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Abstract

Deep neural networks achieve stellar generalisation even when they have enough
parameters to easily fit all their training data. We study this phenomenon by
analysing the dynamics and the performance of over-parameterised two-layer
neural networks in the teacher-student setup, where one network, the student, is
trained on data generated by another network, called the teacher. We show how the
dynamics of stochastic gradient descent (SGD) is captured by a set of differential
equations and prove that this description is asymptotically exact in the limit of
large inputs. Using this framework, we calculate the final generalisation error of
student networks that have more parameters than their teachers. We find that the
final generalisation error of the student increases with network size when training
only the first layer, but stays constant or even decreases with size when training
both layers. We show that these different behaviours have their root in the different
solutions SGD finds for different activation functions. Our results indicate that
achieving good generalisation in neural networks goes beyond the properties of
SGD alone and depends on the interplay of at least the algorithm, the model
architecture, and the data set.

Deep neural networks behind state-of-the-art results in image classification and other domains
have one thing in common: their size. In many applications, the free parameters of these models
outnumber the samples in their training set by up to two orders of magnitude1,2. Statistical learning
theory suggests that such heavily over-parameterised networks generalise poorly without further
regularisation3–9, yet empirical studies consistently find that increasing the size of networks to
the point where they can easily fit their training data and beyond does not impede their ability to
generalise well, even without any explicit regularisation10–12. Resolving this paradox is arguably one
of the big challenges in the theory of deep learning.

One tentative explanation for the success of large networks has focused on the properties of stochastic
gradient descent (SGD), the algorithm routinely used to train these networks. In particular, it has
been proposed that SGD has an implicit regularisation mechanism that ensures that solutions found
by SGD generalise well irrespective of the number of parameters involved, for models as diverse as
(over-parameterised) neural networks10,13, logistic regression14 and matrix factorisation models15,16.

In this paper, we analyse the dynamics of one-pass (or online) SGD in two-layer neural networks. We
focus in particular on the influence of over-parameterisation on the final generalisation error. We use
the teacher-student framework17,18, where a training data set is generated by feeding random inputs
through a two-layer neural network with M hidden units called the teacher. Another neural network,
the student, is then trained using SGD on that data set. The generalisation error is defined as the mean
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squared error between teacher and student outputs, averaged over all of input space. We will focus on
student networks that have a larger number of hidden units K � M than their teacher. This means
that the student can express much more complex functions than the teacher function they have to
learn; the students are thus over-parameterised with respect to the generative model of the training
data in a way that is simple to quantify. We find this definition of over-parameterisation cleaner in our
setting than the oft-used comparison of the number of parameters in the model with the number of
samples in the training set, which is not well justified for non-linear functions. Furthermore, these two
numbers surely cannot fully capture the complexity of the function learned in practical applications.

The teacher-student framework is also interesting in the wake of the need to understand the ef-
fectiveness of neural networks and the limitations of the classical approaches to generalisation11.
Traditional approaches to learning and generalisation are data agnostic and seek worst-case type
bounds19. On the other hand, there has been a considerable body of theoretical work calculating
the generalisation ability of neural networks for data arising from a probabilistic model, particularly
within the framework of statistical mechanics17,18,20–22. Revisiting and extending the results that have
emerged from this perspective is currently experiencing a surge of interest23–28.

In this work we consider two-layer networks with a large input layer and a finite, but arbitrary, number
of hidden neurons. Other limits of two-layer neural networks have received a lot of attention recently.
A series of papers29–32 studied the mean-field limit of two-layer networks, where the number of
neurons in the hidden layer is very large, and proved various general properties of SGD based on
a description in terms of a limiting partial differential equation. Another set of works, operating in
a different limit, have shown that infinitely wide over-parameterised neural networks trained with
gradient-based methods effectively solve a kernel regression33–38, without any feature learning. Both
the mean-field and the kernel regime crucially rely on having an infinite number of nodes in the
hidden layer, and the performance of the networks strongly depends on the detailed scaling used38,39.
Furthermore, a very wide hidden layer makes it hard to have a student that is larger than the teacher
in a quantifiable way. This leads us to consider the opposite limit of large input dimension and finite
number of hidden units.

Our main contributions are as follows:

(i) The dynamics of SGD (online) learning by two-layer neural networks in the teacher-student setup
was studied in a series of classic papers40–44 from the statistical physics community, leading to a
heuristic derivation of a set of coupled ordinary differential equations (ODE) that describe the typical
time-evolution of the generalisation error. We provide a rigorous foundation of the ODE approach to
analysing the generalisation dynamics in the limit of large input size by proving their correctness.

(ii) These works focused on training only the first layer, mainly in the case where the teacher network
has the same number of hidden units and the student network, K = M . We generalise their analysis
to the case where the student’s expressivity is considerably larger than that of the teacher in order to
investigate the over-parameterised regime K > M .

(iii) We provide a detailed analysis of the dynamics of learning and of the generalisation when only
the first layer is trained. We derive a reduced set of coupled ODE that describes the generalisation
dynamics for any K � M and obtain analytical expressions for the asymptotic generalisation error
of networks with linear and sigmoidal activation functions. Crucially, we find that with all other
parameters equal, the final generalisation error increases with the size of the student network. In this
case, SGD alone thus does not seem to be enough to regularise larger student networks.

(iv) We finally analyse the dynamics when learning both layers. We give an analytical expression for
the final generalisation error of sigmoidal networks and find evidence that suggests that SGD finds
solutions which amount to performing an effective model average, thus improving the generalisation
error upon over-parameterisation. In linear and ReLU networks, we experimentally find that the
generalisation error does change as a function of K when training both layers. However, there exist
student networks with better performance that are fixed points of the SGD dynamics, but are not
reached when starting SGD from initial conditions with small, random weights.

Crucially, we find this range of different behaviours while keeping the training algorithm (SGD)
the same, changing only the activation functions of the networks and the parts of the network that
are trained. Our results clearly indicate that the implicit regularisation of neural networks in our
setting goes beyond the properties of SGD alone. Instead, a full understanding of the generalisation
properties of even very simple neural networks requires taking into account the interplay of at least
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