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trpo and acktr

Outline

I Start from algorithms close to PG: trpo and acktr
I Three aspects distinguish trpo:

I Surrogate return objective
I Natural policy gradient
I Conjugate gradient approach

I Differences in acktr:
I Approximate second order gradient descent (Hessian)
I Using Kronecker Factored Approximated Curvature

2 / 35



State-of-the-art RL methods

TRPO

Surrogate return objective

I The standard policy gradient algorithm for stochastic policies is:

∇θJ(θ) = IEt[∇θ logπθ(at|st)Â
πθ
φ ]

I This gradient is obtained from differentiating

LossPG(θ) = IEt[logπθ(at|st)Â
πθ
φ ]

I But we obtain the same gradient from differentiating

LossIS(θ) = IEt[
πθ(at|st)
πθold(at|st)

Â
πθ
φ ]

where πθold is the policy at the previous iteration

I Because ∇θ logf(θ)|θold =
∇θf(θ)|θold
f(θold)

= ∇θ(
f(θ)

f(θold)
)|θold

I Another view based on importance sampling

I See John Schulmann’s Deep RL bootcamp lecture #5
https://www.youtube.com/watch?v=SQtOI9jsrJ0 (8’)
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TRPO

Trust region

I The gradient of a function is only accurate close to the point where it is
calculated

I ∇θJ(θ) is only accurate close to the current policy πθ
I Thus, when updating, πθ must not move too far away from a “trust region”

around πθold

Kakade, S. & Langford, J. (2002) Approximately optimal approximate reinforcement learning. In ICML, volume 2, pages 267–274
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TRPO

Natural Policy Gradient

I One way to constrain two stochastic policies to stay close is constraining their
KL divergence

I The KL divergence is smaller when the variance is larger

I Under fixed KL constraint, it is easier to move the mean further away when the
variance is large

I Thus the mean policy converges first, then the variance is reduced

I Ensures a large enough amount of exploration noise

I Other properties presented in the Pierrot et al. (2018) paper

Sham M. Kakade. A natural policy gradient. In Advances in neural information processing systems, pp. 1531–1538, 2002

Pierrot, T., Perrin, N., & Sigaud, O. (2018) First-order and second-order variants of the gradient descent: a unified framework.

arXiv preprint arXiv:1810.08102
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TRPO

Trust Region Policy Optimization

I Theory: monotonous improvement towards the optimal policy
(Assumptions do not hold in practice)

I To ensure small steps, trpo uses a natural gradient update instead of
standard gradient

I Minimize Kullback-Leibler divergence to previous policy

I

max
θ

IEt[
πθ(at|st)
πθold(at|st)

A
πθold
φ (st,at)]

subject to IEt[KL(πθold(.|s)||πθ(at|st))] ≤ δ
I In trpo, optimization performed using a conjugate gradient method to

avoid approximating the Fisher Information matrix

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015) Trust Region Policy Optimization. CoRR, abs/1502.05477
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TRPO

Advantage estimation

I To get Âπθ
φ , an empirical estimate of V πθ (s) is needed

I trpo uses a MC estimate approach through regression, but constrains it
(as for the policy):

min
φ

N∑
n=0

||V πθ
φ (sn)− V πθ (sn)||2

subject to
1

N

N∑
n=0

||V πθ
φ (sn)− V πθ

φold
(sn)||2

2σ2
≤ ε

I Equivalent to a mean KL divergence constraint between V πθ
φ and V πθ

φold
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TRPO

Properties

I Moves slowly away from current policy

I Key: use of line search to deal with the gradient step size

I More stable than ddpg, performs well in practice, but less sample efficient

I Conjugate gradient approach not provided in standard tensor gradient
librairies, thus not much used

I Greater impact of ppo

I Related work: nac, reps

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71 (7-9):1180–1190, 2008

Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. In AAAI, pp. 1607–1612. Atlanta, 2010
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ACKTR

First order versus second order derivative

I In first order methods, need to define a step size

I Second order methods provide a more accurate approximation

I They also provide a true minimum, when the Hessian matrix is symmetric
positive-definite (SPD)

I In both cases, the derivative is very local

I The trust region constraint applies too
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ACKTR

acktr

I k-fac: Kronecker Factored Approximated Curvature: efficient estimate of
the gradient

I Using block diagonal estimations of the Hessian matrix, to do better than
first order

I acktr: trpo with k-fac natural gradient calculation

I But closer to actor-critic updates (see ppo)

I The per-update cost of acktr is only 10% to 25% higher than SGD

I Improves sample efficiency

I Not much excitement: less robust gradient approximation?

I Next lesson: ppo

Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba (2017) Scalable trust-region method for deep

reinforcement learning using Kronecker-factored approximation. arXiv preprint arXiv:1708.05144
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PPO

Outline

I There are two PPO algorithms

I They are well covered on youtube videos

I So only a quick overview here

I Easy implementation, a lot used

I Key question: is it Actor-Critic?
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PPO

Proximal Policy Optimization (Algorithm 1)

I The conjugate gradient method of trpo is not available in tensor libraries

I Same idea as trpo, but uses a soft constraint on trust region rather than
a hard one

I Instead of:

max
θ

IEt[
πθ(at|st)
πθold(at|st)

Aπθold(st,at)]

subject to IEt[KL(πθold(.|s)||πθ(at|st))] ≤ δ
I Rather use:

max
θ

IEs∼ρ,a∼π[
πθ(at|st)
πθold(at|st)

Aπθold(st,at)]−βIEs∼ρ[KL(πθold(.|s)||πθ(at|st))]

I Makes it possible to use SGD instead of conjugate gradient

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv

preprint arXiv:1707.06347.

Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, A., Riedmiller, M., et al. (2017)

Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286
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PPO

Proximal Policy Optimization (Algorithm 2)

I Image taken from stackoverflow.com

I πθ(a|s)
πθold(a|s) may get huge if πθold is very small

I Clipped importance sampling loss (clipping the surrogate objective)

rt(θ) =
πθ(at|st)
πθold(at|st)

LCLIP (θ) = IEt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)]

I Back-propagate LCLIP (θ) through a policy network
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PPO

Is PPO actor-critic?

I Improvement over trpo, thus REINFORCE-like policy update
I But:

I Algorithm: “ppo, actor-critic style”
I In the Dota-2 paper: “ppo, a variant of advantage actor-critic, ...”

I What matters is the critic (or baseline) update method

I Uses N-step Generalized Advantage Estimate instead of Monte Carlo

I Thus somewhere between MC and TD (same for acktr)
I Other properties:

I Simpler implementation, better performance than trpo
I Does not use a replay buffer → more stable, less sample efficient
I Still on-policy, πθ and πθold cannot differ much

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys law Debiak, Christy Dennison, David Farhi, Quirin

Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680,
2019
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PPO

PPO applications

I Massive parallel versions of PPO, with dedicated architectures

I Very few teams can afford such engineering and computing effort

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert,

Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron,

Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020
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PPO

Massive parallel updates

I Several workers in parallel: more i.i.d and faster exploration

I The acceleration is better than linear in the number of workers

I No need for a replay buffer (as in a3c), but loss of sample efficiency

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., et al. (2018)

Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561

Adamski, I., Adamski, R., Grel, T., Jedrych, A., Kaczmarek, K., & Michalewski, H. (2018) Distributed deep reinforcement

learning: Learn how to play atari games in 21 minutes. arXiv preprint arXiv:1801.02852
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PPO

OpenIA five

I The LSTM deals with non-Markov data

I The vision layers are problem specific

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys law Debiak, Christy Dennison, David Farhi, Quirin

Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680,
2019
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SAC

Soft Actor Critic: The best of two worlds

I trpo and ppo: πθ stochastic, on-policy, low sample efficiency, stable
I ddpg and td3: πθ deterministic, replay buffer, better sample efficiency, unstable
I SAC: “Soft” means “entropy regularized”, πθ stochastic, replay buffer
I Adds entropy regularization to favor exploration (follow-up of several papers)
I Attempt to be stable and sample efficient
I Three successive versions

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft

actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. arXiv preprint arXiv:1801.01290

Haarnoja, T. Tang, H., Abbeel, P. and Levine, S. (2017) Reinforcement learning with deep energy-based policies. arXiv preprint

arXiv:1702.08165
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SAC

Soft Actor-Critic

sac learns a stochastic policy π∗ maximizing both rewards and entropy:

π∗ = argmax
πθ

∑
t

IE(st,at)∼ρπθ
[r(st,at) + αH(πθ(.|st))]

I The entropy is defined as: H(πθ(.|st)) = IEat∼πθ(.|st) [− log πθ(at|st)]
I sac changes the traditional MDP objective

I Thus, it converges toward different solutions

I Consequently, it introduces a new value function, the soft value function

I As usual, we consider a policy πθ and a soft action-value function Q̂πθ
φ

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and

Koray Kavukcuoglu. (2016) Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783
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SAC

Soft policy evaluation

I Usually, we define V̂ πθ
φ (st) = IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)

]
I In soft updates, we rather use:

V̂
πθ
φ (st) = IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)

]
+ αH(πθ(.|st))

= IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)

]
+ αIEat∼πθ(.|st) [− log πθ(at|st)]

= IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)− α log πθ(at|st)

]
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SAC

Critic updates

I We define a standard Bellman operator:

T πQ̂πθ
φ (st,at) = r(st,at) + γV

πθ
φ (st+1)

= r(st,at) + γIEat∼πθ(.|st+1)

[
Q̂
πθ
φ (st+1,at)− α log πθ(at|st+1)

]

Critic parameters can be learned by minimizing the loss associated to
JQ(vth):

lossQ(θ) = IE(st,at,st+1)∼D

[(
r(st,at) + γV̂

πθ
φ (st+1)− Q̂πθ

φ (st,at)
)2
]

where V πθ
φ (st+1) = IEa∼πθ(.|st+1)

[
Q̂
πθ
φ (st+1,a)− α log πθ(a|st+1)

]
I Similar to ddpg update, but with entropy
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SAC

Actor updates

I Update policy such as to become greedy w.r.t to the soft Q-value

I Choice: update the policy towards the exponential of the soft Q-value

Jπ(θ) = IEst∼D[KL(πθ(.|st))||
exp( 1

α
Q̂
πθ
φ (st, .))

Zθ(st)
].

I Zθ(st) is just a normalizing term to have a distribution

I sac does not minimize directly this expression but a surrogate one that
has the same gradient w.r.t θ

The policy parameters can be learned by minimizing:

Jπ(θ) = IEst∼D

[
IEat∼πθ(.|st)

[
α log πθ(at|st)− Q̂πθ

φ (st,at)
]]
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SAC

Continuous vs discrete actions setting

I sac works in both the discrete action and the continuous action setting

I Discrete action setting:

I The critic takes a state and returns a Q-value per action
I The actor takes a state and returns probabilities over actions

I Continuous action setting:

I The critic takes a state and an action vector and returns a scalar Q-value
I Need to choose a distribution function for the actor
I sac uses a squashed Gaussian: a = tanh(n) where n ∼ N (µφ, σφ)
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SAC

Continuous vs discrete actions setting

I In Jπ(θ) = IEst∼D

[
IEat∼πθ(.|st)

[
α log πθ(at|st)− Q̂πθ

φ (st,at)
]]

I sac updates require to estimate an expectation over actions sampled from
the actor,

I That is IEat∼πθ(.|s) [F (st,at)] where F is a scalar function.

I In the discrete action setting, πθ(.|st) is a vector of probabilities
I IEat∼πθ(.|st) [F (st,at)] = πθ(.|st)TF (st, .)

I In the continuous action setting:
I The actor returns µθ and σθ
I Re-parameterization trick: at = tanh(µθ + ε.σθ) where ε ∼ N (0, 1)
I Thus, IEat∼πθ(.|st) [F (st,at)] = IEε∼N (0,1) [F (st, tanh(µθ + εσθ))]
I This trick reduces the variance of the expectation estimate
I And allows to backprop through the expectation w.r.t θ
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TD3

Twin Delayed Deep Deterministic PG

I All descendants of Q-learning suffer from over-estimation bias

I Clipping the critic from the knowledge of Rmax helps

I td3: Introduce two critics Q̂
πθ
φ1

and Q̂
πθ
φ2

I Compute the TD-target as the minimum to reduce the over-estimation bias

I Less problem knowledge than critic clipping

I Next lesson: Soft Actor Critic

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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TD3

Critic update improvements (from td3)

I As in td3, sac uses two critics Q̂πθ
φ1

and Q̂πθ
φ2

I The TD-target becomes:

yt = r + γIEat+1∼πθ(.|st+1)

[
min
i=1,2

Q̂
πθ

φ̄i
(st+1,at+1)− α log πθ(at+1|st+1)

]
And the losses:

 J(θ) = IE(st,at,st+1)∼D

[(
Q̂
πθ
φ1

(st,at)− yt
)2

+
(
Q̂
πθ
φ2

(st,at)− yt
)2
]

J(θ) = IEs∼D
[
IEat∼πθ(.|st)

[
α log πθ(at|st)−mini=1,2 Q̂

πθ

φ̄i
(st,at)

]]
Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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TD3

Automatic Entropy Adjustment

I The temperature α needs to be tuned for each task

I Finding a good α is non trivial

I Instead of tuning α, tune a lower bound H0 for the policy entropy

I And change the optimization problem into a constrained one

{
π∗ = argmax

π

∑
t

IE(st,at)∼ρπθ
[r(st,at)]

s.t. ∀t IE(st,at)∼ρπθ
[− log πθ(at|st)] ≥ H0,

I Use heuristic to compute H0 from the action space size

α can be learned to satisfy this constraint by minimizing:

J(α) = IEst∼D
[
IEat∼πθ(.|st) [−α log πθ(at|st)− αH0]

]
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TD3

Practical algorithm

I Initialize neural networks πθ and Q̂πθ
φ weights

I Play k steps in the environment by sampling actions with πθ

I Store the collected transitions in a replay buffer

I Sample k batches of transitions in the replay buffer

I Update the temperature α, the actor and the critic using SGD

I Repeat this cycle until convergence
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TQC

Truncated Quantile Critics

I To fight overestimation bias, TD3 and SAC take the min over two critics

I Using a distribution of estimates is more stable than a single estimate

I TQC uses stochastic critics and truncates the higher quantiles

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overestimation bias with truncated

mixture of continuous distributional quantile critics. In International Conference on Machine Learning, pp. 5556–5566. PMLR,
2020
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TQC

Performance

I From 5 to a single critic

I Outperforms SAC, easier to use
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Wrap-up

Key Policy Gradient Steps

I 1. Splitting the trajectory into steps: Markov Hypothesis required

I Key difference to Direct Policy Search methods

I Makes it possible to optimize trajectories using a gradient over policy params

I 2. Introducing the Q function

I Makes it possible to perform policy updates from a single step

I Opens the way to the replay buffer, critic networks, partly off-policy methods

I 3. Using baselines

I Makes it possible to reduce variance

I When learning critics from bootstrap, becomes actor-critic
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Wrap-up

Bias-variance, Being Off-policy

I Continuum between Monte Carlo methods and bootstrap methods

I Playing on the continuum helps finding the right bias-variance trade-off

I Being off-policy requires bootstrap

I No deep RL algorithm is truly off-policy, it’s a matter of degree

33 / 35



State-of-the-art RL methods

Wrap-up

Final view
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Wrap-up

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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