Degradation base: 1353.431 targ: 1490.351
(with confidence N/A = 0.0)

at _ctypes_callproc:
2.84ms (0.19%): time Degradation base: 589.177 targ: 592.02
(with confidence IQR multiple = 5.48)

at _ctypes_get_fielddesc:
52.9ms (3.55%): time Severe Degradation base: 76.473 targ: 129.378
(with confidence IQR multiple = 110.46)

at _ctypes_init_fielddesc:
77.95ms (5.23%): time Not in Baseline base: 0.0 targ: 77.953
(with confidence IQR multiple = 162.98)

...

10 changes | +--
optimization(+), 3 degradations(-)

In the example above, we detected a Severe Degradation in function _ctypes_get_fielddesc compared to the
previous version profile (v3.10.4). The absolute exclusive time difference is 52.9ms (from 76.473ms to 129.378ms)
and the relative difference of 3.55% represents the overall slowdown of the program (in this case, the CPython ctypes
library). The confidence is reported as the IQR multiple of 110.46.

8.2. Detection Methods 165

Perun Documentation, Release 0.21.6

8.2.4 Fast Check

The module contains the method for detection with using regression analysis.

This module contains method for classification the perfomance change between two profiles according to computed
metrics and models from these profiles, based on the regression analysis.

8.2.5 Linear Regression

The module contains the method for detection with using linear regression.

This module contains method for classification the perfomance change between two profiles according to computed
metrics and models from these profiles, based on the linear regression.

8.2.6 Polynomial Regression

The module contains the method for detection with using polynomial regression.

This module contains method for classification the perfomance change between two profiles according to computed
metrics and models from these profiles, based on the polynomial regression.

8.3 Configuring Degradation Detection

We apply concrete methods of performance change detection to concrete pairs of profiles according to the specified
rules based on profile collection configuration. By configuration we mean the tuple of (command, arguments, workload,
collector, postprocessors) which represent how the data were collected for the given minor version. This way for each
new version of project, it is meaningful to collect new data using the same config and then compare the results. The
actual rules are specified in configuration files by degradation.strategies. The strategies are specified as an
ordered list, and all of the applicable rules are collected through all of the configurations (starting from the runtime
configuration, through local ones, up to the global configuration). This yields a list of rules (each rule represented as
key-value dictionary) ordered by the priority of their application. So for each pair of tested profiles, we iterate through
this ordered list and find either the first that is applicable according to the set rules (by setting the degradation.apply
key to value first) or all applicable rules (by setting the degradation.apply key to value all).

The example of configuration snippet that sets rules and strategies for one project can be as follows:

degradation:
apply: first
strategies:

- type: mixed
postprocessor: regression_analysis
method: bmoe

- cmd: mybin
type: memory
method: bmoe

- method: aat

The following list of strategies will first try to apply the Best Model Order Equality method to either mixed profiles
postprocessed by Regression Analysis or to memory profiles collected from command mybin. All of the other profiles
will be checked using Average Amount Threshold. Note that applied methods can either be specified by their full name
or using the short strings by taking the first letters of each word of the name of the method, so e.g. BMOE stands for
Best Model Order Equality.

166 Chapter 8. Detecting Performance Changes

Perun Documentation, Release 0.21.6

8.4 Create Your Own Degradation Checker

New performance change checkers can be registered within Perun in several steps. The checkers have just small re-
quirements and have to yield the reports about degradation as a instances of DegradationInfo objects specified as
follows:

class perun.utils.structs.DegradationInfo(res: PerformanceChange, loc: str, fb: str, tt: str, t: str = '-',
rd: float = 0, ct: str = 'no', cr: float = 0, pi:
list[tuple[PerformanceChange, float, float, float]] | None =
None, rdr: float = 0.0)

The returned results for performance check methods

Variables

• result (PerformanceChange) – result of the performance change, either can be optimiza-
tion, degradation, no change, or certain type of unknown

• type (str) – string representing the type of the degradation, e.g. “order” degradation

• location (str) – location, where the degradation has happened

• from_baseline (str) – value or model representing the baseline, i.e. from which the new
version was optimized or degraded

• to_target (str) – value or model representing the target, i.e. to which the new version
was optimized or degraded

• confidence_type (str) – type of the confidence we have in the detected degradation, e.g.
r^2

• confidence_rate (float) – value of the confidence we have in the detected degradation

• rate_degradation_relative (float) – relative rate of the degradation

to_storage_record()→ str
Transforms the degradation info to a storage_record

Returns
string representation of the degradation as a stored record in the file

You can register your new performance change checker as follows:

1. Run perun utils create check my_degradation_checker to generate a new modules in
perun/check directory with the following structure. The command takes a predefined templates
for new degradation checkers and creates my_degradation_checker.py according to the supplied
command line arguments (see Utility Commands for more information about interface of perun
utils create command):

/perun
|-- /check

|-- __init__.py
|-- average_amount_threshold.py
|-- my_degradation_checker.py

2. Implement the my_degradation_checker.py file, including the module docstring with brief de-
scription of the change check with the following structure:

1 """..."""
2

(continues on next page)

8.4. Create Your Own Degradation Checker 167

Perun Documentation, Release 0.21.6

(continued from previous page)

3 from perun.utils.structs import DegradationInfo
4

5

6 def my_degradation_checker(baseline_profile, target_profile):
7 """..."""
8 yield DegradationInfo("...")

3. Next, in the __init__.py module register the short string for your new method as follows:

1 --- /mnt/e/phdwork/perun/perun/docs/_static/templates/degradation_init.
→˓py

2 +++ /mnt/e/phdwork/perun/perun/docs/_static/templates/degradation_init_
→˓new_check.py

3 @@ -3,6 +3,7 @@
4 short_strings = {
5 "aat": "average_amount_threshold",
6 "bmoe": "best_model_order_equality",
7 + "mdc": "my_degradation_checker",
8 }
9 if strategy in short_strings.keys():

10 return short_strings[strategy]

4. Preferably, verify that registering did not break anything in the Perun and if you are not using devel-
oper instalation, then reinstall Perun:

make test
make install

5. At this point you can start using your check using perun check head, perun check all or perun
check profiles.

6. If you think your collector could help others, please, consider making Pull Request.

8.5 Degradation CLI

Command Line Interface contains group of two commands for running the checks in the current project—perun check
head (for running the check for one minor version of the project; e.g. the current head) and perun check all for
iterative application of the degradation check for all minor versions of the project. The first command is mostly meant
to run as a hook after each new commit (obviously after successfull run o f``perun run matrix`` generating the new
batch of profiles), while the latter is meant to be used for new projects, after crawling through the whole history of the
project and collecting the profiles. Additionally perun check profiles can be used for an isolate comparison of
two standalone profiles (either registered in index or as a standalone file).

168 Chapter 8. Detecting Performance Changes

https://github.com/tfiedor/perun/pull/new/develop

Perun Documentation, Release 0.21.6

8.5.1 perun check head

Checks for changes in performance between between specified minor version (or current head) and its predecessor
minor versions.

The command iterates over all of the registered profiles of the specified minor version (target; e.g. the head), and tries
to find the nearest predecessor minor version (baseline), where the profile with the same configuration as the tested
target profile exists. When it finds such a pair, it runs the check according to the strategies set in the configuration (see
Configuring Degradation Detection or Perun Configuration files).

By default the hash corresponds to the head of the current project.

perun check head [OPTIONS] <hash>

Arguments

<hash>

Optional argument

8.5.2 perun check all

Checks for changes in performance for the specified interval of version history.

The commands crawls through the whole history of project versions starting from the specified <hash> and for all of
the registered profiles (corresponding to some target minor version) tries to find a suitable predecessor profile (corre-
sponding to some baseline minor version) and runs the performance check according to the set of strategies set in the
configuration (see Configuring Degradation Detection or Perun Configuration files).

perun check all [OPTIONS] <hash>

Arguments

<hash>

Optional argument

8.5.3 perun check profiles

Checks for changes in performance between two profiles.

The command checks for the changes between two isolate profiles, that can be stored in pending profiles, registered in
index, or be simply stored in filesystem. Then for the pair of profiles <baseline> and <target> the command runs the
performance check according to the set of strategies set in the configuration (see Configuring Degradation Detection
or Perun Configuration files).

<baseline> and <target> profiles will be looked up in the following steps:

1. If profile is in form i@i (i.e, an index tag), then ith record registered in the minor version <hash> index will be
used.

2. If profile is in form i@p (i.e., an pending tag), then ith profile stored in .perun/jobs will be used.

3. Profile is looked-up within the minor version <hash> index for a match. In case the <profile> is registered there,
it will be used.

8.5. Degradation CLI 169

Perun Documentation, Release 0.21.6

4. Profile is looked-up within the .perun/jobs directory. In case there is a match, the found profile will be used.

5. Otherwise, the directory is walked for any match. Each found match is asked for confirmation by user.

perun check profiles [OPTIONS] <baseline> <target>

Options

-m, --minor <hash>

Will check the index of different minor version <hash> during the profile lookup.

Arguments

<baseline>

Required argument

<target>

Required argument

170 Chapter 8. Detecting Performance Changes

CHAPTER

NINE

PERFORMANCE FUZZ-TESTING

Unfortunately, in our experience, manually created test cases usually do not detect hidden performance bugs, because
they do not cover all cases of inputs. The performance testing of ones application heavily depends on input workloads.
So in order to have best set of input workloads, it is appropriate to adapt more advanced techniques of testing.

Fuzzing is a well-known testing technique used to find vulnerabilities in applications by sending garbled data as an input
and then monitoring the application for crashes. It has been shown that even just an aggressive random testing is
impressively effective at finding faults and has enjoyed great success at discovering security-critical bugs as well.
Using fuzz testing, developers and testers can ‘hack’ their systems to detect potential security threats before attackers
can. So why should not we use fuzzing to discover implementation faults affecting performance?

We noticed that, while there are many projects implementing fuzz testing technique, unfortunately, none of them allows
to add custom mutation strategies which could be more adapted for the target program and mainly for triggering per-
formance bugs. In Perun, we proposed a modification of fuzz testing unit that specializes for producing inputs greedy
for resources. We proposed new mutation strategies inspired by causes of performance bugs found in real projects. We
believe that combining performance versioning and fuzzing could raise the ratio of successfully found performance
bugs early in the process.

9.1 Overview

The underdeveloped field of performance fuzz testing has inspired us to explore this field more and extend the Perun tool
with fuzzing module that tries to find new workloads (or inputs) that will likely cause a change in program performance.
In particular, the fuzzing mode of Perun offers:

1. New mutation rules: We devised new rules designed to affect performance. Our group of rules is general, and
does not focus on the only one type of potential performance problem and tackles several types of input files and
their associated performance issues.

2. Classic rules: The existing fuzzers proposed so called classical rules, and they have achieved great success in
past, therefore we adapt the classic generally used mutation rules to our collection of rules as well.

3. Perun-based evaluation: We select inputs for mutation mainly according to the Perun results, instead of using
classical evaluation criteria.

4. Heuristics based on coverage testing: The fuzzing is in general a brute-force technique, and so we do not want
to test with Perun every workload, since Perun adds considerable overhead for each testing. We implement a
heuristic, that first tests the coverage of the code to quickly filter out completely uninteresting workloads before
evaluating them by Perun.

5. Interpretation of mutated workloads: We believe that after the fuzz testing, testers primarily want to know
what workloads are making the troubles to application and how they differ from the original files. We propose
a simple technique for visualizing the results of the fuzzing by showing the differences between input seeds and
their resulting mutations.

171

Perun Documentation, Release 0.21.6

6. Interpretation of the fuzzing process: Additionally to visualization of inferred workload, we also provide
several graphs that illustrates the illustrates the fuzzing process itself. This allows developers to tune out regular
fuzzing testings to achieve best results in best possible time.

Perun-runnersPerun-runnersPerun-fuzzPerun-fuzz

RU
NN
ERS

c1 p1 pn

Collection Postprocessing Change Detection

Mutations Runnable Profile Postprocessed Profile Performance Changes

Fuzzing

y = b1f(x) + b0

Models

Phase

Result

Phase

Result

Development

Seed Workloads

Working DirectoryWorking Directory

ORA
CLE

c1 p1 pn y = b1f(x) + b0

Models

RU
NN
ERS

10
11
11

@@ -2,29 +2,37 @@
 the quick brown fox
- jumps over the lazy doge
+jumps the lazy doge

@@ -2,29 +2,37 @@
 the quick brown fox
- jumps over the lazy doge
+jumps the lazy doge

10
11
11

@@ -2,29 +2,37 @@
 the quick brown fox
- jumps over the lazy doge
+jumps the lazy doge

10
11
12

file: my_awesome_poem.txt
 the quick brown fox
 jumps over the lazy doge
 the end.

10
11
12

file: my_awesome_poem.txt
 the quick brown fox
 jumps over the lazy doge
 the end.

Fuzzing LoopFuzzing Loop

Performance
Degradation

Performance
Optimization

No Change

(.git)(.git)

Our solution currently modifies input workload files (one of the most common format of program workload) based
on mutational approach. The feedback loop is extended with coverage information, for the purpose of increasing
the efficiency and chances to find the worst-case workloads and is used as initial test for finding possible time-consuming
workloads. After the initial evaluation we use Perun, to automatically detects performance changes based on the data
collected within the program runtime.

For different file types (or those of similar characteristics) we use different groups of mutation methods. Hence, we
apply domain-specific knowledge for certain types of files to trigger the performance change or find unique errors more
quickly.

Before the actual fuzzing loop, we first determine the performance baseline, i.e. the expected performance of the pro-
gram, to which future results (so called targets) will be compared. In initial testing we first measure code coverage
(number of executed lines of code) while executing each initial seed. The median of measured coverage data is then
considered as the baseline for coverage testing. Second, Perun is run to collected memory, time or trace resource
records with initial seeds resulting into baseline profiles (base_profile). Practically performance baseline profiles
describe the performance of the program on the given workload corpus. After the initial testing, the seeds in the corpus
are considered as parents for future mutations and rated by the evaluation function.

The fuzzing loop itself starts with choosing one individual file from corpus (initial seeds). This file is then transformed
into mutations. We first precollect the interesting mutations: those that increase the number of executed lines. We
argue that prefiltering the results with coverage based testing is fast and can yield satisfying results. In later step, we
combine these results with the performance check, which is on the other hand slower, but yields precise results

After precollecting the interesting workloads, we collect run-time resources (memory, trace, time) using Perun’s col-
lectors (see Collectors Overview), transforms them to so called target profiles and checks for performance changes by
comparing newly generated target profile with baseline performance profile (see Detecting Performance Changes for
more details about degradation checks). We repeat, that the intuition is, that running coverage testing is faster than
collecting performance data (since it introduces certain overhead) and collecting performance data only for possibly
newly covered paths could result into more interesting workloads. According to the number of gathered workloads we
adapt the coverage increase ratio, with an aim to either mitigate or tighten the condition for classification a workload
as an interesting one.

List of results of each testing iteration in the main loop contains successful mutations and the history of the used rules,
that led to their current form. Collection of interesting workloads is limited by two parameters: the current number
of program executions (specified by option --execs-limit) and the current number of collected files (specified by
--interesting-files-limit). The first limit guarantees that the loop will terminate. On the other hand, if it is set
to excessively high value, it would lead to a long duration of this phase, especially if the test program itself is used to
run for a longer time. The latter limit ensures the loop will end in reasonable time and collects reasonable number of
workloads. The combination of these limits ensures termination in reasonable time.

Note, that we can collect line coverage only in the presence of source files. In case we are supplied only with binary or
script, we skip the first (and fast) testing phase and only checks for possible performance changes.

172 Chapter 9. Performance Fuzz-testing

Perun Documentation, Release 0.21.6

9.2 Mutation Strategies

In general, the goal of mutational strategies is to randomly modify a workload to create a new one. We propose a series
of rules inspired by both existing performance bugs found in real projects, and general knowledge about used data
structures, sorting algorithms, or regular expressions.

Both the types of workloads and the rules for their modification are divided into several groups: text, binary and domain
specific. In particular, we currently support domain-specific rules for XML format based files. We identify each rule
with its own label name (T stands for text, B for binary and D for domain-specific), with a brief description of what
it concentrates on and the demonstration result of its application on some sample data. In case the rule is inspired by
concrete bug found in real application, we list the link to the report. Collects fuzzing rules specific for text files.

perun.fuzz.methods.textfile.change_character()

Rule T.4: Change random character.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “the quack brown [b]ox jumps over the lazy dog”

• Description: Adaptation of classical rule for text files. Changes a random character at random line to
different character.

• Known Issues: none

perun.fuzz.methods.textfile.delete_character()

Rule T.15: remove a random character.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “the quck brown fox jumps over the lazy dog”

• Description: Removes a random character in random word in random line.

• Known Issues: none

perun.fuzz.methods.textfile.divide_line()

Rule T.3: Divide line.

• Input: “<author>Gambardella, Matthew</author>”

• Mutation: “<author>Gambardella, Matthew</au”, “thor>”

• Description: Divides a line by inserting newline character in random position.

• Known Issues: none

perun.fuzz.methods.textfile.double_line()

Rule T.1: Double the size of a line.

• Input: “The quick brown fox.”

• Mutation: “The quick brown fox.The quick brown fox.”

• Description: This rule focuses on possible performance issues associated with long lines appearing in files.
The rule doubles the selected random line in the input.

• Known Issues:

1. gedit text editor (issue with too long lines)

2. Poorly validated regexps (issue with lengthy backtracking)

9.2. Mutation Strategies 173

https://wiki.gnome.org/Apps/Gedit

Perun Documentation, Release 0.21.6

perun.fuzz.methods.textfile.duplicate_line()

Rule T.2: Duplicate a line.

• Input: “The quick brown fox.”

• Mutation: “The quick brown fox.”, “The quick brown fox.”

• Description: Extends the file vertically, by duplicating random line in the file.

• Known Issues: none

perun.fuzz.methods.textfile.delete_line()

Rule T.13: Remove random line.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “”

• Description: Removes random line.

• Known Issues:

perun.fuzz.methods.textfile.append_whitespace()

Rule T.8: Append whitespaces.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “the quick brown fox jumps over the lazy dog[]”

• Description: The rule appends random number of whitespaces at random line.

• Known Issues: none

perun.fuzz.methods.textfile.insert_whitespace()

Rule T.10: Insert whitespaces on a random place.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “The quick bro[]wn fox jumps over the lazy dog”

• Description: The rule inserts random number of whitespaces at random place in the random line. There
are several intuitions behind this rule: (1) some trimming regular expressions can induce the excessive
number of backtracking, and (2) some structures, such as hash tables, can have bad properties and lead to
a singly-linked list when induced with lots of words (e.g. when one chooses wrong size of the table or bad
hash-function.

• Known Issues: none

perun.fuzz.methods.textfile.prepend_whitespace()

Rule T.9: Prepend whitespaces.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “[]The quick brown fox jumps over the lazy dog”

• Description: The rule prepends random number of whitespaces at random line.

• Known Issues:

1. StackOverflow regular expression with quadratic number of backtrackings.

perun.fuzz.methods.textfile.repeat_whitespace()

Rule T.11: Repeat whitespaces.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “The quick brown[] fox jumps over the lazy dog”

174 Chapter 9. Performance Fuzz-testing

https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

Perun Documentation, Release 0.21.6

• Description: The rule repeats random number of whitespaces at random place in the random line. There
intuition behind this rule is that some trimming regular expressions can induce the excessive number of
backtracking.

• Known Issues: none

perun.fuzz.methods.textfile.bloat_words()

Rule T.12: Remove whitespaces.

• Input: “The quick brown fox.”

• Mutation: “The quickbrown fox.”

• Description: Removes whitespace from a random line. The intuition is to create a bigger words that might
bloat the underlying structures.

• Known Issues: none

perun.fuzz.methods.textfile.repeat_word()

Rule T.5: Repeat random word of a line.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “the quick brown [brown] fox jumps over the lazy dog”

• Description: The rule picks a random word in random line and repeats it several times. The intuition is,
that there e.g. exist certain vulnerabilities, when repeated occurrences of words can either lead to faster (e.g.
when the word is cached) or slower time (e.g. when in hash-table the underlying structure is degradated to
list). Moreover, some algorithms, such as quick sort are forced to worst-case, when all elements are same.

• Known Issues: none

perun.fuzz.methods.textfile.delete_word()

Rule T.14: Remove random word

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “the brown fox jumps over the lazy dog”

• Description: Removes random word in random line.

• Known Issues: none

perun.fuzz.methods.textfile.sort_line()

Rule T.6: Sort words or numbers of a line.

• Input: “The quick brown fox.”

• Mutation: “brown fox quick The.

• Description: The intuition of this rule is to force bad behaviour, e.g. to sorting algorithm, that in some
cases perform worse for sorted output, or to balanced trees, which might be unbalanced for sorted values.

• Known Issues: none

perun.fuzz.methods.textfile.sort_line_in_reverse()

Rule T.7: Sort words or numbers of a line in reverse.

• Input: “The quick brown fox.”

• Mutation: “brown fox quick The.

• Description: The intuition of this rule is to force bad behaviour, e.g. to sorting algorithm, that in some
cases perform worse for sorted output, or to balanced trees, which might be unbalanced for sorted values.

• Known Issues: none

9.2. Mutation Strategies 175

Perun Documentation, Release 0.21.6

In case of binary files we cannot apply specific domain knowledge nor can we be inspired by existing performance
issues. Instead, we mostly adapt the classical fuzzing rules.

perun.fuzz.methods.binary.insert_byte()

Rule B.3: Insert random byte.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “the qui#ck brown fox jumps over the lazy dog”

• Description: Implementation of classical fuzzing rule.

• Known Issues: none

perun.fuzz.methods.binary.remove_byte()

Rule B.4: Remove random byte.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “the quik brown fox jumps over the lazy dog”

• Description: Implementation of classical fuzzing rule.

• Known Issues: none

perun.fuzz.methods.binary.swap_byte()

Rule B.5: Swap random bytes.

• Input: “the quick brown fox jumps over the lazy dog”

• Mutation: “the quock brown fix jumps over the lazy dog”

• Description: Implementation of classical fuzzing rule. Picks two random lines and two random bytes in
the line and swaps them.

• Known Issues: none

perun.fuzz.methods.binary.insert_zero_byte()

Rule B.2: Insert random zero byte.

• Input: This is C string. You are gonna love it.

• Mutation: This is string.```` You are gonna love it.

• Description: The rule inserts random zero byte \ in the string. The intuition is to target the C language
application, that process the strings as zero-terminated string of bytes.

• Known Issues: none

perun.fuzz.methods.binary.remove_zero_byte()

Rule B.1: Remove random zero byte

• Input: This is C string.You are gonna love it.

• Mutation: This is string. You are gonna love it.

• Description: The rule removes random zero byte \ in the string. The intuition is to target the C language
application, that process the strings as zero-terminated string of bytes. Removing the zero byte could lead
to program non-termination, or at least crashing when reading the whole memory.

• Known Issues: none

perun.fuzz.methods.binary.flip_bit()

Rule B.6: Flip random bit.

• Input: “the quick brown fox jumps over the lazy dog”

176 Chapter 9. Performance Fuzz-testing

Perun Documentation, Release 0.21.6

• Mutation: “the quack brown fox jumps over the lazy dog”

• Description: Implementation of classical fuzzing rule.

• Known Issues: none

Exploiting more domain-specific knowledge about the workload we devised specific rules for concrete formats. We
propose rules for removing tags, attributes, names or values of attributes used in XML based files (i.e. . xml, .
svg, .xhtml, .xul). For example, we can assume a situation, when fuzzer removes closing tag, which will increase
the nesting. Then a recursively implemented parser will fail to find one or more of closing brackets (representing
recursion stop condition) and may hit a stack overflow error.

perun.fuzz.methods.xml.remove_attribute_value()

Rule D.3: Removed attribute value.

• Input: <book id=”bk106” pages=”457”>

• Mutation: <book id=”bk106” pages=””>

• Description: Removes random value of the attribute in the random line and tag.

• Known Issues: none

perun.fuzz.methods.xml.remove_attribute_name()

Rule D.2: Remove attribute name.

• Input: <book id=”bk106” pages=”457”>

• Mutation: <book id=”bk106” “457”>

• Description: Removes name of the attribute in random tag in the random line.

• Known Issues: none

perun.fuzz.methods.xml.remove_attribute()

Rule D.1: Remove an attribute.

• Input: <book id=”bk106” pages=”457”>

• Mutation: <book id=”bk106”>

• Description: Selects random tag and removes a random attribute.

• Known Issues: none

perun.fuzz.methods.xml.remove_tag()

Rule D.4: Remove tag.

• Input: <book id=”bk106” pages=”457”>

• Mutation:

• Description: Removes a random tag.

• Known Issues: none

We further offer the possibility of adding custom rules. For adding the rules to a mutation strategy set, you can launch
the fuzzer with a special file in YAML file format containing the description of applied rules using the --regex-rules
option. Each rule is represented as an associative array in a form key: value, where both are regular expressions but
key is a pattern which should be replaced, and value* is the replacement.

Back: Front
del: add
remove: create

(continues on next page)

9.2. Mutation Strategies 177

Perun Documentation, Release 0.21.6

(continued from previous page)

([0-9]{6}),([0-9]{2}): \\1.\\2
(\\w+)=(\\w+): \\2=\\1

Additionally, one can extend the existing rules by modifying files binary.py, textfile.py or xml.py in the methods
package. Further, it is necessary to modify the script filetype.py, which is responsible for selecting the rules. To
add, for example, specific rules for JSON file type, one just has to create a new script, e.g. json.py, and modify
the rules selection. Note that every rule should contain a brief description, which will be displayed after fuzzing.

9.3 Passing Input Sample

Workloads can be passed to fuzzer as an arbitrary mix of files or directories using the --input-sample option. Di-
rectories are then iteratively walked for all files with reading permissions. Optionally files can be filtered using option
--workloads-filter: a user specified regular expression that file names must match. E.g one can fuzz with XML
files by setting expression --workloads-filter="^.*.xml$". Or if one wants to skip all the files with the name
containing string “error” one can use --workloads-filter="^((?!error).)*$". Note that the fuzzer should al-
ways be launched with just one type of initial files even if the target application supports more types, since we tune
the rules according to workload file format.

9.4 Selecting Mutation Methods

We select corresponding mutation strategies based on the first loaded workload file. Basically, if the file is a binary, all
the rules specific to binaries are added to the set of rules, otherwise we add all the basic text rules. We further analyse
the mime type of a file and if it is supported by the fuzzer, we add to the set of rules mime-specific rules as well as any
user-defined rules.

We argue the advantage of fuzzing with one file type rests in its code covering feature. To be more precise, we are not
observing at the overall percentage of code coverage, but how many lines of code has been executed in total during
the run, with an aim to maximise it. Consider an application that extracts meta-data from different media files, such as
WAV, JPEG, PNG, etc. If a PNG image file is used as a seed to this application, only the parts related to PNG files will
be tested. Then testing with WAV will cause, that completely different parts of the program will be executed, hence
total executed code lines of these two runs cannot compare with each other because reaching higher line coverage with
WAV files would lead to preferring them for fuzzing, and PNG files would be neglected. Moreover, we are aware that
this strategy may miss some performance bugs. Fuzzing multiple mime-types is current feature work.

9.5 Initial Testing

The newly mutated results have to be compared against some expected behaviour, performance or value: so called
baseline results (i.e. results and measurements of workload corpus). Hence, initial seeds become test cases and they
are used to collect performance baselines. By default, our initial program testing (as well as testing within the fuzzing
loop) interleaves two phases described in more details below: coverage and performance-guided testing.

In perun-fuzz, we use gcov tool to measure the code coverage. Note that the program has to be build for cover-
age analysis with GNU Compiler Collection (GCC) with the option --coverage (or alternatively a pair of options
-fprofile-arcs -ftest-coverage). The resulting file with the extension .gcno then contains the information
about basic block graphs and assigns source line numbers to blocks. If we execute the target application a separate
.gcda files are then created for each object file in the project. These files contain arc transition counts, value profile
counts, and additional summary information gcov.

178 Chapter 9. Performance Fuzz-testing

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Perun Documentation, Release 0.21.6

Total count of executed code lines through all source files represents the baseline coverage (and partly also a perfor-
mance) indicator. An increase of the value means that more instructions have been executed (for example, some loop
has been repeated more times) so we hope that performance degradation was likely triggered as well. Note that the lim-
itation of this approach is that it does not track uniquely covered paths, which could trigger performance change as
well. Support of more precise coverage metrics is a future work.

First the target program is executed with all workloads from corpus. After each execution, .gcda files are filled with
coverage information, which Gcov tool parses and generates output files. We parse coverage data from the output .
gcov file, sum up line executions, compare with the current maximum, update the maximum if new coverage is greater
and iterate again. It follows that base coverage is the maximum count of executed lines reached during testing with
seeds.

While coverage-based testing within fuzzing can give us fast feedback, it does not serve as an accurate performance
indicator. We hence want to exploit results from Perun. We run the target application with a given workload, collect
performance data about the run (such as runtime or consumed memory) and store them as a persistent profile (i.e. the set
of performance records). Again, we will need a performance baseline, which will be compared with newly generated
mutations. Profiles measured on fuzzed workloads (so called target profiles) are then compared with a profile describing
the performance of the program on the initial corpus (so calledbaseline profiles). In order to compare the pair of baseline
and target profiles, we use sets of calculated regression models, which represents the performance using mathematical
functions computed by the least-squares method. We then use the Perun internal degradation methods (see Detecting
Performance Changes.

9.6 Evaluation of Mutations

Initially, the workload corpus is filled with seeds (given by user), which will be parents to newly generated mutations
(we can also call these seeds parent workloads). In the main loop, we extend this corpus with successful mutations
which in retrospect become parent workloads too. The success of every workload is represented by the fitness score:
a numeric value indicating workload’s point rating. The better rating of workload leads either to better code coverage
(and possibly new explored paths or iterations) or to newly found performance changes. We calculate the total score
by the following evaluation function:

𝑠𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑖𝑐𝑜𝑣𝑟workload * (1 + 𝑝𝑐𝑟workload).

Increase coverage rate (icovr): This value indicates how much coverage will change if we run the program with
the workload, compared to the base coverage measured for initial corpus. Basically, it is a ratio between coverage
measured with the mutated workload and the base coverage:

𝑖𝑐𝑜𝑣𝑟workload = 𝑐𝑜𝑣workload/𝑐𝑜𝑣base.

Performance change rate (pcr): In general, we compare the newly created profile with the baseline profile and the re-
sult is a list of located performance changes (namely degradations, optimisations and no changes). Performance change
rate is then computed as ratio number of degradations in the result list:

𝑝𝑐𝑟workload = cnt(𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛, 𝑟𝑒𝑠𝑢𝑙𝑡)/len(𝑟𝑒𝑠𝑢𝑙𝑡)

This value plays a large role in the overall ranking of workload, because it is based on the real data collected from
the run. And so workloads that report performance degradations and not just increases coverage have better ranking.
The computation of 𝑝𝑐𝑟workload could further be extended by the rate of degradations, i.e. if two workloads found
the same number of degradations, the workload which contains more serious change would be ranked better. Optimi-
sations of ranking algorithm is another future work. This evaluation serves for informed candidate selection for fuzzing
from the parents.

9.6. Evaluation of Mutations 179

Perun Documentation, Release 0.21.6

9.7 Fuzzing Loop

We can catch SIGINT signal to terminate the fuzzing when one decides to quit earlier. Fuzz unit of Perun catches this
signal, however, other Perun units (collectors, postprocessors) have not implemented handlers for interruption signal,
hence it is not recommended to interrupt during performance testing, but only in the coverage-guided testing phase. In
the following, we will describe selected aspects of the main loop of the whole fuzzing process.

At the beginning of every iteration we first select the workloads from parents which will be further mutated. All parents
are kept sorted by their scores, and the selection for mutation consists of dividing the seeds into five intervals such that
the seeds with similar value are grouped together. In our experience, five intervals seem to be appropriate because with
fewer intervals parents are in too big and inappropriate groups and in the case of more intervals, parents with similar
score are pointlessly scattered.

First, we assign a weight to each interval using linear distribution. Then we perform a weighted random choice of
interval. Finally, we randomly choose a parent from this interval, whereas differences between parent’s scores in
the same interval are not very notable. The intuition behind this strategy is to select the workload for mutation from
the best rated parents. From our experience, selecting only the best rated parent in every iteration does not lead to a
better results, and other parents are naturally ignored. Hence we do selection from all the parents, but the parent with
better score has a greater chance to be selected.

w	=	1 w	=	2 w	=	3 w	=	4 w	=	5

weighted interval selection

0 fitness
scoreparent input

randomly chosen parent from selected interval

In each iteration of fuzzing we generate new workloads. However, we first determine how many new mutation (𝑁) to
generate by rule 𝑓 in the current iteration of fuzzing loop. If 𝑁 is too big and we generate mutations for each rule 𝑓
from the set of rules, the corpus will bloat. On the other hand, if 𝑁 is too low, we might not trigger any change at all,
as we will not prefer successful rules more. Instead we propose to dynamically calculate the value of 𝑁 according to
the statistics of fuzzing rules during the process. Statistical value of rule 𝑓 is a function:

𝑠𝑡𝑎𝑡𝑠𝑓 = (𝑑𝑒𝑔𝑠𝑓 + 𝑖𝑐𝑜𝑣𝑟𝑓)

where 𝑑𝑒𝑔𝑠𝑓 represents the number of detected degradations by applying the rule 𝑓 , and 𝑖𝑐𝑜𝑣𝑟𝑓 stands for how many
times the coverage was increased by applying rule 𝑓 . Fuzzer then calculates the number of new mutations for every
rule to be applied in four possible ways using --mutations-per-rule option:

1. --mutations-per-rule=unitary. The case when 𝑁 = 1, the fuzzer will generate one mutation per each
rule. This is a simple heuristic without the usage of statistical data and where all the rules are equivalent.

2. --mutations-per-rule=proportional. The case when 𝑁 = 𝑚𝑖𝑛(𝑠𝑡𝑎𝑡𝑠𝑓 + 1, 𝐹𝐿𝑃𝑅), the fuzzer will
generate mutations proportionally to the statistical value of function (i.e. 𝑠𝑡𝑎𝑡𝑠𝑓). More mutation workloads are
generated for more successful rules. In case the rule 𝑓 has not caused any change in coverage or performance
(i.e. 𝑠𝑡𝑎𝑡𝑓 = 0) yet, the function will ensure the same result as in the first strategy. File Limit Per Rule (FLPR)
serves to limit the maximum number of created mutations per rule and is set to value 100.

180 Chapter 9. Performance Fuzz-testing

Perun Documentation, Release 0.21.6

3. --mutations-per-rule=probabilistic. Heuristic that depends on the total number of degradation or cov-
erage increases (𝑡𝑜𝑡𝑎𝑙). The ratio between 𝑠𝑡𝑎𝑡𝑠𝑓 and 𝑡𝑜𝑡𝑎𝑙 determines the probability 𝑝𝑟𝑜𝑏𝑓 , i.e. the probability
whether the rule 𝑓 should be applied, as follows:

𝑝𝑟𝑜𝑏𝑓 =

⎧⎪⎨⎪⎩
1 if 𝑡𝑜𝑡𝑎𝑙 = 0

0.1 if 𝑠𝑡𝑎𝑡𝑠𝑓/𝑡𝑜𝑡𝑎𝑙 < 0.1

𝑠𝑡𝑎𝑡𝑠𝑓/𝑡𝑜𝑡𝑎𝑙 otherwise

and we choose 𝑁 as:

𝑁 =

{︃
1 if 𝑟𝑎𝑛𝑑𝑜𝑚 <= 𝑝𝑟𝑜𝑏𝑓

0 otherwise

Until some change in coverage or performance occurs, (i.e. while 𝑡𝑜𝑡𝑎𝑙 = 0), one new workload is generated
by each rule. After some iterations, more successful rules have higher probability, and so they are applied more
often. On contrary rules with a poor ratio will be highly ignored. However, since they still may trigger some
changes we round them to the probability of 10%.

4. --mutations-per-rule=mixed. The last heuristic is a modified third strategy combined with the second one.
When the probability is high enough that the rule should be applied, the amount of generated workloads is
appropriate to the statistical value. Probability 𝑝𝑟𝑜𝑏𝑓 is calculated equally, but the equation for choosing 𝑁 is
modified to:

𝑁 =

{︃
𝑚𝑖𝑛(𝑠𝑡𝑎𝑡𝑠𝑓 + 1, 𝐹𝐿𝑃𝑅) if 𝑟𝑎𝑛𝑑𝑜𝑚 <= 𝑝𝑟𝑜𝑏𝑓

0 otherwise

Our fuzzer uses by default the last heuristic, --mutations-per-rule=mixed, because in our experience it guaran-
tees that it will generate enough new workloads each iteration and will as well filter out unsuccessful rules without
totally discarding them. In case that target program is prone to workload change and the user wants better interleaving
of testing phases, it is recommended to use the third method (--mutations-per-rule=probabilistic) because
the maximum number of all created mutations in one iteration is limited by the number of selected mutation rules.

The threshold for discarding mutations is multiple of base coverage, set to 1.5 by default. The threshold can be changed
by specifying the --coverage-increase-rate. A mutation is classified as an interesting workload in case two
criteria are met:

𝑐𝑜𝑣𝑚𝑢𝑡 > 𝑐𝑜𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝑐𝑜𝑣𝑚𝑢𝑡 > 𝑐𝑜𝑣𝑝𝑎𝑟𝑒𝑛𝑡

i.e. it has to exceed the given threshold and achieve a higher number of executed lines than its predecessor.

In addition, the constant which multiplies the base coverage (and thus determines the threshold) changes dynamically
during fuzzing. In case it is problematic to reach the specified coverage threshold, the value of the constant decreases
and thus gives more chance for further mutations to succeed. Vice versa, if the mutations have no problem to exceed
the threshold, the value of the constant is probably too low, and hence we increase it.

During the testing, fuzzed workload can cause that target program terminates with an error (e.g. SIGSEGV, SIGBUS,
SIGILL, . . .) or it can be terminated by timeout. Even though we are not primarily focused on faults, they can be
interesting for us as well because an incorrect internal program state can contain some degradation and in case of error,
handlers can also contain degradation.

9.7. Fuzzing Loop 181

Perun Documentation, Release 0.21.6

mutations

f1 fn

covm >= thr covm < thr

parent
workloads

final results

performance testing

deg

m1 mn

user
workloads

fuzzing

9.8 Interpretation of Fuzzing Results

The result of the fuzzing is illustrated by the following directory structure.

output_dir/
|--- diffs/
|--- medium_words-02000b239d024dbe933684b6c740512e-diff.html
|--- medium_words-389d4162ad6641d187dc405000b8d50a-diff.html
|--- medium_words-39b5d7aa55fd404aa4d31422c6513e2c-diff.html

|--- faults/
|--- medium_words-389d4162ad6641d187dc405000b8d50a.txt

(continues on next page)

182 Chapter 9. Performance Fuzz-testing

Perun Documentation, Release 0.21.6

(continued from previous page)

|--- graphs/
|--- coverage_ts.pdf
|--- degradations_ts.pdf

|--- hangs
|--- medium_words-39b5d7aa55fd404aa4d31422c6513e2c.txt

|--- logs
|--- coverage_plot_data.txt
|--- degradation_plot_data.txt
|--- results_data.txt

|--- medium_words-02000b239d024dbe933684b6c740512e.txt

The results will be saved to the directory specified by --output-dir option. The fuzzing generates three kinds of
mutations: those resulting into degradations (stored in output_dir), those resulting into errors or faults (stored in
output_dir/faults), and those terminated by timeout (stored in output_dir/hangs). The fuzzing alos generates
two time series graphs in output_dir/graphs), which will be described later. At last in output_dir/diffs are
stored differences between individual mutations and their parents.

The time series graphs show the number of found mutations causing degradation and the maximum recorded number
of lines executed per one run. From these graphs, one can e.g. read the time needed to achieve sufficient results and
estimate orientation time for future testing. In both graphs are denoted three statistically significant values: first quartile,
second quartile (median) and third quartile from the y-axis values. The intention is to illustrate at what point in time
we have achieved the individual portion of the result. The usage of time series graphs is meant to tune the properties
and options of the fuzzing process.

0 10 20 30 40 50 60 70
time (s)

0

20

40

60

80

de
gr

ad
at

io
ns

23

47

72

Fuzzing in time

9.8. Interpretation of Fuzzing Results 183

Perun Documentation, Release 0.21.6

0 100 200 300 400 500 600
time (s)

0

5

10

15

20

25

30
ex

ec
ut

ed
 li

ne
s r

at
io

6

19

26

Max path during fuzing

Besides visualisation, we create diff file for every output file. It shows the differences between files and the original
seed, from which the file was created by mutation. The file is in HTML format, and the differences are color-coded for
better orientation.

184 Chapter 9. Performance Fuzz-testing

CHAPTER

TEN

EXAMPLES

In the following we briefly explore several performance issues found in real projects and a group of regular expressions
that have been confirmed as harmful. All the tests ran on a reference machine Lenovo G580 using 4 cores processor
Intel Core i3-3110M with maximum frequency 2.40GHz, 4GiB memory, and Ubuntu 18.04.2 LTS operating system.

10.1 Regular Expression Denial of Service (ReDoS).

In this case study, we analysed artificial programs which use std::regex_search with regular expressions inspired
by existing reported ReDoS attacks (see e.g. redos). In nutshell, ReDoS is an attack based on algorithmic complexity
where regular expression are forced to take long time to evaluate, mostly because of backtracking algorithm, and leads
to the denial of service.

10.1.1 StackOverflow trim regex.

The first experiment focuses on the regular expression that caused an outage of StackOverflow in July, 2016. We
constructed an artificial program that reads every line and search for match with the regular expression. We used
simple source code in C performing parallel grep as an initial seed, written in 150 lines. With only two tests, we could
force the vulnerability, as we show in the Table.

size [B] runtime [s] executed LOC ratio lines whitespaces
𝑠𝑒𝑒𝑑 3535 0.096 1.00 150 306
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 5000 1.566 24.32 5 4881
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 10000 2.611 41.38 17 9603

The following shows the used mutation rules for each mutation:

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 [T.10, T.10, T.10, T.10]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 [T.10, T.10, T.10, T.10, T.10]

185

https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016

Perun Documentation, Release 0.21.6

10.1.2 Email validation regex.

This regular expression is part of the public RegExLib library and is marked as malicious and triggering ReDoS. We
constructed a program that takes an email address from a file and tries to find a match with this regular expression. As
an initial seed we used a file containing valid email address spse1po@gmail.com. We ran two tests, in the first case
with an email that must contain the same count of characters as the seed, and in the second case it can contain twice
the size.

size [B] runtime [s] executed LOC ratio
𝑠𝑒𝑒𝑑 18 0.016 1.00
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 18 0.176 70.83
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 25 10.098 4470.72
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2ℎ𝑎𝑛𝑔 36 >5 hours ∞

Two rules, namely removing random character and extending a size of line, were mostly encouraged in the generation
of the presented workloads.

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 [T.15, T.8, T.15, T.1]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 [T.15, T.15, T.1]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2ℎ𝑎𝑛𝑔 [T.15, T.15, T.1]

In the following we list the most greedy workloads from each testing and their content:

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1: spse1pogailcspse1p

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2: spse1poailcospse1poailco

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2ℎ𝑎𝑛𝑔: spse1poailcospse1poailcospse1poailco

10.1.3 Java Classname validation regex.

This vulnerable regular expression for validation of Java class names appeared in owasp Validation Regex Repository.
The testing program was similar to the previous one: ti reads a class name from a file and tries to find a match with
this regular expression. Initial file had one line with string myAwesomeClassName. To avoid the large lines, first we
set a size limit for mutations to the size of the initial seed (19 bytes), then to double and finally to quadruple of the size.

size [B] runtime [s] executed LOC ratio
𝑠𝑒𝑒𝑑 19 0.005 1.00
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 19 0.016 14.31
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 36 1.587 2383.99
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3 78 3.344 5056.67
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3ℎ𝑎𝑛𝑔 78 ∞ ∞

We detected two orders of magnitude degradation within run of program with the worst-case from the last test case
(𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3). The fuzzer generates and stores another 26 files that was classified as hangs. By additional testing
we found the 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3ℎ𝑎𝑛𝑔 workload which had enormous impact on program performance, and program did not
terminate even after 13 hours lasting run.

186 Chapter 10. Examples

http://regexlib.com/REDetails.aspx?regexp_id=1757
https://owasp.org/www-community/OWASP_Validation_Regex_Repository

Perun Documentation, Release 0.21.6

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 [T.8, T.15, T.8, T.15, T.15, T.1, T.12, T.8, T.1]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 [T.8, T.15, T.15, T.2, T.8, T.15]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3 [T.8, T.15, T.1, T.4, T.2]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3ℎ𝑎𝑛𝑔 [T.8, T.15, T.1, T.15, T.2]

In Table above, we list the rules in order they was applied on the initial seeds and created malicious workloads. Re-
moving characters together with data duplicating, appending whitespaces and other rules collaborated on generation
of the worst-case mutations for this case study.

We again list the content of generated mutations:

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1: mywesomelassamemywm

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2: mywesomelassamemywesomelassam

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3: ssammyAwesomelassammyAweiomelassaVmyAwes×melassammmyAwesome
lassammyAweomel

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3ℎ𝑎𝑛𝑔: laalaalaalaalaalaalaalaalaalaalaalaalaalaalaalaalaalaala
alaalaalaalaalaalaal

10.2 Hash Collisions

In other experiment we analysed a simple word frequency counting program, which uses hash table with a fixed number
of buckets (12289 exactly) and the maximum length of the word limited to 127. The distribution of the words in the table
is ensured by the hash function. It computes a hash, which is then used as an index to the table. Java 1.1 string library
used a hash function that only examined 8-9 evenly spaced characters, which then could result into collisions for long
strings. We have implemented this behaviour into an artificial program. The likely intention of the developers was
to save the function from going through the whole string if it is longer. Therefore, for fuzzing, we initially generated
a seed with 10000 words of 20 characters and started fuzzing. To compare the results we chose the DJB hash function,
as one of the most efficient hash functions.

size [kB] runtime [ms] LOC ratio runtime [ms]
𝑠𝑒𝑒𝑑 210 26 1.0 13 1.0
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 458 115 3.48 27 2.19
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 979 187 7.88 43 4.12

After only 10 minutes of fuzzing each test case was able to find interesting mutations. We then compared the run by
replacing the hash function in early Java version with DJB hash function, which computes hash from every character
of a string. Table shows, that worst-case workloads have much more impact on performance of the hash table and less
stable times using Java hash function, compared to DJB. With such a simple fuzz testing developers could avoid similar
implementation bugs.

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 [T.2, T.3, T.15, T.15, T.11, T.15]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 [T.2, T.3, T.4, T.15, T.9, T.4, T.2, T.3, T.15, T.15]

Above we show the sequence of mutation rules that transformed the seed into worst-case workloads. In this experiment
the rules that duplicates data (T.2), increases number of lines (T.3), changes and removes random characters (T.4 and
T.15) were the most frequent.

10.2. Hash Collisions 187

http://www.partow.net/programming/hashfunctions/#DJBHashFunction

Perun Documentation, Release 0.21.6

10.3 Fuzz-testing CLI

10.3.1 perun fuzz

Performs fuzzing for the specified command according to the initial sample of workload.

perun fuzz [OPTIONS]

Options

-b, --cmd <cmd>

Required The command which will be fuzzed.

-a, --args <args>

Arguments for the fuzzed command.

-w, --input-sample <input_sample>

Required Initial sample of workloads (the so called corpus).These will serve as initial workloads to evaluate the
baseline for performance testing.The parameter expects either paths to files (which will be directly added), or
paths to directories (which will be recursively searched).

-c, --collector <collector>

Collector that will be used to collect performance data and used to infer baseline or target performance profiles.
The profiles are further used for performance testing.

Options
trace | memory | time | complexity | bounds

-cp, --collector-params <collector_params>

Additional parameters for the <collector>: can be specified as a file in YAML format or as YAML string

-p, --postprocessor <postprocessor>

After each collection of performance data, the fuzzer can run <postprocessor> to postprocess the collected re-
sources (e.g. to create models of resources). This can be used for more thorough performance analysis.

Options
clusterizer | normalizer | regression-analysis | regressogram | moving-average | kernel-regression

-pp, --postprocessor-params <postprocessor_params>

Additional parameters for the <postprocessor>: can be specified as a file in YAML format or as YAML string

-m, --minor-version <minor_version_list>

Specifies the head minor version in the wrapped repository. The fuzzing will be performed for this particular
version of the project.

-wf, --workloads-filter <regexp>

Regular expression that will the filter input workloads/corpus. E.g. to restrict to certain filetypes, filenames or
subdirectories.

--skip-coverage-testing

If set to true, then the evaluation of mutations based on coverage testing will not be performed. The coverage
testing is a fast heuristic to filter out mutations that will probably not lead to severe real degradation. The testing
through perun is costly, though very precise.

188 Chapter 10. Examples

Perun Documentation, Release 0.21.6

-s, --source-path <path>

The path to the directory of the project source files.

-g, --gcno-path <path>

The path to the directory where .gcno files are stored.

-o, --output-dir <path>

Required The path to the directory where generated outputs will be stored.

-t, --timeout <float>

Time limit for fuzzing (in seconds). Default value is 1800s.

-h, --hang-timeout <float>

The time limit before the input is classified as a hang/timeout (in seconds). Default value is 10s.

-N, --max-size <int>

Absolute value of the maximum size of the generated mutation wrt parent corpus. The value will be adjusted wrt
to the maximal size of the workloads in corpus. Using this option, the maximal size of the generated mutation
will be set to max(size of the largest workload in corpus, <int>).

-mi, --max-size-increase <int>

Absolute value of the maximal increase in the size of the generated mutation wrt parent corpus. Using this option,
the maximal size of generated mutation will be set to (size of the largest corpus in workload + <INT>). Default
value is 1 000 000 B = 1MB.

-mp, --max-size-ratio <float>

Relative value of the maximal increase in the size of the generated mutation wrt parent corpus. Using this option,
the maximal size of generated mutation will be set to (size of the largest corpus in workload * <INT>). E.g. 1.5,
max size=largest workload size * 1.5

-e, --exec-limit <int>

The maximum number of fuzzing iteration while gathering interesting inputs. By interesting inputs we mean
files that might potentially lead to timeouts, hang or severe severe performance degradation.

-l, --interesting-files-limit <int>

The minimum number of gathered mutations, that are so called interesting, before perun testing is performed.
By interesting inputs we mean files that might potentially lead to timeouts, hang or severe severe performance
degradation.

-cr, --coverage-increase-rate <int>

The threshold of coverage increase against base coverage, which is used to evaluate, whether the generated
mutation is interesting for further evaluation by performance testing. E.g 1.5, base coverage = 100 000, so
threshold = 150 000.

-mpr, --mutations-per-rule <str>

Strategy which determines how many mutations will be generated by certain fuzzing rule in one iteration: unitary,
proportional, probabilistic, mixed

Options
unitary | proportional | probabilistic | mixed

-r, --regex-rules <file>

Option for adding custom fuzzing rules specified by regular expressions, written in YAML format file.

-np, --no-plotting

Will not plot the interpretation of the fuzzing in form of graphs.

10.3. Fuzz-testing CLI 189

Perun Documentation, Release 0.21.6

190 Chapter 10. Examples

CHAPTER

ELEVEN

PERUN CONFIGURATION FILES

Perun stores its configuration in Yaml format, either locally for each wrapped repository, or globally for the whole
system (see Configuration types). Most of the configuration options is recursively looked up in the hierarchy, created
by local and global configurations, until the option is found in the nearest configuration. Refer to List of Supported
Options for description of options, such as formatting strings for status and log outputs, specification of job matrix (in
more details described in Job Matrix Format) or information about wrapped repository.

In order to configure your local instance of Perun run the following:

perun config --edit

This will open the nearest local configuration in text editor (by default in vim) and lets you modify the options w.r.t.
Yaml format.

11.1 Configuration types

Perun uses two types of configurations: global and local. The global configuration contains options shared by all
of the Perun instances found on the host and the local configuration corresponds to concrete wrapped repositories
(which can, obviously, be of different type, with different projects and different profiling information). Both global
and local configurations have several options restricted only to their type (which is emphasized in the description of
individual option). The rest of the options can then be looked up either recursively (i.e. first we check the nearest
local perun instance, and traverse to higher instances until we find the searched option or eventually end up in the
global configuration) or gathered from all of the configurations from the whole configuration hierarchy (ordered by
the depth of the hierarchy, i.e. options found in global configuration will be on the bottom of the list). Options are
specified by configuration sections, subsections and then concrete options delimited by ., e.g. local.general.
editor corresponds to the editor option in the general section in local configuration.

The location of global configuration differs according to the host system. In UNIX systems, the global configuration
can be found at:

$HOME/.config/perun

In Windows systems it is located in user storage:

%USERPROFILE%\AppData\Local\perun

191

http://yaml.org/
http://yaml.org/

Perun Documentation, Release 0.21.6

11.2 List of Supported Options

vcs

[local-only] Section, which contains options corresponding to the version control system that is wrapped by
instance of Perun. Specifies e.g. the type (in order to call corresponding auxiliary functions), the location in the
filesystem or wrapper specific options (e.g. the lightweight custom tagit vcs constains additional options).

vcs.type

[local-only] Specifies the type of the wrapped version control system, in order to call corresponding auxiliary
functions. Currently git is supported, with custom lightweight vcs tagit in development.

vcs.url

[local-only] Specifies path to the wrapped version control system, either as an absolute or a relative path that
leads to the directory, where the root of the wrapped repository is (e.g. where .git is).

general

Section, which contains options and specifications potentially shared by more Perun instances. This section
contains e.g. underlying text editor for editing, or paging strategy etc.

general.paging

Sets the paging for perun log and perun status. Paging can be currently set to the following four options:
always (both log and status will be paged), only-log (only output of log will be paged), only-status
(only output of status will be paged and never. By default only-log is used in the configuration. The
behaviour of paging can be overwritten by option --no-pager (see Command Line Interface).

general.editor

[recursive] Sets user choice of text editor, that is e.g. used for manual text-editing of configuration files of
Perun. Specified editor needs to be executable, has to take the filename as an argument and will be called as
general.editor config.yml. By default editor is set to vim.

format

This section contains various formatting specifications e.g. formatting specifications for perun log and perun
status.

format.status

[recursive] Specifies the formatting string for the output of the perun status command. The formatting
string can contain raw delimiters and special tags, which are used to output concrete information about each
profile, like e.g. command it corresponds to, type of the profile, time of creation, etc. Refer to Customizing
Statuses for more information regarding the formatting strings for perun status.

E.g. the following formatting string:

| %type% | %cmd% | %workload% | %collector% | (%time%) |

will yield the following status when running perun status (both for stored and pending profiles):

===*
id | type | cmd | workload | args | collector | time |

===*
0@p | [mixed] | target | hello | | complexity | 2017-09-07 14:41:49 |
1@p | [time] | perun | | status | time | 2017-10-19 12:30:29 |
2@p | [time] | perun | | --help | time | 2017-10-19 12:30:31 |
===*

192 Chapter 11. Perun Configuration files

Perun Documentation, Release 0.21.6

format.shortlog

[recursive] Specifies the formatting string for the output of the short format of perun log command. The
formatting string can contain raw characters (delimiters, etc.) and special tags, which are used to output infor-
mation about concrete minor version (e.g. minor version description, number of assigned profiles, etc.). Refer
to Customizing Logs for more information regarding the formatting strings for perun log.

E.g. the following formatting string:

'%id:6% (%stats%) %desc%'

will yield the following output when running perun log --short:

minor (a|m|x|t profiles) info
53d35c (2|0|2|0 profiles) Add deleted jobs directory
07f2b4 (1|0|1|0 profiles) Add necessary files for perun to work on this repo.
bd3dc3 ---no--profiles--- root

format.output_profile_template

[recursive] Specifies the format for automatic generation of profile files (e.g. when running perun run job,
perun run matrix, perun collect or perun postprocessby. The formatting string consists either of raw
characters or special tags, that output information according to the resulting profile. By default the following
formatting string is set in the global configuration:

"%collector%-%cmd%-%args%-%workload%-%date%"

The supported tags are as follows:

%collector%:

Placeholder for the collection unit that collected the profiling data of the given profile. Refer to Sup-
ported Collectors for full list of supported collectors.

%postprocessors%:

Placeholder for list of postprocessors that were used on the given profile. The resulting string
consists of postprocessor names joined by -and- string, i.e. for example this will output string
normalizer-and-regression-analysis.

%<unit>.<param>%:

Placeholder for concrete value of <param> of one unit <unit> (either collector or postprocessor)

%cmd%:

Placeholder for the command that was profiled, i.e. some binary, script or command (refer to cmds
or Automating Runs for more details).

%args%:

Placeholder for arguments that were supplied to the profiled command (refer to args or Automating
Runs for more details).

%workload%:

Placeholder for workload that was supplied to the profiled command (refer to workloads or Automat-
ing Runs for more details).

%type%:

Placeholder for global type of the resources of the profile, i.e. memory, time, mixed, etc.

%date%:

11.2. List of Supported Options 193

Perun Documentation, Release 0.21.6

Placeholder for the time and date that the profile was generated in form of
YEAR-MONTH-DAY-HOUR-MINUTES-SECONDS.

%origin%:

Placeholder for the origin of the profile, i.e. the minor version identification for which the profiles
was generated and the profiling data was collected.

%counter%:

Placeholder for increasing counter (counting from 0) for one run of perun. Note that this may rewrite
existing profiles and is mostly meant to distinguish between profiles during one batch run of profile
generation (e.g. when perun run matrix is executed).

format.sort_profiles_by

[recursive] Specifies which key of the profile will be used for sorting the output of the perun
status commands. Can be one of the following attributes specified by the class attribute ProfileInfo.
valid_attributes:

ProfileInfo.valid_attributes: list[str] = ['realpath', 'type', 'time', 'cmd', 'args',
'workload', 'collector', 'checksum', 'source']

execute

Groups various list of commands, that can be executed before specific phases. Currently this contains only
pre_run phase, which is executed before any collection of the data. This is mainly meant to execute compiling
of the binaries and other stuff to ease the development. Note that these commands are executed without shell, but
any risks of commands executed by these commands fall entirely into the user hands and we have no responsibility
for them.

All of these list are as follows:

execute:
pre_run:
- echo "Running the code again"
- make
- make install

The list of commands above first outputs some text into the standard output, then it runs the makefile to compile
the collected binary and then installs it.

execute.pre_run

[local-only]] Runs the code before the collection of the data. This is meant to prepare the binaries and other
settings for the actual collection of the new data.

cmds

[local-only] Refer to cmds.

args

[local-only] Refer to args.

workloads

[local-only] Refer to workloads

collectors

[local-only] Refer to collectors

postprocessors

[local-only] Refer to postprocessors

194 Chapter 11. Perun Configuration files

Perun Documentation, Release 0.21.6

profiles

Groups various option specific for profiles, such as strategies for adding or generating profiles

profiles.register_after_run

If the key is set to a true value (can be 1, true, True, yes, etc.), then after newly generated profile (e.g. by running
perun run matrix) is automatically registered in the appropriate minor version index.

degradation

Speficies the list of strategies and how they are applied when checked for degradation in methods.

degradation.collect_before_check

[recursive] If set to true, then before checking profiles of two minor versions, we run the collection for job
matrix to collect fresh or unexisting profiles. By default, the output of this phase is discarded into a devnull.
This behaviour can be changed by setting the degradation.log_collect.

degradation.log_collect

[recursive] If both degradation.log_collect and degradation.collect_before_check are set to
true, then the precollect phase will be saved into a log of form %minor_version$-precollect.log. Other-
wise, the output will be stashed into a black hole (i.e. devnull).

degradation.apply

[recursive] Specifies which strategies are picked for application, if more than one strategy satisfies the speci-
fied constraints. If the key is set to first, then first strategy from the ordered list of degradation.strategies
is applied; otherwise if the key is set to all, then all of the strategies from the ordered list are applied.

degradation.strategies

[gathered] Specifies the rules for application of the performance degradation methods for profiles with corre-
sponding profile configurations (e.g. with concrete profile type, specified collector, etc.). Refer to Configuring
Degradation Detection for more details about application of strategies.

The following configuration will apply the Best Model Order Equality method for all of the mixed types of the
profiles, which were postprocessed using the Regression Analysis and Average Amount Threshold otherwise.

degradation:
strategies:
- type: mixed
postprocessor: regression_analysis
method: bmoe

- method: aat

generators.workload

[gathered] Specifies generators of the workload. Each workload has to be specified by its id and type, which
corresponds to the name of the generator (currently we support only Integer generator, that generates the range
of values). Further you can specify rest of the params, where each workload generator has different parameters.
The specification can be as follows:

generators:
workload:
- id: gen1
type: integer
profile_for_each_workload: True

- id: gen2
type: integer
min_range: 10
max_range: 100
step: 10

11.2. List of Supported Options 195

Perun Documentation, Release 0.21.6

This specifies two integer workload generators gen1 and gen2. The first uses the default range, while the latter
specifies the range 10, 20, . . . , 100. If profile_for_each_workload is set to true value (true, yes, etc.), then
isolate profile will be generated for each collected workload. Otherwise the resulting profiles are merged into
the one profile, and each resources has additional key called “workload”, that allows using Regression Analysis
of amount depending on the workload.

For more details about supported generators refer to List of Supported Workload Generators.

11.3 Predefined Configuration Templates

Internally local configuration files are specified w.r.t a Jinja2 template.

This template can further be augmented by named sets of predefined configuration as follows:

1. user configuration is meant for beginner users, that have no experience with Perun and have not read
the documentation thoroughly. This contains a basic preconfiguration that should be applicable for most
of the projects—data are collected by Time Collector and are automatically registered in the Perun after
successful run. The performance is checked using the Average Amount Threshold. Missing profiling info
will be looked up automatically.

2. developer configuration is meant for advanced users, that have some understanding of profiling and/or
Perun. Fair amount of options are up to the user, such as the collection of the data and the commands that
will be profiled.

3. master configuration is meant for experienced users. The configuration will be mostly empty.

The actually set options are specified in the following table. When the option is not set (signaled by - symbol) we
output in the configuration table only a commented-out hint.

user developer mas-
ter

cmds auto lookup – –
args – – –
workloads auto lookup – –
collectors Time Collector – –
degradation.strategies Average Amount Threshold Average Amount

Threshold
–

degradation.
collect_before_check

true true –

degradation.log_collect true true –
execute.pre_run make make –
profiles.
register_after_run

true – –

format.
output_profile_template

%collector%-of-%cmd%-%workload%-
%date%

– –

In user configuration, we try to lookup the actual commands and workloads for profiling purpose. Currently for
candidate executables we look within a subfolders named build, _build or dist and check if we find any executables.
Each found executable is then registered as profiled command. For workloads we look for any file (without restrictions),
and we restrict ourselves to subfolders with names such as workload, workloads, examples or payloads. Each
compatible file is then registered as workload.

Currently the templates are set by -t option of perun init command (see Perun Commands for details on perun
init). By default master configuration is used.

196 Chapter 11. Perun Configuration files

Perun Documentation, Release 0.21.6

11.4 Command Line Interface

We advise to manipulate with configurations using the perun config --edit command. In order to change the
nearest local (resp. global) configuration run perun config --local --edit (resp. perun config --shared
--edit).

11.4.1 perun config

Manages the stored local and shared configuration.

Perun supports two external configurations:

1. local.yml: the local configuration stored in .perun directory, containing the keys such as specification of
wrapped repository or job matrix used for quick generation of profiles (run perun run matrix --help or
refer to Automating Runs for information how to construct the job matrix).

2. shared.yml: the global configuration shared by all perun instances, containing shared keys, such as text editor,
formatting string, etc.

The syntax of the <key> in most operations consists of section separated by dots, e.g. vcs.type specifies type key
in vcs section. The lookup of the <key> can be performed in three modes, --local, --shared and --nearest,
locating or setting the <key> in local, shared or nearest configuration respectively (e.g. when one is trying to get some
key, there may be nested perun instances that do not contain the given key). By default, perun operates in the nearest
config mode.

Refer to Perun Configuration files for full description of configurations and Configuration types for full list of config-
uration options.

E.g. using the following one can retrieve the type of the nearest perun instance wrapper:

$ perun config get vcs.type
vcs.type: git

perun config [OPTIONS] COMMAND [ARGS]...

Options

-l, --local

Sets the local config, i.e. .perun/local.yml, as the source config.

-h, --shared

Sets the shared config, i.e. shared.yml., as the source config

-n, --nearest

Sets the nearest suitable config as the source config. The lookup strategy can differ for set and get/edit.

11.4. Command Line Interface 197

Perun Documentation, Release 0.21.6

Commands

edit

Edits the configuration file in the. . .

get

Looks up the given <key> within the. . .

reset

Resets the configuration file to a sane. . .

set

Sets the value of the <key> to the. . .

11.4.2 perun config get

Looks up the given <key> within the configuration hierarchy and returns the stored value.

The syntax of the <key> consists of section separated by dots, e.g. vcs.type specifies type key in vcs section. The
lookup of the <key> can be performed in three modes, --local, --shared and --nearest, locating the <key> in
local, shared or nearest configuration respectively (e.g. when one is trying to get some key, there may be nested perun
instances that do not contain the given key). By default, perun operates in the nearest config mode.

Refer to Perun Configuration files for full description of configurations and Configuration types for full list of config-
uration options.

E.g. using the following can retrieve the type of the nearest perun wrapper:

$ perun config get vcs.type
vcs.type: git

$ perun config --shared get general.editor
general.editor: vim

perun config get [OPTIONS] <key>

Arguments

<key>

Required argument

11.4.3 perun config set

Sets the value of the <key> to the given <value> in the target configuration file.

The syntax of the <key> corresponds of section separated by dots, e.g. vcs.type specifies type key in vcs section.
Perun sets the <key> in three modes, --local, --shared and --nearest, which sets the <key> in local, shared or
nearest configuration respectively (e.g. when one is trying to get some key, there may be nested perun instances that
do not contain the given key). By default, perun will operate in the nearest config mode.

The <value> is arbitrary depending on the key.

Refer to Perun Configuration files for full description of configurations and Configuration types for full list of config-
uration options and their values.

198 Chapter 11. Perun Configuration files

Perun Documentation, Release 0.21.6

E.g. using the following can set the log format for nearest perun instance wrapper:

$ perun config set format.shortlog "| %source% | %collector% |"
format.shortlog: | %source% | %collector% |

perun config set [OPTIONS] <key> <value>

Arguments

<key>

Required argument

<value>

Required argument

11.4.4 perun config edit

Edits the configuration file in the external editor.

The used editor is specified by the general.editor option, specified in the nearest perun configuration..

Refer to Perun Configuration files for full description of configurations and Configuration types for full list of config-
uration options.

perun config edit [OPTIONS]

11.4. Command Line Interface 199

Perun Documentation, Release 0.21.6

200 Chapter 11. Perun Configuration files

CHAPTER

TWELVE

CUSTOMIZE LOGS AND STATUSES

log and status commands print information about wrapped repository annotated by performance profiles. perun
log command lists the minor versions history for a major version (currently the checked out), along with the information
about registered profiles, such as e.g. the minor version description, authors, statistics of profiles, etc. perun status
commands shows the overview of given minor version of current major head and lists profiles associated to profiles
and in pending directory (i.e. the .perun/jobs directory. List of profiles contains the types of profiles, numbers,
configurations of profiling run, etc.

The format of outputs of both log and status can be customized by setting the formatting strings c.f. Customizing
Logs and Customizing Statuses. Moreover, outputs are paged (currently using the less -R command) by default. To
turn off the paging, run the perun with --no-pager option (see Command Line Interface) or set general.paging.

12.1 Customizing Statuses

The output of perun status is defined w.r.t. formatting string specified in configuration in format.status key
(looked up recursively in the nearest local configuration, or in global configuration). The formatting string consists of
raw delimiters and special tags, which serves as templates to output specific informations about concrete profiles, such
as the profiling configuration, type of profile, creating timestamps, etc.

E.g. the following formatting string:

| %type% | %cmd% | %workload% | %collector% | (%time%) |

will yield the following status when running perun status (both for stored and pending profiles):

===*
id | type | cmd | workload | args | collector | time |

===*
0@p | [mixed] | target | hello | | complexity | 2017-09-07 14:41:49 |
1@p | [time] | perun | | status | time | 2017-10-19 12:30:29 |
2@p | [time] | perun | | --help | time | 2017-10-19 12:30:31 |
===*

The first column of the perun status output, id, has a fixed position and defines a tag for the given, which can be
used in add, rm, show and postprocessby commands as a quick wildcard for concrete profiles, e.g. perun add 0@p
would register the first profile stored in the pending .perun/jobs directory to the index of current head. Tags are
always in form of i@p (for pending profiles) and i@i for profiles registered in index, where i stands for position in the
corresponding storage, index from zero.

The specification of the formatting string can contain the following special tags:

201

Perun Documentation, Release 0.21.6

%type%:
Lists the most generic type of the profile according to the collected resources serving as quick tagging of similar
profiles. Currently Perun supports memory, time, mixed.

%cmd%:
Lists the command for which the data was collected, this e.g. corresponds to the binary or script that was executed
and profiled using collector/profiler. Refer to Overview of Jobs for more information about profiling jobs and
commands.

%args%:
Lists the arguments (or parameters) which were passed to the profiled command. Refer to Overview of Jobs for
more information about profiling jobs and command arguments.

%workload%:
List input workload which was passed to the profiled command, i.e. some inputs of the profiled program, script
or binary. Refer to Overview of Jobs for more information about profiling jobs and command workloads.

%collector%:
Lists the collector which was used to obtain the given profile. Refer to Collectors Overview for list of supported
collectors and more information about collection of profiles.

%time%:
Timestamp when the profile was last modified in format YEAR-MONTH-DAY HOURS:MINUTES:SECONDS.

%source%:
Original source of the profile. This corresponds to the name of the generated profile and the original path.

By default the profiles are sorted according to the timestamp. The sort order can be modified by setting either
the format.sort_profiles_by or the Command Line Interface option --sort-by to a valid profile informa-
tion attribute. Setting the command line option --sort-by has higher priority than the key set in the format.
sort_profiles_by.

12.2 Customizing Logs

The output of perun log --short is defined w.r.t. formatting string specified in configuration in format.shortlog
key (looked up recursively in the nearest local configuration, or in global configuration). The formatting string can
contain both raw characters (such as delimiters, etc.) and special tags, which serves as templates to output information
for concrete minor version such as minor version description, number of assigned profiles, etc.

E.g. the following formatting string:

'%checksum:6% (%stats%) %desc%'

will yield the following output when running perun log --short:

minor (a|m|x|t profiles) info
53d35c (2|0|2|0 profiles) Add deleted jobs directory
07f2b4 (1|0|1|0 profiles) Add necessary files for perun to work on this repo.
bd3dc3 ---no--profiles--- root

The specification of the formatting string can contain the following special tags:

%checksum:num%: Identification of the minor version (should be hash preferably). If we take
git as an example checksum will correspond to the SHA of one commit.

%stats%:
Lists short summary of overall number of profiles (a) and number of memory (m), mixed (x) and time (t) profiles
assinged to given minor version.

202 Chapter 12. Customize Logs and Statuses

Perun Documentation, Release 0.21.6

%changes%:
Lists a short string of overall found changes for a given minor version. Found degradations are represented by
red -, while found optimizations are represented by green +.

%desc:num%: Lists short description of the minor version, limiting to the first sentence of the
description. If we take git as an example this will correspond to the short commit message.

%date:num%:
Lists the date the minor version was commited (in the wrapped vcs).

%author:num%:
Lists the author of the minor version (not commiter).

%email:num%:
Lists the email of the author of the minor version.

%parents:num%:
Lists the parents of the given minor version. Note that one minor version can have potentially several parents,
e.g. in git, when the merge of two commits happens.

Specifying num in the selected tags will shorten the displayed identification to num characters only. In case the specified
num is smaller then the length of the attribute name, then the shortening will be limited to the lenght of the attribute
name.

12.2. Customizing Logs 203

Perun Documentation, Release 0.21.6

204 Chapter 12. Customize Logs and Statuses

CHAPTER

THIRTEEN

PERUN INTERNALS

Conceptually one Perun instances serves as a wrapper around the existing version control system (e.g. some reposi-
tory). Perun takes specializes on storing the performance profiles and manages the link between minor versions and
their corresponding profiles. Currently as a target vcs we support only git, with a custom lightweigth vcs being in
development (called tagit). The architecture of Perun contains an interface that can be used to register support for
new version control system as described in Creating Support for Custom VCS. Internal structure of one instance of
Perun is inspired by git: performance profiles are similarly stored as objects compressed by zlib method and identified
by hashes. Perun Storage describes the internal model of Perun more briefly.

Minor Versions

Major Versions

Code Changes
(.git) (.perun)

Performance Profiles

Data Visualizations

Statistics

Functionality Performance
Project

The diagram above highlights the responsibilities and storage of individual systems. Version control systems manage
the functionality of the project—its versions and precise code changes—but lack proper support for managing per-
formance. On the other hand, performance versioning systems manages the performance of project—its individual
performance profiles, data visualizations of various statistics—but lack the precise functionality changes. This means
that vcs stores the actual code chungs and version references and pvs stores the actual profiling data.

205

Perun Documentation, Release 0.21.6

Collectors

Postprocessing

Visualizations

(time, memory,

(regression analysis, filters,

(bars, scatter plots, heat maps,

Server

Developer 2Developer 1

(.git) (.perun)(.git) (.perun) (.git) (.perun)(.git) (.perun)

(.git) (.perun)(.git) (.perun)

Perun

Suite

git init --bare

This diagram shows one of the proper usages of Perun’s tool suite. Each developer keeps his own instance of both
versioning and performance systems. In this mode one can share both the code changes and performance measurement
through the wider range of developers.

13.1 Version Control Systems

Version Control System manages the history of functionality of one project, i.e. stores the changes between different
versions (or snapshots) of project. Each code change usually requires corresponding the performance profiles in order
to detect potential performance degradation early in the development. The following subsection Version Control System
API describes the layer which serves as an interface in Perun which supplies the necessary information between the
version control and performance versioning systems.

13.1.1 Version Control System API

perun.vcs.init(vcs_init_params: dict[str, Any])→ bool
Calls the implementation of initialization of wrapped underlying version control system.

The initialization should take care of both reinitialization of existing version control system instances and newly
created instances. Init is called during the perun init command from command line interface.

Parameters
vcs_init_params (dict) – dictionary of keyword arguments passed to initialization method
of the underlying vcs module

Returns
true if the underlying vcs was successfully initialized

206 Chapter 13. Perun Internals

Perun Documentation, Release 0.21.6

perun.vcs.walk_minor_versions(head_minor_version: str)→ Iterator[MinorVersion]
Generator of minor versions for the given major version, which yields the MinorVersion named tuples con-
taining the following information: date, author, email, checksum (i.e. the hash representation of the minor
version), commit_description and commit_parents (i.e. other minor versions).

Minor versions are walked through this function during the perun log command.

Parameters
head_minor_version (str) – the root minor versions which is the root of the walk.

Returns
iterable stream of minor version representation

perun.vcs.walk_major_versions()→ Iterator[MajorVersion]
Generator of major versions for the current wrapped repository.

This function is currently unused, but will be needed in the future.

Returns
iterable stream of major version representation

perun.vcs.get_minor_head()→ str
Returns the string representation of head of current major version, i.e. for git this returns the massaged HEAD
reference.

This function is called mainly during the outputs of perun log and perun status but also during the automatic
generation of profiles (either by perun run or perun collect), where the retrieved identification is used as
origin.

Returns
unique string representation of current head (usually in SHA)

Raises
ValueError – if the head cannot be retrieved from the current context

perun.vcs.get_head_major_version()→ str
Returns the string representation of current major version of the wrapped repository.

Major version is displayed during the perun status output, which shows the current working major version of
the project.

Returns
string representation of the major version

perun.vcs.get_minor_version_info(*args: Any, **kwargs: Any)→ Any
Wrapper function of the @p func

perun.vcs.check_minor_version_validity(*args: Any, **kwargs: Any)→ Any
Wrapper function of the @p func

perun.vcs.massage_parameter(parameter: str, parameter_type: str | None = None)→ str
Conversion function for massaging (or unifying different representations of objects) the parameters for version
control systems.

Massaging is mainly executed during from the command line interface, when one can e.g. use the references (like
HEAD) to specify concrete minor versions. Massing then unifies e.g. the references or proper hash representations,
to just one representation for internal processing.

Parameters

• parameter (str) – vcs parameter (e.g. revision, minor or major version) which will be
massaged, i.e. transformed to unified representation

13.1. Version Control Systems 207

Perun Documentation, Release 0.21.6

• parameter_type (str) – more detailed type of the parameter

Returns
string representation of parameter

perun.vcs.is_dirty()→ bool
Tests whether the wrapped repository is dirty.

By dirty repository we mean a repository that has either a submitted changes to its index (i.e. we are in the middle
of commit) or any unsubmitted changes to tracked files in the current working directory.

Note that this is crucial for performance testing, as any uncommited changes may skew the profiled data and
hence the resulting profiles would not correctly represent the performance of minor versions.

Returns
whether the given repository is dirty or not

perun.vcs.save_state()→ tuple[bool, str]
Saves the state of the repository in case it is dirty.

When saving the state of the repository one should store all of the uncommited changes to the working directory
and index. Any issues while this process happens should be handled by user itself, hence no workarounds and
mending should take place in this function.

Returns
(bool, str) the tuple of indication that some changes were stashed and the state of previous head.

perun.vcs.restore_state(saved: bool, state: str)→ None
Restores the previous state of the the repository

When restoring the state of the repository one should pop the stored changes from the stash and reapply them on
the current directory. This make sure, that after the performance testing, the project is in the previous state and
developer can continue with his work.

Parameters

• saved (bool) – whether the stashed was something

• state (str) – the previous state of the repository

perun.vcs.checkout(minor_version: str)→ None
Checks out the new working directory corresponding to the given minor version.

According to the supplied minor version, this command should remake the working directory so it corresponds
to the state defined by the minor version.

Parameters
minor_version (str) – minor version that will be checked out

13.1.2 Creating Support for Custom VCS

You can register support for your own version control system as follows:

1. Create a new module in perun/vcs directory implementing functions from Version Control System
API .

2. Finally register your newly created vcs wrapper in get_supported_module_names() located in
perun.utils.__init__.py:

208 Chapter 13. Perun Internals

Perun Documentation, Release 0.21.6

1 --- /mnt/e/phdwork/perun/perun/docs/_static/templates/supported_module_names.py
2 +++ /mnt/e/phdwork/perun/perun/docs/_static/templates/supported_module_names_

→˓collectors.py
3 @@ -6,7 +6,7 @@
4)
5 return {
6 "vcs": ["git"],
7 - "collect": ["trace", "memory", "time"],
8 + "collect": ["trace", "memory", "time", "mycollector"],
9 "postprocess": ["filter", "normalizer", "regression-analysis"],

10 "view": [
11 "alloclist",

3. Optionally implement batch of automatic test cases using (preferably based on pytest) in tests di-
rectory. Verify that registering did not break anything in the Perun, your wrapper is correct and
optionally reinstall Perun:

make test
make install

4. If you think your wrapper could help others, please, consider making Pull Request.

13.2 Perun Storage

The current internal representation of Perun storage is based on git internals and is meant for easy distribution, flexibility
and easier managing. The possible extension of Perun to different versions of storages is currently under consideration.
Internal objects and files for one local instance of Perun are stored in the filesystem in the .perun directory consisting
of the following infrastructure:

.perun/
|-- /jobs
|-- /logs
|-- /objects
|-- local.yml

.perun/jobs:
Contains pending jobs, i.e. those that were generated by collectors, postprocessed by some postprocessors, or
automatically generated by perun run commands, but are not yet assigned to concrete minor versions. These
profiles contains the tag origin that maps the profile to concrete minor version, i.e. the parent of the profile.
This key serves as a prevention of assigning profiles to incorrect minor versions.

.perun/jobs
|-- /baseline.perf
|-- /sll-comparison.perf
|-- /skip-lists-medium-height.perf
|-- /skip-lists-unlimited-height.perf

.perun/objects:
Corresponds to main storage of Perun and contains object primitives. Every object of Perun is represented by
unique identifier (mostly by sha representation) and corresponds either to an object blob (containing compressed
profile) or to an index of a corresponding minor version, which lists assigned profiles for the given minor version.

13.2. Perun Storage 209

https://docs.pytest.org/en/latest/
https://github.com/tfiedor/perun/pull/new/develop

Perun Documentation, Release 0.21.6

.perun/objects
|-- /07

|-- f2b4bfa06f6b1be5713f2bbae7740838456758
|-- 99dc4c5891947bdf7e26341231ca533432a1f1

|-- /3d
|-- 3859b46db4eea5866a0b2b28997fac25a95430

|-- /ff
|-- d35c8962d8d2019d7762a7bc6980c1d0f2fcd7
|-- d88aabca6e5427c78ea647e955ffa00d1cd615

Each object from .perun/objects is represented by hash value, where the first two characters are used to
specify directory and the rest of the hash value a file name, where the index or compressed file is stored.

.perun/logs:
Contains various logs for various phases. Currently this holds logs for each minor version, for which we precol-
lected new profiles during the perun check command. This behaviour can be set up by setting degradation.
log_collect to true.

local.yml:
Contains local configuration, e.g. the specification of wrapped repository, job matrixes or formatting strings
corresponding to concrete VCS. See Perun Configuration files for more information about configuration of Perun.

13.2.1 Perun Index Specification

Each minor version of vcs, which has any profile assigned, has corresponding index file in the .perun/object ac-
cording to its identification. The index file itself is stored in binary format with the following specification.

Index signature

 p i d x p i d x

Index version

0 0 0 10 0 0 1

Number of Entries

0 0 0 n0 0 0 n

4B 8B 12B0B

b5 12 e4 31...b5 12 e4 31...

XB X+20B

af 02 cd 5eaf 02 cd 5e 51 a4 bd 2f...51 a4 bd 2f...

0B 4B 24B Y+24B

Creation Time Profile ID (SHA-1) Origin Path

ChecksumEntries

4B4B 4B4B 4B4B 20Bn*YB

4B4B 20B YB

Index signature [4B]:
Signature are the first bytes of the index containing ascii string pidx, which serves as an quick identification of
minor version index.

Index version [4B]:
Specification of version of conding of the index. Versioning is introduced for potential future backward compat-
ibility with possible different specifications of index.

Number of Entries [4B]:
Integer count of the number of entries found in the index. Each entry of the index is of variable length and lists
the profiles with mapping to their corresponding objects.

210 Chapter 13. Perun Internals

Perun Documentation, Release 0.21.6

Entries [variable length]:
One entry of the index corresponds to one assigned profile. Each entry is of variable lenght and contains the iden-
tification of the original profile file, together with timestamp of creation and the identification of the compressed
object, that contains the actual profiling data. Each entry can be broken into following parts:

• Creation time [4B]: creation time of the profile represented as 4B timestamp.

• Profile ID [20B]: unique identification of the profile, i.e. specification of the concrete compressed object
located in the .perun/objects. Profile ID is always in form of SHA-1 hash, which is obtained from the
contents.

• Origin Path [variable length: Original path to the profile represented as ascii string of variable length
terminated by null byte.

Checksum [20B]:
Checksum of the whole index, which serves for error detection.

13.2.2 Perun Object Specification

Each non-index object consist of short header ended with zero byte, consisting of header signature string, type of the
profile and lenght of the content, and raw content of the performance profile w.r.t. Specification of Profile Format.
First we compute the checksum for these data, which serves as an identification in the minor version indexes and in
.perun/objects directory. Finally, the object is compressed using zlib method and stored in the .perun/objects
compressed.

4B4B YB

profile 0 0 0 Y0 0 0 Y

*B

ContentContent LengthTypeSignature

BB B7B

Signature [7B]:
Signature is a 7B prefix containing ascii string “profile”. Serves for quick identification of profile.

Type [variable length]:
Ascii specification of the profile type. This serves for quick and easy parsing of profiles.

Content Lenght [4B]:
Integer count of the non-header data followed after the zero byte in bytes.

Content [variable length]:
Contents of the performance profile w.r.t. Specification of Profile Format.

13.2. Perun Storage 211

Perun Documentation, Release 0.21.6

13.2.3 The Lifetime of profile: Internals

The following subsections describes in more detail the basics of profile manipulations, namely registering, removing
and lookuping up profiles.

Registering new profile

Given a profile, w.r.t. Specification of Profile Format, called sll-vs-skiplist.perf, registering this profile in HEAD
minor version index, the following steps are executed:

1. sll-vs-skiplist.perf is loaded and parsed into JSON. Profile is verified whether it is in format specified by
Specification of Profile Format.

2. origin key is compared with the massaged HEAD minor version. In case it differes, an error is raised and adding
the profiles is canceled, as we are trying to register performance profile corresponding to other point of history.
Otherwise the origin is removed from the profile and will not be stored in persistent storage.

3. We construct the header for the profile consisting of profile prefix, the type of the specified by type and length
of the unpacked JSON representation of profile, joined by spaces and ended by null byte.

4. JSON contents of performance profile are appended to the header resulting into one object.

5. An SHA-1 hash checksum is computed out of the object. The hash serves both as a check that the profile was
not damaged during next usage, as well as identification in the filesystem.

6. The object is compressed using zlib compression method and stored in the .perun/objects directory. First
two characters of checksum specifies the target directory and the rest specifies the resulting filename.

7. An index corresponding to the HEAD minor version is opened (if it does not exist, it is newly created first). Minor
version index is also represented by its hash, where first two characters of hash is used as directory and the rest
as filename.

8. An entry for sll-vs-skiplist.perf with given modification time is registered within the index pointing to
the checksum object with compressed data. The number of registered profiles in index is increased.

9. Unless it is specified otherwise, the sll-vs-skiplist.perf is removed from filesystem.

212 Chapter 13. Perun Internals

https://www.json.org/
https://www.json.org/
https://www.json.org/

Perun Documentation, Release 0.21.6

Index signature

 p i d x p i d x

Index version

0 0 0 10 0 0 1

Number of Entries

0 0 0 n0 0 0 n b5 12 e4 31...b5 12 e4 31...

af 02 cd 5eaf 02 cd 5e 51 a4 bd 2f...51 a4 bd 2f...

Creation Time Profile ID (SHA-1) Origin Path

ChecksumEntries

{
 "origin": "9524dd21a51ed5d462 b802fd3bc7 e070462cceac",
 "header": {
 "params": "status",
 "type": "time",
 "cmd": "perun",
 "workload": "--short",
 "units": {
 "time": "s"
 }
 },
 "collector_info": {
 "params": {},
 "name": "time"
 },
 ...
}

51 a4 bd 2f...51 a4 bd 2f...

(.git) (.perun)(.git) (.perun)(.git) (.perun)

/95

/51

a4...bd2f

24...ceac

/objects

/95

/51

a4...bd2f

24...ceac

/objects

(.git) (.perun)

/95

/51

a4...bd2f

24...ceac

/objects

ß(Y; óYu4ŤEđjPŤMŕĆEčw PŤMŕčĎ ˙uđč¶(YŤMŕč ŤMŕčV WŤM¤ ¤ ̈ ¬č_

 M ŤE¤Phx đA şdđA č!

 Ŕu8]uşDňA 3ÉčŽđ j[é h<ňA ŤŤ, ˙˙˙č g WŤMČ Č Ě Đč < 9]¨Ć ̇ ˙˙ ç ŤŤP˙˙˙č

Ť P˙˙˙ŤM¤Ç P˙˙˙Ł A čŇ * Ŕu8]uş ňA 3Éčđ j[é! hňA ŤMđčř

 ŤEđŤ P˙˙˙PŤMĽ čŻ- ˙uđčÇ' ŤMđÇ$üńA čĎ

 ŤEđŤ P˙˙˙PŤMÔč - ˙uđčž' ŤMđÇ$čńA č¦

 ŤEđŤ P˙˙˙PŤ Ť̇ ˙˙čZ- ˙uđčr' YşŕńA Ť ˙˙˙č(Ŕu ť(̇ ˙˙hĚńA ŤMđča

 ŤUđŤŤP˙˙˙ čę, ˙uđ đč2' ;óY| ˙˙˙ ŤŤ ,̇ ˙ ̇° ŔPč& 9]Ř 8] ¤ j $̇uĽ ˙uÔS ˙ôˇA ř Ś ˙µ˙˙ ˙čŕ& ˙uÔčŘ&

˙uĽč Đ& ÄŤŤP˙˙˙ Ç P˙˙˙Ł A čű. ŤŤP˙˙˙č Ç. ˙uČčĄ& ˙ µ,̇ ˙˙č š& ˙u¤č ˙u čŠ& ˙uŚč ˙u°čz& ˙uŕčr&

˙µd˙˙˙ čg& Ä é h´ńA ŤMđči ŤEđŤ P˙˙˙PŤ Ť̇ ˙˙č, PŤMČčE

 ˙µ˙˙ ˙č)& ˙uđč!& YYhśńA ŤMđč) ŤEđŤ P˙˙˙PŤ Ť̇ ˙˙čÝ+ PŤM°č

 ˙µ˙˙ ˙čé% ˙uđčá% YYhxńA ŤMđč ŤEŕŤ P˙˙˙PŤEđPŤŤD ˙˙˙č ĐŤŤ˙˙˙čn PŤMŚč´ ˙µ˙˙ ˙č %

˙µD˙ ˙˙čŤ% ˙uđč ̇µ˙˙ ˙čz% ˙ uÔčr% ˙uĽč j% ÄŤŤP˙˙˙ Ç P˙˙˙Ł A č - ŤŤP˙˙˙ ča- ŤŤt˙˙˙ ťp˙˙˙č š

 ˙5 đ̀A ŤŤp˙˙˙č G= Ŕu8]uş0ńA 3Éč6í j[é̀ jč Ű$ đY;ótŤ č

 Ç ŁA uěë ě ó;ót V˙P Îč Şi ŔtńA 3Éčäě ; ótŞ V˙ë˘Ť t˙˙˙ŤŤ8˙˙˙ čd WŤMÔ] ˙ Ô Ř Üč Š

ŤEÔŤU PŤE ˙PŤ 8˙˙˙ ˙µ(̇ ˙˙ ÎPč ;Ă 8]ug řt8] ˙t(ŤŤD ˙˙˙Z č I PŤMÔč ˙µD˙˙ ˙č4$ Y¸@ €=@

€t.9]Řt) jŤŤD ˙˙˙Z č] I jP˙uÔS˙ôˇA ˙ µD˙˙˙č ú# ẎuÔčń# ˙µ8˙˙˙ čć# Y ;óY t V˙éi ˙uÔčÉ# YŤM€č $

 ŤM€č_9 ˙µt˙˙˙ 5 A ˙Ö Ŕu0˙u€˙Ö˙ u€č ̇µ8˙˙˙ čŽ#

 EěY;ĂY qţ˙˙P˙éfţ˙˙9] ´ ŤU°ŤMĽč: EĽ9]äÇ Đţ˙˙ < Ç Ô ţ̇ ˙@ ťŘţ˙˙ ťÜţ˙˙ ŕţ˙˙tŤEŕŤMŚPč ˘

ŤUŚŤMÔčő EŘj÷ŘŔ_#EÔ ťčţ˙˙ ˝ěţ˙˙ ˙˙˙ ä ţ̇ ˙Ť Đţ˙˙ Ṗ¤ˇA ̋ đţ˙˙ ° 8]uş äđA 3Éčóę ˙uÔč Ĺ"

˙uĽč "̋ YY ˙u€̇ Ö˙u€č®" ˙ µ8˙˙˙ čŁ" EěY;ĂYtP˙ŤŤp˙˙˙č v ˙ µṫ ˙˙č~" ˙ uČčv " ˙ µ,̇ ˙˙ čk" ˙u¤č c" ˙ u č[" ˙ uŚ čS "

˙u°čK" ˙ uŕč C" ˙µd˙˙˙č8" Ä$ Çéę ˙uÔ ˙˙˙ č " ˙uĽč" Yé . 9]ĚuVhĐđA ŤMČč ̨ ŤU ČŤŤD˙˙ ˙čĘ čň?

˙µD˙ ˙˙öŘŔţŔ E ˙č

 timeprofile 0 0 0 Y0 0 0 Y

ContentContent LengthTypeSignature

 timeprofile 0 0 0 Y

ContentContent LengthTypeSignature

ZLIB

SHA-1

STORE

sll-vs-skiplist.perf

Index of 9524dd21a51ed5d462b802fd3bc7e070462cceac

object

checksum

project

LOAD

Removing profile from index

Given a profile filename sll-vs-skiplist.perf, removing it from the HEAD minor version index, requires the fol-
lowing steps to be executed:

1. An index corresponding to the HEAD minor version is opened. Minor version index is represented by its hash,
where first two characters of hash is used as directory and the rest as filename. If the index does not exist,
removing ends with an error.

2. An entry for sll-vs-skiplist.perf is looked up within within the index. If it is not found, the removing ends
with an error. Other wise, the entry is removed from the index and the number of registered profiles in index is
decreased.

3. The original compresed object, which was stored in the entry is kept in the .perun/objects directory.

Looking up profile

Profiles are looked-up during the perun show, perun add, perun postprocessby or perun rm and can be found
in several places, namely the filesystem, pending storage or registered in index. Priorities during the lookup are usually
as follows:

1. If the specification of profile is in form of i@i or i@p (i.e. the index and pending tags respectively), then i th
profile registered in index or stored in pending jobs directory (.perun/jobs) is used.

2. Index of corresponding minor version is searched.

3. Absolute path in filesystem is checked.

13.2. Perun Storage 213

Perun Documentation, Release 0.21.6

4. .perun/jobs directory is searched for match, i.e. one can specify just partial name of the profile during the
lookup.

5. Otherwise the whole scope of filesystem is walked. Each successful match asks user for confirmation until the
profile is found.

Refer to Command Line Interface for precise specification of lookups during individual commands.

214 Chapter 13. Perun Internals

CHAPTER

FOURTEEN

CHANGELOG

14.1 0.21.6 (2023-11-06)

• Add typing information to function

• Add github actions (linting, testing, deploying docs and pypi)

• Add formatting using black.

• Fix and reduce dependencies

• Fix various small issues (deprecations, tests, etc.)

• Remove obsolete information (authorship tags, etc.)

• Remove demandimport

• Speeds up tests

• Update build process to pyproject.toml and tox

14.2 0.20.4 (2022-06-28)

Add exclusive time outliers check

• Add new degradation detection method “Exclusive Time Outliers” (ETO).

14.3 0.20.3 (2022-06-28)

Fix issues in Tracer

• Fix some issues in Tracer raw data parsing.

• Add location information (binary file path) of profiled functions to the profile.

215

Perun Documentation, Release 0.21.6

14.4 0.20.2-hotfix2 (2022-06-28)

Hotfix failing nondeterministic test

• Fix test_regression_detections_methods having too specific mock results

14.5 0.20.2-hotfix (2022-06-21)

Enhance the Performance and Code Culture

• Fix an issue with uncompilable documentation

• Fix an issue with traversing wrongly configured sections

• Fix an uncaught exception

• Fix issue in depedencies

• Fix an issue with dev mode

• Add continuous integration

14.6 0.20.2 (2021-05-12)

Enhance the Performance and Code Culture

• Add performance tests to Perun

• Optimize perun at various places

• Extract selected profile queries directly to Profile

• Refactor minor issues

• Refactor complex code and simplified control flows

• Extract profile list configuration to isolate file

• Refactor and redocument log and status functions

• Remove unused cases and exceptions

• Add more tests

• Fix security issue with PyYAML

14.7 0.20.1 (2021-05-12)

Update install instructions in readme

• Update README with additional install instructions

• SystemTap and BCC instructions for Ubuntu and Fedora

216 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

14.8 0.20 (2021-03-05)

Add optimizations of collect process

• add engines to the Tracer architecture

• add eBPF instrumentation support to Tracer (using BCC)

• add Optimization module to the collection process

• add several optimization methods to the Optimization module

• update Tracer for Python 3.8

14.9 0.19 (2021-02-08)

Update Perun to Python 3.8+

• add timeout to running external programs

• optimize getting of gcov version

• fix issues in fuzzing tests

• remove dependencies of clang

• update Perun to higher versions of gcc (4.9+) and Python (3.8+)

• fix minor issues and incompatibilities

• add lazy initialization of mathplotlib

• remove usage of re.Scanner which seems to segfault on newer versions

• remove heat map and ncurses (will be reimplemented in near future)

14.10 0.18.3-hotfix2 (2020-08-31)

• update the acknowledgements in README

14.11 0.18.3-hotfix (2020-05-11)

• fix two minor issues in average amount threshold check (fix for profiles without amounts and to soften the de-
pendency on numpy.float64)

14.8. 0.20 (2021-03-05) 217

Perun Documentation, Release 0.21.6

14.12 0.18.3 (2020-03-20)

Extend the Perun and fix selected issues

• add helper assertions for tests available in asserts.py file

• remove useless fixtures (Helpers), move the helpers functions to isolate package

• categorize test data to several directories

• add automatical lookup of (in)dependent variable as default for selected commands (postprocess, etc.)

• add crash dump in case of unexpected error (can be suppressed by –dev-mode option)

• update the documentation with latest features and fix missing stuff

• add external generator of the

• fix the issue with backward incompatible repositories which contained profiles with ‘params’ instead of ‘args’

• fix the issue with loading certain parts of degradation changes as strings (instead of doubles)

• fix the issue with loading degradation changes which contained less information than in the new versions (missing
the drate)

• fix other minor issues

• fix minor issues in fuzzing

• fix issue with clang-3.5 binary missing in systems (add the binary)

• fix the incorrectly printed trace

14.13 0.18.2 (2020-02-13)

Fix errors in novel check methods

• fix selected errors in novel check methods

• automatically remove testing files

• extend the collection process with specifying custom name

14.14 0.18.1 (2020-02-13)

Refactor trace collector

• refactor trace collector

• extend trace collector with watchdog module

• selected temporary files moved to .perun directory structure

• add diagnostic mode for trace collector

• add locking module to perun logic

• add diagnostic mode to tracer

• ignore tracer tests in codecoverage

218 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

14.15 0.18 (2020-02-11)

Add performance fuzz-testing

• add perun fuzz mode implementing mutation based fuzzer. See Performance Fuzz-testing for more details.

14.16 0.17.4 (2020-01-28)

Add tabular view

• add tableof view module

• add conversion functions of models to dataframe

• add headers to tableof view

• add formats to tableof view

• add sorting to tableof view

• add filtering to tableof view

• add two modes of tableof (resources and models)

• fix minor bug in bounds collector (unknown collector type)

• fix templates for generating units

14.17 0.17.3 (2020-01-09)

Add Loopus collector in Perun

• fix an issue in profiles which contained only persistent properties

• add bounds collector, wrapper over Loopus tool

14.18 0.17.2 (2019-08-16)

Improve the runner logic

• extract cmd, args and workload to Executable class

• remove --remove-all argument in perun rm

• add support for removing profiles from pending jobs through perun

• improve the output of perun rm command

• extract CLI groups to isolate modules

• add caching to selected vcs commands

• fix untested bug in degradation check

• rename warmup parameter in time to --warmup

• lower the number of warmup and repetitions for time collector during tests

• remove filter postprocessor (did nothing)

14.15. 0.18 (2020-02-11) 219

Perun Documentation, Release 0.21.6

• add signal handling to runner (authored by Jirka Pavela)

14.19 0.17.1 (2019-07-24)

Add new degradation detection methods

• add new detection methods for parametric and non-parametric models

• add Integral Comparison detection method, which computes the integrals under models

• add Local Statistics detection method, which analyses the various statistics in intervals of models

• refactor various minor issues in postprocessing logic

• add new strategies for detecting performance changes

14.20 0.17 (2019-07-09)

Optimize profile format

• make profile format more compact

• fix minor issue in fast check

• extract selected functions from query to profile object

14.21 0.16.9-hotfix (2019-06-18)

Hotfix issue in Makefile

• hotfix issue in Makefile

14.22 0.16.9 (2019-06-18)

Add CLI for stats manipulation

• refactor the perun stats module

• extend the stats module with a CLI

• add new operations (list, delete, . . .) to the stats module

14.23 0.16.8 (2019-05-18)

Extend perun instances with temporaries

• add new logic module that allows to store temporary files in separate directory (.perun/tmp)

220 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

14.24 0.16.7-hotfix (2019-04-15)

Hotfix Jinja potential vulnerability

• hotfix Jinja potential vulnerability

14.25 0.16.7 (2019-04-15)

Extend perun instances with stats

• add new logic module that allows to store stats for profiles in separate directory (.perun/stats)

14.26 0.16.6 (2019-03-25)

Improve the quality of life of Perun

• fix minor bug in storing changes

• extracted index entry specific functions to isolate class (in order to create new versions)

• implement index v2.0, codename FastSloth

• switch to working with index v2.0 (index v1.0 is still supported, however, everything is saved as 2.0)

• minor refactors

• optimize loading of the profile info for both registered and pending profiles (yields huge performance boost)

• add –force option to perun add which will force the add (d’oh)

• add printing of trace if perun -vv is set in cli (i.e. the verbosity is of level 2+)

• rename ‘params’ in profile to ‘args’ since it complies to other parts of code

• refactor minor issues, enhance error messages and exception handling

14.27 0.16.5 (2019-03-22)

Revive complexity collector

• revive the complexity collector

• increase the test coverage of complexity collector

• update the complexity collector to comply with latest version of Perun

Add kernel non-parametric regression

14.24. 0.16.7-hotfix (2019-04-15) 221

Perun Documentation, Release 0.21.6

14.28 0.16.4 (2019-03-14)

Add kernel non-parametric regression

• fix minor issue in memory collector that manifests with gcc-5.5+ and Ubuntu 18.04+

• add three kernel non-parametrik regression models (see Kernel Regression Methods)

• fix minor issues in moving average and regressogram

14.29 0.16.3 (2019-03-02)

Overhaul the trace collector

• update to Click version 7.0 (because underscores are replaced by dashes)

• add automatic pairing of the static probes in trace collector

• add fault-tolerant system to trace collector (now it does collect some profile even if it contains some corruption)

• rework the internal format of traces

14.30 0.16.2 (2019-03-02)

Fix and refactor the memory collector

• fix minor issue in average amount threshold checker, when average is 0

• refactor memory collector

• add proper documentation to memory collector

• fix an ubuntu 18.04 issue, when dlsym() needed some bytes before libmalloc.so is properly loaded resulting into
crash

• add proper locking to memory collector

14.31 0.16.1 (2019-03-01)

Add moving average postprocessor

• add moving average postprocessor, other of the non-parametric analysis

• minor fixes in regressogram (refactor and documentation)

• add perun fuzz command which does a performance fuzzing

• remodel runner functions to generators

222 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

14.32 0.16 (2019-02-16)

Add regressogram postprocessor

• add –version option to perun cli, so it shows version of perun (d’oh!)

• extend scatterplot to support step function rendering (for regressogram)

• add regressogram postprocessor, one of the non-parametric analysis

14.33 0.15.4 (2018-08-13)

Add cleanup procedures to Trace collector

• add cleanup procedures to trace collector (so it properly kills systemtap modules)

• fix setup.py versions

• make clusterizer less verbose

• fix wrong parameter name in trace collector

14.34 0.15.3-hotfix (2018-08-02)

Hotfix unused workload parameter in trace collector

• hotfix missing workload parameter in trace collector

14.35 0.15.3 (2018-08-01)

Extract trace configuration automatically

• rename complexity collector to trace

• fix minor issues with trace collector

• add basic support for parallel programs in trace collector

• add basic support for non-terminating programs (–timeout) in trace collector

• fix minor issues in incorrect piping (class with ||)

• add lookup of profiled functions in trace collector

14.36 0.15.2 (2018-07-20)

Upgrade Trace collector architecture

• update the cli of the Trace Collector with new options

• add support for static and dynamic probing of the binaries (hence allow custom user probes)

• fix minor issues

• rework the architecture of system-tap collector to work as a daemon

14.32. 0.16 (2019-02-16) 223

Perun Documentation, Release 0.21.6

14.37 0.15.1 (2018-07-17)

Rehaul the notion of workloads

• refactor check modules

• add pending tag range to perun add command to add more profiles at once

• add index tag rage to perun rm command to remove more profiles at once

• fix the issue with wrong sort order and tags (now format.sort_profiles_by sets the option in local)

• add support for workload generators

• implement integer workload generator that generates workload from the integer interval

• implement singleton workload generator that generates single workload

• implement string workload generator that generates random strings

• implement file workload generator that generates random text files

• add generators.workload for specification of workload generators in config

• remodel the notion of workloads to accept the workload generators to allow other style of workloads

• add two modes of workload generation (one that merges the profiles into one; and one which gradually generates
profiles)

• add default workload generators to shared configuration

14.38 0.15 (2018-06-20)

Extend the suite of change detection methods

• add fast check degradation check method (Fast Check)

• add linear regression based degradation check method (Linear Regression)

• add polynomial regression based degradation check method (Polynomial Regression)

• rename regression models to full names

• fix divisions by zero in several places in regression analysis

• rename the api of several regression functions

14.39 0.14.4 (2018-06-17)

Refactor the code

• fix various linting issues (e.g. too long lines)

• remove unused code and function (e.g. in memory)

• fix minor issues

• extend the test suite with several more tests

• flatten the test hierarchy

• remove alloclist view (query+convert imported in python is more powerful)

224 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

• renew the rest of the old documentation format

• extract path and type function parameters from vcs api

• refactor pcs module and remove pcs as argument from all of the functions

• fix various codacy issues

• refactor cli module by moving callbacks, renaming functions and removing redundant functions

14.40 0.14.3 (2018-06-12)

Extend utils module

• print timing of various collection phases

• add degradation.log_collect to store the output of precollect phase in isolated logs

• add working --compute-missing parameter to check group, which temporarily sets the precollection

• add repetition of the time collector

• add predefined configuration templates

• add automatic lookup of candidate executable and workloads for user configuration (see Predefined Configuration
Templates)

• add perun config reset command to allow resetting of configuration to different states

• extend the utils module with ELF helper functions

• extend the utils with non-blocking subprocess calls

• extend the utils with binary files lookup

14.41 0.14.2 (2018-05-15)

Rehaul the command line output

• fix issue with pending tags not being sorted ;)

• fix the issue with incorrectly flattened values in query

• extend the memory collector to include the allocation order as resource

• add loading and storing of performance change records

• add short printed results for found degradations

• update the default generated config

• remake the output of time collector

• fix issue with integer workloads

• fix issue with non-sorted index profiles

• fix issue with memory collector not removing the unreachable allocations

• add vcs history tree to log (prints the context of the vcs tree)

• remodel the output of the degradation checks

• switch the colour of optimizations to green (instead of blue)

14.40. 0.14.3 (2018-06-12) 225

Perun Documentation, Release 0.21.6

• colour tainted (containing degradation) and fixed (containing optimization) branches in vcs history

• add short summary of degradations to each minor version in graph

• add semantic ordering of uids (used in outputs)

• add vcs history to output of perun run matrix

• make perun check precollect phase silent (until we figure out the better way?)

• add streaming to the history (so it is not output when everything is done)

• make two versions of run_jobs (one with history and one without)

• refactor some modules to remove unnecessary dependencies

• add information about degradations to perun status and log

14.42 0.14.1 (2018-04-19)

Extend the automation

• add two new options to regression analysis module (see Regression Analysis for more details)

• fix minor issues in regression analysis and scatter plot module

• fix issue with non-deterministic ordering in flattening the values by convert

• add different ordering to perun status profiles (now they are ordered by time)

• add more boxes to the output of the perun status profiles (bundled per five profiles)

• add format.sort_profiles_by configuration key to allow sorting of profiles in perun status by different
keys

• add --sort-by option to perun status to allow sorting of profiles in perun status

• fix minor things in documentation

• add few helper function for CLI and profiles

• rename origin in ProfileInfo to source (class of names)

• fix typos in documentation

• remake walk major version to return MajorVersion object, with head and major version name

• add helper function for loading the profile out of profile info

• extend the api of the vcs (with storing/restoring the state, checkout and dirty-testing)

• add profiles.register_after_run configuration key to automatically register profiles after collection

• add execute.pre_run config key for running commands before execution of matrix

• add helper function for safely getting config key

• add --minor-version parameter to perun collect and perun run to run the collection over different minor
version

• add --crawl-parents parameter to allow perun collect and perun run to collect the data for both minor
version and its predecessors

• add checking out of the minor version, and saving the state, to collection of profiles

• add degradation.collect_before_check configuration key for automatically collect profiles before running
degradation check

226 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

14.43 0.14 (2018-03-27)

Add clusterization postprocessor

• add clusterizer postprocessor (see Clusterizer)

• add helper function for flattening single resources

• fixed profiles generated by time in tests

14.44 0.13 (2018-03-27)

Add SystemTap based complexity collector

• add SystemTap based complexity collector (see Trace Collector for more details)

• add perun utils create command (see Utility Commands for more details) for creating new modules ac-
cording to stored templates

• fix issue with getting config hierarchy, when outside of any perun scope

14.45 0.12.1 (2018-03-08)

Update project readme

• update the project readme

• add compiled documentation

14.46 0.12 (2018-03-05)

Add basic testing of performance changes between profiles

• add command for checking performance changes between two isolate profiles

• add command for checking performance changes in given minor version

• add command for checking performance changes within the project history

• add two basic methods of checking performance changes

• add two options to config (see degradation.strategies and degradation.apply) to customize perfor-
mance checking

• add caching to recursive config lookup

• add recursive gathering of options from config

• fix nondeterministic tests

• define structure for representing the result of performance change

• add basic implementation of performance change detectors

14.43. 0.14 (2018-03-27) 227

Perun Documentation, Release 0.21.6

14.47 0.11.1 (2018-02-28)

Enhance the regression model suite

• fix issues when reading configuration with error

• enhance the regression model suite by improving quadratic and constant models

• rename the tags to different format (%tag%)

• add support for shortlog formatting string

• fix issue with postprocessing information being lost

• add options for changing filename template

• remodel automatic generation of profile names (now templatable; see format.output_profile_template)

• add runtime config

• break config command to three (get, set, edit)

• rename some configuration options

• fix issue with missing header parts in profiles

• fix issue with incorrect parameter

• add global.paging option (see general.paging)

• improve bokeh outputs (with click policy, and better lines)

• other various fixes

14.48 0.11 (2017-11-27)

Adding proper documentation

• add HTML and latex documentation

• refactor the documentation of publicly visible modules

• add additional figures and examples of outputs and profiles

• switch order of initialization of Perun instances and vcs

• break vcs-params to vcs-flags and vcs-param

• fix the issue with missing index

• enhance the performance of Perun (guarding, rewriting to table lookup, or lazy inits)

• add loading of yaml parameters from CLI

228 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

14.49 0.10.1 (2017-10-24)

Remodeling of the regression analysis interface

• refactor the interface of regression analysis

• update the regression analysis error computation

• add new parameters for plotting models

• reduce number of specific computation functions

• update the architecture (namely the interface)

• update the documentation of regression analysis and parameters for cli

• update the regressions analysis error computation

• add constant model

• add paging for perun log and status

• rename converters and transformations modules

14.50 0.10 (2017-10-10)

Add Scatter plot visualization module

• add scatter plot as new visualisation module (basic version with some temporary workarounds)

• fix bisection method not producing model for some intervals

• add examples of scatter plot graphs

14.51 0.9.2 (2017-09-28)

Extend the regression analysis module

• add transformation of models to plotable data points

• add helper functions for plotting models

• add support of regression analysis extensions

14.52 0.9.1 (2017-09-24)

Extend the query module

• add proper testing to query module

• polish the messy conftest.py

• add support generators and fixtures for query profiles

• extend the profile query module with key values and models queries

14.49. 0.10.1 (2017-10-24) 229

Perun Documentation, Release 0.21.6

14.53 0.9 (2017-08-31)

Add regression analysis postprocessing module

• add regression analysis postprocessor module

• add example resulting profiles

14.54 0.8.3 (2017-08-31)

Update and fix complexity collector

• fix several minor issues with complexity collector

• polish the standard of the generated profile

• add proper testinr for cli

• refactor according to the pylint

• fix bug where vector would not be cleared after printing to file

• remove code duplication in loop specification

• fix different sampling data structure for job and complexity cli

• fix some minor details with cli usage and info output

14.55 0.8.2 (2017-07-31)

Update the command line interface of complexity collector

• add new options to complexity collector interface

• add thorough documentation

• refactor the implementation

14.56 0.8.1 (2017-07-30)

Update the performance of command line interface

• add on demand import of big libraries

• optimize the memory collector by minimizing subprocess calls

• fix issue with regex in memory collector

• add caching of memory collector syscalls

• extend cli of add and remove to support multiple args

• extend the massaging of parameters for cli

• remodel the config command

• add support for tags in command line

• enhance the status output of the profile list

230 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

• enhance the default formatting of config

• add thorough validity checking of bars/flow params

14.57 0.8 (2017-07-03)

Add flame graph visualization

• add flame graph visualization module

14.58 0.7.2 (2017-07-03)

Refactor flow graph to a more generic form

• refactor flow to more generic format

• work with flattened pandas.DataFrame format

• use set of generators and queries for manipulation with profiles

• make the cli API generic

• polish the visual apeal of flow graphs

• simplify output to bokeh.charts.Area

• add basic testing of bokeh flow graphs

• fix the issue with additional layer in memory profs

14.59 0.7.1 (2017-06-30)

Refactor bar graph to a more generic form

• refactor bars to more generic format

• work with flattened pandas.DataFrame format

• make the cli API generic

• polish the visual apeal of bars graph

• add unique colour palette to bokeh graphs

• fix minor issue with matrix in config

• add massaging of params for show and postprocess

14.57. 0.8 (2017-07-03) 231

Perun Documentation, Release 0.21.6

14.60 0.7 (2017-06-26)

Add bar graph visualization

• integrate bar graph visualization

14.61 0.6 (2017-06-26)

Add Flow graph visualization

• integrate flow graph visualization

14.62 0.5.1 (2016-06-22)

Fix issues in memory collector

• extend the CLI for memory collect

• annotate phases of memory collect with basic informations

• add checks for presence of debugging symbols

• fix in various things in memory collector

• extend the testing of memory collector

14.63 0.5 (2016-06-21)

Add Heap map visualization

• integrate Heap map visualization

• add thorough testing of heap and heat map

• refactor profile converting

• refactor duplicate blobs of code

• add animation feature

• add origin to profile so it can be compared before adding profile

• add more smart lookup of the profile for add

• add choices for collector/vcs/postprocessor parameters in cli

• simplify adding parameters to collectors/postprocessors

• add support for formatting strings for profile list

• refactor log and status function

• add basic testing for the command line interface

• switch interactive configuration to using editor

• implement wrappers for collect and postprocessby

• rename ‘bin’ keyword to ‘cmd’ in stored profiles

232 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

• add basic testing of the collectors and commands

14.64 0.4.2 (2017-05-31)

Collective fixes mostly for Memory collector

• fix a collector issue with zero value addresses

• add checking validity of the looked up minor version

• fix issue with incorrect parameter of the NotPerunRepositoryException

• raise exception when the profile is in incorrect json syntax

• catch error when minor head could not be found

• add exception for errors in wrapped VCS

• add exception for incorrect profile format

• raise NotPerunRepository, when Perun is not located on path

• fix message when git was reinitialized

• catch exceptions for init

14.65 0.4.1 (2017-05-15)

Collective fixes mosty for Complexity collector

• fixed size data container growth if functions were sampled

• enhance the perun status with info about untracked profiles

• add colours to printing of profile list (red for untracked)

• add output of untracked profiles to perun status

• fix issue with postprocessor parameter rewritten by local variable

14.66 0.4 (2017-03-17)

Add Complexity collector

• add complexity collector module

14.67 0.3 (2017-03-14)

Adding Memory Collector

• add memory collector module

• fix the issue with detached head state and perun status

• add simple, but interactive, initialization of the local config

14.64. 0.4.2 (2017-05-31) 233

Perun Documentation, Release 0.21.6

14.68 0.2 (2017-03-07)

Add basic job units

• add the normalizer postprocessor

• add the time collector

• refactor the git module to use the python package

• add loadinng of config from local yml

• refactor construction of job matrix

• remove cmd from job tuple and rename params to args

• break perun run to run matrix (from config) and run job (from stdout)

• fix issue of assuming different structure of profile

• add functionality of creating and storing profiles

• add generation of the profile name for given job

• add storing of the profile at given path

• add generation of profile out of collected data

• update the params between the phases

• polish the perun –short header

• various minor tweaks for outputs

• change init-vcs-* options to just vcs-*

• fix an issue with incorrectly outputed comma if no profile type was present

• fix an issue with loading profile having two modes (compressed and uncompressed)

• implement base logic for calling collectors and postprocessors

• enhance output of profile numbers in perun log and status with colours and types

• add header for short info

• add colours to the header

• add base implementation of perun show

• fix loading of compressed file

• polish output of perun log and status by adding indent, colours and padding

• fix an issue with adding non-existent profile

• fix multiple adding of the same entry

• fix an issue when the added entry should go to end of index

234 Chapter 14. Changelog

Perun Documentation, Release 0.21.6

14.69 0.1 (2017-02-22)

First partially working implementation

• add short printing of minor version info (–short-minors | -s option)

• fix reverse output of log (oldest was displayed first)

• implement simplistic perun log outputing minor version history and profile numbers

• fix an incorrect warning about already tracked profiles

• add removal of the entry from the index

• add registering of files to the minor version index

• refactor according to pylint

• add base implementation of perun log

• add base implementation of perun status

• add base implementation of perun add

• add base implementation of perun rm

• add base implementation of perun init

• add base implementation of perun config

• add base commandline interface through click

14.70 0.0 (2016-12-10)

Initial minimalistic repository

• empty root

14.69. 0.1 (2017-02-22) 235

Perun Documentation, Release 0.21.6

236 Chapter 14. Changelog

PYTHON MODULE INDEX

p
perun.check.average_amount_threshold, 164
perun.check.best_model_order_equality, 163
perun.check.exclusive_time_outliers, 164
perun.check.fast_check, 166
perun.check.linear_regression, 166
perun.check.polynomial_regression, 166
perun.cli, 21
perun.collect, 75
perun.collect.bounds, 90
perun.collect.memory, 84
perun.collect.time, 88
perun.collect.trace, 77
perun.fuzz.methods.binary, 176
perun.fuzz.methods.textfile, 173
perun.fuzz.methods.xml, 177
perun.logic.config_templates, 196
perun.postprocess, 97
perun.postprocess.clusterizer, 107
perun.postprocess.kernel_regression, 116
perun.postprocess.moving_average, 112
perun.postprocess.normalizer, 99
perun.postprocess.regression_analysis, 100
perun.postprocess.regressogram, 110
perun.profile.convert, 17
perun.profile.factory, 15
perun.profile.helpers, 15
perun.profile.query, 18
perun.vcs, 206
perun.view, 131
perun.view.bars, 133
perun.view.flamegraph, 137
perun.view.flow, 139
perun.view.scatter, 142
perun.view.tableof, 144
perun.workload, 157
perun.workload.generator, 158
perun.workload.integer_generator, 158
perun.workload.singleton_generator, 158
perun.workload.string_generator, 159
perun.workload.textfile_generator, 159

237

Perun Documentation, Release 0.21.6

238 Python Module Index

INDEX

Symbols
-N

perun-fuzz command line option, 36, 189
perun-stats-list-files command line

option, 71
perun-stats-list-versions command line

option, 71
--accumulate

perun-show-flow command line option, 66,
140

--all
perun-collect-memory command line

option, 42, 85
--args

perun-collect command line option, 38
perun-fuzz command line option, 35, 188
perun-run-job command line option, 31, 153

--bandwidth-method
perun-postprocessby-kernel-regression-estimator-settings

command line option, 56, 120
perun-postprocessby-kernel-regression-kernel-smoothing

command line option, 60, 124
perun-postprocessby-kernel-regression-method-selection

command line option, 58, 122
--bandwidth-value

perun-postprocessby-kernel-regression-kernel-smoothing
command line option, 60, 124

perun-postprocessby-kernel-regression-user-selection
command line option, 57, 121

--binary
perun-collect-trace command line option,

40, 78
--bucket_method

perun-postprocessby-regressogram
command line option, 49, 111

--bucket_number
perun-postprocessby-regressogram

command line option, 49, 111
--by

perun-show-bars command line option, 63,
134

perun-show-flow command line option, 66,

140
--center

perun-postprocessby-moving_average-sma
command line option, 51, 114

perun-postprocessby-moving_average-smm
command line option, 52, 114

--cmd
perun-collect command line option, 38
perun-fuzz command line option, 35, 188
perun-run-job command line option, 31, 153

--collector
perun-fuzz command line option, 36, 188
perun-run-job command line option, 31, 153

--collector-params
perun-fuzz command line option, 36, 188
perun-run-job command line option, 32, 153

--compute-missing
perun-check command line option, 33

--config-template
perun-init command line option, 24

--configure
perun-init command line option, 24

--coverage-increase-rate
perun-fuzz command line option, 37, 189

--crawl-parents
perun-collect command line option, 38
perun-run command line option, 30

--decay
perun-postprocessby-moving_average-ema

command line option, 53, 115
--depending-on

perun-postprocessby-regression_analysis
command line option, 47, 101

--dev-mode
perun command line option, 22

--diagnostics
perun-collect-trace command line option,

41, 79
--dynamic

perun-collect-trace command line option,
40, 78

--efficient

239

Perun Documentation, Release 0.21.6

perun-postprocessby-kernel-regression-estimator-settings
command line option, 56, 120

--engine
perun-collect-trace command line option,

40, 78
--exec-limit

perun-fuzz command line option, 37, 189
--extract-mixed-cg

perun-collect-trace command line option,
41, 79

--filename
perun-show-bars command line option, 63,

134
perun-show-flamegraph command line

option, 65, 138
perun-show-flow command line option, 66,

140
perun-show-scatter command line option,

67, 143
--filter-by

perun-show-tableof-models command line
option, 146

perun-show-tableof-resources command
line option, 146

--filter-protection
perun-temp-list command line option, 69

--fixed-window-height
perun-postprocessby-clusterizer command

line option, 48, 107
--fixed-window-width

perun-postprocessby-clusterizer command
line option, 48, 108

--force
perun-add command line option, 27
perun-check command line option, 33

--force-dirty
perun-run command line option, 30

--format
perun-show-tableof command line option,

145
--from-minor

perun-stats-list-files command line
option, 71

perun-stats-list-versions command line
option, 71

--func
perun-collect-trace command line option,

40, 78
--gamma-range

perun-postprocessby-kernel-regression-kernel-ridge
command line option, 61, 125

--gamma-step
perun-postprocessby-kernel-regression-kernel-ridge

command line option, 61, 125

--gcno-path
perun-fuzz command line option, 36, 189

--global-sampling
perun-collect-trace command line option,

40, 78
--graph-height

perun-show-flamegraph command line
option, 65, 138

--graph-title
perun-show-bars command line option, 63,

134
perun-show-flow command line option, 66,

140
perun-show-scatter command line option,

67, 143
--grouped

perun-show-bars command line option, 63,
134

--hang-timeout
perun-fuzz command line option, 36, 189

--headers
perun-show-tableof-models command line

option, 146
perun-show-tableof-resources command

line option, 146
--in-minor

perun-stats-delete-file command line
option, 72

--input-sample
perun-fuzz command line option, 35, 188

--interesting-files-limit
perun-fuzz command line option, 37, 189

--keep-custom
perun-stats-clean command line option, 74

--keep-directory
perun-stats-delete-file command line

option, 72
perun-stats-delete-ll command line

option, 73
perun-stats-delete-minor command line

option, 73
--keep-empty

perun-stats-clean command line option, 74
--keep-profile

perun-add command line option, 27
--keep-temps

perun-collect-trace command line option,
41, 79

--kernel-type
perun-postprocessby-kernel-regression-kernel-smoothing

command line option, 60, 124
--libs

perun-collect-trace command line option,
41, 78

240 Index

Perun Documentation, Release 0.21.6

--local
perun-config command line option, 25, 197

--max-simultaneous-threads
perun-collect-trace command line option,

41, 79
--max-size

perun-fuzz command line option, 36, 189
--max-size-increase

perun-fuzz command line option, 36, 189
--max-size-ratio

perun-fuzz command line option, 37, 189
--method

perun-postprocessby-regression_analysis
command line option, 47, 101

--metrics
perun command line option, 22

--min_periods
perun-postprocessby-moving_average

command line option, 50, 113
--minor

perun-add command line option, 27
perun-check-profiles command line

option, 35, 170
perun-postprocessby command line option,

45
perun-rm command line option, 28
perun-show command line option, 62

--minor-version
perun-collect command line option, 38
perun-fuzz command line option, 36, 188
perun-run command line option, 30

--models-type
perun-check command line option, 33

--mutations-per-rule
perun-fuzz command line option, 37, 189

--n-re-samples
perun-postprocessby-kernel-regression-estimator-settings

command line option, 56, 120
--n-sub-samples

perun-postprocessby-kernel-regression-estimator-settings
command line option, 56, 120

--nearest
perun-config command line option, 25, 197

--no-accumulate
perun-show-flow command line option, 66,

140
--no-after-phase

perun-utils-create command line option,
68

--no-before-phase
perun-utils-create command line option,

68
--no-center

perun-postprocessby-moving_average-sma
command line option, 51, 114

perun-postprocessby-moving_average-smm
command line option, 52, 114

--no-color
perun command line option, 22

--no-dir-size
perun-stats-list-versions command line

option, 71
--no-ds-update

perun-collect-trace command line option,
41, 79

--no-edit
perun-utils-create command line option,

68
--no-file-count

perun-stats-list-versions command line
option, 72

--no-file-size
perun-stats-list-files command line

option, 71
perun-temp-list command line option, 69

--no-func
perun-collect-memory command line

option, 42, 85
--no-minor

perun-stats-list-files command line
option, 71

--no-pager
perun command line option, 22

--no-plotting
perun-fuzz command line option, 37, 189

--no-profile
perun-collect-trace command line option,

41, 79
--no-protection-level

perun-temp-list command line option, 69
--no-randomize

perun-postprocessby-kernel-regression-estimator-settings
command line option, 56, 120

--no-source
perun-collect-memory command line

option, 42, 85
--no-total-size

perun-stats-list-files command line
option, 71

perun-stats-list-versions command line
option, 72

perun-temp-list command line option, 69
--no-usdt

perun-collect-trace command line option,
40, 78

--of
perun-postprocessby-regression_analysis

Index 241

Perun Documentation, Release 0.21.6

command line option, 47, 101
perun-show-bars command line option, 63,

134
perun-show-flow command line option, 66,

140
perun-show-scatter command line option,

67, 143
--of-key

perun-postprocessby-kernel-regression
command line option, 54, 118

perun-postprocessby-moving_average
command line option, 50, 113

perun-postprocessby-regressogram
command line option, 49, 111

--only-extract-cg
perun-collect-trace command line option,

41, 79
--optimization-args

perun-collect command line option, 38
--optimization-cache-off

perun-collect command line option, 38
--optimization-off

perun-collect command line option, 38
--optimization-on

perun-collect command line option, 38
--optimization-pipeline

perun-collect command line option, 38
--optimization-reset-cache

perun-collect command line option, 39
--output-dir

perun-fuzz command line option, 36, 189
--output-file

perun-show-tableof command line option,
145

--output-filename-template
perun-collect command line option, 38
perun-postprocessby command line option,

45
perun-run command line option, 30

--output-handling
perun-collect-trace command line option,

41, 79
--params

perun-collect command line option, 38
--per

perun-show-bars command line option, 63,
134

perun-show-scatter command line option,
67, 143

--per-key
perun-postprocessby-kernel-regression

command line option, 54, 118
perun-postprocessby-moving_average

command line option, 50, 113

perun-postprocessby-regressogram
command line option, 49, 111

--polynomial-order
perun-postprocessby-kernel-regression-kernel-smoothing

command line option, 60, 124
--postprocessor

perun-fuzz command line option, 36, 188
perun-run-job command line option, 32, 153

--postprocessor-params
perun-fuzz command line option, 36, 188
perun-run-job command line option, 32, 153

--profile-name
perun-collect command line option, 38

--quiet
perun-collect-trace command line option,

41, 79
--randomize

perun-postprocessby-kernel-regression-estimator-settings
command line option, 56, 120

--reg-type
perun-postprocessby-kernel-regression-estimator-settings

command line option, 56, 120
perun-postprocessby-kernel-regression-method-selection

command line option, 58, 122
perun-postprocessby-kernel-regression-user-selection

command line option, 57, 121
--regex-rules

perun-fuzz command line option, 37, 189
--regression_models

perun-postprocessby-regression_analysis
command line option, 47, 101

--relative-window-height
perun-postprocessby-clusterizer command

line option, 48, 107
--relative-window-width

perun-postprocessby-clusterizer command
line option, 48, 107

--repeat
perun-collect-time command line option,

43, 89
--return-mean

perun-postprocessby-kernel-regression-estimator-settings
command line option, 56, 120

--return-median
perun-postprocessby-kernel-regression-estimator-settings

command line option, 56, 120
--sampling

perun-collect-memory command line
option, 42, 85

--shared
perun-config command line option, 25, 197

--short
perun-log command line option, 30
perun-status command line option, 29

242 Index

Perun Documentation, Release 0.21.6

--skip-coverage-testing
perun-fuzz command line option, 36, 188

--smoothing-method
perun-postprocessby-kernel-regression-kernel-smoothing

command line option, 60, 124
--sort-by

perun-show-tableof-models command line
option, 146

perun-show-tableof-resources command
line option, 146

perun-status command line option, 29
perun-temp-list command line option, 69

--sort-by-size
perun-stats-list-files command line

option, 71
perun-stats-list-versions command line

option, 72
--source

perun-collect-bounds command line
option, 44, 91

--source-dir
perun-collect-bounds command line

option, 44, 91
--source-path

perun-fuzz command line option, 36, 188
--src

perun-collect-bounds command line
option, 44, 91

--stacked
perun-show-bars command line option, 63,

134
perun-show-flow command line option, 66,

140
--stap-cache-off

perun-collect-trace command line option,
41, 79

--statistic_function
perun-postprocessby-regressogram

command line option, 49, 111
--steps

perun-postprocessby-regression_analysis
command line option, 47, 101

--strategy
perun-collect-trace command line option,

40, 78
perun-postprocessby-clusterizer command

line option, 48, 107
--supported-type

perun-utils-create command line option,
68

--through
perun-show-flow command line option, 66,

140
--timeout

perun-collect-trace command line option,
41, 79

perun-fuzz command line option, 36, 189
--to-file

perun-show-tableof command line option,
145

--to-stdout
perun-show-tableof command line option,

145
--top

perun-stats-list-files command line
option, 71

perun-stats-list-versions command line
option, 71

--uniformly
perun-postprocessby-kernel-regression-estimator-settings

command line option, 56, 120
--usdt

perun-collect-trace command line option,
40, 78

--use-cg-type
perun-collect command line option, 39

--vcs-flag
perun-init command line option, 24

--vcs-param
perun-init command line option, 23

--vcs-path
perun-init command line option, 23

--vcs-type
perun-init command line option, 23

--verbose
perun command line option, 22

--verbose-trace
perun-collect-trace command line option,

41, 79
--version

perun command line option, 22
--view-in-browser

perun-show-bars command line option, 63,
134

perun-show-flow command line option, 66,
140

perun-show-scatter command line option,
67, 143

--warmup
perun-collect-time command line option,

43, 89
--watchdog

perun-collect-trace command line option,
41, 79

--weighted-window-width
perun-postprocessby-clusterizer command

line option, 48, 108
--window_type

Index 243

Perun Documentation, Release 0.21.6

perun-postprocessby-moving_average-sma
command line option, 51, 114

--window_width
perun-postprocessby-moving_average-sma

command line option, 51, 114
perun-postprocessby-moving_average-smm

command line option, 52, 114
--window-height

perun-postprocessby-clusterizer command
line option, 48, 107

--window-width
perun-postprocessby-clusterizer command

line option, 48, 107
--with-usdt

perun-collect-trace command line option,
40, 78

--without-vcs-history
perun-run-matrix command line option, 32,

154
--workload

perun-collect command line option, 38
perun-run-job command line option, 31, 153

--workloads-filter
perun-fuzz command line option, 36, 188

--x-axis-label
perun-show-bars command line option, 63,

134
perun-show-flow command line option, 66,

140
perun-show-scatter command line option,

67, 143
--y-axis-label

perun-show-bars command line option, 63,
134

perun-show-flow command line option, 66,
140

perun-show-scatter command line option,
67, 143

--zip-temps
perun-collect-trace command line option,

41, 79
-a

perun-collect command line option, 38
perun-collect-memory command line

option, 42, 85
perun-fuzz command line option, 35, 188
perun-run-job command line option, 31, 153

-b
perun-collect-trace command line option,

40, 78
perun-fuzz command line option, 35, 188
perun-run-job command line option, 31, 153
perun-show-bars command line option, 63,

134

perun-show-flow command line option, 66,
140

-bm
perun-postprocessby-kernel-regression-kernel-smoothing

command line option, 60, 124
perun-postprocessby-kernel-regression-method-selection

command line option, 58, 122
perun-postprocessby-regressogram

command line option, 49, 111
-bn

perun-postprocessby-regressogram
command line option, 49, 111

-bv
perun-postprocessby-kernel-regression-kernel-smoothing

command line option, 60, 124
perun-postprocessby-kernel-regression-user-selection

command line option, 57, 121
-bw

perun-postprocessby-kernel-regression-estimator-settings
command line option, 56, 120

-c
perun-check command line option, 33
perun-collect command line option, 38
perun-fuzz command line option, 36, 188
perun-init command line option, 24
perun-run command line option, 30
perun-run-job command line option, 31, 153
perun-stats-clean command line option, 74

-cg
perun-collect command line option, 39
perun-collect-trace command line option,

41, 79
-cp

perun-collect command line option, 38
perun-fuzz command line option, 36, 188
perun-run-job command line option, 32, 153

-cr
perun-fuzz command line option, 37, 189

-d
perun command line option, 22
perun-collect-bounds command line

option, 44, 91
perun-collect-trace command line option,

40, 78
perun-postprocessby-moving_average-ema

command line option, 53, 115
perun-stats-list-versions command line

option, 71
-dp

perun-postprocessby-regression_analysis
command line option, 47, 101

-e
perun-collect-trace command line option,

40, 78

244 Index

Perun Documentation, Release 0.21.6

perun-fuzz command line option, 37, 189
perun-stats-clean command line option, 74

-f
perun-add command line option, 27
perun-check command line option, 33
perun-collect-trace command line option,

40, 78
perun-run command line option, 30
perun-show-bars command line option, 63,

134
perun-show-flamegraph command line

option, 65, 138
perun-show-flow command line option, 66,

140
perun-show-scatter command line option,

67, 143
perun-show-tableof command line option,

145
perun-show-tableof-models command line

option, 146
perun-show-tableof-resources command

line option, 146
perun-stats-list-files command line

option, 71
perun-stats-list-versions command line

option, 72
perun-temp-list command line option, 69

-fp
perun-temp-list command line option, 69

-fwh
perun-postprocessby-clusterizer command

line option, 48, 107
-fww

perun-postprocessby-clusterizer command
line option, 48, 108

-g
perun-collect-trace command line option,

40, 78
perun-fuzz command line option, 36, 189
perun-show-bars command line option, 63,

134
-gr

perun-postprocessby-kernel-regression-kernel-ridge
command line option, 61, 125

-gs
perun-postprocessby-kernel-regression-kernel-ridge

command line option, 61, 125
-gt

perun-show-bars command line option, 63,
134

perun-show-flow command line option, 66,
140

perun-show-scatter command line option,
67, 143

-h
perun-config command line option, 25, 197
perun-fuzz command line option, 36, 189
perun-show-flamegraph command line

option, 65, 138
perun-show-tableof-models command line

option, 146
perun-show-tableof-resources command

line option, 146
-i

perun-collect-trace command line option,
41, 79

perun-stats-list-files command line
option, 71

-k
perun-collect-trace command line option,

41, 79
perun-stats-delete-file command line

option, 72
perun-stats-delete-ll command line

option, 73
perun-stats-delete-minor command line

option, 73
-kt

perun-postprocessby-kernel-regression-kernel-smoothing
command line option, 60, 124

-l
perun-collect-trace command line option,

41, 78
perun-config command line option, 25, 197
perun-fuzz command line option, 37, 189

-m
perun command line option, 22
perun-add command line option, 27
perun-check command line option, 33
perun-check-profiles command line

option, 35, 170
perun-collect command line option, 38
perun-fuzz command line option, 36, 188
perun-postprocessby command line option,

45
perun-postprocessby-regression_analysis

command line option, 47, 101
perun-rm command line option, 28
perun-run command line option, 30
perun-show command line option, 62
perun-stats-delete-file command line

option, 72
perun-stats-list-files command line

option, 71
perun-stats-list-versions command line

option, 71
-mcg

perun-collect-trace command line option,

Index 245

Perun Documentation, Release 0.21.6

41, 79
-mi

perun-fuzz command line option, 36, 189
-mp

perun-fuzz command line option, 37, 189
perun-postprocessby-moving_average

command line option, 50, 113
-mpr

perun-fuzz command line option, 37, 189
-mt

perun-collect-trace command line option,
41, 79

-n
perun-config command line option, 25, 197

-na
perun-utils-create command line option,

68
-nb

perun-utils-create command line option,
68

-nc
perun command line option, 22

-nds
perun-collect-trace command line option,

41, 79
-ne

perun-utils-create command line option,
68

-np
perun-collect-trace command line option,

41, 79
perun-fuzz command line option, 37, 189

-nres
perun-postprocessby-kernel-regression-estimator-settings

command line option, 56, 120
-nsub

perun-postprocessby-kernel-regression-estimator-settings
command line option, 56, 120

-o
perun-collect-trace command line option,

41, 79
perun-fuzz command line option, 36, 189
perun-postprocessby-regression_analysis

command line option, 47, 101
perun-show-bars command line option, 63,

134
perun-show-flow command line option, 66,

140
perun-show-scatter command line option,

67, 143
-oa

perun-collect command line option, 38
-of

perun-postprocessby-kernel-regression
command line option, 54, 118

perun-postprocessby-moving_average
command line option, 50, 113

perun-postprocessby-regressogram
command line option, 49, 111

perun-show-tableof command line option,
145

-off
perun-collect command line option, 38

-on
perun-collect command line option, 38

-op
perun-collect command line option, 38

-ot
perun-collect command line option, 38
perun-postprocessby command line option,

45
perun-run command line option, 30

-p
perun-collect command line option, 38
perun-fuzz command line option, 36, 188
perun-run-job command line option, 32, 153
perun-show-bars command line option, 63,

134
perun-show-scatter command line option,

67, 143
perun-temp-list command line option, 69

-per
perun-postprocessby-kernel-regression

command line option, 54, 118
perun-postprocessby-moving_average

command line option, 50, 113
perun-postprocessby-regressogram

command line option, 49, 111
-pn

perun-collect command line option, 38
-pp

perun-fuzz command line option, 36, 188
perun-run-job command line option, 32, 153

-q
perun-collect-trace command line option,

41, 79
perun-postprocessby-kernel-regression-kernel-smoothing

command line option, 60, 124
perun-run-matrix command line option, 32,

154
-r

perun-collect-time command line option,
43, 89

perun-fuzz command line option, 37, 189
perun-postprocessby-regression_analysis

command line option, 47, 101
-rt

246 Index

Perun Documentation, Release 0.21.6

perun-postprocessby-kernel-regression-estimator-settings
command line option, 56, 120

perun-postprocessby-kernel-regression-method-selection
command line option, 58, 122

perun-postprocessby-kernel-regression-user-selection
command line option, 57, 121

-rwh
perun-postprocessby-clusterizer command

line option, 48, 107
-rww

perun-postprocessby-clusterizer command
line option, 48, 107

-s
perun-collect-bounds command line

option, 44, 91
perun-collect-memory command line

option, 42, 85
perun-collect-trace command line option,

40, 78
perun-fuzz command line option, 36, 188
perun-log command line option, 30
perun-postprocessby-clusterizer command

line option, 48, 107
perun-postprocessby-regression_analysis

command line option, 47, 101
perun-show-bars command line option, 63,

134
perun-show-flow command line option, 66,

140
perun-show-tableof-models command line

option, 146
perun-show-tableof-resources command

line option, 146
perun-stats-list-files command line

option, 71
perun-stats-list-versions command line

option, 72
perun-status command line option, 29
perun-temp-list command line option, 69

-sb
perun-status command line option, 29

-sc
perun-collect-trace command line option,

41, 79
-sf

perun-postprocessby-regressogram
command line option, 49, 111

-sm
perun-postprocessby-kernel-regression-kernel-smoothing

command line option, 60, 124
-st

perun-utils-create command line option,
68

-t

perun-collect-trace command line option,
41, 79

perun-fuzz command line option, 36, 189
perun-init command line option, 24
perun-show-flow command line option, 66,

140
perun-stats-list-files command line

option, 71
perun-stats-list-versions command line

option, 72
perun-temp-list command line option, 69

-tf
perun-show-tableof command line option,

145
-ts

perun-show-tableof command line option,
145

-u
perun-collect-trace command line option,

40, 78
-v

perun command line option, 22
perun-show-bars command line option, 63,

134
perun-show-flow command line option, 66,

140
perun-show-scatter command line option,

67, 143
-vt

perun-collect-trace command line option,
41, 79

-w
perun-collect command line option, 38
perun-collect-time command line option,

43, 89
perun-collect-trace command line option,

41, 79
perun-fuzz command line option, 35, 188
perun-run-job command line option, 31, 153

-wf
perun-fuzz command line option, 36, 188

-wh
perun-postprocessby-clusterizer command

line option, 48, 107
-wt

perun-postprocessby-moving_average-sma
command line option, 51, 114

-ww
perun-postprocessby-clusterizer command

line option, 48, 107
perun-postprocessby-moving_average-sma

command line option, 51, 114
perun-postprocessby-moving_average-smm

command line option, 52, 114

Index 247

Perun Documentation, Release 0.21.6

-www
perun-postprocessby-clusterizer command

line option, 48, 108
-xl

perun-show-bars command line option, 63,
134

perun-show-flow command line option, 66,
140

perun-show-scatter command line option,
67, 143

-yl
perun-show-bars command line option, 63,

134
perun-show-flow command line option, 66,

140
perun-show-scatter command line option,

67, 143
-z

perun-collect-trace command line option,
41, 79

<aggregation_function>
perun-show-bars command line option, 64,

134
perun-show-flow command line option, 66,

140
<baseline>

perun-check-profiles command line
option, 35, 170

<hash>
perun-check-all command line option, 34,

169
perun-check-head command line option, 34,

169
perun-log command line option, 30

<key>
perun-config-get command line option, 26,

198
perun-config-set command line option, 26,

199
<path>

perun-init command line option, 24
<profile>

perun-add command line option, 28
perun-postprocessby command line option,

45
perun-rm command line option, 29
perun-show command line option, 62

<target>
perun-check-profiles command line

option, 35, 170
<template>

perun-utils-create command line option,
69

<unit>

perun-utils-create command line option,
69

<value>
perun-config-set command line option, 26,

199

A
all_filtered_models() (perun.profile.factory.Profile

method), 15
all_items_of() (in module perun.profile.query), 18
all_key_values_of() (in module perun.profile.query),

20
all_models() (perun.profile.factory.Profile method), 15
all_numerical_resource_fields_of() (in module

perun.profile.query), 19
all_resources() (perun.profile.factory.Profile

method), 16
all_snapshots() (perun.profile.factory.Profile

method), 16
append_whitespace() (in module pe-

run.fuzz.methods.textfile), 174
args

configuration unit, 194
matrix format unit, 156
perf format key, 11

B
bloat_words() (in module perun.fuzz.methods.textfile),

175

C
change_character() (in module pe-

run.fuzz.methods.textfile), 173
check_minor_version_validity() (in module pe-

run.vcs), 207
checkout() (in module perun.vcs), 208
chunks

perf format region, 15
cmd

perf format key, 11
cmds

configuration unit, 194
matrix format unit, 156

collector_info
perf format region, 11

collector_info.name
perf format key, 12

collector_info.params
perf format key, 12

collectors
configuration unit, 194
matrix format unit, 157

configuration key
degradation.apply, 195

248 Index

Perun Documentation, Release 0.21.6

degradation.collect_before_check, 195
degradation.log_collect, 195
degradation.strategies, 195
execute.pre_run, 194
format.output_profile_template, 193
format.shortlog, 192
format.sort_profiles_by, 194
format.status, 192
general.editor, 192
general.paging, 192
generators.workload, 195
profiles.register_after_run, 195
vcs.type, 192
vcs.url, 192

configuration unit
args, 194
cmds, 194
collectors, 194
degradation, 195
execute, 194
format, 192
general, 192
postprocessors, 194
profiles, 194
vcs, 192
workloads, 194

D
degradation

configuration unit, 195
degradation.apply

configuration key, 195
degradation.collect_before_check

configuration key, 195
degradation.log_collect

configuration key, 195
degradation.strategies

configuration key, 195
DegradationInfo (class in perun.utils.structs), 167
delete_character() (in module pe-

run.fuzz.methods.textfile), 173
delete_line() (in module perun.fuzz.methods.textfile),

174
delete_word() (in module perun.fuzz.methods.textfile),

175
divide_line() (in module perun.fuzz.methods.textfile),

173
double_line() (in module perun.fuzz.methods.textfile),

173
duplicate_line() (in module pe-

run.fuzz.methods.textfile), 173

E
execute

configuration unit, 194
execute.pre_run

configuration key, 194

F
flip_bit() (in module perun.fuzz.methods.binary), 176
format

configuration unit, 192
format.output_profile_template

configuration key, 193
format.shortlog

configuration key, 192
format.sort_profiles_by

configuration key, 194
format.status

configuration key, 192

G
general

configuration unit, 192
general.editor

configuration key, 192
general.paging

configuration key, 192
generators.workload

configuration key, 195
get_head_major_version() (in module perun.vcs),

207
get_minor_head() (in module perun.vcs), 207
get_minor_version_info() (in module perun.vcs),

207

H
header

perf format region, 10

I
init() (in module perun.vcs), 206
insert_byte() (in module perun.fuzz.methods.binary),

176
insert_whitespace() (in module pe-

run.fuzz.methods.textfile), 174
insert_zero_byte() (in module pe-

run.fuzz.methods.binary), 176
is_dirty() (in module perun.vcs), 208

M
massage_parameter() (in module perun.vcs), 207
matrix format unit

args, 156
cmds, 156
collectors, 157
postprocessors, 157

Index 249

Perun Documentation, Release 0.21.6

workloads, 157
models

perf format key, 14
module

perun.check.average_amount_threshold, 164
perun.check.best_model_order_equality,

163
perun.check.exclusive_time_outliers, 164
perun.check.fast_check, 166
perun.check.linear_regression, 166
perun.check.polynomial_regression, 166
perun.cli, 21
perun.collect, 75
perun.collect.bounds, 90
perun.collect.memory, 84
perun.collect.time, 88
perun.collect.trace, 77
perun.fuzz.methods.binary, 176
perun.fuzz.methods.textfile, 173
perun.fuzz.methods.xml, 177
perun.logic.config_templates, 196
perun.postprocess, 97
perun.postprocess.clusterizer, 107
perun.postprocess.kernel_regression, 116
perun.postprocess.moving_average, 112
perun.postprocess.normalizer, 99
perun.postprocess.regression_analysis,

100
perun.postprocess.regressogram, 110
perun.profile.convert, 17
perun.profile.factory, 15
perun.profile.helpers, 15
perun.profile.query, 18
perun.vcs, 206
perun.view, 131
perun.view.bars, 133
perun.view.flamegraph, 137
perun.view.flow, 139
perun.view.scatter, 142
perun.view.tableof, 144
perun.workload, 157
perun.workload.generator, 158
perun.workload.integer_generator, 158
perun.workload.singleton_generator, 158
perun.workload.string_generator, 159
perun.workload.textfile_generator, 159

N
NAME

perun-stats-delete-file command line
option, 73

O
origin

perf format region, 10

P
perf format key

args, 11
cmd, 11
collector_info.name, 12
collector_info.params, 12
models, 14
resources, 14
time, 13
type, 11
units, 11
workload, 11

perf format region
chunks, 15
collector_info, 11
header, 10
origin, 10
postprocessors, 12
snapshots, 12

perun command line option
--dev-mode, 22
--metrics, 22
--no-color, 22
--no-pager, 22
--verbose, 22
--version, 22
-d, 22
-m, 22
-nc, 22
-v, 22

perun.check.average_amount_threshold
module, 164

perun.check.best_model_order_equality
module, 163

perun.check.exclusive_time_outliers
module, 164

perun.check.fast_check
module, 166

perun.check.linear_regression
module, 166

perun.check.polynomial_regression
module, 166

perun.cli
module, 21

perun.collect
module, 75

perun.collect.bounds
module, 90

perun.collect.memory
module, 84

perun.collect.time
module, 88

250 Index

Perun Documentation, Release 0.21.6

perun.collect.trace
module, 77

perun.fuzz.methods.binary
module, 176

perun.fuzz.methods.textfile
module, 173

perun.fuzz.methods.xml
module, 177

perun.logic.config_templates
module, 196

perun.postprocess
module, 97

perun.postprocess.clusterizer
module, 107

perun.postprocess.kernel_regression
module, 116

perun.postprocess.moving_average
module, 112

perun.postprocess.normalizer
module, 99

perun.postprocess.regression_analysis
module, 100

perun.postprocess.regressogram
module, 110

perun.profile.convert
module, 17

perun.profile.factory
module, 15

perun.profile.helpers
module, 15

perun.profile.query
module, 18

perun.vcs
module, 206

perun.view
module, 131

perun.view.bars
module, 133

perun.view.flamegraph
module, 137

perun.view.flow
module, 139

perun.view.scatter
module, 142

perun.view.tableof
module, 144

perun.workload
module, 157

perun.workload.generator
module, 158

perun.workload.integer_generator
module, 158

perun.workload.singleton_generator
module, 158

perun.workload.string_generator
module, 159

perun.workload.textfile_generator
module, 159

perun-add command line option
--force, 27
--keep-profile, 27
--minor, 27
-f, 27
-m, 27
<profile>, 28

perun-check command line option
--compute-missing, 33
--force, 33
--models-type, 33
-c, 33
-f, 33
-m, 33

perun-check-all command line option
<hash>, 34, 169

perun-check-head command line option
<hash>, 34, 169

perun-check-profiles command line option
--minor, 35, 170
-m, 35, 170
<baseline>, 35, 170
<target>, 35, 170

perun-collect command line option
--args, 38
--cmd, 38
--crawl-parents, 38
--minor-version, 38
--optimization-args, 38
--optimization-cache-off, 38
--optimization-off, 38
--optimization-on, 38
--optimization-pipeline, 38
--optimization-reset-cache, 39
--output-filename-template, 38
--params, 38
--profile-name, 38
--use-cg-type, 39
--workload, 38
-a, 38
-c, 38
-cg, 39
-cp, 38
-m, 38
-oa, 38
-off, 38
-on, 38
-op, 38
-ot, 38
-p, 38

Index 251

Perun Documentation, Release 0.21.6

-pn, 38
-w, 38

perun-collect-bounds command line option
--source, 44, 91
--source-dir, 44, 91
--src, 44, 91
-d, 44, 91
-s, 44, 91

perun-collect-memory command line option
--all, 42, 85
--no-func, 42, 85
--no-source, 42, 85
--sampling, 42, 85
-a, 42, 85
-s, 42, 85

perun-collect-time command line option
--repeat, 43, 89
--warmup, 43, 89
-r, 43, 89
-w, 43, 89

perun-collect-trace command line option
--binary, 40, 78
--diagnostics, 41, 79
--dynamic, 40, 78
--engine, 40, 78
--extract-mixed-cg, 41, 79
--func, 40, 78
--global-sampling, 40, 78
--keep-temps, 41, 79
--libs, 41, 78
--max-simultaneous-threads, 41, 79
--no-ds-update, 41, 79
--no-profile, 41, 79
--no-usdt, 40, 78
--only-extract-cg, 41, 79
--output-handling, 41, 79
--quiet, 41, 79
--stap-cache-off, 41, 79
--strategy, 40, 78
--timeout, 41, 79
--usdt, 40, 78
--verbose-trace, 41, 79
--watchdog, 41, 79
--with-usdt, 40, 78
--zip-temps, 41, 79
-b, 40, 78
-cg, 41, 79
-d, 40, 78
-e, 40, 78
-f, 40, 78
-g, 40, 78
-i, 41, 79
-k, 41, 79
-l, 41, 78

-mcg, 41, 79
-mt, 41, 79
-nds, 41, 79
-np, 41, 79
-o, 41, 79
-q, 41, 79
-s, 40, 78
-sc, 41, 79
-t, 41, 79
-u, 40, 78
-vt, 41, 79
-w, 41, 79
-z, 41, 79

perun-config command line option
--local, 25, 197
--nearest, 25, 197
--shared, 25, 197
-h, 25, 197
-l, 25, 197
-n, 25, 197

perun-config-get command line option
<key>, 26, 198

perun-config-set command line option
<key>, 26, 199
<value>, 26, 199

perun-fuzz command line option
-N, 36, 189
--args, 35, 188
--cmd, 35, 188
--collector, 36, 188
--collector-params, 36, 188
--coverage-increase-rate, 37, 189
--exec-limit, 37, 189
--gcno-path, 36, 189
--hang-timeout, 36, 189
--input-sample, 35, 188
--interesting-files-limit, 37, 189
--max-size, 36, 189
--max-size-increase, 36, 189
--max-size-ratio, 37, 189
--minor-version, 36, 188
--mutations-per-rule, 37, 189
--no-plotting, 37, 189
--output-dir, 36, 189
--postprocessor, 36, 188
--postprocessor-params, 36, 188
--regex-rules, 37, 189
--skip-coverage-testing, 36, 188
--source-path, 36, 188
--timeout, 36, 189
--workloads-filter, 36, 188
-a, 35, 188
-b, 35, 188
-c, 36, 188

252 Index

Perun Documentation, Release 0.21.6

-cp, 36, 188
-cr, 37, 189
-e, 37, 189
-g, 36, 189
-h, 36, 189
-l, 37, 189
-m, 36, 188
-mi, 36, 189
-mp, 37, 189
-mpr, 37, 189
-np, 37, 189
-o, 36, 189
-p, 36, 188
-pp, 36, 188
-r, 37, 189
-s, 36, 188
-t, 36, 189
-w, 35, 188
-wf, 36, 188

perun-init command line option
--config-template, 24
--configure, 24
--vcs-flag, 24
--vcs-param, 23
--vcs-path, 23
--vcs-type, 23
-c, 24
-t, 24
<path>, 24

perun-log command line option
--short, 30
-s, 30
<hash>, 30

perun-postprocessby command line option
--minor, 45
--output-filename-template, 45
-m, 45
-ot, 45
<profile>, 45

perun-postprocessby-clusterizer command
line option

--fixed-window-height, 48, 107
--fixed-window-width, 48, 108
--relative-window-height, 48, 107
--relative-window-width, 48, 107
--strategy, 48, 107
--weighted-window-width, 48, 108
--window-height, 48, 107
--window-width, 48, 107
-fwh, 48, 107
-fww, 48, 108
-rwh, 48, 107
-rww, 48, 107
-s, 48, 107

-wh, 48, 107
-ww, 48, 107
-www, 48, 108

perun-postprocessby-kernel-regression
command line option

--of-key, 54, 118
--per-key, 54, 118
-of, 54, 118
-per, 54, 118

perun-postprocessby-kernel-regression-estimator-settings
command line option

--bandwidth-method, 56, 120
--efficient, 56, 120
--n-re-samples, 56, 120
--n-sub-samples, 56, 120
--no-randomize, 56, 120
--randomize, 56, 120
--reg-type, 56, 120
--return-mean, 56, 120
--return-median, 56, 120
--uniformly, 56, 120
-bw, 56, 120
-nres, 56, 120
-nsub, 56, 120
-rt, 56, 120

perun-postprocessby-kernel-regression-kernel-ridge
command line option

--gamma-range, 61, 125
--gamma-step, 61, 125
-gr, 61, 125
-gs, 61, 125

perun-postprocessby-kernel-regression-kernel-smoothing
command line option

--bandwidth-method, 60, 124
--bandwidth-value, 60, 124
--kernel-type, 60, 124
--polynomial-order, 60, 124
--smoothing-method, 60, 124
-bm, 60, 124
-bv, 60, 124
-kt, 60, 124
-q, 60, 124
-sm, 60, 124

perun-postprocessby-kernel-regression-method-selection
command line option

--bandwidth-method, 58, 122
--reg-type, 58, 122
-bm, 58, 122
-rt, 58, 122

perun-postprocessby-kernel-regression-user-selection
command line option

--bandwidth-value, 57, 121
--reg-type, 57, 121
-bv, 57, 121

Index 253

Perun Documentation, Release 0.21.6

-rt, 57, 121
perun-postprocessby-moving_average command

line option
--min_periods, 50, 113
--of-key, 50, 113
--per-key, 50, 113
-mp, 50, 113
-of, 50, 113
-per, 50, 113

perun-postprocessby-moving_average-ema
command line option

--decay, 53, 115
-d, 53, 115

perun-postprocessby-moving_average-sma
command line option

--center, 51, 114
--no-center, 51, 114
--window_type, 51, 114
--window_width, 51, 114
-wt, 51, 114
-ww, 51, 114

perun-postprocessby-moving_average-smm
command line option

--center, 52, 114
--no-center, 52, 114
--window_width, 52, 114
-ww, 52, 114

perun-postprocessby-regression_analysis
command line option

--depending-on, 47, 101
--method, 47, 101
--of, 47, 101
--regression_models, 47, 101
--steps, 47, 101
-dp, 47, 101
-m, 47, 101
-o, 47, 101
-r, 47, 101
-s, 47, 101

perun-postprocessby-regressogram command
line option

--bucket_method, 49, 111
--bucket_number, 49, 111
--of-key, 49, 111
--per-key, 49, 111
--statistic_function, 49, 111
-bm, 49, 111
-bn, 49, 111
-of, 49, 111
-per, 49, 111
-sf, 49, 111

perun-rm command line option
--minor, 28
-m, 28

<profile>, 29
perun-run command line option

--crawl-parents, 30
--force-dirty, 30
--minor-version, 30
--output-filename-template, 30
-c, 30
-f, 30
-m, 30
-ot, 30

perun-run-job command line option
--args, 31, 153
--cmd, 31, 153
--collector, 31, 153
--collector-params, 32, 153
--postprocessor, 32, 153
--postprocessor-params, 32, 153
--workload, 31, 153
-a, 31, 153
-b, 31, 153
-c, 31, 153
-cp, 32, 153
-p, 32, 153
-pp, 32, 153
-w, 31, 153

perun-run-matrix command line option
--without-vcs-history, 32, 154
-q, 32, 154

perun-show command line option
--minor, 62
-m, 62
<profile>, 62

perun-show-bars command line option
--by, 63, 134
--filename, 63, 134
--graph-title, 63, 134
--grouped, 63, 134
--of, 63, 134
--per, 63, 134
--stacked, 63, 134
--view-in-browser, 63, 134
--x-axis-label, 63, 134
--y-axis-label, 63, 134
-b, 63, 134
-f, 63, 134
-g, 63, 134
-gt, 63, 134
-o, 63, 134
-p, 63, 134
-s, 63, 134
-v, 63, 134
-xl, 63, 134
-yl, 63, 134
<aggregation_function>, 64, 134

254 Index

Perun Documentation, Release 0.21.6

perun-show-flamegraph command line option
--filename, 65, 138
--graph-height, 65, 138
-f, 65, 138
-h, 65, 138

perun-show-flow command line option
--accumulate, 66, 140
--by, 66, 140
--filename, 66, 140
--graph-title, 66, 140
--no-accumulate, 66, 140
--of, 66, 140
--stacked, 66, 140
--through, 66, 140
--view-in-browser, 66, 140
--x-axis-label, 66, 140
--y-axis-label, 66, 140
-b, 66, 140
-f, 66, 140
-gt, 66, 140
-o, 66, 140
-s, 66, 140
-t, 66, 140
-v, 66, 140
-xl, 66, 140
-yl, 66, 140
<aggregation_function>, 66, 140

perun-show-scatter command line option
--filename, 67, 143
--graph-title, 67, 143
--of, 67, 143
--per, 67, 143
--view-in-browser, 67, 143
--x-axis-label, 67, 143
--y-axis-label, 67, 143
-f, 67, 143
-gt, 67, 143
-o, 67, 143
-p, 67, 143
-v, 67, 143
-xl, 67, 143
-yl, 67, 143

perun-show-tableof command line option
--format, 145
--output-file, 145
--to-file, 145
--to-stdout, 145
-f, 145
-of, 145
-tf, 145
-ts, 145

perun-show-tableof-models command line
option

--filter-by, 146

--headers, 146
--sort-by, 146
-f, 146
-h, 146
-s, 146

perun-show-tableof-resources command line
option

--filter-by, 146
--headers, 146
--sort-by, 146
-f, 146
-h, 146
-s, 146

perun-stats-clean command line option
--keep-custom, 74
--keep-empty, 74
-c, 74
-e, 74

perun-stats-delete-file command line option
--in-minor, 72
--keep-directory, 72
-k, 72
-m, 72
NAME, 73

perun-stats-delete-ll command line option
--keep-directory, 73
-k, 73

perun-stats-delete-minor command line
option

--keep-directory, 73
-k, 73
VERSION, 73

perun-stats-list-files command line option
-N, 71
--from-minor, 71
--no-file-size, 71
--no-minor, 71
--no-total-size, 71
--sort-by-size, 71
--top, 71
-f, 71
-i, 71
-m, 71
-s, 71
-t, 71

perun-stats-list-versions command line
option

-N, 71
--from-minor, 71
--no-dir-size, 71
--no-file-count, 72
--no-total-size, 72
--sort-by-size, 72
--top, 71

Index 255

Perun Documentation, Release 0.21.6

-d, 71
-f, 72
-m, 71
-s, 72
-t, 72

perun-status command line option
--short, 29
--sort-by, 29
-s, 29
-sb, 29

perun-temp-list command line option
--filter-protection, 69
--no-file-size, 69
--no-protection-level, 69
--no-total-size, 69
--sort-by, 69
-f, 69
-fp, 69
-p, 69
-s, 69
-t, 69
ROOT, 70

perun-utils-create command line option
--no-after-phase, 68
--no-before-phase, 68
--no-edit, 68
--supported-type, 68
-na, 68
-nb, 68
-ne, 68
-st, 68
<template>, 69
<unit>, 69

plot_data_from_coefficients_of() (in module pe-
run.profile.convert), 18

postprocessors
configuration unit, 194
matrix format unit, 157
perf format region, 12

prepend_whitespace() (in module pe-
run.fuzz.methods.textfile), 174

Profile (class in perun.profile.factory), 15
profiles

configuration unit, 194
profiles.register_after_run

configuration key, 195

R
remove_attribute() (in module pe-

run.fuzz.methods.xml), 177
remove_attribute_name() (in module pe-

run.fuzz.methods.xml), 177
remove_attribute_value() (in module pe-

run.fuzz.methods.xml), 177

remove_byte() (in module perun.fuzz.methods.binary),
176

remove_tag() (in module perun.fuzz.methods.xml), 177
remove_zero_byte() (in module pe-

run.fuzz.methods.binary), 176
repeat_whitespace() (in module pe-

run.fuzz.methods.textfile), 174
repeat_word() (in module perun.fuzz.methods.textfile),

175
resources

perf format key, 14
resources_to_pandas_dataframe() (in module pe-

run.profile.convert), 17
restore_state() (in module perun.vcs), 208
ROOT

perun-temp-list command line option, 70

S
save_state() (in module perun.vcs), 208
snapshots

perf format region, 12
sort_line() (in module perun.fuzz.methods.textfile),

175
sort_line_in_reverse() (in module pe-

run.fuzz.methods.textfile), 175
swap_byte() (in module perun.fuzz.methods.binary),

176

T
time

perf format key, 13
to_flame_graph_format() (in module pe-

run.profile.convert), 17
to_storage_record() (pe-

run.utils.structs.DegradationInfo method),
167

type
perf format key, 11

U
unique_model_values_of() (in module pe-

run.profile.query), 20
unique_resource_values_of() (in module pe-

run.profile.query), 19
units

perf format key, 11

V
valid_attributes (perun.profile.helpers.ProfileInfo

attribute), 194
vcs

configuration unit, 192
vcs.type

configuration key, 192

256 Index

Perun Documentation, Release 0.21.6

vcs.url
configuration key, 192

VERSION
perun-stats-delete-minor command line

option, 73

W
walk_major_versions() (in module perun.vcs), 207
walk_minor_versions() (in module perun.vcs), 206
workload

perf format key, 11
workloads

configuration unit, 194
matrix format unit, 157

Index 257

	Perun: Performance Under Control
	What is Perun?
	Installation
	Lifetime of a profile
	Perun architecture
	List of Features
	Overview of Customization
	Custom Collector
	Custom Postprocessor
	Custom Visualization

	Acknowledgements

	Perun’s Profile Format
	Specification of Profile Format
	Profile API
	Profile Conversions API
	Profile Query API

	Command Line Interface
	perun
	Perun Commands
	perun init
	perun config
	perun config get
	perun config set
	perun config edit
	perun add
	perun rm
	perun status
	perun log
	perun run
	perun run job
	perun run matrix
	perun check
	perun check head
	perun check all
	perun check profiles
	perun fuzz

	Collect Commands
	perun collect
	Collect units
	perun collect trace
	perun collect memory
	perun collect time
	perun collect bounds

	Postprocess Commands
	perun postprocessby
	Postprocess units
	perun postprocessby normalizer
	perun postprocessby regression_analysis
	perun postprocessby clusterizer
	perun postprocessby regressogram
	perun postprocessby moving_average
	perun postprocessby moving_average sma
	perun postprocessby moving_average smm
	perun postprocessby moving_average ema
	perun postprocessby kernel-regression
	perun postprocessby kernel-regression estimator-settings
	perun postprocessby kernel-regression user-selection
	perun postprocessby kernel-regression method-selection
	perun postprocessby kernel-regression kernel-smoothing
	perun postprocessby kernel-regression kernel-ridge

	Show Commands
	perun show
	Show units
	perun show bars
	perun show flamegraph
	perun show flow
	perun show scatter

	Utility Commands
	perun utils
	perun utils create
	perun temp
	perun temp list
	perun temp sync
	perun stats
	perun stats list-files
	perun stats list-versions
	perun stats delete
	perun stats delete file
	perun stats delete minor
	perun stats delete ll
	perun stats clean
	perun stats sync

	Collectors Overview
	Supported Collectors
	Trace Collector
	Overview and Command Line Interface
	perun collect trace

	Examples

	Memory Collector
	Overview and Command Line Interface
	perun collect memory

	Examples

	Time Collector
	Overview and Command Line Interface
	perun collect time

	Examples

	Bounds Collector
	Overview and Command Line Interface
	perun collect bounds

	Examples

	Creating your own Collector

	Postprocessors Overview
	Supported Postprocessors
	Normalizer Postprocessor
	Command Line Interface
	perun postprocessby normalizer

	Regression Analysis
	Command Line Interface
	perun postprocessby regression_analysis

	Examples

	Clusterizer
	Command Line Interface
	perun postprocessby clusterizer

	Examples

	Regressogram method
	Command Line Interface
	perun postprocessby regressogram

	Examples

	Moving Average Methods
	Command Line Interface
	perun postprocessby moving_average
	perun postprocessby moving_average sma
	perun postprocessby moving_average smm
	perun postprocessby moving_average ema

	Examples

	Kernel Regression Methods
	Command Line Interface
	perun postprocessby kernel-regression
	perun postprocessby kernel-regression estimator-settings
	perun postprocessby kernel-regression user-selection
	perun postprocessby kernel-regression method-selection
	perun postprocessby kernel-regression kernel-smoothing
	perun postprocessby kernel-regression kernel-ridge

	Examples

	Creating your own Postprocessor

	Visualizations Overview
	Supported Visualizations
	Bars Plot
	Overview and Command Line Interface
	perun show bars

	Examples of Output

	Flame Graph
	Overview and Command Line Interface
	perun show flamegraph

	Examples of Output

	Flow Plot
	Overview and Command Line Interface
	perun show flow

	Examples of Output

	Scatter Plot
	Overview and Command Line Interface
	perun show scatter

	Examples of Output

	Table Of
	Overview and Command Line Interface
	perun show tableof
	perun show tableof resources
	perun show tableof models

	Examples of Output

	Creating your own Visualization

	Automating Runs
	Runner CLI
	perun run job
	perun run matrix

	Overview of Jobs
	Job Matrix Format
	List of Supported Workload Generators
	Generic settings
	Singleton Generator
	Integer Generator
	String Generator
	Text File Generator

	Detecting Performance Changes
	Results of Detection
	Detection Methods
	Best Model Order Equality
	Average Amount Threshold
	Exclusive Time Outliers
	Fast Check
	Linear Regression
	Polynomial Regression

	Configuring Degradation Detection
	Create Your Own Degradation Checker
	Degradation CLI
	perun check head
	perun check all
	perun check profiles

	Performance Fuzz-testing
	Overview
	Mutation Strategies
	Passing Input Sample
	Selecting Mutation Methods
	Initial Testing
	Evaluation of Mutations
	Fuzzing Loop
	Interpretation of Fuzzing Results

	Examples
	Regular Expression Denial of Service (ReDoS).
	StackOverflow trim regex.
	Email validation regex.
	Java Classname validation regex.

	Hash Collisions
	Fuzz-testing CLI
	perun fuzz

	Perun Configuration files
	Configuration types
	List of Supported Options
	Predefined Configuration Templates
	Command Line Interface
	perun config
	perun config get
	perun config set
	perun config edit

	Customize Logs and Statuses
	Customizing Statuses
	Customizing Logs

	Perun Internals
	Version Control Systems
	Version Control System API
	Creating Support for Custom VCS

	Perun Storage
	Perun Index Specification
	Perun Object Specification
	The Lifetime of profile: Internals
	Registering new profile
	Removing profile from index
	Looking up profile

	Changelog
	0.21.6 (2023-11-06)
	0.20.4 (2022-06-28)
	0.20.3 (2022-06-28)
	0.20.2-hotfix2 (2022-06-28)
	0.20.2-hotfix (2022-06-21)
	0.20.2 (2021-05-12)
	0.20.1 (2021-05-12)
	0.20 (2021-03-05)
	0.19 (2021-02-08)
	0.18.3-hotfix2 (2020-08-31)
	0.18.3-hotfix (2020-05-11)
	0.18.3 (2020-03-20)
	0.18.2 (2020-02-13)
	0.18.1 (2020-02-13)
	0.18 (2020-02-11)
	0.17.4 (2020-01-28)
	0.17.3 (2020-01-09)
	0.17.2 (2019-08-16)
	0.17.1 (2019-07-24)
	0.17 (2019-07-09)
	0.16.9-hotfix (2019-06-18)
	0.16.9 (2019-06-18)
	0.16.8 (2019-05-18)
	0.16.7-hotfix (2019-04-15)
	0.16.7 (2019-04-15)
	0.16.6 (2019-03-25)
	0.16.5 (2019-03-22)
	0.16.4 (2019-03-14)
	0.16.3 (2019-03-02)
	0.16.2 (2019-03-02)
	0.16.1 (2019-03-01)
	0.16 (2019-02-16)
	0.15.4 (2018-08-13)
	0.15.3-hotfix (2018-08-02)
	0.15.3 (2018-08-01)
	0.15.2 (2018-07-20)
	0.15.1 (2018-07-17)
	0.15 (2018-06-20)
	0.14.4 (2018-06-17)
	0.14.3 (2018-06-12)
	0.14.2 (2018-05-15)
	0.14.1 (2018-04-19)
	0.14 (2018-03-27)
	0.13 (2018-03-27)
	0.12.1 (2018-03-08)
	0.12 (2018-03-05)
	0.11.1 (2018-02-28)
	0.11 (2017-11-27)
	0.10.1 (2017-10-24)
	0.10 (2017-10-10)
	0.9.2 (2017-09-28)
	0.9.1 (2017-09-24)
	0.9 (2017-08-31)
	0.8.3 (2017-08-31)
	0.8.2 (2017-07-31)
	0.8.1 (2017-07-30)
	0.8 (2017-07-03)
	0.7.2 (2017-07-03)
	0.7.1 (2017-06-30)
	0.7 (2017-06-26)
	0.6 (2017-06-26)
	0.5.1 (2016-06-22)
	0.5 (2016-06-21)
	0.4.2 (2017-05-31)
	0.4.1 (2017-05-15)
	0.4 (2017-03-17)
	0.3 (2017-03-14)
	0.2 (2017-03-07)
	0.1 (2017-02-22)
	0.0 (2016-12-10)

	Python Module Index
	Index

