
LilypondToBandVideoConverter - Automated

Generation of Notation Videos with Backing

Tracks

Dr. Thomas Tensi

2018-06-12

CONTENTS

Contents

1 Introduction 4

1.1 Overview . 4

1.2 Outline of this Document . 5

2 Preliminaries 7

2.1 Requirements . 7

2.2 Installation . 7

3 Terminology 9

4 Usage 10

5 Con�guration File Overview 13

5.1 Con�guration File Location 13

5.2 Con�guration File Syntax . 13

6 Lilypond Fragment File Overview 16

6.1 Chords . 18

6.2 Lyrics . 19

6.3 Things Not to Put in the Lilypond Fragment File 19

7 Con�guration File Settings 21

7.1 Overall Con�guration . 21

7.2 Song Group Con�guration . 22

7.3 Song Con�guration . 22

7.4 Con�guration of the Processing Phases 23

7.4.1 Preprocessing Phases 23

7.4.1.1 Notation Generation: �extract� and �score�
Phase . 24

7.4.1.2 Midi File Generation: �midi� Phase 29

7.4.1.3 Video Generation: �silentvideo� Phase 33

7.4.2 Postprocessing Phases 37

2 Dr. Thomas Tensi

CONTENTS

7.4.2.1 Audio Generation: �rawaudio� and �re�nedau-
dio� Phase . 38

7.4.2.2 Final Audio Generation: �mixdown� Phase . . 42

7.4.2.3 Video Generation: ��nalvideo� Phase 45

7.5 Summary . 47

8 Example 48

8.1 Example Lilypond Fragment File 48

8.2 Example Con�guration Files 52

8.2.1 Example Global Con�guration 52

8.2.2 Example Song Con�guration 55

8.3 Putting it All Together . 56

9 Debugging 58

10 Future Extensions 60

A Table of Con�guration File Variables 62

B Glossary 66

C References 70

LilypondToBVC 3

1. Introduction

1.1 Overview

The LilypondToBandVideoConverter is an application built from several
python scripts that orchestrate standard command-line tools to convert a
music piece (a song) written in the lilypond notation to

• a PDF score of the whole song,

• several PDF voice extracts,

• a MIDI �le with all voices (with some preprocessing applied for human-
ization),

• audio mix �les with several subsets of voices (speci�ed by con�gura-
tion), and

• video �les for several output targets visualizing the score notation pages
and having the mixes as mutually selectable audio tracks as backing
tracks.

The central aim is to �nally have a video �le with several audio tracks con-
taining mixes of di�erent voice subsets to be used as selectable backing tracks.
The video itself shows a score with �pages� turned at the right time and an
indication of the current measure as a subtitle.

So one might have a score video to be displayed on some device (like a tablet)
that synchronously plays, for example, a backing track without vocals, guitar
and keyboard, but with bass and drums. Hence a (partial) band can play
the missing voices live (reading the score) and have the other voices coming
from the backing track.

For processing a song one must have

• a lilypond include �le with the score information containing speci�c
lilypond identi�ers, and

• a con�guration �le giving details like the voices occuring in the song,
their associated midi instrument, target audio volume, list of mutable
voices for the audio tracks etc.

Based on those �les the python scripts � together with some open-source
command-line software like �mpeg � produce all the target �les either incre-
mentally or altogether.

4 Dr. Thomas Tensi

CHAPTER 1. INTRODUCTION

In principle, all this could also be done with standard lilypond �les using
command line tools. But the LilypondToBandVideoConverter application
automates a lot of that: based on data given in a song-dependent con�gu-
ration �le plus the lilypond fragment �le for the notes of the voices, it adds
boilerplate lilypond code, parametrizes the tool chain and calls the necessary
programs automatically. And the process is completely unattended: once
your con�guration and lilypond notation �les are set up the process runs
on its own. Additionally the audio generation can be tweaked by de�ning
midi humanization styles and command chains (�sound styles�) for the audio
postprocessing.

This document assumes that you have an adequate knowledge of the following
underlying software:

lilypond:
for the notation speci�cation,

sox:
for postprocessing the audio �les

1.2 Outline of this Document

This document will present how to setup a lilypond fragment �le and an
associated con�guration �le for processing with LilypondToBandVideoCon-
verter.

• Chapter 2 describes the installation requirements and de�nes some ter-
minology used in this document.

• Chapter 4 tells how the (command line) program is used and what
kind of processing phases are available. There is also some dependency
between the artifacts of the phases that is presented there.

• Chapter 5 gives an overview of the syntax of a LilypondToBandVideo-
Converter con�guration �le. It consists of key-value-pairs; the keys are
identi�ers, but the values may be a bit more complicated.

• Chapter 6 tells how the lilypond fragment �le should look. Of course,
the syntax is given by the lilypond program, but � since we have
fragments with external boilerplate code � we discuss what kind of
information must be provided in those �les.

• Chapter 7 discusses in detail each con�guration �le variable needed by
going through all the processing phases in sequence.

LilypondToBVC 5

1.2. OUTLINE OF THIS DOCUMENT

• Chapter 8 gives an example by showing all the lilypond macros and
all required con�guration settings for a simple two-verse blues song
with three instruments. It shows that some initial e�ort is needed, but
normally you can reuse things once you have understood how to make
it work.

• Because things will certainly go wrong some time, chapter 9 gives some
hints on how to trace the problem.

• Appendix A gives an overview table of all con�guration �le commands
and appendix C shows the used bibliography references.

6 Dr. Thomas Tensi

CHAPTER 2. PRELIMINARIES

2. Preliminaries

2.1 Requirements

All the scripts are written in python and can be installed as a python package.
The package requires either Python 2.7 or Python 3.3 or later and relies on
the python package mutagen.

Additionally the following software must be available:

lilypond:
for generating the score pdf, voice extract pdfs, the raw midi �le and
the score images used in the video �les [LILY],

�mpeg:
for video generation and video postprocessing [FFMPEG],

�uidsynth:
for generation of voice audio �les from a midi �le [FLUID] plus some
soundfont (e.g. FluidR3_GM.sf3 at [SOUNDFONT], and

sox:
for instrument-speci�c postprocessing of audio �les for the target mix
�les as well as the mixdown [SOX]

The following software is optional:

aac:
an AAC-encoder for the �nal audio mix �le compression (for example
[AAC]), and

mp4box:
the MP4 container packaging software mp4box [MP4BOX]

The location of all those commands as well as a few other settings has to be
de�ned in a global con�guration �le for the LilypondToBandVideoConverter
(cf. overall con�guration �le syntax)

2.2 Installation

The program is available via the Python platform PyPi, the Python package
index.

pip install lilypondToBVC

LilypondToBVC 7

2.2. INSTALLATION

Once installed the program is ready for use. Make sure that the scripts
directory of python is in the path for executables on your platform.

8 Dr. Thomas Tensi

CHAPTER 3. TERMINOLOGY

3. Terminology

Because the di�erent programs do not completely agree in their terminology,
a single terminology de�ned here is used throughout the document. Ap-
pendix B gives a detailed description of the all terms used in this document.

The most important terms are:

voice:
a polyphonic part of a composition belonging to a single instrument to
be notated in one or several musical sta�s

song:
a collection of several parallel voices forming a musical piece

album:
a collection of several related songs (for example, related by year, artist,
etc.)

audio track:
the audio rendering of a subset of all song voices (typically within the
�nal notation video)

LilypondToBVC 9

4. Usage

The LilypondToBandVideoConverter is a commandline program with the
following syntax:

lilypondToBVC [-h] [-k] --phases PHASELIST [--voices VOICELIST]
configurationFilePath

The options have the following meaning:

-h

makes the program show all the commandline options and exit

-k

force the program to keep intermediate �les

�phases PHASELIST

speci�es the processing phases or combination of processing phases to
be applied; is a slash-separated identi�er list from the set {all, prepro-
cess, postprocess, extract, score, midi, silentvideo, rawaudio, re�nedaudio,
mixdown, �nalvideo}

�voices VOICELIST

gives the slash-separated list of voices where current phase should be
done on (for example, only on vocals and on drums); those voice names
should be a subset of the list of voices given in the con�guration �le and
in the associated lilypond fragment �le; this option is optional: when
it is not given, all voices are used; only applies to phases �extract�,
�rawaudio� and �re�nedaudio�

con�gurationFilePath

gives the path to the con�guration �le specifying all information about
the song to be processed

The several processing phases of LilypondToBandVideoConverter produce
the several outputs incrementally. Those phases have the following meanings:

extract:
generates PDF notation �les for single voices as extracts (might use
compacted versions if speci�ed),

score:
generates a single PDF �le containing all voices as a score,

midi:
generates a MIDI �le containing all voices with speci�ed instruments,
pan positions and volumes,

10 Dr. Thomas Tensi

CHAPTER 4. USAGE

lilypond
file

configuration
file

extract

score

midi

silentvideo

voice
extract
files

score
file

midi
file

silent
video
files

subtitle
text
file

rawaudio

refinedaudio

mixdown

finalvideo

raw
audio
files

refined
audio
files

mix
audio
files

video
files

Figure 1: Dependencies between Generation Phases

silentvideo:
generates (intermediate) silent videos containing the score pages for
several output video �le kinds (with con�gurable resolution and size),

rawaudio:
generates unprocessed (intermediate) audio �les for all the instrument
voices from the midi tracks,

re�nedaudio:
generates (intermediate) audio �les for all the instrument voices with
additional sound processing applied,

mixdown:
generates �nal compressed audio �les with submixes of all instruments
voices based on the re�ned audio �les with speci�ed volume balance
(where the submix variants are con�gurable), and

�nalvideo:
generates a �nal video �le with all submixes as selectable audio tracks
and with a measure indication as subtitle

Of course, those phases are not independent. Several phases rely on results
produced by other phases. Figure 1 shows how the phases depend on each
other. The �les (in yellow) are generated by the phases (in magenta), the
con�guration �le (in green) and the lilypond fragment �le (in blue) are the
only manual inputs into the processing chain.

For example, the phase rawaudio needs a midi �le as input containing all
voices to be rendered as audio �les. When using combining phases (see

LilypondToBVC 11

below) or when specifying several phases for a single run of the LilypondTo-
BandVideoConverter application, the phases are processed in a correct order,
but when doing a manual selection of phases, you have to make sure that the
dependencies given are obeyed.

In the following we shall use the color coding for the �les as given in �gure 1:
parts from the con�guration �le have a green background, parts from the
lilypond fragment �le have a blue background.

There are also some combining phase available as follows:

preprocess:
combining all the phases extract, score, midi and silentvideo for genera-
tion of voice extract PDFs and score PDF, MIDI �le as well the silent
videos for all video �le kinds

postprocess:
combining all the phases rawaudio, re�nedaudio, mixdown and �nalvideo
for generation of the intermediate raw and re�ned WAV �les, the sub-
mixes as compressed audios and the �nal videos for all video �le kinds

all:
full processing via phase groups preprocess and postprocess

So for example

lilypondToBVC --phases voice/score
--voices vocals/strings/drums config.txt

will generate the voice extracts for vocals, strings and drums as well as a song
score with those three voices speci�ed in �le con�g.txt. The vertical order
within the score as well as other layout parameters are given by the order of
voice descriptions and speci�c variables in the con�guration �le.

12 Dr. Thomas Tensi

CHAPTER 5. CONFIGURATION FILE OVERVIEW

5. Con�guration File Overview

Variables controlling the song processing have to be de�ned in the con�gura-
tion �le for a song. The name of this �le is given as a mandatory parameter
for the application.

Note that typically there is not a single con�guration �le, but several. Often
a song con�guration �le includes others with global de�nitions (like, for ex-
ample, de�ning the location of the �mpeg command or some style of audio
postprocessing).

Although there is some internal program logic separating the variables into
di�erent domains for global setup variables, album related variables and song
variables, this is somewhat academical: a variable de�nition can be given at
any place and a later de�nition overrides a previous one.

5.1 Con�guration File Location

The con�guration �le(s) are searched for in the following locations in the
given order:

• the current directory

• the directory /.ltbvc within the user's home directory

• the directory con�g and ../con�g relative to the directory of the python
program �les

5.2 Con�guration File Syntax

Each con�guration �le has a simple line-oriented syntax as follows:

• Leading and trailing whitespace in a line is ignored. Other whitespace
is only interpreted as token separator.

• A line starting with a comment marker �--� or completely empty is
ignored.

• A line ending with a continuation marker � \� is combined with the
following line.

• Each relevant line starts with an identi�er followed by an equal sign and
the associated value. The associated value may be an integer, a decimal,
a boolean or a string. By this assignment the value is associated with

LilypondToBVC 13

5.2. CONFIGURATION FILE SYNTAX

the variable given by the identi�er. A subsequent assignment to the
same variable will replace that value.

• An identi�er is a sequence of lower- and uppercase letters or under-
scores.

• One may de�ne such variables arbitrarily.

• An integer literal is a digit sequence, a decimal value is a digit sequence
with at most one decimal point, a boolean value is either the string
�true� or �false� and a string value is a character sequence enclosed by
double quotes. Two double quotes within a string are interpreted as a
double quote character.

• When a variable identi�er occurs on the right hand side of an assign-
ment, it is replaced by its associated value. If there is none, this is
an error. The processing is strictly sequential: the use of an identi�er
must come after its de�nition. It is okay to use an identi�er in its own
rede�nition.

• A sequence of adjacent string literals or variables with string contents
are concatenated into a single string value.

• A line starting with �INCLUDE� followed by a string speci�es the name
of a �le to be included in place.

• As a convention sets have comma-separated string values and maps are
strings with a leading and trailing brace and key and values separated
by a colon. White space within those strings is not signi�cant except
when it is itself part of a value string enclosed in single quotation marks.

• It is helpful to distinguish auxiliary variables from those used by the
program. In this document we pre�x auxiliary variables with an un-
derscore (but any convention � even none � is �ne).

Assume for an example the following de�nitions in two �les �test.text� and
�con�g.txt�:

-- test.txt file to be included elsewhere
voiceNameList = "vocals, guitar, drums"
humanizedVoiceNameSet = "vocals"
_initialTempo = "90"
year = 2017

-- config.txt file including test file
INCLUDE "test.txt"
voiceNameList = "vocals, guitar"
humanizedVoiceNameSet = humanizedVoiceNameSet ", drums"
measureToTempoMap = "{ 1 : " _initialTempo ", 20 : 67 }"

14 Dr. Thomas Tensi

CHAPTER 5. CONFIGURATION FILE OVERVIEW

leads to the following overall variable settings:

_initialTempo = "90"
year = 2017
voiceNameList = "vocals, guitar"
humanizedVoiceNameSet = "vocals, drums"
measureToTempoMap = "{ 1 : 90, 20 : 67 }"

LilypondToBVC 15

6. Lilypond Fragment File Overview

The lilypond fragment �le used for a song contains lilypond macros. At least
there must be de�nitions for the following items:

keyAndTime:
tells the key and time of the song and assumes that this applies to all
voices

�voice�XXX:
for each voice given in the con�guration �le containing the musical
expression to be used in an extract, in a score, in the midi �le or in the
video; here �XXX� depends on the target, so you might have di�erent
macros for a voice for the di�erent targets it occurs in (extract, score,
midi, video).

The names of all voices are given by the con�guration variable voiceNameList.
Because lilypond only allows letters in macro names, those voice names must
consist of small and capital letters only (no blanks, no digits, no special
characters!) and they are case sensitive. And they should not clash with
prede�ned lilypond macros 1.

The above looks quite complicated because you need macros for each voice
and each processing phase. But often you will reuse lilypond macros and
typically the MIDI macro �voice�Midi is the same as the score macro �voice�
only with all repetitions unfolded. You do not have to do this by yourself:
for midi output this unfolding is done by the generator.

There is even another automatism: if the generator looks for some voice
macro with some extension it also accepts the plain macro for the voice (if
available). For example, if the macro guitarMidi cannot be found, the gener-
ator looks for the macro guitar and automatically applies necessary lilypond
transformations (like unfolding repeats).

Some variables in the con�guration �le make other lilypond macros �manda-
tory�. The table in �gure 2 gives the con�guration variable, the correspond-
ing lilypond macro(s) and a short description. The dependency is not strict,
because some default settings are done, but in general the logic described
in the �gure is a good orientation. Video voice names are not speci�ed in
a single variable, but via video target and video �le kind de�nitions (see
section 7.4.1.3).

For example, assume we have three voices in the song called �vocals�, �drums�
and �guitar�. We also assume that we shall have all voices in the midi �le,

1Like drums, but because this is a common voice name it is automatically mapped to
myDrums by the generator.

16 Dr. Thomas Tensi

CHAPTER 6. LILYPOND FRAGMENT FILE OVERVIEW

Con�g. Variable Description Lilypond Var.

audioVoiceNameSet for each voice given in the set the
lilypond macro gives the musical
expression for the voice to be ren-
dered as an audio �le with the
voice name

�voice�Midi

extractVoiceNameSet for each voice given in the list the
lilypond macro gives the musical
expression for a voice to be ren-
dered in the corresponding voice
extract

�voice�Extract

midiVoiceNameList for each voice given in the list the
lilypond macro gives the musical
expression for the voice to be ren-
dered in themidi �le and rendered
as an audio �le with the voice
name; the list is the order of the
voices in the �le

�voice�Midi

scoreVoiceNameList for each voice given in the list the
lilypond macro gives the musical
expression for the voice to be ren-
dered in the midi �le, the list is
the order of the voices in the score
from top to bottom

�voice�Score

Figure 2: Dependency of Lilypond Macros on Con�guration Variables

vocals in an extract, drums and guitar in the score and vocals and guitar in
the video.

So the con�guration �le for the song contains the following de�nitions:

...
voiceNameList = "vocals, drums, guitar"
extractVoiceNameSet = "vocals"
scoreVoiceNameList = "guitar, drums"
midiVoiceNameList = "vocals, guitar, drums"
...

Note that the midiVoiceNameList could be omitted, because the default is
to use the voices from the overall voice list voiceNameList and the �wrong�
order of voices does not really matter in the midi �le. The audio variable
audioVoiceNameSet has been omitted: it defaults to the setting of midiVoice-
NameList, so we have audio for �vocals�, �guitar� and �drums� (that means,
all voices).

For the given con�guration we must have the following macros in the lilypond
fragment �le:

LilypondToBVC 17

6.1. CHORDS

keyAndTime = {...}

vocalsExtract = {...}
vocalsScore = {...}
vocalsMidi = {...}

guitarScore = {...}
guitarMidi = {...}
guitarVideo = {...}

myDrumsScore = {...}
myDrumsMidi = {...}

Again some simpli�cation is possible: when some global macros like guitar is
introduced, the associated variants can be omitted.

6.1 Chords

Because the software is used in a band context, chord symbols may also be
used. Chords may depend on voice and very often depend on the processing
target, because the voice formatting may be di�erent per target.

The con�guration �le variable responsible for chords is voiceNameToChordsMap
and tells where chords are shown and for which voices.

All voices with chords are mentioned as keys and mapped onto a slash sep-
arated list of single character abbreviations for the targets. We have �e� for
the extract, �s� for the score and �v� for the video. There are no chords for
the midi �le.

So for the con�guration �le line

voiceNameToChordsMap = "{ vocals: v/s, guitar: e }"

the chords are shown for the vocals in video and score and for guitar in its
extract. This means the lilypond fragment �le must contain the following
de�nitions in \chordmode:

guitarChordsExtract = {...}
vocalsChordsScore = {...}
vocalsChordsVideo = {...}

Again there is a default: when some chord macro is missing, either the plain
chords macro for the voice or even the chords for all voices are used.

So for example, for a missing guitarChordsExtract the search is �rst for gui-
tarChords and �nally for allChords (the latter as a catch-all since chords is a
keyword in lilypond).

18 Dr. Thomas Tensi

CHAPTER 6. LILYPOND FRAGMENT FILE OVERVIEW

6.2 Lyrics

Also lyrics may be attached to voices. Lyrics may occur in voice extracts, in
the score and in the video. The di�erence to chords is that multiple lyrics
lines (for example, for stanzas) may be attached to a single voice, hence we
need an additional count information.

It is assumed that each lyrics line is always valid for all the notes in the voice,
hence you have to provide appropriate padding (at least leading padding).

The syntax is similar to chords, hence we have a voiceNameToLyricsMap, but
it also contains a count of parallel lyrics lines directly following the target
letter (�e� for the extract, �s� for the score and �v� for the video).

So for the con�guration �le line

voiceNameToLyricsMap = "{ vocals: e2/s2/v, bgVocals: e3 }"

the lyrics are shown for the vocals in extract, video and score and for the
background vocals only in its extract. The lyrics line macros have capital
letters as su�ces (A, B, . . .) and hence are con�ned to 26 parallel lines per
voice.

This means the lilypond fragment �le must contain the following de�nitions
in \lyricmode:

vocalsLyricsExtractA = {...}
vocalsLyricsExtractB = {...}
vocalsLyricsScoreA = {...}
vocalsLyricsScoreB = {...}
vocalsLyricsVideoA = {...}

bgVocalsLyricsExtractA = {...}
bgVocalsLyricsExtractB = {...}
bgVocalsLyricsExtractC = {...}

Again there is a default: when some lyrics macro is missing, the macro
for the voice without the target but with the appropriate su�x is used.
So for example, for a missing vocalsLyricsScoreB an existing vocalsLyricsB is
used. Additionally for the �rst line the su�x may be totally omitted, so
vocalsLyricsScoreA can be replaced by vocalsLyricsScore or even vocalsLyrics.

6.3 Things Not to Put in the Lilypond Frag-

ment File

Because the di�erent phases add their own boilerplate code, the following
lilypond code must not occur in the lilypond fragment �le:

LilypondToBVC 19

6.3. THINGS NOT TO PUT IN THE LILYPOND FRAGMENT FILE

• a \score block, and

• sta� de�nitions

The following should not occur in the fragment, unless you want to override
the presets from the program:

• a \header block,

• a \paper block, and

• a setting of the global-sta�-size

Note that settings overriding presets above might interfere with some phases:
e.g. the videos use their own paper and resolution settings and those would
be shadowed by con�icting de�nitions in the fragment.

20 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

7. Con�guration File Settings

In the following we show all the settings of the con�guration �le in detail and
what to put in an associated lilypond music fragment �le.

In principle one only needs a single con�guration �le and a single lilypond
fragment �le. For systematic reasons the information can be divided for
didactic reasons and must then be combined into a single con�guration �le
by INCLUDE statements.

7.1 Overall Con�guration

In this section the con�guration �le settings are discussed that de�ne the
locations of programs and �les used. Note that paths use the Unix forward
slash as a separator. If a relative path is used, it is relative to the current
directory where the program call is made.

Some variables de�ne the program locations and global program parameters
and are shown in �gure 3. For example, �mpegCommand tells the path of
the �mpeg command (you wouldn't have guessed that, would you?).

Two entries are special: aacCommandLine and soxCommandLinePre�xLinePre-
�x.

• The aac command line speci�es the complete line for an aac encoding
command with $1 and $2 as placeholders for the input and output �le
names. If empty, �mpeg is used for aac encoding.

• The sox command line pre�x speci�es the pre�x for the sox command
with the command name and global options (like bu�ering). All the
other parts of sox commands will be appended to that string.

So an example setting in the con�guration �le for the global con�guration
variables could look like that:

aacCommandLine = "/usr/local/qaac -V100 -i $1 -o $2"
ffmpegCommand = "/usr/local/ffmpeg"
fluidsynthCommand = "/usr/local/fluidsynth"
lilypondCommand = "/usr/local/lilypond"
soxCommandLinePrefix = "/usr/local/sox" \

" --buffer 100000 --multi-threaded"

Other variables shown in �gure 4 de�ne �le and path locations. Very impor-
tant is the path where the logging �le ltvbc.log is located: sometimes it is the
only way to �nd out what went wrong.

Temporary �les go to intermediateFileDirectoryPath. By default, all temp �les

LilypondToBVC 21

7.2. SONG GROUP CONFIGURATION

Variable Description Example

aacCommandLine aac encoder command line with
parameters for input ($1) and out-
put ($2) (optional, if not de�ned
�mpeg is used for aac encoding)

"/pathto/qaac -V100
-i $1 -o $2"

�mpegCommand location of �mpeg command "/pathto/�mpeg"
�uidsynthCommand location of �uidsynth command "/pathto/�uidsynth"
lilypondCommand location of lilypond command "/pathto/lilypond"
mp4boxCommand location of mp4box command "/pathto/mp4box"
soxCommandLinePre�x sox command with global options

(like bu�ering or multithreading
settings)

"/pathto/sox"

Figure 3: Global Con�guration Variables for Programs

go to the current directory and the phase-internal �les are deleted at the end
of a phase (but you can prevent that, see 9).

An example setting in the con�guration �le for �le path con�guration vari-
ables could look like that:

intermediateFileDirectoryPath = "temp"
loggingFilePath = "/var/logs/ltbvc.log"
soundFontDirectoryPath = "/usr/lib/soundfonts"
soundFontNames = "FluidR3_GM.SF2, Ultimate_Drums.sf2"
targetDirectoryPath = "generated"
tempAudioDirectoryPath = "~/ltbvc_audiofilesdir"
tempLilypondFilePath = "temp.ly"

7.2 Song Group Con�guration

Very often several songs are combined into a song group, for example, into
an album.

A song group is characterized by two parameters in the con�guration �le as
shown in �gure 5.

7.3 Song Con�guration

The song is characterized by some very simple parameters in the con�guration
�le shown in �gure 6. The most important variable is �leNamePre�x because
it is used in the �le names of the generated �les; all the other variables may
be missing and are set to some reasonable default.

The lilypond include �le containing all fragments can be speci�ed via include-
FilePath, but if unset defaults to �leNamePre�x plus �-music.ly�.

22 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Variable Description Example

intermediateFile-

DirectoryPath

path of directory where interme-
diate �les go that are either used
for processing within a phase or as
information between phases

"temp"

loggingFilePath path of �le containing the process-
ing log

"/pathto/ltbvc.log"

soundFontDirectoryPath path of directory for the sound-
fonts

"/pathto/soundfonts"

soundFontNames comma-separated list of soundfont
names (all located in soundfont di-
rectory, .sf2 and .sf3 �le names are
possible)

"FluidR3_GM.SF2,
Ultimate_Drums.sf2"

targetDirectoryPath path of directory where all gener-
ated �les go (except for audio and
video �les)

"generated"

tempAudioDirectoryPath path of directory for temporary
audio �les

"/pathto/audio�les"

tempLilypondFilePath path of temporary lilypond �le "temp.ly"

Figure 4: Global Con�guration Variables for File Paths

Variable Description Example

albumName album for song group (embedded
as �album� in audio and video
�les)

"Best of Fredo"

artistName artist of that song group (embed-
ded as �artist� and �album artist�
in audio and video �les)

"Fredo"

Figure 5: Song Group Related Con�guration File Variables

7.4 Con�guration of the Processing Phases

7.4.1 Preprocessing Phases

All preprocessing phases rely on the con�guration and the lilypond fragment
�le, while the postprocessing phase start from the generated midi �le and
the silent videos.

In each preprocessing phase some boilerplate lilypond �le is generated in-
cluding the lilypond fragment �le with the music and puts it through the
notation typesetter lilypond.

Figure 7 shows the connection between the inputs and the outputs for the
phases. Both lilypond fragment �le and con�guration �le serve as manual
input into the processing chain, the other �les are generated.

For the �extract� and �score� phases this is all there is to do, but the �midi�

LilypondToBVC 23

7.4. CONFIGURATION OF THE PROCESSING PHASES

Variable Description Example

composerText composer text to be shown in voice
extracts and score

"arranged by Fred,
2017"

�leNamePre�x �le name pre�x used for all gener-
ated �les for this song

"wonderful_song"

includeFilePath path for the music include �le con-
taining all fragments for lilypond
processing; if unset, defaults to
�leNamePre�x plus �-music.ly�

"wonderful_song-
music.ly"

keepIntermediateFiles boolean telling whether tempo-
rary �les are kept

False

measureToTempoMap map de�ning the tempo for mea-
sure in bpm until another tempo
setting is given; the measure
length in quarters may be ap-
pended after a slash (4 is default)

"{ 1 : 60/3, 20 : 100
}"

trackNumber track number within album 22
title human visible title of song used as

tag in the target audio �le and as
header line in the notation �les

"Wonderful Song"

year year of arrangement 2017

Figure 6: Song Related Con�guration File Variables

and �silentvideo� phases do further processing:

midi:
the midi �le produced by lilypond has humanization applied to the
voices, and

silentvideo:
the image �les produced by lilypond are combined into a correctly timed
video and a subtitle �le in SRT format is produced

If you really want to �ddle with lilypond, the processing phase is provided as
the lilypond macro ltbvcProcessingPhase with values �extract�, �score�, �midi�
or �silentvideo�. You can use that for conditional processing, layout changes
etc., because the fragment �le is included into the boilerplate �le at a very
late position. Be warned that the whole generation might fail, because the
generator assumes a simple-structured lilypond include �le.

7.4.1.1 Notation Generation: �extract� and �score� Phase

Preliminaries

The central settings in the con�guration �le de�ne the characteristics of
the voices. Each voice is given by its name (an identi�er) in the variable
voiceNameList.

24 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

lilypond
file

configuration
file

extract

score

midi

silentvideo

voice
extract
files

score
file

midi
file

silent
video
files

subtitle
text
file

Figure 7: Information Flow for the Preprocessing Phases

Note that the order in the voice name list is signi�cant, because later on
variable in other phases rely on that order. For example, the audio volumes
for phase �mixdown� in variable audioVolumeList have the same order as the
voiceNameList. So the lines

voiceNameList = "vocals, guitar, drums"
audioVolumeList = " 0.9, 0.7, 1.0"

associate �vocals� with volume 0.9, �guitar� with volume 0.7 etc. A simple
table logic: and it is �ne to align the data in di�erent entries with blanks.

The sta� layout is speci�ed by several variables that map voice names into
several kinds of sta�-related layout information. Because this might be phase-
dependent, another mapping layer is added, mapping the phase onto the voice
name to sta� info map.

phaseAndVoiceNameToSta�ListMap tells the sta� to use for the voice in ex-
tract, score and video for a given processing phase. Default is �Sta��, special
sta�s like �DrumSta�� may be de�ned in the map. The mapping goes from
phase name to a map from voice name to sta� names.

To reduce the mental complexity we �rst de�ne a map from voice name to
sta� by the following con�guration �le lines

_voiceNameToStaffListMap = \
"{ drums : DrumStaff," \
" keyboard : PianoStaff," \
" percussion : DrumStaff }"

that are reused in the mapping from phase name

LilypondToBVC 25

7.4. CONFIGURATION OF THE PROCESSING PHASES

phaseAndVoiceNameToStaffListMap = \
"{ extract : " _voiceNameToStaffListMap "," \
" midi : " _voiceNameToStaffListMap "," \
" score : " _voiceNameToStaffListMap "," \
" video : " _voiceNameToStaffListMap "}"

Very often the di�erent phases use exactly identical de�nitions, so the tech-
nique shown above is often �ne (with individual de�nitions per phase if nec-
essary). Note that only phaseAndVoiceNameToSta�ListMap is used by the
generator, _voiceNameToSta�ListMap is just an auxiliary variable.

It is also allowed to have more than one sta� as the target of a voice. In
that case the sta� names are slash-separated and are �lled from several
voice macros in the lilypond fragment �le. For two systems the macros
are �voice�Top and �voice�Bottom with the phase target name appended,
for three systems we have �voice�Top, �voice�Middle and �voice�Bottom.
For example, a keyboard with a piano sta� in a score references the macros
keyboardTopScore and keyboardBottomScore.

Some replacement is done: if, for example, �voice�MiddleExtract does not
exist, �voice�Middle and �nally �voice� are taken instead.

So for a guitar with a tab the following de�nition in the con�guration �le
is �ne and it either reuses the guitar macro in the lilypond fragment �le
for both sta�s or you can de�ne special guitarTop/guitarBottom macros to
di�erentiate:

...
"guitar" : "Staff/TabStaff",
...

When reusing the same voice data in di�erent sta�s, be careful with respect
to the midi generation. Normally you only want the voice notes once in the
midi �le, hence you will have to adapt the phaseAndVoiceNameToSta�ListMap
de�nition and only include one sta� in the midi �le.

A similar logic as for the sta�s applies to the mapping from voice name to
clef. The standard clef is �G�, others have to be de�ned explicitely. Especially
this applies to multi-system-sta�s like the �PianoSta��: here at least the
�xxxBottom� must have a special clef de�nition (it must be a bass clef).

A typical de�nition might be given as follows:

_voiceNameToClefMap = \
"{ bass" : ’bass_8’, " \
" drums" : ’’," \
" guitar" : ’G_8’," \
" keyboardBottom" : ’bass’," \
" percussion" : ’’ }"

Here bass and guitar have the transposed clef (as their traditional notation),

26 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Variable Description Example

phaseAndVoiceName-

ToClefMap

mapping from processing phase to
maps from voice name to lilypond
clef

see text

phaseAndVoiceName-

ToSta�ListMap

mapping from processing phase to
maps from voice name to slash-
separated lilypond sta� names

see text

voiceNameToChordsMap mapping from voice names to
phase abbreviations where chords
are shown for that voice system

"{vocals: v/s, guitar:
e}"

voiceNameToLyricsMap mapping from voice name to a
count of parallel lyrics lines di-
rectly following the target letter
(�e� for the extract, �s� for the
score and �v� for the video)

"{vocals: e2/s2/v}"

Figure 8: Notation Generation Con�guration File Variables

drums and percussion have none and the lower part of a piano sta� is notated
in a bass clef.

Again the above is only an auxiliary de�nition. The relevant variable is
phaseAndVoiceNameToClefMap shown below. In our case � as above � the
mapping is identical for all phases, but, of course, individual de�nitions per
phase are possible.

phaseAndVoiceNameToClefMap = \
"{ extract : " _voiceNameToClefMap "," \
" midi : " _voiceNameToClefMap "," \
" score : " _voiceNameToClefMap "," \
" video : " _voiceNameToClefMap "}"

Figure 8 shows all notation related con�guration variables discussed in the
current section.

�extract� Phase

Once everything is set up as described above, the �extract� phase generates
an extract for each voice given in extractVoiceNameSet. The processing order
of the voices is unde�ned.

For each voice an extract pdf �le is put into the directory given by targetDirec-
toryPath with name �leNamePre�x, a dash, the voice name and the extension
�.pdf�.

The headings in the extract are set as follows: the song name from the title
variable is the extract title, the voice name is the extract subtitle, and the
contents of composerText is the text for the composer part.

Figure 9 shows how the �rst page of an extract might look like and �gure 10

LilypondToBVC 27

7.4. CONFIGURATION OF THE PROCESSING PHASES

Figure 9: Example Layout of an Extract File

Variable Description Example

extractVoiceNameSet set of voices to be rendered as a
voice extract

"vocals, drums"

Figure 10: Extract Generation Con�guration File Variables

shows the speci�c con�guration variables for voice extracts.

�score� Phase

In the �score� phase the generator produces a single score with the voices
given in scoreVoiceNameList in the order given and with default layout pa-
rameters.

The score pdf �le is put into the directory given by targetDirectoryPath with
name �leNamePre�x followed by �_score� and the extension �.pdf�.

Headings in the score are set as follows: the song name from the title variable
is the score title and the contents of composerText is the text for the composer
part.

Because voice names might be long, there is a mapping that provides a short
name for each voice to be used in the score as the system identi�cation by
�lling the variable voiceNameToScoreNameMap. A possible setting is:

28 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

voiceNameToScoreNameMap = \
"{ bass : bs," \
" bgVocals : bvc," \
" drums : dr," \
" guitar : gtr," \
" keyboard : kb," \
" keyboardSimple : kb," \
" organ : org," \
" percussion : prc," \
" strings : str," \
" synthesizer : syn," \
" vocals : voc }"

With the settings above, the �bass� voice has a �bs� name in the score. You
do not have to use that mechanism: the default is just to use the original
voice name for sta� identi�cation in the score.

Figure 11 shows how the �rst page of a score might look like, �gure 12 shows
the speci�c con�guration variables for scores.

7.4.1.2 Midi File Generation: �midi� Phase

The lilypond fragment �le normally does not contain any further macros for
MIDI because the voices used for the score are often �ne for the MIDI �le.

Nevertheless it could happen that you need special processing here. Examples
are

• A voice has di�erent notes or is transposed in the MIDI and audio
rendering than in the notation. This can be achieved by having a
di�erent �voice�Midi macro.

• Some hidden voice occurs in MIDI and audio output, for example, a
voice delayed or transposed relative to some other voice (to enhance the
sound of the original voice). This can be achieved by adding a voice
to the voiceNameList macro, but excluding it from extracts, score and
video.

The �midi� processing phase unfolds all repeats in the given voices and gener-
ates corresponding midi streams. Those streams are generated for all voices
speci�ed in the con�guration variable midiVoiceNameList and stored in a sin-
gle �le in the directory given by targetDirectoryPath with name �leNamePre�x
plus �-std� and extension �.mid�.

All those voices have speci�c settings de�ned by several list variables, that
align with the list voiceNameList and are shown in �gure 13.

For example, the following settings in the con�guration �le

LilypondToBVC 29

7.4. CONFIGURATION OF THE PROCESSING PHASES

Figure 11: Example Layout of a Score File

voiceNameList = "vocals, guitar, drums"
midiChannelList = " 1, 2, 10 "
midiInstrumentList = " 54, 2:29, 16 "
midiVolumeList = " 90, 60, 110 "
midiPanList = " C, 0.5L, 0.1R"

de�ne vocals to be a synth vox in the center with 3/4 volume, the guitar to
be an overdrive guitar (in bank 2), located half left with medium volume, and
the drums to be a power set, located slightly right with almost full volume.

Nevertheless the midi phase not only transforms lilypond to plain midi, but
does further processing by adding humanization. The variable humanized-
VoiceNameSet tells what voices shall be humanized, the others are left un-
touched.

Humanization is done by adding random variations in timing and velocity to
the notes in a voice. This is not completely random, but depends on voice,

30 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Variable Description Example

scoreVoiceNameList list of voices to be rendered in or-
der given into the score

"vocals, guitar,
drums"

voiceNameToScore-

NameMap

mapping from voices name to
short score name at the beginning
of a system

"{ vocals : voc, bass :
bs }"

Figure 12: Score Generation Con�guration File Variables

Variable Description Example

midiVoiceNameList list of voices to be rendered in or-
der given into the MIDI �le

"guitar, drums"

midiChannelList list of midi channels per voice each
between 1 and 16 (10 for a drum
voice)

see text

midiInstrumentList list of midi instrument programs
per voice each as an integer be-
tween 0 and 127; each entry may
be pre�xed by a bank number (0
to 127) followed by a colon

see text

midiVolumeList list of midi volumes per voice each
as an integer between 0 and 127

see text

midiPanList list of pan positions per voice as
a decimal value between 0 and
1 with su�x �R� or �L� (for
right/left) or the character �C�
(for center)

see text

Figure 13: Midi Related Con�guration File Variables

position within measure and on the style of the song.

The voice- (or instrument-speci�c) variation is global and de�ned by the
con�guration variable voiceNameToVariationFactorMap. Each voice name is
mapped onto a slash-separated pair of two numbers with the �rst giving the
velocity, the second the timing variation percentage.

For a standard band instrument set, we take the variations of the drum as the
reference in a humanization style. Hence drums should have an instrument-
speci�c variation factor of 1.0 each which means that the calculated variation
for some note is taken directly for drums. Other voices like, for example,
vocals are slightly more loose and might have a value of 1.5 for velocity and 1.2
for timing which means that the calculated variation for those parameters is
scaled accordingly. Of course, the velocity values are adjusted to their ranges
after the variation, because there is a maximum and minimum velocity.

Our example would result in

LilypondToBVC 31

7.4. CONFIGURATION OF THE PROCESSING PHASES

voiceNameToVariationFactorMap = "{ drums: 1.0/1.0," \
" vocals: 1.5/1.2}"

The humanization style of a song tells individual variations based on the
position of a note within a measure. Hence it gives timing and velocity
variations for the main beats, the other sixteenths and all other notes. A
timing variation is a positive decimal number and tells how much a note can
be shifted in 1/32nd notes (where 0 means never, 1 means by at most a 1/32nd

etc.). A velocity variation tells the standard velocity level of a note at this
position and the slack gives the maximum variation.

The algorithmic logic for a note humanization is as follows:

1. Assume that the given note has time ti and velocity vi. Further as-
sume that length of a thirtysecond note in time units is ` and that the
instrument-speci�c adjustments from the table are adjt and adjv.

2. Pick two random numbers rt and rv both in the interval [0, 1[from a
quadratic probability distribution (which favours smaller numbers).

3. Depending on ti �nd the note position pi within its measure: it may be
at a full beat (�1�, �2�, �3�, �4�), at another sixteenth (�S�) or at another
position (�OTHER�).

4. For the timing take the o�set τ(pi) given by the timing map for the
current position pi and multiply it by rt and by the length of a quarter
note and by the instrument-speci�c adjustment adjt giving ∆t. If the
o�set has a �B�(ehind) pre�x, set the factor fi to 1, because the note
may only be behind the position; if the o�set has an �A�(head) pre�x,
set the factor fi to -1, because the note may only be ahead of the
position; otherwise with each 50% probability set the factor fi to either
-1 or 1.

Finally we have

t′i := ti + fi ·∆t = ti + fi · τ(pi) · rt · ` · adjt

The timing of simultaneous notes in a voice is changed identically.

5. For the velocity take the associated scaling value σ(pi) given by the
velocity map for the current position and the global slack in the veloc-
ity map ψ. The velocity is �rst scaled by the scaling value σ(pi) (to
accentuate beats), then randomly adjusted by the product of slack ψ
and instrument-speci�c adjustment adjvand �nally capped to the MIDI
velocity interval [0, 127].

Finally we have

v′i := min(127,max(0, vi · σ(pi) + ψ · rv · adjv))

32 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

The idea behind the approach for the velocity is to accent some beats in a
measure. For example, a rock style would favour the 2 and 4, a march the 1.
Timing may be varied or even be dragged or hurried.

So altogether a single style de�nition is a map telling about the timing and
the velocity. The latter two are themselves maps from (an encoded) position
within measure to decimal values.

Let us take a rock style with steady beats on two and four (so no time
variation here) and some emphasis on the second beat. In the con�guration
�le it might look like

humanizationStyleRockHard = \
"{ timing: { 1:0.1, 2:0, 3:0.1, 4:0," \

" S:B0.15, OTHER:B0.2 }," \
" velocity: { 1:1.0, 2:1.15, 3:0.95, 4:1.1," \

" S:0.9, OTHER:0.85, SLACK:0.1 } }"

All available humanization styles in the con�guration �le must have a �hu-
manizationStyle� pre�x in their names to be elegible.

Note that because all those de�nitions go anywhere in the con�guration �les,
humanization styles could even be song-speci�c. On the other hand it is
helpful to just reuse those styles, because humanization normally should not
depend on the song, but on the style of the song only.

The song itself de�nes the styles to be applied as a style map from measure
number to style starting here. Styles apply to all humanized instruments
simultaneously, it is not possible to have, for example, a reggae on drums
against a rumba on bass.

So the style map in the con�guration �le might look like

measureToHumanizationStyleNameMap = \
"{ 1 : humanizationStyleRockHard," \

" 45 : humanizationStyleBeat}"

and tells that the �rock hard� style de�ned above is used at the beginning
and that the style switches to a �beat� style in measure 45.

All humanization variables discussed above are shown summarized in the
table in �gure 14.

7.4.1.3 Video Generation: �silentvideo� Phase

The video from the lilypond fragment �le is produced by combining rendered
images from lilypond in an intelligent fashion. �silentvideo� just renders the
video without sound, later on the ��nalvideo� phase in the postprocessing
combines the silent video with the rendered audio tracks.

For the video rendering we need the characteristics of the video target, for

LilypondToBVC 33

7.4. CONFIGURATION OF THE PROCESSING PHASES

Variable Description Example

countInMeasureCount number of count-in measures for
the song (which de�nes the time
before the �rst measure)

2

humanizedVoiceNameSet set of voice names to be human-
ized by random variations of tim-
ing and velocity

"vocals, drums, key-
board"

measureToHumaniza-

tionStyleNameMap

map of measure number to hu-
manization style name used from
this position onward for human-
ized voices

" 1: styleXXX, 5: sty-
leYYY "

humanizationStyle-

�name�

map that tells the initial count-in
measures, the variation in timing
and velocity for several positions
within a measure

see text

voiceNameToVaria-

tionFactorMap

map from voice name to a pair of
decimal factors characterizing the
timing and velocity variation for
this kind of voice to be applied ad-
ditional to the humanization style

see text

Figure 14: Midi Humanization Related Con�guration File Variables

example, the size and resolution of the device used. Additionally there is
data as the rendering directory or the su�x used for the video �les.

Because it might happen that several video renderings have similar video tar-
get properties, the information is split: a video rendering relies on a speci�c
video target and gives details such as the directory where the video �le goes
or the names of the displayed voices.

So we have two con�guration �le variables:

• videoTargetMap provides video device dependent properties of notation
videos, but also some device independent parameters (like, for example,
the subtitle font size).

This variable is a map from �target name� to a target descriptor. A
target descriptor is itself a map with the several �elds as shown in
�gure 15. Some of the variables like resolution, height or width describe
�hardware� parameters (because normally the video should have the
appropriate size), others like topBottomMargin the layout of the video.

Figure 16 shows how some of the parameters for video generation are
connected to the physical output device and the video target in general.

• videoFileKindMap provides further details on the rendering (like, for
example, the list of voices to be shown).

This variable is a map from a �video �le kind name� to a video �le kind
descriptor. A video �le kind descriptor is itself a map with the several

34 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Variable Description

height height of device and video (in dots)
width width of device and video (in dots)
resolution resolution of the device (in dpi)
topBottomMargin margin for video on top and bottom (in millimeters)
leftRightMargin margin for video on left and right side (in millimeters)
systemSize size of lilypond system (in lilypond units, cf. lilypond

system size)
scalingFactor the factor by which width and height are multiplied for

lilypond image rendering to be downscaled accordingly
by the video renderer (an integer)

frameRate the frame rate of the video (in frames per second)
mediaType the Quicktime media type of the video (for example "TV

Show")
subtitleColor color of overlayed subtitle in �nal video for measure dis-

play (as integer for 16bit alpha/red/green/blue)
subtitleFontSize height of subtitle (in pixels)
subtitlesAreHardcoded �ag to tell whether subtitles are burnt into the video or

are available as a separate subtitle track

Figure 15: Parameters for Video Target in videoTargetMap Variable

VIDEO TARGET

width

leftRightMargin

heighttopBottomMargin

resolution

Figure 16: Target Parameters for Video Generation

�elds as shown in �gure 17. There is information about the target �le
given by videoDirectoryPath and �leNameSu�x and the list of the voices
in those video �les.

So a video target de�nition for a single midrange tablet could look like this:

LilypondToBVC 35

7.4. CONFIGURATION OF THE PROCESSING PHASES

Variable Description

target name of associated video target that is used when ren-
dering video �les of that kind

directoryPath directory where �nal videos for that target go
�leNameSu�x su�x to be used for the video �le names for that target
voiceNameList list of voice names to be rendered in order to audio �les

via the phase �silentvideo�

Figure 17: Parameters for Video File Kind in videoFileKindMap Variable

videoTargetMap = \
"{" \
" tablet:" \

" { fileNameSuffix: ’-i-v’," \
" targetVideoDirectoryPath: ’/pathto/tablet’," \
" resolution: 132," \
" height: 1024," \
" width: 768," \
" topBottomMargin: 5," \
" leftRightMargin: 10," \
" systemSize: 25," \
" scalingFactor: 4," \
" frameRate: 10," \
" mediaType: ’TV Show’," \
" subtitleColor: 2281766911," \
" subtitleFontSize: 20," \
" subtitlesAreHardcoded: false }" \

"}"

The above de�nes a target called �tablet� having a video with 1024x768 pixels,
a resolution of 132dpi, a margin of 5mm at top and bottom, a margin of
10mm left and right, slightly enlarged systems (lilypond standard system
size is 20), a yellow semi-transparent subtitle with size 20 pixels. The video
runs at a frame rate of 10fps (which is ample for a more or less static video
and ensures that the time resolution for page turning and subtitle changes
is 0.1s) and lilypond produces images 4 times wider and higher than needed
to be downscaled by the video renderer for better video image quality. The
quicktime media type is �TV Show� and subtitles in the �nal video are on a
separate track.

Based on the video target de�nition given above a video �le kind de�nition
could look like this:

36 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

videoFileKindMap = \
"{" \
" tabletVocGtr:" \

" { target: tablet," \
" fileNameSuffix: ’-i-v’," \
" directoryPath: ’/pathto/xyz’," \
" voiceNameList: ’vocals, guitar’ }" \

"}"

The above de�nes a single �le kind for output. The target characteristics are
those of a �tablet�, those videos contain a score with vocals plus guitar and
all the �les have su�x '-i-v' (followed by '.mp4', of course).

So the silent video generation produces an MP4 video �le for each video �le
kind speci�ed. Each video displays a score with all voices speci�ed in the
con�guration variable videoFileKind.voiceNameList with automatic page turn-
ing at the right points in time. That video is stored in a single �le in the
directory given by videoFileKind.directoryPath with name �leNamePre�x plus
"_noaudio" and the videoFileKind.�leNameSu�x from the �le kind speci�ca-
tion and extension �.mp4�.

Additionally a subtitle �le with all measure numbers is generated in the direc-
tory given by targetDirectoryPath with name �leNamePre�x plus "_subtitle"
and extension �.srt�.

This means that a song with �le name pre�x �wonderful_song� and a target
�le name su�x �-tablet� leads to a silent video �le of �wonderful_song_no-
audio-tablet.mp4� and a subtitle �le of �wonderful_song_subtitle.srt�. Note
that the subtitle �le is independent of the video target, because it only gives
the time intervals of each measure and those do not depend on the video.

If you really want to �ddle with the video generation, the video target name
is provided as the lilypond macro ltbvcVideoTargetName and has the values
speci�ed as keys in the list videoTargetMap. You can use this for conditional
processing, video layout changes etc., because the �le inclusion into the boil-
erplate �le is done at a very late position. Be warned that the whole video
generation might fail, because the generator assumes that it has to handle a
simple-structured lilypond include �le.

There is only a single con�guration �le variable for video as shown in �gure 18
that de�nes all video targets that are used in the generation.

7.4.2 Postprocessing Phases

All postprocessing phases rely on the con�guration �le, the generated midi
�le and the silent videos; the lilypond fragment �le is not used any longer.

Figure 19 shows the connection between the inputs and the outputs for the
phases. Only the con�guration �le serves as manual input into the processing

LilypondToBVC 37

7.4. CONFIGURATION OF THE PROCESSING PHASES

Variable Description Example

videoTargetMap mapping from video target name
to video target descriptor with
several parameters for speci�c
video �le generation

see text

videoFileKindMap mapping from video �le kind
name to video �le kind descriptor
with several parameters for spe-
ci�c video �le generation referenc-
ing a video target that gives over-
all video parameters

see text

Figure 18: Video Con�guration File Variables

chain, the other �les are generated from �les coming from the preprocessing
phases in section 7.4.1.

The following processing is done:

rawaudio:
the midi �le is rendered via �uidsynth and sound fonts into plain audio
�les for each relevant audio voice,

re�nedaudio:
based on voice-speci�c sound de�nitions each plain audio �le is re�ned
by sox processing for each relevant audio voice into a re�ned audio �le,

mixdown:
mixed versions of the voice audio �les are generated with sox grouped
into audio groups from the con�guration �le (for later selection as audio
track), and

�nalvideo:
the still videos and the subtitle �le produced from the lilypond frag-
ment �le are combined with the grouped audio �les to video �les with
selectable audio tracks and either selectable or burnt in

7.4.2.1 Audio Generation: �rawaudio� and �re�nedaudio� Phase

Each voice in audioVoiceNameSet is rendered to audio �les via the phases
�rawaudio� and �re�nedaudio� based on the humanized midi �le from sec-
tion 7.4.1.2. The audioVoiceNameSet variable is an (unordered) list of voices
names that are a subset of those occuring in the midiVoiceNameList.

38 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

configuration
file

midi
file

silent
video
files

subtitle
text
file

rawaudio

refinedaudio

mixdown

finalvideo

raw
audio
files

refined
audio
files

mix
audio
files

video
files

Figure 19: Information Flow for the Postprocessing Phases

�rawaudio� Phase

The �rawaudio� phase simply takes each voice given in the audio voice name
set and converts the humanized midi stream into a wave �le using �uidsynth.
It relies on the soundfont �les given by the variables soundFontDirectoryPath
and soundFontNameList. The name order of the soundfonts (of type sf2 or
sf3) give the order of matching a given midi instrument number: the �rst
match is accepted.

Note that the midi volume is not used by this phase: any midi volume changes
are suppressed and only the velocity is used.

For each voice the resulting wave �le after generation is stored in directory
tempAudioDirectoryPath as an intermediate �le for further processing. The
naming convention is to use the voice name with a �.wav� extension (for
example, �bass.wav� stores the result for a bass voice).

�re�nedaudio� Phase

Normally the sounds produced by soundfonts need some bee�ng up. This is
done in the �re�nedaudio� phase where the audio �le from the previous phase
are postprocessed by the sound processor sox.

sox is a commandline program where chains of e�ects are applied to audio
input �les producing audio output �les. For example, the command

sox input.wav output.wav highpass 80 2q reverb 50

applies a double-pole highpass �lter at 80Hz with a width of 2q followed by
a medium reverb to �le input.wav and stores the result in �le output.wav.

sox has a lot of those �lters and all those can be used for sound shaping. In

LilypondToBVC 39

7.4. CONFIGURATION OF THE PROCESSING PHASES

this document we cannot go into details, but a thorough information can be
found in the sox documentation [SOX].

Each audio voice is transformed depending on voice-speci�c settings in the
con�guration �le. Because the input �le comes from the previous �rawaudio�
phase (for example �bass.wav�) and the output �le name for the �re�nedaudio�
phase is also well-de�ned (for example as �bass-processed.wav�), we only have
to specify the sox commands for the transformation itself.

Those commands depend on the voice/instrument and on the style of the
playing and this is combined in a so-called sound style variable.

The name of sound style variables is constructed as follows: the pre�x �sound-
Style� is followed by the voice name with initial caps (for example �Bass�)
and by the style variant � a single word � capitalized as su�x (�Hard�).
When following this convention, a hard bass has a sound style name �sound-
StyleBassHard�.

Very often a sound style is not de�ned on its own, but relies on other def-
initions. Let us assume we have some standard postprocessing for a bass.
This consists of a normalization with 24dB headroom (to prevent distortion
in the following steps), an enhancement of the 150Hz band by 10dB and a
6dB cuto� of high frequencies above 600Hz. In the con�guration �le this
could look as follows:

_bassPostprocess = \
" norm -24" \
" equalizer 150 4o +10" \
" lowpass -2 600 1.2o"

Based on that de�nition above the actual sound style can be de�ned as follows
(referencing the de�nition by name):

soundStyleBassHard = \
" highpass -2 40" \
" lowpass -2 2k" \
" norm -6 " \
" tee" \
" overdrive 12 0 " \
_bassPostprocess

The sound style de�nition uses a low- and highpass followed by an overdrive
and the �nal equalization. Note that the name is not in double quotes: this
distinguishes it from plain text (as explained in section 5.2).

There are four things to note:

1. As demonstrated sound styles may rely on other de�nitions; so you can
build a hierarchy of e�ect chains.

2. The special e�ect �tee� is not part of sox. When debugging is ac-
tive, this �e�ect� writes out the audio data available at that position

40 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

in the chain into a temporary �le in the target audio directory called
��voice�X.wav� where X stands for a hex number. Multiple �tee� com-
mands are possible, so you can do an audio debugging of your chain.

3. Processing is purely sequential with a single signal path. There is no
sidechaining, no New York parallel compression etc.

More complicated processing paths are planned for a future version (see
section 10).

4. Reverb is normally not speci�ed in the chain. Reverb is automatic and
always applied with default parameters and an intensity de�ned by the
con�guration variable reverbLevelList to the �nal audio.

If that simple reverb is not good enough and speci�c settings are
needed, you can set the reverb level for some voice to 0 and add a
more elaborated reverb e�ect to the sound style.

So how do we apply the speci�c sound style and some reverb to our bass?
The settings in the song con�guration �le are as follows

voiceNameList = "..., bass, ..."
reverbLevelList = "..., 0.4, ..."
soundVariantList = "..., hard, ..."

As above reverbLevelList and soundVariantList are lists with elements in the
same order as voiceNameList. There is a special sound variant called copy
that just takes the raw audio �le and applies the speci�ed reverb to it.

The sound variant may be given in any letter case, because it is automatically
adapted for the selection of the sound style. Combined with the above sound
style this leads to the following sox commands � when debugging is active �
(note the command split at the tee e�ect and the added �nal reverb with
100· reverbLevel):

sox bass.wav bassA.wav highpass -2 40 lowpass -2 2k norm -6
sox bassA.wav bass-processed.wav overdrive 12 0 norm -24 \

equalizer 150 4o +10 lowpass -2 600 1.2o reverb 40

Sound styles can be de�ned per song or globally. I prefer the latter, because
I use a few bread-and-butter sounds per instrument and adapt them only by
using di�erent midi instruments, audio volumes and reverb levels in the voice
con�guration; hence the sound styles itself are not adapted. But in principle
you can �ne-tune the voice sounds per song, which I �nd tedious.

It is helpful to use a simple set of variants that apply to all voices, for
example, �STD� (for a normal sound), �HARD� (for some heavier sound),
�EXTREME� (for an ultra-hard sound) etc.

So �nally each audio voice has its processed wav version in targetDirectoryPath
called ��voice�-processed.wav� for later mixdown.

LilypondToBVC 41

7.4. CONFIGURATION OF THE PROCESSING PHASES

There are two cases that can also be handled by the audio processing phases:

1. One can override a processed track by some external audio �le.

2. A parallel track in a �le not related to some voice can be added.

So both cases involve external audio �les to be added.

The �rst case is common when you want to replace a track by a real recording.
For example, the vocals with midi beeps could be enhanced by having a real
singer sing the track.

All those tracks are described in the con�guration variable voiceNameToOver-
rideFileNameMap. As its name tells, it maps voice names to �le names.

voiceNameToOverrideFileNameMap = \
"{ vocals : ’vocals.flac’," \

"bass : ’mybass.wav’ }"

This approach replaces the processed voice �les by the contents of the �les
given in the map. File types supported are all those supported by sox as
input. Note that the overriding �le has to have the length of a re�ned voice
�le, that means, it also has to contain material for the count-in measures.

In the second case no speci�c voice track is replaced, but some parallel track
is introduced. For example, this could be used for lead-in text or audience
audio.

In principle this could be handled by introducing an arti�cial voice only used
for audio, but for convenience there is another variable called parallelTrack for
a single additional track. It contains comma-separated data for an audio �le
name, a volume factor and o�set relative to the start of the song in seconds
as follows:

parallelTrack = " parallelFile.wav, 1.0, 2.8"

Note that it is only possible to have a single parallel track.

Summary of Audio Con�guration Variables

Figure 20 shows all the con�guration variables described for the �rawaudio�
and �re�nedaudio� phases.

7.4.2.2 Final Audio Generation: �mixdown� Phase

The �mixdown� phase combines the re�ned audio �les into one or more audio
�le with all voices and in aac audio format.

Audio levels of the individual voices and a �nal attenuation factor are spec-
i�ed in the con�guration; the audio voices are mixed with those levels and

42 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Variable Description Example

audioVoiceNameSet set of voice names to be ren-
dered to audio �les via the
phases �rawaudio� and �re�nedau-
dio� based on voice representa-
tions in humanized midi �le

"vocals, drums, bass"

reverbLevelList list of reverb levels (as decimal
values typically between 0 and 1)
for the voices aligned with the list
voiceNameList; those reverb levels
are applied to each voice as the �-
nal re�nement operation

"0.1, 1.1, 0.5, 0.0"

soundStyle�Voice�-

�Variant�

sequence of sox commands to be
applied on raw audio �le when this
style is selected for �voice�

see text

soundVariantList list of variant names for the sound
styles of the voices aligned with
the list voiceName; those style
variant names are combined into a
complete style name to be applied
during audio re�nement

"COPY, EXTREME,
STD, HARD"

voiceNameToOverride-

FileNameMap

map from voice name to name of
�le overriding that voice in the
processed audio �les and in the �-
nal mixdown audio �les and in the
target videos

see text

Figure 20: Audio Con�guration File Variables

the attenuation is applied to the mix before it gets compressed into an AAC
�le.

The entries are speci�ed as follows:

voiceNameList = "..., bass, guitar, ..."
audioLevelList = "..., 0.7, 0.5, ..."

attenuationLevel = -0.2

The target �le is stored in the audioTargetDirectoryPath with a name con-
catenated from targetFileNamePre�x, �leNamePre�x and su�x �-ALL.m4a�.

But: you do not want a backing track with all voices of your arrangement,
but the ones to be played live should be missing and ideally one should be
able to switch them on and o�!

Again we specify this by several mapping variables in the con�guration �le.

The �rst variable, audioGroupToVoicesMap, speci�es a partitioning of the
audio voices into groups where some freely selectable audio group names are
mapped onto sets of audio voice names.

LilypondToBVC 43

7.4. CONFIGURATION OF THE PROCESSING PHASES

Variable Description

audioGroupList slash-separated list of audio group names occuring as
keys in audioGroupToVoicesMap

audioFileTemplate template string de�ning how the audio �le name of the
target audio �le for given list of voices is constructed from
the plain audio �le name (indicated by a dollar-sign)

songNameTemplate template string de�ning how the song name for given
list of voices is constructed from the plain song name
(indicated by a dollar-sign)

albumName name of the album of the audio �le for given list of voices
(where an embedded dollar-sign is replaced by the global
album name)

description description for audio track within target video (typically
unsupported by video players)

languageCode ISO language code for audio track within target video
(typically supported by video players)

Figure 21: Parameters for Audio Track in audioTrackList Variable

audioGroupToVoicesMap = "{" \
" base : bass/keyboard/keyboardSimple/strings," \
" voc : vocals/bgVocals," \
" gtr : guitar," \
" drm : drums/percussion" \

"}"

The voice names in the song should be a subset of the voice names mentioned
in the audio group map, missing or extraneous voice names will be ignored.
When de�ning those settings globally for a group of songs, ensure that typical
voice name variants (like, for example, �keyboardSimple�) are included in one
of the lists; otherwise those voices will be missed in the mix �les and videos.

The second variable, audioTrackList, speci�es all tracks that will later occur
as tracks in the video, but also that are rendered as compressed audio �les.

Each track is described by a track descriptor with several �elds as shown in
�gure 21. It consists of a list of the several groups to be combined, templates
for the audio �le and the song name, an album name, and some description
and a language code for the video track.

�Language code� sounds a bit strange: why do you need that?

Unfortunately not many video players support audio track description texts
for MP4 videos, but most of them allow to select audio tracks by �language�.
So the audio tracks in the �nal video are tagged with both description and
language code for some kind of identi�cation. Of course, the selected lan-
guages are quite arbitrary, because you typically do not �nd a connection
between a list of audio voice names and some language name. So you must
be creative. . .

44 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

Altogether we have something like that in the con�guration �le:

audioTrackList = "{" \
"all : { audioGroupList : base/voc/gtr/drm," \
" audioFileTemplate : ’$’," \
" songNameTemplate : ’$ [ALL]’," \
" albumName : ’Best’," \
" description : ’all voices’," \
" languageCode : eng }," \
"novoc : { audioGroupList : base/gtr/drm," \
" audioFileTemplate : ’$-novoc’," \
" songNameTemplate : ’$ [-V]’," \
" albumName : ’Best [no vocals]’," \
" description : ’no vocals’," \
" languageCode : deu }," \
...

"}"

So any number of audio tracks is possible. In the example above we have two
(if you ignore the ellipsis!). If we assume that the target �le name pre�x is
�test-� and that the song has �le name pre�x �wonderful_song� and is called
�Wonderful Song�, the �les have the following properties:

1. The �rst track has all voices, is stored in �test-wonderful_song.m4a�
with title �Wonderful Song [ALL]� in album �Best� and it has descrip-
tion �all voices� and an English language tag.

2. The second track has all voices except for vocals and bg vocals, is stored
in �test-wonderful_song-novoc.m4a� with title �Wonderful Song [-V]�
in album �Best [no vocals]� and it has description �no vocals� and a
German language tag.

Figure 22 shows the variables introduced in this section in summary.

7.4.2.3 Video Generation: ��nalvideo� Phase

The still videos from the lilypond fragment �le contain rendered score images
from lilypond with appropriate display times. The ��nalvideo� phase com-
bines those silent videos with the subtitle �le and the rendered audio tracks
from above.

There are no big surprises here: for every video �le kind in the list vide-
oFileKindMap a video is built with the following parts:

• the �le-kind-speci�c still video with the appropriate extension �leName-
Su�x for the given target name �nally located in targetDirectoryPath,

• the subtitle �le located in targetDirectoryPath, and

LilypondToBVC 45

7.4. CONFIGURATION OF THE PROCESSING PHASES

Variable Description Example

attenuationLevel decimal value in decibels telling
the volume change to be applied to
the �nal audio �les; this is helpful
to adjust volume levels of di�erent
songs within an album

-1.3

audioGroupToVoicesMap mapping from freely de�ned voice
group names to names of voices
contained in that group described
by a slash-separated name list

see text

audioLevelList list of volume factors aligned with
the list voiceName used for mixing
the re�ned audio �les into cumu-
lated audio �les; the factors are
decimal values with 1.0 meaning
that the re�ned voice �le is taken
unchanged

"0.7, 0.5, 1.2"

audioTargetDirectoryPath path for the �nal AAC audio �les
with subsets of rendered and re-
�ned audio tracks

"/pathto/XXX"

audioTrackList list of track descriptors de�ning
groups of audio groups to be put
on some track with naming tem-
plates for audio �le, song and al-
bum name and a track description
and language

see text

Figure 22: Mixdown Con�guration File Variables

• the compressed audio �les generated by the �mixdown� phase and lo-
cated in audioTargetDirectoryPath

If subtitlesAreHardcoded is set for the target, the subtitle is burnt into the
video with speci�ed subtitleFontSize and subtitleColor. Otherwise the subtitle
is put into the target video as a subtitle track (to be switched on or o�). In
the latter case, the rendering of the subtitle is done by the video player.

The name of the combined video is constructed as follows: the targetFile-
NamePre�x is concatenated with �leNamePre�x for the song, a minus charac-
ter, the video �le kind name su�x and �.mp4� extension. It is stored in the
directory given by videoFileKind.directoryPath.

For example, by those conventions the �Wonderful Song� for the �tablet� has
name �test-wonderful_song-tablet.mp4� and is stored in the directory given
in the target de�nition.

46 Dr. Thomas Tensi

CHAPTER 7. CONFIGURATION FILE SETTINGS

7.5 Summary

We're done! We have achieved the following results from a lilypond fragment
�le with song voices and a song con�guration �le:

• notation extracts of selected voices as PDF �les,

• a notation score of selected voices as a PDF �le,

• a MIDI �le with selected voices slightly humanized,

• several single voice audio �les,

• audio �le mixes combining voices into groups, and

• video �les for di�erent target devices containing selectable audio tracks
and possibly a selectable subtitle with measure indication

LilypondToBVC 47

8. Example

As the example we take a twelve-bar blues in E with two verses and some
intro and outro. Note that this song is just an example, its musical merit is
limited.

In the following we shall work with three �les:

• a global con�guration �le containing overall settings (like for example,
the path to programs),

• a song-speci�c con�guration �le containing the settings for the song
(like, for example, the title of the song or the voice names), and

• a lilypond music �le containing the music fragments used by the gen-
erator.

In principle one only needs a single con�guration �le and a single lilypond
fragment �le, but by this approach we can keep global and song-speci�c stu�
separate.

In the following we explain the lilypond fragment �le and con�guration �le
in pieces; the complete versions are in the distribution.

8.1 Example Lilypond Fragment File

The lilypond fragment �le starts with the version de�nition and the inclusion
of the note name language �le:

\version "2.18.2"
\include "english.ly"

The �rst musical de�nition is the key and time designation of the song: it is
in e major and uses common time.

keyAndTime = { \key e \major \time 4/4 }

The chords are those of a plain blues with a very simple intro and outro.
Note that the chords di�er for extract and other notation renderings: for the
extract and score we use a volta repeat for the verses, hence in that case all
verse lyrics are stacked vertically and we only have one pass of the verse.

All chords are generic: there is no distinction by instrument.

48 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

chordsIntro = \chordmode { b1*2 | }
chordsOutro = \chordmode { e1*2 | b2 a2 | e1 }
chordsVerse = \chordmode { e1*4 | a1*2 e1*2 | b1 a1 e1*2 }

allChords = {
\chordsIntro \repeat unfold 2 { \chordsVerse }
\chordsOutro

}

chordsExtract = { \chordsIntro \chordsVerse \chordsOutro }
chordsScore = { \chordsExtract }

The vocals are simple with a pickup measure. Because we want to keep the
notation consistent across the voices we have to use two alternate endings
for the vocalsExtract and vocalsScore.

vocTransition = \relative c’ { r4 b’8 as a g e d | }
vocVersePrefix = \relative c’ {

e2 r | r8 e e d e d b a |
b2 r | r4 e8 d e g a g | a8 g4. r2 | r4 a8 g a e e d |
e2 r | r1 | b’4. a2 g8 | a4. g4 d8 d e~ | e2 r |

}

vocIntro = { r1 \vocTransition }
vocVerse = { \vocVersePrefix \vocTransition }

vocals = { \vocIntro \vocVerse \vocVersePrefix R1*5 }
vocalsExtract = {

\vocIntro
\repeat volta 2 { \vocVersePrefix }
\alternative {

{ \vocTransition }{ R1 }
}
R1*4

}
vocalsScore = { \vocalsExtract }

The lyrics of the demo song are really bad. Nevertheless note the lilypond
separation for the syllables and the stanza marks. For the video notation the
lyrics are serialized. Because of the pickup measure, the lyrics have to be
juggled around.

LilypondToBVC 49

8.1. EXAMPLE LILYPOND FRAGMENT FILE

vocalsLyricsBPrefix = \lyricmode {
\set stanza = #"2. " Don’t you know I’ll go for }

vocalsLyricsBSuffix = \lyricmode {
good, be- cause you’ve ne- ver un- der- stood,
that I’m bound to leave this quar- ter,
walk a- long to no- ones home:
go down to no- where in the end. }

vocalsLyricsA = \lyricmode {
\set stanza = #"1. "
Fee- ling lone- ly now I’m gone,
it seems so hard I’ll stay a- lone,
but that way I have to go now,
down the road to no- where town:
go down to no- where in the end.
\vocalsLyricsBPrefix }

vocalsLyricsB = \lyricmode {
_ _ _ _ _ _ \vocalsLyricsBSuffix }

vocalsLyrics = { \vocalsLyricsA \vocalsLyricsBSuffix }
vocalsLyricsVideo = { \vocalsLyrics }

The bass simply hammers out eighth notes. As before there is an extract
and a score version with volta repeats and an unfolded version for the rest.

bsTonPhrase = \relative c, { \repeat unfold 7 { e8 } fs8 }
bsSubDPhrase = \relative c, { \repeat unfold 7 { a’8 } gs8 }
bsDomPhrase = \relative c, { \repeat unfold 7 { b’8 } cs8 }
bsDoubleTonPhrase = { \repeat percent 2 { \bsTonPhrase } }
bsOutroPhrase = \relative c, { b8 b b b gs a b a | e1 | }

bsIntro = { \repeat percent 2 { \bsDomPhrase } }
bsOutro = { \bsDoubleTonPhrase \bsOutroPhrase }
bsVersePrefix = {

\repeat percent 4 { \bsTonPhrase }
\bsSubDPhrase \bsSubDPhrase \bsDoubleTonPhrase
\bsDomPhrase \bsSubDPhrase \bsTonPhrase

}
bsVerse = { \bsVersePrefix \bsTonPhrase }

bass = { \bsIntro \bsVerse \bsVerse \bsOutro }
bassExtract = {

\bsIntro
\repeat volta 2 { \bsVersePrefix }
\alternative {
{\bsTonPhrase} {\bsTonPhrase}

}
\bsOutro

}
bassScore = { \bassExtract }

The guitar plays arpeggios. As can be seen here, very often the lilypond

50 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

macro structure is similar for di�erent voices.

gtrTonPhrase = \relative c { e,8 b’ fs’ b, b’ fs b, fs }
gtrSubDPhrase = \relative c { a8 e’ b’ e, e’ b e, b }
gtrDomPhrase = \relative c { b8 fs’ cs’ fs, fs’ cs fs, cs }
gtrDoubleTonPhrase = { \repeat percent 2 { \gtrTonPhrase } }
gtrOutroPhrase = \relative c { b4 fs’ a, e | <e b’>1 | }

gtrIntro = { \repeat percent 2 { \gtrDomPhrase } }
gtrOutro = { \gtrDoubleTonPhrase | \gtrOutroPhrase }
gtrVersePrefix = {

\repeat percent 4 { \gtrTonPhrase }
\gtrSubDPhrase \gtrSubDPhrase \gtrDoubleTonPhrase
\gtrDomPhrase \gtrSubDPhrase \gtrTonPhrase

}
gtrVerse = { \gtrVersePrefix \gtrTonPhrase }

guitar = { \gtrIntro \gtrVerse \gtrVerse \gtrOutro }
guitarExtract = {

\gtrIntro
\repeat volta 2 { \gtrVersePrefix }
\alternative {
{\gtrTonPhrase} {\gtrTonPhrase}

}
\gtrOutro

}
guitarScore = { \guitarExtract }

Finally the drums do some monotonic blues accompaniment. We have to use
the myDrums name here, because drums is a prede�ned name in lilypond.
There is no preprocessing of the lilypond fragment �le: it is just included
into some boilerplate code.

LilypondToBVC 51

8.2. EXAMPLE CONFIGURATION FILES

drmPhrase = \drummode { <bd hhc>8 hhc <sn hhc> hhc }
drmOstinato = { \repeat unfold 2 { \drmPhrase } }
drmFill = \drummode { \drmPhrase tomh8 tommh toml tomfl }
drmIntro = { \drmOstinato \drmFill }
drmOutro = \drummode {

\repeat percent 6 { \drmPhrase } | <sn cymc>1 | }
drmVersePrefix = {

\repeat percent 3 { \drmOstinato } \drmFill
\repeat percent 2 { \drmOstinato \drmFill }
\repeat percent 3 { \drmOstinato }

}
drmVerse = { \drmVersePrefix \drmFill }

myDrums = { \drmIntro \drmVerse \drmVerse \drmOutro }
myDrumsExtract = { \drmIntro

\repeat volta 2 {\drmVersePrefix}
\alternative {
{\drmFill} {\drmFill}
}
\drmOutro }

myDrumsScore = { \myDrumsExtract }

So we are done with the lilypond fragment �le. What we have de�ned are

• the song key and time,

• the chords,

• the vocal lyrics, and

• voices for vocals, bass, guitar and drums.

All those de�nitions take care that the notations shall di�er in our case for
extracts/score and other notation renderings.

8.2 Example Con�guration Files

As mentioned above the con�guration is split up into a �le with global set-
tings and one with the song settings.

As a convention we pre�x auxiliary variable with an underscore to distinguish
them from the real con�guration variables.

8.2.1 Example Global Con�guration

The �rst setup steps de�ne the program locations. We assume that programs
are located together in some directory, but this depends on the environment.

52 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

All de�nitions assume a Unix context, but you may also use slashes as path
separators for Windows.

_programDirectory = "/usr/local"
aacCommandLine = _programDirectory "/qaac -V100 -i $1 -o $2"
ffmpegCommand = _programDirectory "/ffmpeg"
fluidsynthCommand = _programDirectory "/fluidsynth"
lilypondCommand = _programDirectory "/lilypond"
soxCommandLinePrefix = _programDirectory "/sox"

We have not provided a de�nition for the mp4boxcommand because � as a
default � �mpeg can also do the MP4 container packaging. Note also that
aac and sox must have more extensive de�nitions.

Other global settings de�ne paths for �les or directories. The generated PDF
and MIDI �les go to subdirectory �generated� of the current directory, audio
into �/tmp/audio�les�.

loggingFilePath = "/tmp/logs/ltbvc.log"
soundFontDirectoryPath = _programDirectory "/soundfonts"
targetDirectoryPath = "generated"
tempAudioDirectoryPath = "/tmp/audiofiles"
soundFontNames = "FluidR3_GM.SF2"

For the notation we ensure that drums use the drum sta� and that the clefs
for bass and guitar are transposed by an octave and that drums have no clef
at all. Chords shall be shown for all extracts of melodic instruments and on
the top voice �vocals� in the score and video.

_voiceNameToStaffListMap = "{ drums : DrumStaff }"
_voiceNameToClefMap = "{" \

"bass : bass_8, drums : ’’, guitar : G_8" \
"}"

phaseAndVoiceNameToStaffListMap = "{" \
"extract :" _voiceNameToStaffListMap "," \
"midi :" _voiceNameToStaffListMap "," \
"score :" _voiceNameToStaffListMap "," \
"video :" _voiceNameToStaffListMap "}"

phaseAndVoiceNameToClefMap = "{" \
"extract :" _voiceNameToClefMap "," \
"midi :" _voiceNameToClefMap "," \
"score :" _voiceNameToClefMap "," \
"video :" _voiceNameToClefMap "}"

voiceNameToChordsMap = "{" \
"vocals : s/v, bass : e, guitar : e" \

"}"

The humanization for the MIDI and audio �les is quite simple: we use a rock
groove with tight hits on two and four and slight variations for other measure

LilypondToBVC 53

8.2. EXAMPLE CONFIGURATION FILES

positions. The timing variations are very subtle as the variation is at most
0.2 1/32nd notes.

As the velocity variation there is a hard accent on two and a slighter accent
on four while the other positions are much weaker.

We have not de�ned individual variation factors per instrument; hence all
humanized instruments have similar variations in timing and velocity.

countInMeasureCount = 2

humanizationStyleRockHard = \
"{ timing: { 1:0.1, 2:0, 3:0.1, 4:0," \

" S:B0.15, OTHER:B0.2 }," \
" velocity: { 1:1.0, 2:1.15, 3:0.95, 4:1.1," \

" S:0.9, OTHER:0.85, SLACK:0.1 } }"

The video generation is just done for a single video target called �tablet� with
a portrait orientation and a classical 4:3 aspect ratio. The strange integer
below for the subtitle color is a hexadecimal 8800FFFF, that is a yellow with
about 45% transparency. And the videos show both vocals and guitar and
are characterized as �Music Videos� in their media type.

videoTargetMap = "{" \
"tablet: { resolution: 132," \

" height: 1024," \
" width: 768," \
" topBottomMargin: 5," \
" leftRightMargin: 10," \
" scalingFactor: 4," \
" frameRate: 10.0," \
" mediaType: ’Music Video’," \
" systemSize: 25," \
" subtitleColor: 2281766911," \
" subtitleFontSize: 20," \
" subtitlesAreHardcoded: true } }"

videoFileKindMap = "{" \
"tabletVocGtr: { target: tablet," \

" fileNameSuffix: ’-tblt-vg’," \
" directoryPath: ’./mediaFiles’ ," \
" voiceNameList: ’vocals, guitar’ } }"

For the transformation from midi tracks to audio �les there are only two
sound style de�nitions: an extreme bass and a crunchy guitar. Both use
overdrive and some sound shaping, the guitar style also applies a bit of com-
pression. Details of the parameters can be found in the sox documenta-
tion [SOX].

For all the other voices we shall specify later that they just use the raw audio
�les with some reverb added.

54 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

soundStyleBassExtreme = \
" norm -12 highpass -2 40 lowpass -2 2k" \
" norm -10 overdrive 30 0" \
" norm -24 equalizer 150 4o +10 lowpass -2 600 1.2o"

soundStyleGuitarCrunch = \
" highpass -1 100 norm -6" \
" compand 0.04,0.5 6:-25,-20,-5 -6 -90 0.02" \
" overdrive 10 40"

For the �nal audio �les we have two variants: one with all voices, the other
one with missing vocals and background vocals (the �karaoke version�). The
song and album names have the appropriate info in brackets.

All songs and the video will go to the �mediaFiles� subdirectory of HOME
and have a jpeg-�le as their embedded album art. Audio and video �les
have �test-� as their pre�x before the song name. So, for example, the au-
dio �le for �Wonderful Song� with all voices has path �./mediaFiles/test-
wonderful_song.m4a�.

targetFileNamePrefix = "test-"
audioTargetDirectoryPath = "./mediaFiles"
albumArtFilePath = "./mediaFiles/demo.jpg"

audioGroupToVoicesMap = "{" \
" base : bass/keyboard/strings/drums/percussion," \
" voc : vocals/bgVocals," \
" gtr : guitar" \

"}"

audioTrackList = "{" \
"all : { audioGroupList : base/voc/gtr," \
" audioFileTemplate : ’$’," \
" songNameTemplate : ’$ [ALL]’," \
" albumName : ’$’," \
" description : ’all voices’," \
" languageCode : deu }," \
"novocals : { audioGroupList : base/gtr," \
" audioFileTemplate : ’$-v’," \
" songNameTemplate : ’$ [-V]’," \
" albumName : ’$ [-V]’," \
" description : ’no vocals’," \
" languageCode : eng }" \

"}"

8.2.2 Example Song Con�guration

There is not much left to de�ne the song. First come the overall properties:

LilypondToBVC 55

8.3. PUTTING IT ALL TOGETHER

title = "Wonderful Song"
fileNamePrefix = "wonderful_song"
year = 2017
composerText = "arranged by Fred, 2017"
trackNumber = 99
artistName = "Fred"
albumName = "Best of Fred"

The main information about a song is given in the table of voices with the
voice names, midi data, audio and reverb levels and the sound variants. As
mentioned before only bass and guitar have an audio postprocessing.

voiceNameList = "vocals, bass, guitar, drums"
midiChannelList = " 2, 3, 4, 10"
midiInstrumentList = " 54, 35, 29, 18"
midiVolumeList = " 100, 120, 70, 110"
panPositionList = " C, 0.3R, 0.8R, 0.1L"
audioLevelList = " 1.0, 0.83, 0.33, 1.48"
reverbLevelList = " 0.3, 0.2, 0.0, 0.4"
soundVariantList = " COPY, EXTREME, CRUNCH, COPY"

We also have lyrics: two lines of lyrics in vocals extract and score, one (seri-
alized) line in the video.

voiceNameToLyricsMap = "{ vocals : e2/s2/v }"

Humanization relies on the humanization style de�ned in 8.2.1. It applies to
all voices except vocals and starts in measure 1.

styleHumanizationKind = "humanizationStyleRockHard"
humanizedVoiceNameSet = "bass, guitar, drums"
measureToHumanizationStyleNameMap = \

"{ 1 : humanizationStyleRockHard }"

The overall tempo is 85bpm throughout the song.

measureToTempoMap = "{ 1 : 85 }"

8.3 Putting it All Together

Now we are set to start the tool chain. Assuming that the con�guration is in
�le �wonderful_song-con�g.txt� and the lilypond stu� is in �wonderful_song-
music.ly�, the command to produce everything is

lilypondToBVC --phases all wonderful_song-config.txt

and it produces the following target �les

• in directory �generated� the extracts �wonderful_song-bass.pdf�, �won-
derful_song-drums.pdf�, �wonderful_song-guitar.pdf� and �wonderful_-

56 Dr. Thomas Tensi

CHAPTER 8. EXAMPLE

a)

b) c)

Figure 23: Examples for Target File Images

song-vocals.pdf�,

• the score �le �generated/wonderful_song_score.pdf�,

• the midi �le �generated/wonderful_song-std.mid�,

• in directory � /musicFiles� the audio �les �test-wonderful_song.m4a�
and �test-wonderful_song-v.m4a�, and

• the video �le with two audio tracks � /videos/test-wonderful_song-
tblt.mp4�

Figure 23 shows an extract page (a), one image of the target video (b) and
the �rst score page (c) as an illustration.

LilypondToBVC 57

9. Debugging

Several tools are orchestrated by the script and typically something goes
wrong. The script or one of the underlying tools issues some error message,
but how can you �nd out what really went wrong?

The �rst place to look is the logging �le located in loggingFilePath. It does
a very �ne-grained tracing of the relevant function calls and the last lines
should give you some indication about the error.

Note that the outputs of the called programs are not logged, but at least
the commandlines to call them. This would not be helpful in itself, because
typically those programs work on generated intermediate �les. But you can
tell ltbvc to keep the intermediate �les by setting keepIntermediateFiles to
true or alternatively calling the program with the �-k� �ag. This only applies
to the preprocessing phases, because in the postprocessing phases all �les are
kept as they serve as input for other phases 1.

For example, assume that the score generation phase does not produce a
meaningful output. If you have set the keep-�les-�ag, then a �le called
�temp.ly� is produced and kept that contains the boiler-plate code for the
score. You can then run

lilypond test.ly

and see what happens. Of course, you must be able to get by with the
lilypond messages, but this is plain lilypond expertise.

Assuming default settings of the con�guration variables, the following tem-
porary �les will be produced:

extract:
a single temp.ly �le containing a single voice,

score:
a single temp.ly �le for the complete score,

midi:
a single temp.ly �le for the midi voices and a generated �.mid� �le
containing the voices with standard sound assignment and no human-
ization, and

silentvideo:
a single temp.ly �le for the video voices, �.png� image �les with single
pages of the video and �.mp4� �les containing the parts of the video
showing just a single page.

1The silent videos and the subtitle �le also go into the intermediate �le directory,
because they are not interesting in themselves, but must be kept.

58 Dr. Thomas Tensi

CHAPTER 9. DEBUGGING

For the postprocessing phases all intermediate �les are kept as follows:

rawaudio:
each voice wave-�le goes into the path speci�ed by tempAudioDirecto-
ryPath as ��voice�.wav�,

re�nedaudio:
each voice wave-�le goes into the path speci�ed by tempAudioDirecto-
ryPath as ��voice�-processed.wav�,

mixdown and �nalvideo:
both phases only have target �les in audioTargetDirectoryPath and the
target speci�c path in targetVideoDirectory.

Most problems in postprocessing probably occur in the �re�nedaudio� phase,
because sox does a lot of complex transformations. It might be helpful to
insert �tee� commands in the sox processing chain in the command �le to
have a peek at intermediate audio stages.

Be aware that �tee� is not a standard sox command: if you execute the sox
steps directly on the command line, you must take care of any intermediate
�les yourself.

LilypondToBVC 59

10. Future Extensions

The following things are not contained in the current version, but are planned
for future versions:

• The audio processing chain during the postprocessing phase is currently
linear. It is planned to allow complicated graphs (DAGs) for audio
processing.

• The sound variant list (describing a single sound variant for each voice)
shall be replaced by map from voice to a map from measure to sound
variant. This allows to have individual sound styles for di�erent parts
in a song (like, for example, for an instrument solo part).

60 Dr. Thomas Tensi

LIST OF FIGURES

List of Figures

1 Dependencies between Generation Phases 11

2 Dependency of Lilypond Macros on Con�guration Variables . 17

3 Global Con�guration Variables for Programs 22

4 Global Con�guration Variables for File Paths 23

5 Song Group Related Con�guration File Variables 23

6 Song Related Con�guration File Variables 24

7 Information Flow for the Preprocessing Phases 25

8 Notation Generation Con�guration File Variables 27

9 Example Layout of an Extract File 28

10 Extract Generation Con�guration File Variables 28

11 Example Layout of a Score File 30

12 Score Generation Con�guration File Variables 31

13 Midi Related Con�guration File Variables 31

14 Midi Humanization Related Con�guration File Variables . . . 34

15 Parameters for Video Target in videoTargetMap Variable . . . 35

16 Target Parameters for Video Generation 35

17 Parameters for Video File Kind in videoFileKindMap Variable . 36

18 Video Con�guration File Variables 38

19 Information Flow for the Postprocessing Phases 39

20 Audio Con�guration File Variables 43

21 Parameters for Audio Track in audioTrackList Variable 44

22 Mixdown Con�guration File Variables 46

23 Examples for Target File Images 57

LilypondToBVC 61

A. Table of Con�guration File Variables

The following table describes all the con�guration variables with their default
values and the �gure numbers where those variables have been mentioned �rst
in the current document.

Variable Description Default Fig.

aacCommandLine aac encoder command line with param-
eters for input ($1) and output ($2) (op-
tional, if not de�ned �mpeg is used for
aac encoding)

empty 3

albumName album for song group (embedded as �al-
bum� in audio and video �les)

"UNKNOWN AL-
BUM"

5

artistName artist of that song group (embedded as
�artist� and �album artist� in audio and
video �les)

"UNKNOWN
ARTIST"

5

attenuationLevel decimal value in decibels telling the vol-
ume change to be applied to the �nal
audio �les; this is helpful to adjust vol-
ume levels of di�erent songs within an
album

0 22

audioGroupToVoicesMap mapping from freely de�ned voice
group names to names of voices con-
tained in that group described by a
slash-separated name list

MANDATORY 22

audioLevelList list of volume factors aligned with the
list voiceName used for mixing the re-
�ned audio �les into cumulated audio
�les; the factors are decimal values with
1.0 meaning that the re�ned voice �le is
taken unchanged

MANDATORY,
compatible to
voiceNameList

22

audioTargetDirectoryPath path for the �nal AAC audio �les with
subsets of rendered and re�ned audio
tracks

current directory 22

audioTrack.albumName name of the album of the audio �le for
given list of voices (where an embedded
dollar-sign is replaced by the global al-
bum name)

albumName 21

audioTrack.audioFileTemplate template string de�ning how the audio
�le name of the target audio �le for
given list of voices is constructed from
the plain audio �le name (indicated by
a dollar-sign)

MANDATORY 21

audioTrack.audioGroupList slash-separated list of audio group
names occuring as keys in audioGroup-

ToVoicesMap

MANDATORY 21

audioTrack.description description for audio track within tar-
get video (typically unsupported by
video players)

empty 21

audioTrack.languageCode ISO language code for audio track
within target video (typically sup-
ported by video players)

eng 21

audioTrack

.songNameTemplate

template string de�ning how the song
name for given list of voices is con-
structed from the plain song name (in-
dicated by a dollar-sign)

title 21

audioTrackList list of track descriptors de�ning groups
of audio groups to be put on some track
with naming templates for audio �le,
song and album name and a track de-
scription and language

MANDATORY 22

62 Dr. Thomas Tensi

APPENDIX A. TABLE OF CONFIGURATION FILE VARIABLES

Variable Description Default Fig.

audioVoiceNameSet set of voice names to be rendered to au-
dio �les via the phases �rawaudio� and
�re�nedaudio� based on voice represen-
tations in humanized midi �le

voiceNameList 20

composerText composer text to be shown in voice ex-
tracts and score

empty 6

countInMeasureCount number of count-in measures for the
song (which de�nes the time before the
�rst measure)

0 14

extractVoiceNameSet set of voices to be rendered as a voice
extract

voiceNameList 10

�mpegCommand location of �mpeg command MANDATORY 3
�leNamePre�x �le name pre�x used for all generated

�les for this song
MANDATORY 6

�uidsynthCommand location of �uidsynth command MANDATORY 3
humanizationStyleXXX map that tells the initial count-in mea-

sures, the variation in timing and veloc-
ity for several positions within a mea-
sure

empty 14

humanizedVoiceNameSet set of voice names to be humanized by
random variations of timing and veloc-
ity

empty 14

includeFilePath path for the music include �le contain-
ing all fragments for lilypond process-
ing; if unset, defaults to �leNamePre�x

plus �-music.ly�

�leNamePre�x plus
�-music.ly�

4

intermediateFileDirectoryPath path of directory where intermediate
�les go that are either used for process-
ing within a phase or as information be-
tween phases

current directory 4

keepIntermediateFiles boolean telling whether temporary �les
are kept

false 6

lilypondCommand location of lilypond command MANDATORY 3
loggingFilePath path of �le containing the processing

log
MANDATORY 4

measureToHumanization-

StyleNameMap

map of measure number to humaniza-
tion style name used from this position
onward for humanized voices

empty 14

measureToTempoMap map de�ning the tempo for measure
in bpm until another tempo setting is
given; the measure length in quarters
may be appended after a slash (4 is de-
fault)

MANDATORY 6

midiChannelList list of midi channels per voice each be-
tween 1 and 16 (10 for a drum voice)

MANDATORY,
compatible to
voiceNameList

13

midiInstrumentList list of midi instrument programs per
voice each as an integer between 0 and
127; each entry may be pre�xed by a
bank number (0 to 127) followed by a
colon

MANDATORY,
compatible to
voiceNameList

13

midiPanList list of pan positions per voice as a dec-
imal value between 0 and 1 with su�x
�R� or �L� (for right/left) or the char-
acter �C� (for center)

MANDATORY,
compatible to
voiceNameList

13

midiVoiceNameList list of voices to be rendered in order
given into the MIDI �le

voiceNameList 13

midiVolumeList list of midi volumes per voice each as
an integer between 0 and 127

MANDATORY,
compatible to
voiceNameList

13

mp4boxCommand location of mp4box command MANDATORY 3
phaseAndVoiceName-

ToClefMap

mapping from processing phase to maps
from voice name to lilypond clef

empty 8

phaseAndVoiceName-

ToSta�ListMap

mapping from processing phase to maps
from voice name to slash-separated lily-
pond sta� names

empty 8

LilypondToBVC 63

Variable Description Default Fig.

reverbLevelList list of reverb levels (as decimal val-
ues typically between 0 and 1) for
the voices aligned with the list voice-

NameList; those reverb levels are ap-
plied to each voice as the �nal re�ne-
ment operation

MANDATORY 20

scoreVoiceNameList list of voices to be rendered in order
given into the score

voiceNameList 12

soundFontDirectoryPath path of directory for the soundfonts MANDATORY 4
soundFontNames comma-separated list of soundfont

names (all located in soundfont direc-
tory, .sf2 and .sf3 �le names are possi-
ble)

MANDATORY 4

soundStyleXXX sequence of sox commands to be applied
on raw audio �le when this style is se-
lected for �voice�

empty 20

soundVariantList list of variant names for the sound styles
of the voices aligned with the list voice-
Name; those style variant names are
combined into a complete style name to
be applied during audio re�nement

MANDATORY,
compatible to
voiceNameList

20

soxCommandLinePre�x sox command with global options (like
bu�ering or multithreading settings)

MANDATORY 3

targetDirectoryPath path of directory where all generated
�les go (except for audio and video �les)

current directory 4

tempAudioDirectoryPath path of directory for temporary audio
�les

current directory 4

tempLilypondFilePath path of temporary lilypond �le temp.ly in current
directory

4

title human visible title of song used as tag
in the target audio �le and as header
line in the notation �les

MANDATORY 6

trackNumber track number within album 0 6
videoFileKind.directoryPath directory where �nal videos for that tar-

get go
current directory 17

videoFileKind.�leNameSu�x su�x to be used for the video �le names
for that target

MANDATORY 17

videoFileKind.target name of associated video target that is
used when rendering video �les of that
kind

MANDATORY 17

videoFileKind.voiceNameList list of voice names to be rendered
in order to audio �les via the phase
�silentvideo�

voiceNameList 17

videoTarget.frameRate the frame rate of the video (in frames
per second)

10 15

videoTarget.height height of device and video (in dots) MANDATORY 15
videoTarget.leftRightMargin margin for video on left and right side

(in millimeters)
MANDATORY 15

videoTarget.mediaType the Quicktime media type of the video
(for example "TV Show")

"TV Show" 15

videoTarget.resolution resolution of the device (in dpi) MANDATORY 15
videoTarget.scalingFactor the factor by which width and height

are multiplied for lilypond image ren-
dering to be downscaled accordingly by
the video renderer (an integer)

1 15

videoTarget.subtitleColor color of overlayed subtitle in �nal video
for measure display (as integer for 16bit
alpha/red/green/blue)

(yellow) 15

videoTarget.subtitleFontSize height of subtitle (in pixels) 10 15
videoTarget

.subtitlesAreHardcoded

�ag to tell whether subtitles are burnt
into the video or are available as a sep-
arate subtitle track

false 15

videoTarget.systemSize size of lilypond system (in lilypond
units, cf. lilypond system size)

20 (default of lily-
pond)

15

64 Dr. Thomas Tensi

APPENDIX A. TABLE OF CONFIGURATION FILE VARIABLES

Variable Description Default Fig.

videoTarget.topBottomMargin margin for video on top and bottom (in
millimeters)

MANDATORY 15

videoTarget.width width of device and video (in dots) MANDATORY 15
videoTargetMap mapping from video target name to

video target descriptor with several pa-
rameters for speci�c video �le genera-
tion

MANDATORY 18

voiceNameToChordsMap mapping from voice names to phase ab-
breviations where chords are shown for
that voice system

empty 8

voiceNameToLyricsMap mapping from voice name to a count
of parallel lyrics lines directly following
the target letter (�e� for the extract, �s�
for the score and �v� for the video)

empty 8

voiceNameToOverride-

FileNameMap

map from voice name to name of �le
overriding that voice in the processed
audio �les and in the �nal mixdown au-
dio �les and in the target videos

empty 20

voiceNameToScoreNameMap mapping from voices name to short
score name at the beginning of a sys-
tem

empty 12

voiceNameToVariation-

FactorMap

map from voice name to a pair of dec-
imal factors characterizing the timing
and velocity variation for this kind of
voice to be applied additional to the hu-
manization style

empty 14

year year of arrangement current year 6

LilypondToBVC 65

B. Glossary

album
→song group

all (phase group)
a group of →processing phases doing full processing via phase groups
→preprocess and →postprocess

audio group
a group of →voice audio tracks to be mixed into a target audio �le or
into a single audio track in the target video �les

audio track
the audio rendering of a subset of all song voices (typically within the
�nal notation video)

(song) con�guration �le
a text �le containing con�guration information for a single→song (pos-
sibly including other text con�guration �les) that is used in generation
of wrapper →lilypond �les and parametrization of underlying genera-
tion programs; consists of key-value pairs with variable names as keys
followed by an equal sign and a string, boolean or numeric value

extract (phase)
a→processing phase producing the extract PDF notation �les for single
→voices

�nalvideo (phase)
a →processing phase generating �nal video �les for each →video �le

kind with all submixes as selectable audio tracks and with a measure
indication as subtitle

�uidsynth
a program for conversion of MIDI �les into WAV audio �les

humanization
a part of the→midi phase applying algorithmic and rule-based random
time and volume (velocity) shifts to notes in the midi stream of→voices

humanization style
the con�guration information for →humanization of a →song telling
individual variations based on the position of a note within a measure;
gives timing and velocity variations for the main beats, the other six-
teenths and all other notes; multiple styles may be given for a song for
non-overlapping measure ranges

66 Dr. Thomas Tensi

APPENDIX B. GLOSSARY

lilypond
a typesetting program transforming text �les with music notation in-
formation into PDF or MIDI �les

lilypond fragment �le
a text �le with fragmentary →lilypond typesetting information; based
on a song-speci�c →con�guration �le the generator provides wrapping
lilypond code and calls the appropriated underlying programs

midi (phase)
a→processing phase producing a MIDI �le containing all→voices with
speci�ed instruments, pan positions and volumes

mixdown (phase)
a →processing phase generating �nal compressed audio �les with sub-
mixes of all instruments →voices based on the re�ned audio �les with
speci�ed volume balance (where the submix variants are con�gurable)

override (of a voice audio)
a replacement of the re�ned audio �le for some →voice by an external
audio �le to be applied in the →re�nedaudio �le; is normally applied
when the external �le has a higher quality (like, for example, with a
real singer instead of a vocals instrumental rendition)

parallel track (audio)
an additional audio �le to be added in the →mixdown phase; this is
used for a single external audio �le not associated with some voice (like,
for example, background sounds)

preprocess (phase group)
a group of →processing phases combining →extract, →score, →midi

and →silentvideo for generation of →voice extract PDFs and score
PDF, MIDI �le as well the silent videos for all →video �le kinds

postprocess (phase group)
a group of →processing phases combining →rawaudio, →re�nedaudio,
→mixdown and→�nalvideo for generation of the intermediate raw and
re�ned WAV �les, the submixes as compressed audios and the �nal
videos for all →video �le kinds

processing phase
a part of the generation of →song artifacts from given →lilypond frag-

ment �le and→con�guration �le; possible processing phases or process-
ing phase groups are �all�, �preprocess�, �postprocess�, �extract�, �score�,
�midi�, �silentvideo�, �rawaudio�, �re�nedaudio�, �mixdown�, ��nalvideo�

LilypondToBVC 67

rawaudio (phase)
a →processing phase producing unprocessed (intermediate) audio �les
for all the instrument →voices from the midi tracks

re�nedaudio (phase)
a →processing phase producing (intermediate) audio �les for all the
instrument →voices with additional sound processing applied

score (phase)
a →processing phase producing a single PDF notation �le containing
all →voices as a score

silentvideo (phase)
a →processing phase (intermediate) silent videos containing the score
pages for several output →video targets (with con�gurable resolution
and size)

song
a collection of several parallel →voices forming a musical piece

song group
a collection of several related →songs (for example, related by year,
artist, etc.) sharing common characteristics

sound font (�le)
a �le containing data for a sample-based rendering of MIDI data as au-
dio �les; the generator uses the→�uidsynth program for this conversion
within the →rawaudio phase

sound style
a (sequential) chain of →sox audio �lters to be applied to a an audio
rendering of a →voice in phase →re�nedaudio; typically those sound
styles are instrument speci�c

sox
a program for transformation of audio �les via parametrizable audio
�lters (like, for example, equalizers, distortions or reverbs)

video �le kind
the con�guration information used in the→silentvideo and→�nalvideo

phases giving video rendering properties of notation videos enhancing
characteristics of a →video target by data (like, for example, the list of
voices to be shown or the video �les target directory)

video target
the con�guration information used in the→silentvideo and→�nalvideo

phases giving video device dependent properties of notation videos (like,
for example, device resolution or pixel width and height), but also some
device independent parameters (like, for example, the subtitle font size)

68 Dr. Thomas Tensi

APPENDIX B. GLOSSARY

voice
a polyphonic part of a composition belonging to a single instrument to
be notated in one or several musical sta�s

LilypondToBVC 69

C. References

[AAC] QAAC - Quicktime AAC.
https://sites.google.com/site/qaacpage/

[FFMPEG] FFMPEG - Documentation.
http://�mpeg.org/documentation.html

[FLUID] FluidSynth - Software synthesizer based on the SoundFont 2 spec-

i�cations.
http://�uidsynth.org

[LILY] Lilypond - Music Notation for Everyone.
http://lilypond.org

[MP4BOX] GPAC - General Documentation MP4Box.
https://gpac.wp.imt.fr/mp4box/mp4box-documentation/

[SOUNDFONT] FluidR3_GM.sf3 SoundFont at musescore.org.
https://github.com/musescore/MuseScore/raw/2.1/share/sound/FluidR3Mono_GM.sf3

[SOX] Chris Bagwell, Lance Norskog et al.: SoX - Sound eXchange -

Documentation.
http://sox.sourceforge.net/Docs/Documentation

70 Dr. Thomas Tensi

