e
BBRL foundations

BBRL foundations

Olivier Sigaud

Sorbonne Université
http://www.isir.upmc.fr/personnel /sigaud

BBRL foundations

Outline

» Part 1: a standard RL model: Stable Baselines 3 (SB3)
> Limitations of the SB3 model
> Part 2: the BBRL model (inherited from SaLiNa)

» Overview of the main choices

=] [= E E DA
2/19

e
BBRL foundations

LPart I: SB3 from the core

The gym interaction loop

Retrieve first observation

obs = env. reset ()

done = False

total_reward = 0

while not done:
The agent predicts the action to take given the observation
action, _ = agent.predict(obs, deterministic)

Check that predict is properly used: we use discrete actions,
therefore “action’ should be an int here
assert env.action_space. contains (action)
The environment performs a step and produces the next state, the reward
and whether the episode is over. The info return is a placeholder for
any supplementary information that one may need.
obs, reward, done, info = env.step(action)
The total reward over the episode is the sum of rewards at each step
no discount here, discount is used in the reinforcement learning process
total_reward += reward
return total_reward

The gym interaction loop is central to evo and RL libraries

It can be deep inside these libraries, we don't want users to add code into this
core

> Two options:
» From the environment side: wrappers
» From the outside: callbacks
> Video presenting these SB3 aspects:
https://www.youtube.com /watch?v=I8bskJul9qU (in french)
» And the corresponding colab:

https://colab.research.google.com/drive/1sBZLs-
GaM8Xx7MsF6sUH7LIj6GwCq5VW?usp=sharing = = =

R

BBRL foundations
|—Part I: SB3 from the core

Gym env wrappers

wrapper

state action state, reward, info

» Similar to the Decorator pattern

> Makes it possible to do additional (hidden) things when interacting with
the environment (e.g. RewardScalingWrapper)

» Or to modify the interactions with the environment

» Main interest: the main loop is unaffected

R

BBRL foundations
LPart I: SB3 from the core

Callbacks

therefar should be an in
assert env.action._space. contains (action)

Llback._on_training end(
T o)

reti

Similar to the Visitor pattern
Some objects deriving from the Callback class are registered
One callback is the CallbackList (if we need several)

Example callback: the eval callback

vvyyvyvyy

Good practice: separate evaluation from training

e
BBRL foundations

|—Part I: SB3 from the core

Data collection: separating evaluation from training

eval _freq (time steps)

n_eval_episodes

nb_rollouts log interval

time steps)
total_timesteps == (ps)

» Training curve: what do we evaluate?

» Dimension everything in time steps

BBRL foundations

|—Part I: SB3 from the core

Wrappers vs Callbacks

» Callbacks require additional code (wrappers don't)

» Callbacks cannot get data from the main loop (no parameters)

> Better to do things unrelated to the training loop (e.g. eval)

ISIR

hed
DESSISTEMES

e

BBRL foundations
Part I: SB3 from the core

Data Management

Buffers
BaseBuffer
buffer_size
et sampiest T
ReplayBuffer RolloutBuffer EpisodicBuffer
DictReplayBuffer DictRolloutBuffer]
infinite horizon episodic
off-policy on-policy
algorithms algorithms

» On-policy algorithms use the RolloutBuffer
» Off-policy algorithms use the ReplayBuffer
» REINFORCE uses the EpisodicBuffer

» Need to store data from the main loop

R

BBRL foundations
Part I: SB3 from the core

Data Management

Limitations of the SB3 model

v

The main loop must be equipped with callback-related code
Needs storing into buffers (unnecessary in evolutionary methods)

Possible alternative: move data collection into dedicated wrappers (large
refactoring)

SB3 does not support training from multiple environments at a time
It supports evaluating from several environments at a time (VecEnv)

SB3 is not appropriate for teaching RL: too many things “under the
hood”, large code, hard to dig in

Best for using RL as a non-expert (black box approach)

ISIR

hed
DESSISTEMES

9/19

BBRL foundations
L—Part II: the BBRL model

BBRL overview

vVvyVvyVvyyvVyy

EnvAgent workspace
obs = reset() obs 101 O2 =+ Op Ontl
obs, rw, done = step(action) ation : None @1 -+ Gp_1 Gn
reward: O T1 e T Tn41

ActionAgent done : False False -+ False True
action = forward(obs)

BBRL stands for “BlackBoard RL"
It is a derivation from SaLinA, all properties come from there
The workspace is a black board where all agents read and write temporal data

Everything else is an agent
Agents are pytorch nn.Modules: easy to move to CPU/GPU, to distribute, etc
Data is organized into temporal tensors which facilitate gradient processing

10 /19

e
BBRL foundations

L—Part II: the BBRL model

RL in BBRL
» By contrast to SaLinA, BBRL is limited to RL
»> One agent is the Gym environment: NoAutoResetGymAgent or
AutoResetGymAgent
» Other agents are RL agents
> There might be additional agents (e.g. PrintAgent for debug)
»> GymAgents support training and evaluating over several environments

11/ 19

BBRL foundations
L—Part II: the BBRL model

Why NoAutoReset and AutoReset?

v

vVvyVvyVvyy

When running an agent in several environments, some environments may
finish sooner than others (e.g. CartPole, when the pole falls)

What shall we do?

Wait until all environments end? — NoAutoResetGymAgent

This is simpler, but a waste of time

Restart each environment when it finishes? — AutoResetGymAgent

Raises additional difficulties...

ISIR

hed
DESSISTEMES

12 /19

e
BBRL foundations

L—Part II: the BBRL model

Gym environments: NoAutoReset

» Finished environments repeat their data until the end of all episodes

state : So S1 - Sp Sy, Sn Sn
action: g A1 -+ Ap A Ap A
reward: "o T1 - Tn Th Th Tn
done : False False +-+ True True True True

» This facilitates checking all is finished and collecting results in the end
done: False False +++ False Tue Tru e True
Envt gedrenas 08 12 24 35 38 58 38
done : False False -+ Tue Tue Tu e True
Env: ynusegrenars: 1238 510 51 51 51
done : False False -+ False False «o False True
cumulated reward: 1.7 4.0 51 63 92 92

» use stop_variable="env/done"
» Perfect for evaluating an agent over N episodes
» The N episodes are run in parallel

13 /19

BBRL foundations
L—Part II: the BBRL model

Gym environments: AutoReset

» If all environments restart, we may specify blocks of arbitrary duration

reset reset
obs : 01 02 On Op+1 01 02 On On+1
action * None @1 Gp—1 Gp None @1 ap—1 Gn
reward: 0 71 Tn Tn+1 0 T1 Tn Tn+1
done : False False -+ False True False False -+ False True

» This will make it possible to learn
long episodes

reset reset reset reset

after each block, more often than

reset reset

Y Y
Envy done : Rase Fse oo lfalse Tue Fake False ++ [false True -
Enuvy done @ False Fafse * Tue False False| =+ False Tiue False
Envs done @ False Tre False False True False false False -

» This will raise other difficulties...

with

14 / 19

BBRL foundations
L—Part II: the BBRL model

AutoReset: collecting blocks of data

» When collecting blocks of data, one should not loose the inter-block

epoch k epoch k+1
state 1 S0 S1 Sp Sn+1 Sn+2 \-
action : None @Q ++ Gp—f Ap Ohpatil ob
reward: 79 T1 o Tp Tn+1 Tn+2
done : False False -+ False alse False

transition missing transition

» Solution: copy the last data of the previous block

epoch k epoch k+1
state : S0 S1 -+ Sp Sn41 Sp+1 Sn+2
action © None @g -+ Ap—1 QGn ap An+1
reward: 79 71 e Tp Tn41 Tn+l Tn4+2 -
done : False False --- False False False False

the transition is not missing

R

BBRL foundations
L—Part II: the BBRL model

Avoiding learning from inter-episode transitions

» Some transitions correspond to the last data from an episode and the first
data of the next

» The agent should not learn from such transitions (it is teleported)

» SaLinA had bugs with this case

> Solution: reorganize data and remove these transitions

[step, |
step;
step,

steps

| stepy |

stepg, step;

¢ ¢ stepg, step;
step,, ste
P1,5t€P2 => | stepy, stepy

steps, stepy
steps, stepy

» In practice, call worskspace.get_transitions()

ISIR

hed
DESSISTEMES

16 / 19

R

BBRL foundations
L—Part II: the BBRL model

get_transitions(): more details

v

If n_env > 1, before get_transitions(): [stepg stepg . . . step,

nenv]

After get_transitions(), the vector is broken into pieces:

Each key of the returned workspace has dimensions [2, n_transitions,

key.dim |

key[0][0], key[1
key[0][1], key[1
key[0][2], key[1
key[O] [3], key[1

0] =
1
2] =
3] =

[
[
[
[

forenv 1
forenv 2
forenvl
forenv2

step1, stepa
= (step1, stepa
stepa, steps
stepa, steps

,.\A,.\,.\
o — —

17 / 19

BBRL foundations
L—Part II: the BBRL model

Standard or Sutton&Barto's notation?

Most often (as in my slides), one writes transitions < s¢, at, ¢, S¢+1 >

l.e. the reward is at the same time step than the action taken, but not the next
state

It would make more sense to write < s¢,a¢, rt41,St+1 > (that's what
Sutton&Barto do, cf. footnote 3 page 54 of the 2018 edition)

» BBRL offers both options:
state © S0 S1 -+ Sp Sn+l state : S0 S1 v+ Sp Sn+1l
action: g A1+ Ap Apil action * aO/al‘/--- An Ap41
reward: 0 71 e T Tl reward: 7o~ 71T e Tn/"}ﬁ
done - False False -+ False True done - False False -+ False True

»> Use bbrl.agents.gymb and bbrl.utils.functionalb instead of

bbrl.agents.gyma and bbrl.utils.functional to use the standard notation
» Change the reward index accordingly...

18 /19

BBRL foundations
L—Part II: the BBRL model

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Olivier.Sigaud@upmc.fr

	Part I: SB3 from the core
	Data Management

	Part II: the BBRL model

