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Policy Gradient Improvements

Limits of Algorithm 1

» Needs a large batch of trajectories or suffers from large variance

» The sum of rewards is not much informative
» Computing R from complete trajectories is not the best we can do
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* past rewards do not depend on the current action
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Policy Gradient Improvements

Algorithm 2
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» Same as Algorithm 1
» But the sum is incomplete, and computed backwards

» Slightly less variance, because it ignores irrelevant rewards
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|—Policy Gradient Improvements

Discounting rewards
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* reduce the variance by dlscounting the rewards along the trajectory
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LPoIicy Gradient Improvements
:
Introducing the action-value function
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» But suggests that the gradient could be just a function of the local step if
(st,a¢) in one step
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From Monte Carlo to bootstrap

Estimating Q7 (s, a)
> Instead of estimating Q™ (s,a) = IE(i)[eri‘;(s,a)] from Monte Carlo,
» Build a model ng of Q™6 through function approximation

» Two approaches:
» Monte Carlo estimate: Regression against empirical return

byt = argmgin L 35S i tr(al) al?) — 00 a7, a0
'L*lt 1 k=t
» Temporal Difference estimate: init Q;z and fit using (s, a,r,s’) data
Gran > min 3 I+ A(Q(8',) — QG (s.a)]
(s,a,r,s")
> FQL2(s',.)) = maxa Q3 (', a) (Q-learning), = Q3 (', o(s")) (AC)...
» May need some regularization to prevent large steps in ¢

https://www.youtube.com/watch?v=S_guw¥j1Q-44 (36')
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From Monte Carlo to bootstrap
:
Monte Carlo versus Bootstrap approaches
Qm(st,ar) Q™ (s1,a1)
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Monte Carlo direct gradient

» Three options:

data

previous.
critic
Monte Carlo model

Bootstrap model
» MC direct gradient: Compute the true Q™6 over each trajectory
it away after each policy gradient step

» MC model: Compute a model Q¢ over rollouts using MC regression, throw
Ky
keep it over policy gradient steps

» Bootstrap: Update a model qu over samples using TD methods,
» Next lesson: adding a baseline

» With bootstrap, update everything from the current state, see next lessons
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From Monte Carlo to bootstrap

Any question?

Send mail to: Olivier.Sigaud@upmc.fr



Olivier.Sigaud@upmc.fr
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