
Reinforcement Learning

Reinforcement Learning
4. Model-free reinforcement Learning

Olivier Sigaud

Sorbonne Université
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Reinforcement Learning

Introduction

Reinforcement learning

I In Dynamic Programming (planning), T and r are given

I Reinforcement learning goal: build π∗ without knowing T and r

I Model-free approach: build π∗ without estimating T nor r

I Actor-critic approach: special case of model-free

I Model-based approach: build a model of T and r and use it to improve
the policy
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Reinforcement Learning

Temporal difference methods

Incremental estimation

I Estimating the average immediate (stochastic) reward in a state s

I Ek(s) = (r1 + r2 + ...+ rk)/k

I Ek+1(s) = (r1 + r2 + ...+ rk+rk+1)/(k+1)

I Thus Ek+1(s) = k/(k + 1)Ek(s) + rk+1/(k + 1)

I Or Ek+1(s) = (k + 1)/(k + 1)Ek(s)− Ek(s)/(k + 1) + rk+1/(k + 1)

I Or Ek+1(s) = Ek(s) + 1/(k + 1)[rk+1 − Ek(s)]
I Still needs to store k

I Can be approximated as

Ek+1(s) = Ek(s) + α[rk+1 − Ek(s)] (1)

I Converges to the true average (slower or faster depending on α) without
storing anything

I Equation (1) is everywhere in reinforcement learning
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Temporal difference methods

Temporal Difference error

I The goal of TD methods is to estimate the value function V (s)

I If estimations V (st) and V (st+1) were exact, we would get
V (st) = rt + γV (st+1)

I The approximation error is

δt = rt + γV (st+1)− V (st) (2)

I δt measures the error between V (st) and the value it should have given
rt + γV (st+1)

I If δt > 0, V (st) is under-evaluated, otherwise it is over-evaluated

I V (st)← V (st) + αδt should decrease the error (value propagation)
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Reinforcement Learning

Temporal difference methods

Temporal Difference update rule

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (3)

I Combines two estimation processes:
I incremental estimation (1)
I value propagation from V (st+1) to V (st) (2)
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Temporal difference methods

The Policy evaluation algorithm: TD(0)

I An agent performs a sequence s0, a0, r0, · · · , st, at, rt, st+1, at+1, rt+1, · · ·
I Performs local Temporal Difference updates from st, st+1 and rt

I Proved in 1994 provided ε-greedy exploration

Dayan, P. & Sejnowski, T. (1994). TD(lambda) converges with probability 1. Machine Learning, 14(3):295–301.
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Temporal difference methods

ε-greedy exploration

I Choose the best action with a high probability, other actions at random
with low probability

I Same properties as random search

I Every state-action pair will be enough visited under an infinite horizon

I Useful for convergence proofs
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Temporal difference methods

Roulette wheel

p(ai) =
V (ai)∑
j V (aj)

I The probability of choosing each action is proportional to its value
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Temporal difference methods

Softmax exploration

p(ai) =
e
V (ai)
β∑

j e
V (aj)

β

I The parameter β is called the temperature
I If β → 0, increase contrast between values
I If β →∞, all actions have the same probability → random choice
I Meta-learning: tune β dynamically (exploration/exploitation)
I More used in computational neurosciences

George Velentzas, Costas Tzafestas, and Mehdi Khamassi. (2017) Bio-inspired meta-learning for active exploration during

non-stationary multi-armed bandit tasks. In 2017 Intelligent Systems Conference (IntelliSys), pp. 661–669. IEEE
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Temporal difference methods

TD(0): limitation

I TD(0) evaluates V (s)

I One cannot infer π(s) from V (s) without knowing T : one must know
which a leads to the best V (s′)

I Three solutions:
I Q-learning, sarsa: Work with Q(s, a) rather than V (s).
I actor-critic methods: Simultaneously learn V and update π
I dyna: Learn a model of T : model-based (or indirect) reinforcement learning
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Temporal difference methods

Action Value Function Approaches

Value function and Action Value function

I The value function V π : S → IR records the agregation of reward on the
long run for each state (following policy π). It is a vector with one entry
per state

I The action value function Qπ : S ×A→ IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy π). It is a matrix with one entry per state and per action
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Temporal difference methods

Action Value Function Approaches

sarsa

I Reminder (TD):V (st)← V (st) + α[rt + γV (st+1)− V (st)]

I sarsa: For each observed (st, at, rt, st+1, at+1):
Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]

I Policy: perform exploration (e.g. ε-greedy)

I One must know the action at+1, thus constrains exploration

I On-policy method: more complex convergence proof

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence Results for Single-Step On-Policy Reinforcement

Learning Algorithms. Machine Learning, 38(3):287–308.
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Temporal difference methods

Action Value Function Approaches

sarsa: the algorithm

I Taken from Sutton & Barto, 2018
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Temporal difference methods

Action Value Function Approaches

Q-learning

I For each observed (st, at, rt, st+1):

Q(st, at)← Q(st, at) + α[rt + γmax
a∈A

Q(st+1, a)−Q(st, at)]

I maxa∈AQ(st+1, a) instead of Q(st+1, at+1)

I Off-policy method: no more need to know at+1

I Policy: perform exploration (e.g. ε-greedy)

I Convergence proven given infinite exploration

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge,

England.

Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning. Machine Learning, 8:279–292
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Temporal difference methods

Action Value Function Approaches

Q-learning: the algorithm

I Taken from Sutton & Barto, 2018
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Temporal difference methods

Action Value Function Approaches

Q-learning in practice

I Build a states×actions table (Q-Table, eventually incremental)

I Initialise it (randomly or with 0 is not a good choice)

I Apply update equation after each action

I Problem: it is (very) slow
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Temporal difference methods

Actor-Critic approaches

Actor-critic: Naive design

I Discrete states and actions, stochastic policy

I An update in the critic generates a local update in the actor

I Critic: compute δ and update V (s) with Vk+1(s)← Vk(s) + αkδk

I Actor: Pπk+1(a|s)← Pπk (a|s) + αk′δk
I Link to Policy Iteration: a representation of the value (critic) and the policy

(actor)

I NB: no need for a max over actions

I NB2: one must know how to “draw” an action from a probabilistic policy (not
straightforward for continuous actions)
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Temporal difference methods

Actor-Critic approaches

From Q(s, a) to Actor-Critic

state / action a0 a1 a2 a3
e0 0.66 0.88* 0.81 0.73
e1 0.73 0.63 0.9* 0.43
e2 0.73 0.9 0.95* 0.73
e3 0.81 0.9 1.0* 0.81
e4 0.81 1.0* 0.81 0.9
e5 0.9 1.0* 0.0 0.9

state chosen action
e0 a1
e1 a2
e2 a2
e3 a2
e4 a1
e5 a1

I Given a Q− Table, one must determine the max at each step

I This becomes expensive if there are numerous actions

I Store the best value for each state

I Update the max by just comparing the changed value and the max

I No more maximum over actions (only in one case)

I Storing the max is equivalent to storing the policy

I Update the policy as a function of value updates
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Temporal difference methods

Actor-Critic approaches

Corresponding labs

I See https://github.com/osigaud/rl_labs_notebooks

I One notebook about model free reinforcement learning

I Implement the TD-learning algorithm, the Q-learning algorithm, the
sarsa algorithm and compare them

I In a separate actor-critic notebook, implement the actor-critic algorithm,
using the V and the Q functions in the critic
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Temporal difference methods

Actor-Critic approaches

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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