
PyLogit: Maximum Likelihood Estimation for Conditional

“Logit-type” Models in Python

Timothy Brathwaite

1 Introduction

In many fields—including transportation, marketing, economics, finance, medicine, public health, and op-
erations research—it is necessary to model the occurrence of unordered, discrete outcomes. Often, such
outcomes represent an individual’s choice from a set of alternatives. A simple way to model such an outcome
is with what is ambiguously known as a “logit model.” Across the many fields mentioned above, “logit
models” are also referred to as:

1. binary logistic regression or simply logistic regression when there are only two alternatives
and all covariates are individual specific. These names are often used in statistics, computer science,
medicine, and public health.

2. binary logit when there are only two alternatives and covariates can vary across alternatives as well
as across individuals. This name is often used in transportation, marketing, and economics.

3. polychotomous regression or multinomial logistic regression when there are two or more (typ-
ically more) alternatives and all covariates are individual specific. These names are often used in
medicine and public health.

4. softmax regression when there are two or more (typically more) alternatives and all covariates are
individual specific. This name is often used in computer science and machine learning.

5. conditional logit or multinomial logit when there are two or more (typically more) alternatives
and covariates may vary across alternatives as well as across individuals. These names are often used
in transportation, marketing, and economics.

Of the various logit model varieties listed above, conditional logit models are the most general. Poly-
chotomous/softmax regression is a special case of conditional logit where the covariates only vary across
individuals. Binary logit is a special case of conditional logit where there are only two alternatives. Lastly,
(binary) logistic regression is a special case of conditional logit where there are only two alternatives and
when covariates only vary across individuals.

In Python’s scientific-computing ecosystem today, logit models are capable of being estimated by packages
such as statsmodels and sci-kit-learn. However, these packages can only estimate binary logistic regression
and polychotomous/softmax/multinomial regression where the covariates are individual specific. There are
currently no Python packages on the Python Packaging Index (PyPi) that allow one to estimate conditional
logit models. Note, the Python Biogeme software is able to estimate conditional logit models. However,
Python Biogeme is not available on PyPi, so it cannot easily be installed. Moreover, Python Biogeme is
largely a wrapper for routines written in C, and it does not fully accept all Python syntax.

Beyond Python, R is also heavily used for free and open-source scientific-computing. In R, the packages
mlogit and mnlogit are capable of estimating conditional logit models. However, these packages cannot
estimate conditional logit models when the choice set di↵ers across individual. Additionally, these packages
do not directly support the estimation of models where variables are associated with coe�cients that vary
only across subsets of alternatives. For instance, in a travel-mode choice context, mlogit and mnlogit do
not directly support models where the travel time variable has one coe�cient in the index of a drive-alone
alternative and one coe�cient for both the bus and train alternatives.

The pylogit package that is being introduced is capable of

1

• estimating conditional logit models (as well as other conditional “logit-type” models to be defined
later)

• estimating models using datasets where the choice set di↵ers between individuals

• estimating models with very general model specifications where the coe�cients for a given variable
may be

– completely alternative-specific (i.e. one coe�cient per alternative, subject to identification of the
coe�cients),

– subset-specific (i.e. one coe�cient per subset of alternatives, where each alternative belongs to
only one subset, and there are more than 1 but less than J subsets, where J is the maximum
number of available alternatives in the dataset),

– completely generic (i.e. one coe�cient across all alternatives).

2 Logit-type Models

This section describes the type of models that are capable of being estimated with PyLogit, and in the
process, it introduces some of the notation that will be used later in describing how the maximum likelihood
estimation (MLE) is performed for this class of models.

“Logit-type” models are models where the probability of individual i choosing alternative j (or being
associated with outcome j) is given by:

P (yij = 1|xij ,�, ⌧, �) =
exp [S (Vij | ⌧j , �j)]P

`2Ci
exp [S (Vi` | ⌧`, �`)]

=
exp (Sij)P

`2Ci
exp (Si`)

where yij = a binary (0 or 1) indicator of whether individual i

is associated with outcome j.

xij = a row vector = r (zj , ⇣i)

r (·) = a function that returns a row vector.

zj = attributes of alternative j for individual i.

⇣i = characteristics of individual i.

� = a column vector of unknown population parameters.

⌧ = a 1-dimensional vector of constants, with one value

for each alternative in the dataset.

� = a 1-dimensional vector of “shape parameters”, with

one value for each alternative in the dataset.

⌧j = a constant associated with alternative j.

�j = a “shape parameter” associated with alternative j.

Vij = xij� = the index for alternative j

S (·) = a model-specific function of Vij , ⌧j and �j .

It is monotonically increasing in Vij .

Ci = the choice set for individual i.

(1)

All models estimated by PyLogit have this form. In a standard conditional logit model, S (Vij | ⌧j , �j) =
⌧j + Vij where ⌧j is the alternative specific constant or intercept term for alternative j and Vij does not
contain a constant of its own.

3 Computation

In performing the MLE of logit-type models, PyLogit evaluates as many operations as it can through the use
of matrix dot products. In particular, the calculation of the log-likelihood, the gradient of the log-likelihood

2

with respect to the estimated parameters, and the hessian of the log-likelihood of log-likelihood with respect
to the estimated parameters are all calculated through the use of one or more matrix dot products. Often,
to be able to use dot products to perform the desired calculations, we require the use of “mapping matrices”:
matrices of zeros and ones that map one quantity to another related quantity. More will be said about the
mapping matrices later.

3.1 The log-likelihood

Maximum likelihood estimation works as follows to find a desired vector of parameters ✓̂:

✓̂ = argmax
✓

NY

i=1

Y

j2Ci

P
yij

ij

= argmax
✓

NX

i

X

j2Ci

yij ln (Pij)

= argmax
✓

Y T ln (P)

= argmax
✓

L (✓)

where ✓ =
h
�̂T | ⌧̂T | �̂T

iT
= a column vector created by stacking

�̂ on top of ⌧̂ on top of �̂. Note that terms with “hats”

on them are estimates of their corresponding, unknown

quantities.

Pij = the probability of individual i choosing alternative j

or being associated with outcome j. This probability is

given in Eqution 1.

Y = a column vector in RNr , made by vertically stacking the

yij for every available alternative for each individual.

Nr =
X

i

k Ci k

k Ci k = the size of the choice set for individual i.

P = a column vector in RNr , made by vertically stacking the

Pij for every available alternative for every individual.

ln (P) = a column vector in RNr , made by taking the natural

logarithm, element-wise, of all the elements in P .

L (✓) = the log-likelihood at the current value of ✓. = Y T ln (P)

(2)

To compute the maximum-likelihood estimate, ✓̂, we therefore need at minimum the vectors Y and P .
While introduced above through the notion of vertically stacking each of the individual elements, Y and P are
not typically obtained this way by PyLogit. First, PyLogit requires that all data used to estimate its logit-
type models be in so-called “long-format.” Long-format data has one row for every available alternative for
every individual. Moreover, the column used to indicate the choice or outcome for an individual is required
to be a binary column—i.e. filled with zeros and ones. A “1” indicates that the alternative on the given
row was chosen or associated with the corresponding individual for that row. In other words, Y is available
directly from the dataset provided to PyLogit.

A series of internal steps is used to e�ciently calculate P . First, from the specification of the desired
index coe�cients, �, the indices those coe�cients belong to, and the variables being multiplied by those
coe�cients, a design matrix X is formed. Second, the vector V of desired index values for each available

3

alternative for each individual is formed through the dot product of X and �̂. An example of a set of desired
index values is given in the “Main PyLogit Example” (click me). Thirdly, the necessary transformations
S (Vij | ⌧j , �j) are computed. As much as possible, such transformations are vectorized for speed using numpy
and scipy. Finally, P is formed through a set of elementwise operations and matrix dot products. Formally,

V = X�̂ and P =
exp

⇣
~S
⌘

��T exp
⇣
~S
⌘

where X 2 RNr⇥E

X = The design matrix, formed by vertically stacking all

of the Xij on top of each other.

Xij 2 R1⇥E

Nr = the number of rows in X. Defined computationally in

Equation 2.

E = the number of explanatory variables in the model.

I.e. the number of index coe�cients being estimated.

~S 2 RNr⇥1

~S = a column vector formed by stacking all of the

S (Vij | ⌧̂j , �̂j) = Sij on top of each other.

exp
⇣
~S
⌘
= a column vector in RNr , made by raising

the natural number e, element-wise, to the power of the

elements in ~S.

� 2 RNr⇥N

� = a mapping matrix of zeros and ones that indicates the

observation (given on the columns) that each row of the

design matrix corresponds to.

N = the number of observations in one’s dataset.

(3)

Note that in the formula given above for P , the fraction indicates element-wise division.

3.2 The Gradient, @L
⇣
ˆ✓
⌘
/@ˆ✓

The gradient of the log-likelihood with respect to our estimates ✓̂ is used by many of the optimization
algorithms in Scipy to numerically find a local optima of our log-likelihood function. Therefore, we need an
e�cient way of calculating the gradient.

4

https://github.com/timothyb0912/pylogit/blob/master/examples/Main%20PyLogit%20Example.ipynb

The gradient of the log-likelihood function with respect to ✓̂ is defined as follows:

rL
⇣
✓̂
⌘
=

@L
⇣
✓̂
⌘

@✓̂

=
@
⇥
Y T ln (P)

⇤

@✓̂

=
@

@✓̂

2

4
X

i

X

j2Ci

yij ln (Pij)

3

5 , i 2 {1, 2, ..., N}

=
@

@✓̂

2

4
X

i

X

j2Ci

yij

ln [exp (Sij)]� ln

"
X

`2Ci

exp (Si`)

#!3

5

=
@

@✓̂

2

4
X

i

X

j2Ci

yij

Sij � ln

"
X

`2Ci

exp (Si`)

#!3

5

=
@

@✓̂

2

4
X

i

X

j2Ci

yijSij � yij ln

X

`2Ci

exp [Si`]

!3

5

=
@

@✓̂

2

4
X

i

X

j2Ci

yijSij �
X

i

X

j2Ci

yij ln

X

`2Ci

exp [Si`]

!3

5

=
@

@✓̂

2

4
X

i

X

j2Ci

yijSij �
X

i

ln

X

`2Ci

exp [Si`]

!
X

j2Ci

yij

3

5

=
@

@✓̂

2

4
X

i

X

j2Ci

yijSij �
X

i

ln

X

`2Ci

exp [Si`]

!3

5

=
@

@✓̂

2

4
X

i

0

@
X

j2Ci

yijSij

1

A� ln

X

`2Ci

exp [Si`]

!3

5

=
X

i

2

4 @

@✓̂

0

@
X

j2Ci

yijSij

1

A� @

@✓̂
ln

X

`2Ci

exp [Si`]

!3

5

=
X

i

2

4

0

@
X

j2Ci

@

@✓̂
[yijSij]

1

A� @

@✓̂
ln

X

`2Ci

exp [Si`]

!3

5

=
X

i

2

4

0

@
X

j2Ci

@

@Sij
[yijSij]

@Sij

@✓̂

1

A� @

@✓̂
ln

X

`2Ci

exp [Si`]

!3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A� @

@✓̂
ln

X

`2Ci

exp [Si`]

!3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A� @

@'
[ln (')]

@'

@✓̂

3

5 where ' =
X

`2Ci

exp [Si`]

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A� 1

'

@'

@✓̂

3

5

5

rL
⇣
✓̂
⌘
=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A� 1

'

@

@✓̂

0

@
X

j2Ci

exp [Sij]

1

A

3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A� 1

'

0

@
X

j2Ci

@

@✓̂
exp [Sij]

1

A

3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A� 1

'

0

@
X

j2Ci

@

@Sij
exp [Sij]

@Sij

@✓̂

1

A

3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A� 1

'

0

@
X

j2Ci

exp [Sij]
@Sij

@✓̂

1

A

3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A�

0

@
X

j2Ci

exp [Sij]

'

@Sij

@✓̂

1

A

3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A�

0

@
X

j2Ci

exp [Sij]P
`2Ci

exp [Si`]

@Sij

@✓̂

1

A

3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂

1

A�

0

@
X

j2Ci

Pij
@Sij

@✓̂

1

A

3

5

=
X

i

2

4

0

@
X

j2Ci

yij
@Sij

@✓̂
� Pij

@Sij

@✓̂

1

A

3

5

=
X

i

X

j2Ci

(yij � Pij)

@Sij

@✓̂

�

= (Y � P)T
@~S

@✓̂

= (Y � P)T
"
@~S

@�̂
| @

~S

@⌧̂
| @

~S

@�̂

#

= (Y � P)T
"
@~S

@�̂
| @

~S

@⌧̂
| @

~S

@V

@V

@�̂

#

= (Y � P)T
"
@~S

@�̂
| @

~S

@⌧̂
| @

~S

@V
X

#

= (Y � P)T
"
@~S

@�̂
| ⇠(�1) | @

~S

@V
X

#

where ⇠ = a mapping matrix of zeros and ones that indicates the

alternative (given on the columns) that each row of the

design matrix corresponds to.

⇠(�1) = the mapping matrix ⇠, without the column that corresponds

to the alternative whose intercept, ⌧j , is not being estimated.

(4)

Note that by the chain rule,
@L
⇣
✓̂
⌘

@✓̂
=

@L
⇣
✓̂
⌘

@~S

@~S

@✓̂
. From above, this implies that

@L
⇣
✓̂
⌘

@~S
= (Y � P)T .

6

In PyLogit, the calculation of the gradient is based on Equation 4. The vectors Y and P are readily

available based on the provided data and Equation 3. The matrices
@~S

@�̂
and

@~S

@V
di↵er from model to model,

and custom functions to calculate them must1 be written for each model that PyLogit supports. ⇠(�1) di↵ers
from specification to specification, but it can always be easily calculated once per model estimation. Note
that in PyLogit, all of the mapping matrices are implemented as Scipy sparse matrices for fast matrix dot
products.

3.3 The Hessian,
@2L

⇣
ˆ✓
⌘

@ˆ✓
2

Although it is not required by all of the optimizers in scipy.optimize, being able to calculate the Hessian
in closed-form is useful for optimizing non-concave log-likelihood functions. Below, the form of the Hessian
used by PyLogit is derived for logit-type models.

The hessian is given by:

Hessian =
@2L

⇣
✓̂
⌘

@✓̂
2 =

@

@✓̂

"
@
�
Y T ln [P]

�

@✓̂

#

=
@

@✓̂

@

@�̂

�
Y T ln [P]

�
| @

@⌧̂

�
Y T ln [P]

�
| @

@�̂

�
Y T ln [P]

��

=

2

6664

@
@✓̂

⇣
@
@�̂

⇥
Y T ln (P)

⇤⌘

@
@✓̂

�
@
@⌧̂

⇥
Y T ln (P)

⇤�

@
@✓̂

⇣
@
@�̂

⇥
Y T ln (P)

⇤⌘

3

7775

=

2

6664

@
@�̂

⇣
@
@�̂

⇥
Y T ln (P)

⇤⌘
@
@⌧̂

⇣
@
@�̂

⇥
Y T ln (P)

⇤⌘
@
@�̂

⇣
@
@�̂

⇥
Y T ln (P)

⇤⌘

@
@�̂

�
@
@⌧̂

⇥
Y T ln (P)

⇤�
@
@⌧̂

�
@
@⌧̂

⇥
Y T ln (P)

⇤�
@
@�̂

�
@
@⌧̂

⇥
Y T ln (P)

⇤�

@
@�̂

⇣
@
@�̂

⇥
Y T ln (P)

⇤⌘
@
@⌧̂

⇣
@
@�̂

⇥
Y T ln (P)

⇤⌘
@
@�̂

⇣
@
@�̂

⇥
Y T ln (P)

⇤⌘

3

7775

=

2

4
H11 H12 H13

H21 H22 H23

H31 H32 H33

3

5

(5)

Based on Equation 5, we can see that the Hessian is actually a partitioned matrix with nine sub-matrices.
In the cases where either � and/or ⌧ do not exist in one’s model, the Hessian matrix can be derived from
Equation 5 by deleting the rows and columns that contain partial derivatives with respect to the parameters
that are not present in ✓. In the simplest case, where there are no shape parameters (�) and no intercept
parameters (⌧) outside of the index, the Hessian reduces to the usual expression for conditional logit models:
@

@�̂

✓
@

@�̂

⇥
Y T ln (P)

⇤◆
.

Below, we will derive expressions for the nine sub-matrices Hmn where m,n 2 {1, 2, 3}. Note however,
that we do not actually need to derive all nine sub-matrices because mixed partial derivatives of vectors

are transposes of each other. Stated more precisely,
@

@A

@↵ (A,B)

@B

�
=

✓
@

@B

@↵ (A,B)

@A

�◆T

for a function

↵ (·) that maps input vectors A and B to scalar outputs.

1
Automatic Di↵erentiation or Finite Di↵erences could be used to avoid having to manually write such functions, but the

estimation times would increase greatly as a result.

7

3.3.1 H11

H11 =
@

@�̂

✓
@

@�̂

⇥
Y T ln (P)

⇤◆

=
@

@�̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@�̂

!

=
@

@�̂

[Y � P]T

@~S

@�̂

!

=
@

@~S

[Y � P]T

@~S

@�̂

!
@~S

@�̂

=
@

@ (Y � P)

[Y � P]T

@~S

@�̂

!
@ (Y � P)

@~S

@~S

@�̂

=

@~S

@�̂

!T
@ (Y � P)

@~S

@~S

@�̂

= �

@~S

@�̂

!T
@P

@~S

@~S

@�̂

(6)

3.3.2 H12

H12 =
@

@⌧̂

✓
@

@�̂

⇥
Y T ln (P)

⇤◆

=
@

@⌧̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@�̂

!

=
@

@⌧̂

[Y � P]T

@~S

@�̂

!

=
@

@~S

[Y � P]T

@~S

@�̂

!
@~S

@⌧̂

=
@

@ (Y � P)

[Y � P]T

@~S

@�̂

!
@ (Y � P)

@~S

@~S

@⌧̂

=

@~S

@�̂

!T
@ (Y � P)

@~S

@~S

@⌧̂

= �

@~S

@�̂

!T
@P

@~S
⇠(�1)

(7)

8

3.3.3 H13

H13 =
@

@�̂

✓
@

@�̂

⇥
Y T ln (P)

⇤◆

=
@

@�̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@�̂

!

=
@

@�̂

[Y � P]T

@~S

@�̂

!

=
@

@~S

[Y � P]T

@~S

@�̂

!
@~S

@�̂

=
@

@ (Y � P)

[Y � P]T

@~S

@�̂

!
@ (Y � P)

@~S

@~S

@�̂

=

@~S

@�̂

!T
@ (Y � P)

@~S

@~S

@�̂

= �

@~S

@�̂

!T
@P

@~S

@~S

@V
X

(8)

3.3.4 H21

H21 =
@

@�̂

✓
@

@⌧̂

⇥
Y T ln (P)

⇤◆

=
@

@�̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@⌧̂

!

=
@

@�̂

[Y � P]T

@~S

@⌧̂

!

=
@

@~S

[Y � P]T

@~S

@⌧̂

!
@~S

@�̂

=
@

@ (Y � P)

[Y � P]T

@~S

@⌧̂

!
@ (Y � P)

@~S

@~S

@�̂

=

@~S

@⌧̂

!T
@ (Y � P)

@~S

@~S

@�̂

= �
⇣
⇠(�1)

⌘T @P

@~S

@~S

@�̂

(9)

9

3.3.5 H22

H22 =
@

@⌧̂

✓
@

@⌧̂

⇥
Y T ln (P)

⇤◆

=
@

@⌧̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@⌧̂

!

=
@

@⌧̂

[Y � P]T

@~S

@⌧̂

!

=
@

@~S

[Y � P]T

@~S

@⌧̂

!
@~S

@⌧̂

=
@

@ (Y � P)

[Y � P]T

@~S

@⌧̂

!
@ (Y � P)

@~S

@~S

@⌧̂

=

@~S

@⌧̂

!T
@ (Y � P)

@~S

@~S

@⌧̂

= �
⇣
⇠(�1)

⌘T @P

@~S
⇠(�1)

(10)

3.3.6 H23

H23 =
@

@�̂

✓
@

@⌧̂

⇥
Y T ln (P)

⇤◆

=
@

@�̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@⌧̂

!

=
@

@�̂

[Y � P]T

@~S

@⌧̂

!

=
@

@~S

[Y � P]T

@~S

@⌧̂

!
@~S

@�̂

=
@

@ (Y � P)

[Y � P]T

@~S

@⌧̂

!
@ (Y � P)

@~S

@~S

@�̂

=

@~S

@⌧̂

!T
@ (Y � P)

@~S

@~S

@�̂

= �
⇣
⇠(�1)

⌘T @P

@~S

@~S

@�̂

= �
⇣
⇠(�1)

⌘T @P

@~S

@~S

@V
X

(11)

10

3.3.7 H31

H31 =
@

@�̂

✓
@

@�̂

⇥
Y T ln (P)

⇤◆

=
@

@�̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@�̂

!

=
@

@�̂

[Y � P]T

@~S

@�̂

!

=
@

@~S

[Y � P]T

@~S

@�̂

!
@~S

@�̂

=
@

@ (Y � P)

[Y � P]T

@~S

@�̂

!
@ (Y � P)

@~S

@~S

@�̂

=

@~S

@�̂

!T
@ (Y � P)

@~S

@~S

@�̂

= �

@~S

@�̂

!T
@P

@~S

@~S

@�̂

= �

@~S

@V
X

!T
@P

@~S

@~S

@�̂

= �XT

@~S

@V

!T
@P

@~S

@~S

@�̂

(12)

11

3.3.8 H32

H32 =
@

@⌧̂

✓
@

@�̂

⇥
Y T ln (P)

⇤◆

=
@

@⌧̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@�̂

!

=
@

@⌧̂

[Y � P]T

@~S

@�̂

!

=
@

@~S

[Y � P]T

@~S

@�̂

!
@~S

@⌧̂

=
@

@ (Y � P)

[Y � P]T

@~S

@�̂

!
@ (Y � P)

@~S

@~S

@⌧̂

=

@~S

@�̂

!T
@ (Y � P)

@~S

@~S

@⌧̂

= �

@~S

@�̂

!T
@P

@~S
⇠(�1)

= �

@~S

@V
X

!T
@P

@~S
⇠(�1)

= �XT

@~S

@V

!T
@P

@~S
⇠(�1)

(13)

3.3.9 H33

H33 =
@

@�̂

✓
@

@�̂

⇥
Y T ln (P)

⇤◆

=
@

@�̂

@

@~S

⇥
Y T ln (P)

⇤ @~S
@�̂

!

=
@

@�̂

[Y � P]T

@~S

@�̂

!

=
@

@~S

[Y � P]T

@~S

@�̂

!
@~S

@�̂

=
@

@ (Y � P)

[Y � P]T

@~S

@�̂

!
@ (Y � P)

@~S

@~S

@�̂

=

@~S

@�̂

!T
@ (Y � P)

@~S

@~S

@�̂

= �

@~S

@V
X

!T
@P

@~S

@~S

@V
X

= �XT

@~S

@V

!T
@P

@~S

@~S

@V
X

(14)

12

3.3.10
@P

@~S

The last nine sub-sections showed that it is possible to express all of the sub-matrices of the Hessian in terms

of dot products of matrices that were used to form the gradient and one unknown matrix
@P

@~S
. Below, we

derive an expression for
@P

@~S
, thereby allowing us to compute a closed-form solution for the Hessian of the

logit-type models used in PyLogit.
First, note that we can write:

P =

2

664

P1

P2

...
PN

3

775

where Pi =

2

664

Pi1

Pi2

...
Pij

3

775 , j 2 Ci

It then follows that

@P

@~S
=

2

6664

@P1

@~S
@P2

@~S
...

@PN

@~S

3

7775
(15)

A generic partition,
@Pi

@~S
of

@P

@~S
can further be decomposed as follows:

@Pi

@~S
=

@Pi

@~S1

| @Pi

@~S2

| ... | @Pi

@~SN

�

where
@Pi

@~Si0
= ~0i,i0 , 8i0 6= i

~0i,i0 2 RkCik⇥kCi0k

i, i0 2 {1, 2, ...N}
~Si = [Si1 | Si2 | ... | Sij]

T
, j 2 Ci

(16)

Because
@Pi

@~Si0
= ~0i,i0 , 8i0 6= i, we can focus on computing

@Pi

@~Si

.

@Pi

@~Si

=

2

66664

@Pi1
@Si1

@Pi1
@Si2

... @Pi1
@Sij

@Pi2
@Si1

@Pi2
@Si2

... @Pi2
@Sij

...

@Pij

@Si1

@Pij

@Si2
...

@Pij

@Sij

3

77775
j 2 Ci (17)

13

The individual elements of
@Pi

@~Si

can be computed as follows:

@Pi`

@Si`
=

@

@Si`

"
exp (Si`)P

k2Ci
exp (Sik)

#

=

⇥P
k2Ci

exp (Sik)
⇤
exp (Si`)� exp (Si`) exp (Si`)

⇥P
k2Ci

exp (Sik)
⇤2

= Pi` � (Pi`)
2

@Pi`

@Si`0
=

@

@Si`0

"
exp (Si`)P

k2Ci
exp (Sik)

#
8`0 6= `

=

⇥P
k2Ci

exp (Sik)
⇤
⇤ 0� exp (Si`) exp (Si`0)

⇥P
k2Ci

exp (Sik)
⇤2

= �Pi`Pi`0

With these results in hand,
@Pi

@~Si

can be rewritten as follows:

@Pi

@~Si

=

2

66664

@Pi1
@Si1

@Pi1
@Si2

... @Pi1
@Sij

@Pi2
@Si1

@Pi2
@Si2

... @Pi2
@Sij

...

@Pij

@Si1

@Pij

@Si2
...

@Pij

@Sij

3

77775
, j 2 Ci

=

2

66664

Pi1 � (Pi1)
2 �Pi1Pi2 ... �Pi1Pij

�Pi1Pi2 Pi2 � (Pi2)
2

... �Pi2Pij

...

�Pi1Pij �Pi2Pij ... Pij � (Pij)
2

3

77775

= diag (Pi)� PiPi
T

where diag (·) = a diagonal matrix with the entries of the argument

on the main diagonal.

(18)

Returning finally to
@P

@~S
we can convince ourselves that

@P

@~S
is a block diagonal matrix formed by the

submatrices
@Pi

@~Si

for i 2 {1, 2, ..., N}.

@P

@~S
=

2

6664

@P1

@~S
@P2

@~S
...

@PN

@~S

3

7775

=

2

666664

@P1

@~S1

~01,2 · · · ~01,N

~02,1
@P2

@~S2
· · · ~02,N

· · · · · ·
. . . · · ·

~0N,1 ~0N,1 · · · @PN

@~SN

3

777775

(19)

As written above, we only have a vectorized implementation of
@Pi

@~Si

. To compute
@P

@~S
, a for-loop would

14

need to be employed to create each
@Pi

@~Si

and to assemble them block-diagonally. Aside from being compu-

tationally ine�cient, this would also be memory ine�cient since
@P

@~S
will have shape Nr ⇥Nr.

To avoid these di�culties, we’ll first extend the vectorized implementation of
@Pi

@~Si

from individuals to

the entire dataset. In particular, to form
@P

@~S
, we use

@P

@~S
= diag (P)� [diag (P)�] [diag (P)�]T

where � 2 RNr⇥N

� = a mapping matrix of zeros and ones that indicates the

observation (given on the columns) that each row of the

design matrix corresponds to.

Nr = The number of rows in X.

N = The number of decision makers in the dataset.

(20)

Next, we note that matrix multiplication is associative, so we can calculate the hessian without explicitly

calculating
@P

@~S
. To do so, we distribute all matrix multiplication operations across the terms in Equation

20: diag (P), [diag (P)�], and [diag (P)�]T .

15

	Introduction
	Logit-type Models
	Computation
	The log-likelihood
	The Gradient, L () /
	The Hessian, repstopdf2 L () 2
	H11
	H12
	H13
	H21
	H22
	H23
	H31
	H32
	H33
	 repstopdfP

