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Reinforcement learning

I In Dynamic Programming (planning), T and r are given

I Reinforcement learning goal: build π∗ without knowing T and r

I Model-free approach: build π∗ without estimating T nor r

I Actor-critic approach: special case of model-free

I Model-based approach: build a model of T and r and use it to improve
the policy
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Temporal difference methods

Incremental estimation

I Estimating the average immediate (stochastic) reward in a state s

I Ek(s) = (r1 + r2 + ...+ rk)/k

I Ek+1(s) = (r1 + r2 + ...+ rk+rk+1)/(k+1)

I Thus Ek+1(s) = k/(k + 1)Ek(s) + rk+1/(k + 1)

I Or Ek+1(s) = (k + 1)/(k + 1)Ek(s)− Ek(s)/(k + 1) + rk+1/(k + 1)

I Or Ek+1(s) = Ek(s) + 1/(k + 1)[rk+1 − Ek(s)]
I Still needs to store k

I Can be approximated as

Ek+1(s) = Ek(s) + α[rk+1 − Ek(s)] (1)

I Converges to the true average (slower or faster depending on α) without
storing anything

I Equation (1) is everywhere in reinforcement learning
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Temporal difference methods

Temporal Difference error

I The goal of TD methods is to estimate the value function V (s)

I If estimations V (st) and V (st+1) were exact, we would get
V (st) = rt + γV (st+1)

I The approximation error is

δt = rt + γV (st+1)− V (st) (2)

I δt measures the error between V (st) and the value it should have given
rt + γV (st+1)

I If δt > 0, V (st) is under-evaluated, otherwise it is over-evaluated

I V (st)← V (st) + αδt should decrease the error (value propagation)
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Temporal difference methods

Temporal Difference update rule

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (3)

I Combines two estimation processes:
I incremental estimation (1)
I value propagation from V (st+1) to V (st) (2)
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Temporal difference methods

The Policy evaluation algorithm: TD(0)

I An agent performs a sequence s0, a0, r0, · · · , st, at, rt, st+1, at+1, rt+1, · · ·
I Performs local Temporal Difference updates from st, st+1 and rt

I Proved in 1994 provided ε-greedy exploration

Dayan, P. & Sejnowski, T. (1994). TD(lambda) converges with probability 1. Machine Learning, 14(3):295–301.
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Temporal difference methods

ε-greedy exploration

I Choose the best action with a high probability, other actions at random
with low probability

I Same properties as random search

I Every state-action pair will be enough visited under an infinite horizon

I Useful for convergence proofs
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Temporal difference methods

Roulette wheel

p(ai) =
V (ai)∑
j V (aj)

I The probability of choosing each action is proportional to its value
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Temporal difference methods

Softmax exploration

p(ai) =
e
V (ai)
β∑

j e
V (aj)

β

I The parameter β is called the temperature
I If β → 0, increase contrast between values
I If β →∞, all actions have the same probability → random choice
I Meta-learning: tune β dynamically (exploration/exploitation)
I More used in computational neurosciences

George Velentzas, Costas Tzafestas, and Mehdi Khamassi. (2017) Bio-inspired meta-learning for active exploration during

non-stationary multi-armed bandit tasks. In 2017 Intelligent Systems Conference (IntelliSys), pp. 661–669. IEEE
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Temporal difference methods

TD(0): limitation

I TD(0) evaluates V (s)

I One cannot infer π(s) from V (s) without knowing T : one must know
which a leads to the best V (s′)

I Three solutions:
I Q-learning, sarsa: Work with Q(s, a) rather than V (s).
I actor-critic methods: Simultaneously learn V and update π
I dyna: Learn a model of T : model-based (or indirect) reinforcement learning
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Temporal difference methods

Action Value Function Approaches

Value function and Action Value function

I The value function V π : S → IR records the agregation of reward on the
long run for each state (following policy π). It is a vector with one entry
per state

I The action value function Qπ : S ×A→ IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy π). It is a matrix with one entry per state and per action
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Temporal difference methods

Action Value Function Approaches

sarsa

I Reminder (TD):V (st)← V (st) + α[rt + γV (st+1)− V (st)]

I sarsa: For each observed (st, at, rt, st+1, at+1):
Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]

I Policy: perform exploration (e.g. ε-greedy)

I One must know the action at+1, thus constrains exploration

I On-policy method: more complex convergence proof

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence Results for Single-Step On-Policy Reinforcement

Learning Algorithms. Machine Learning, 38(3):287–308.
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Temporal difference methods

Action Value Function Approaches

sarsa: the algorithm

I Taken from Sutton & Barto, 2018
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Temporal difference methods

Action Value Function Approaches

Q-learning

I For each observed (st, at, rt, st+1):

Q(st, at)← Q(st, at) + α[rt + γmax
a∈A

Q(st+1, a)−Q(st, at)]

I maxa∈AQ(st+1, a) instead of Q(st+1, at+1)

I Off-policy method: no more need to know at+1

I Policy: perform exploration (e.g. ε-greedy)

I Convergence proven given infinite exploration

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge,

England.

Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning. Machine Learning, 8:279–292
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Temporal difference methods

Action Value Function Approaches

Q-learning: the algorithm

I Taken from Sutton & Barto, 2018
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Temporal difference methods

Action Value Function Approaches

Q-learning in practice

I Build a states×actions table (Q-Table, eventually incremental)

I Initialise it (randomly or with 0 is not a good choice)

I Apply update equation after each action

I Problem: it is (very) slow
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Temporal difference methods

Actor-Critic approaches

Actor-critic: Naive design

I Discrete states and actions, stochastic policy

I An update in the critic generates a local update in the actor

I Critic: compute δ and update V (s) with Vk+1(s)← Vk(s) + αkδk

I Actor: Pπk+1(a|s)← Pπk (a|s) + αk′δk
I Link to Policy Iteration: a representation of the value (critic) and the policy

(actor)

I NB: no need for a max over actions

I NB2: one must know how to “draw” an action from a probabilistic policy (not
straightforward for continuous actions)
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Temporal difference methods

Actor-Critic approaches

From Q(s, a) to Actor-Critic

state / action a0 a1 a2 a3
e0 0.66 0.88* 0.81 0.73
e1 0.73 0.63 0.9* 0.43
e2 0.73 0.9 0.95* 0.73
e3 0.81 0.9 1.0* 0.81
e4 0.81 1.0* 0.81 0.9
e5 0.9 1.0* 0.0 0.9

state chosen action
e0 a1
e1 a2
e2 a2
e3 a2
e4 a1
e5 a1

I Given a Q− Table, one must determine the max at each step

I This becomes expensive if there are numerous actions

I Store the best value for each state

I Update the max by just comparing the changed value and the max

I No more maximum over actions (only in one case)

I Storing the max is equivalent to storing the policy

I Update the policy as a function of value updates
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Biases

Maximization in RL

I Two maximization steps:
I In action selection:

π(s) ∼ argmax
a∈A

Q(s, a)

might be stochastic or contain some exploration
I In Q-learning, in the value update rule

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a∈A

Q(st+1, a)−Q(st, at)]
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Biases

Maximization bias

I In action selection, a maximum over estimated Q(s, a) is performed

I “In these algorithms, a maximum over estimated values is used implicitly
as an estimate of the maximum value, which can lead to a significant
positive bias.”

I Example: imagine all true Q(s, a) values are null

Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction (Second edition). MIT Press
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Biases

Double Q-learning

I Solution: using two Q-Tables, one for value estimation and one for action
selection

I a∗ = argmaxaQ1(a)

I Q2(a
∗) = Q2(argmaxaQ1(a)) unbiased estimate of Q(a∗)

I a′∗ = argmaxaQ2(a)

I Q1(a
′∗) = Q1(argmaxaQ2(a)) unbiased estimate of Q(a′∗)

I Randomly select one of each at all steps

Van Hasselt, H. (2010) Double q-learning. Advances in Neural Information Processing Systems, pages 2613–2621
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Biases

Double Q-learning: results
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Biases

Over-estimation bias propagation

I Some initial bias cannot be prevented due to Q-Table initialization

I In Q-learning, due to the max operator, the maximization bias
propagates

I No propagation of under-estimation

I The same holds for ddpg without a max operator!

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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TD and Monte Carlo

Monte Carlo (MC) methods

I Much used in games (Go...) to evaluate a state
I It uses the average estimation method Ek+1(s) = Ek(s)+α[rk+1−Ek(s)]
I Generate a lot of trajectories: s0, s1, . . . , sN with observed rewards
r0, r1, . . . , rN

I Update state values V (sk), k = 0, . . . , N − 1 with:

V (sk)← V (sk) + α(sk)(rk + rk+1 + · · ·+ rN − V (sk))
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TD and Monte Carlo

TD vs MC

I Temporal Difference (TD) methods combine the properties of DP
methods and Monte Carlo methods:

I In Monte Carlo, T and r are unknown, but the value update is global
along full trajectories

I In DP, T and r are known, but the value update is local

I TD: as in DP, V (st) is updated locally given an estimate of V (st+1) and
T and r are unknown

I Note: Monte Carlo can be reformulated incrementally using the temporal
difference δk update
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TD and Monte Carlo

Eligibility traces

I Goal: improve over Q-learning

I Naive approach: store all (s, a) pair and back-propagate values

I Limited to finite horizon trajectories

I Speed/memory trade-off

I TD(λ), sarsa (λ) and Q(λ): more sophisticated approach to deal with
infinite horizon trajectories

I A variable e(s) is decayed with a factor λ after s was visited and
reinitialized each time s is visited again

I TD(λ): V (s)← V (s) + αδe(s), (similar for sarsa (λ) and Q(λ)),

I If λ = 0, e(s) goes to 0 immediately, thus we get TD(0), sarsa or
Q-learning

I TD(1) = Monte Carlo...

I Eligibility traces can be seen as a combination of N-step returns for all N

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015b) High-dimensional continuous control using Generalized

Advantage Estimation. arXiv preprint arXiv:1506.02438

26 / 29



Tabular Reinforcement Learning

Model-based reinforcement learning

Model-based Reinforcement Learning

I General idea: planning with a learnt model of T and r is performing back-ups “in
the agent’s head” ([Sutton, 1990, Sutton, 1991])

I Learning T and r is an incremental self-supervised learning problem
I Several approaches:

I Draw random transition in the model and apply TD back-ups
I dyna-PI, dyna-Q, dyna-AC
I Better propagation: Prioritized Sweeping

Moore, A. W. & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time. Machine

Learning, 13:103–130.
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Model-based reinforcement learning

Dyna architecture and generalization

I Thanks to the model of transitions, dyna can propagate values more often

I Problem: in the stochastic case, the model of transitions is in
card(S)× card(S)× card(A)

I Usefulness of compact models

I MACS: dyna with generalisation (Learning Classifier Systems)

I SPITI: dyna with generalisation (Factored MDPs)

Gérard, P., Meyer, J.-A., & Sigaud, O. (2005) Combining latent learning with dynamic programming in MACS. European Journal

of Operational Research, 160:614–637.

Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006) Learning the Structure of Factored Markov Decision Processes in Reinforcement

Learning Problems. Proceedings of the 23rd International Conference on Machine Learning (ICML’2006), pages 257–264
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Model-based reinforcement learning

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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