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Introduction

I The standard RL framework addresses a single task which is only specified
through a reward function

I RL agents are not autonomous: they depend on the design of an external reward
function

I Reward engineering is a known challenge

I Not rich enough to account for many learning phenomena when we face multiple
tasks/goals: transfer learning, curriculum, etc.

I Goal-conditioned RL (GCRL) is a framework to account for this richer context.

I Outline:
I The GCRL framework
I Application to autotelic agents
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GCRL

GCRL

I Universal Value Function Approximators (anterior to DQN)

I Learned with standard Q-learning or actor-critic schemes

I Main advantage: generalization over the goal space

Schaul, T., Horgan, D., Gregor, K., & Silver, D. (2015) Universal value function approximators. In International Conference on

Machine Learning (pp. 1312–1320)
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GCRL

Goal-related reward function

I A goal is the conjonction of a constraint satisfaction (goal achievement)
function on the state and a reward function

I Dense reward functions: decreasing function of the distance to a goal state

I Sparse reward functions: 1 if the state is achieved, 0 otherwise (or 0/-1 to
favor exploration)

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P.-Y. (2022) Autotelic agents with intrinsically motivated goal-conditioned

reinforcement learning: a short survey. Journal of Artificial Intelligence Research, 74:1159–1199
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GCRL

HER

Learning from failures

I Without finding reward, an RL agent learns nothing

I Consider a learning agent whose goal is to reach a particular outcome

I In the beginning, this agent may often fail

I The failed experiment produced another outcome than the expected one

I But this can be turned into useful knowledge

I This is the essence of Hindsight Experience Replay (HER)
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GCRL

HER

Motivation

I HER might be useful in two different contexts:

I The agent targets a difficult goal,
i.e. a sparse reward RL problem

I Without a reward signal, a
model-free RL agent produces an
inefficient random search

I HER provides additional reward
signals

I The agent targets many goals

I Learning to achieve each goal in isolation
is sample inefficient

I The HER agent learns unexpected
goals through its failures
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GCRL

Hindsight Experience Replay

Four components

1. Goal conditioned policies

2. Mapping from policy parameter space to outcome space

3. Any RL algorithm (dqn, ddpg, td3, ppo, sac, ...)

4. A special replay buffer with goal substitution
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GCRL

Hindsight Experience Replay

General mechanism (1)

I The agent targets a goal G as outcome

I The policy πθ produces another outcome O

I The trajectory is stored but produces no reward
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GCRL

Hindsight Experience Replay

General mechanism (2)

I The agent pretends it is targetting O

I HER relabels the stored trajectory with the obtained outcome

I This propagates value in the (state, action) space through generalization

I And the agent competence will increase over unseen goals
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GCRL

Hindsight Experience Replay

When the goal is a state

I If the goal space is the state space, HER may set as goal any state along
the trajectory

I Trade-off between replaying more and trying more new actions
(over-fitting to replays)

10 / 19



Multitask learning, GCRL and Autotelic agents

GCRL

Hindsight Experience Replay

Hindsight Experience Replay: properties

I Looks like a model-based process, but without a model

I Provides an implicit form of curriculum learning

I Provides an additional reward signal

I Avoids dense reward signals

Doll, B. B., Simon, D. A., and Daw, N. D. The ubiquity of model-based reinforcement learning. Current opinion in neurobiology,

22(6):1075–1081, 2012
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Goal coverage

Desired Goals and achieved goals

Explain, cover the literature

II Key question 1: covering: how to set the desired goals to reach more goals

I Key question 2: performance: how to better reach the achieved goals?

Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. (2020) Maximum entropy gain exploration for long horizon multi-goal

reinforcement learning. In International Conference on Machine Learning, pages 7750–7761. PMLR

Campos, V., Trott, A., Xiong, C., Socher, R., Giro-i Nieto, X., and Torres, J. (2020) Explore, discover and learn: Unsupervised

discovery of state-covering skills. In International Conference on Machine Learning, pages 1317–1327. PMLR
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From multitask RL to autotelic agents

Articulation

I In GCRL, the desired goal can come from the environment or from the
agent

I In standard multitask RL, goals come from the environment

I In autotelic learning, the agent generates its own goals

I The reward signal becomes internal

I This becomes a specific instance of unsupervised RL
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From multitask RL to autotelic agents

The GoalEnv view

I In OpenAI gym, and SB3 (as most librairies?) the common view of GCRL
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From multitask RL to autotelic agents

Autotelic Agents

I Autotelic agents: agents equipped with forms of intrinsic motivations that enable
them to represent, self-generate and pursue their own goals

I Goal generator based on: diversity, hierarchical RL, curriculum learning, social
signals...

Colas, C., Oudeyer, P.-Y., Sigaud, O., Fournier, P., & Chetouani, M. (2019) CURIOUS: Intrinsically motivated multi-task,

multi-goal reinforcement learning. Edité dans International Conference on Machine Learning (ICML), pages 1331–1340

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P.-Y. Intrinsically motivated goal-conditioned reinforcement learning: a short

survey. arXiv preprint arXiv:2012.09830, 2020
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From multitask RL to autotelic agents

Unsupervised RL and autotelic RL

I Open-ended autotelic RL: the agent defines its own goal spaces, its own
state and actions spaces in a reward free environment (the ultimate
framework!)
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From multitask RL to autotelic agents

Reward-related typology

I Papers investigating Hard
explorations problems may address
different types of problems

I Vocabulary: unsupervised RL =
task-agnostic exploration,
reward-free exploration

I Specificity of Open-ended RL:
learn a state and action space
from lower level sensor/actuators
[Doncieux et al., 2018]

Doncieux, S., Filliat, D., D́ıaz-Rodŕıguez, N., Hospedales, T., Duro, R., Coninx, A., Roijers, D. M., Girard, B., Perrin, N., &

Sigaud, O. (2018) Open-ended learning: a conceptual framework based on representational redescription. Frontiers in Robotics
and AI, 12
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From multitask RL to autotelic agents

Goal topologies

I Some mechanisms are topology-specific
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From multitask RL to autotelic agents

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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