
Tabular Reinforcement Learning

Tabular Reinforcement Learning

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud

1 / 29

Tabular Reinforcement Learning

Reinforcement learning

I In Dynamic Programming (planning), T and r are given

I Reinforcement learning goal: build π∗ without knowing T and r

I Model-free approach: build π∗ without estimating T nor r

I Actor-critic approach: special case of model-free

I Model-based approach: build a model of T and r and use it to improve
the policy

2 / 29

Tabular Reinforcement Learning

Temporal difference methods

Incremental estimation

I Estimating the average immediate (stochastic) reward in a state s

I Ek(s) = (r1 + r2 + ...+ rk)/k

I Ek+1(s) = (r1 + r2 + ...+ rk+rk+1)/(k+1)

I Thus Ek+1(s) = k/(k + 1)Ek(s) + rk+1/(k + 1)

I Or Ek+1(s) = (k + 1)/(k + 1)Ek(s)− Ek(s)/(k + 1) + rk+1/(k + 1)

I Or Ek+1(s) = Ek(s) + 1/(k + 1)[rk+1 − Ek(s)]
I Still needs to store k

I Can be approximated as

Ek+1(s) = Ek(s) + α[rk+1 − Ek(s)] (1)

I Converges to the true average (slower or faster depending on α) without
storing anything

I Equation (1) is everywhere in reinforcement learning

3 / 29

Tabular Reinforcement Learning

Temporal difference methods

Temporal Difference error

I The goal of TD methods is to estimate the value function V (s)

I If estimations V (st) and V (st+1) were exact, we would get
V (st) = rt + γV (st+1)

I The approximation error is

δt = rt + γV (st+1)− V (st) (2)

I δt measures the error between V (st) and the value it should have given
rt + γV (st+1)

I If δt > 0, V (st) is under-evaluated, otherwise it is over-evaluated

I V (st)← V (st) + αδt should decrease the error (value propagation)

4 / 29

Tabular Reinforcement Learning

Temporal difference methods

Temporal Difference update rule

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (3)

I Combines two estimation processes:
I incremental estimation (1)
I value propagation from V (st+1) to V (st) (2)

5 / 29

Tabular Reinforcement Learning

Temporal difference methods

The Policy evaluation algorithm: TD(0)

I An agent performs a sequence s0, a0, r0, · · · , st, at, rt, st+1, at+1, rt+1, · · ·
I Performs local Temporal Difference updates from st, st+1 and rt

I Proved in 1994 provided ε-greedy exploration

Dayan, P. & Sejnowski, T. (1994). TD(lambda) converges with probability 1. Machine Learning, 14(3):295–301.

6 / 29

Tabular Reinforcement Learning

Temporal difference methods

ε-greedy exploration

I Choose the best action with a high probability, other actions at random
with low probability

I Same properties as random search

I Every state-action pair will be enough visited under an infinite horizon

I Useful for convergence proofs

7 / 29

Tabular Reinforcement Learning

Temporal difference methods

Roulette wheel

p(ai) =
V (ai)∑
j V (aj)

I The probability of choosing each action is proportional to its value

8 / 29

Tabular Reinforcement Learning

Temporal difference methods

Softmax exploration

p(ai) =
e
V (ai)
β∑

j e
V (aj)

β

I The parameter β is called the temperature
I If β → 0, increase contrast between values
I If β →∞, all actions have the same probability → random choice
I Meta-learning: tune β dynamically (exploration/exploitation)
I More used in computational neurosciences

George Velentzas, Costas Tzafestas, and Mehdi Khamassi. (2017) Bio-inspired meta-learning for active exploration during

non-stationary multi-armed bandit tasks. In 2017 Intelligent Systems Conference (IntelliSys), pp. 661–669. IEEE

9 / 29

Tabular Reinforcement Learning

Temporal difference methods

TD(0): limitation

I TD(0) evaluates V (s)

I One cannot infer π(s) from V (s) without knowing T : one must know
which a leads to the best V (s′)

I Three solutions:
I Q-learning, sarsa: Work with Q(s, a) rather than V (s).
I actor-critic methods: Simultaneously learn V and update π
I dyna: Learn a model of T : model-based (or indirect) reinforcement learning

10 / 29

Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Value function and Action Value function

I The value function V π : S → IR records the agregation of reward on the
long run for each state (following policy π). It is a vector with one entry
per state

I The action value function Qπ : S ×A→ IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy π). It is a matrix with one entry per state and per action

11 / 29

Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

sarsa

I Reminder (TD):V (st)← V (st) + α[rt + γV (st+1)− V (st)]

I sarsa: For each observed (st, at, rt, st+1, at+1):
Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]

I Policy: perform exploration (e.g. ε-greedy)

I One must know the action at+1, thus constrains exploration

I On-policy method: more complex convergence proof

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence Results for Single-Step On-Policy Reinforcement

Learning Algorithms. Machine Learning, 38(3):287–308.

12 / 29

Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

sarsa: the algorithm

I Taken from Sutton & Barto, 2018

13 / 29

Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Q-learning

I For each observed (st, at, rt, st+1):

Q(st, at)← Q(st, at) + α[rt + γmax
a∈A

Q(st+1, a)−Q(st, at)]

I maxa∈AQ(st+1, a) instead of Q(st+1, at+1)

I Off-policy method: no more need to know at+1

I Policy: perform exploration (e.g. ε-greedy)

I Convergence proven given infinite exploration

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge,

England.

Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning. Machine Learning, 8:279–292

14 / 29

Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Q-learning: the algorithm

I Taken from Sutton & Barto, 2018

15 / 29

Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Q-learning in practice

I Build a states×actions table (Q-Table, eventually incremental)

I Initialise it (randomly or with 0 is not a good choice)

I Apply update equation after each action

I Problem: it is (very) slow

16 / 29

Tabular Reinforcement Learning

Temporal difference methods

Actor-Critic approaches

Actor-critic: Naive design

I Discrete states and actions, stochastic policy

I An update in the critic generates a local update in the actor

I Critic: compute δ and update V (s) with Vk+1(s)← Vk(s) + αkδk

I Actor: Pπk+1(a|s)← Pπk (a|s) + αk′δk
I Link to Policy Iteration: a representation of the value (critic) and the policy

(actor)

I NB: no need for a max over actions

I NB2: one must know how to “draw” an action from a probabilistic policy (not
straightforward for continuous actions)

17 / 29

Tabular Reinforcement Learning

Temporal difference methods

Actor-Critic approaches

From Q(s, a) to Actor-Critic

state / action a0 a1 a2 a3
e0 0.66 0.88* 0.81 0.73
e1 0.73 0.63 0.9* 0.43
e2 0.73 0.9 0.95* 0.73
e3 0.81 0.9 1.0* 0.81
e4 0.81 1.0* 0.81 0.9
e5 0.9 1.0* 0.0 0.9

state chosen action
e0 a1
e1 a2
e2 a2
e3 a2
e4 a1
e5 a1

I Given a Q− Table, one must determine the max at each step

I This becomes expensive if there are numerous actions

I Store the best value for each state

I Update the max by just comparing the changed value and the max

I No more maximum over actions (only in one case)

I Storing the max is equivalent to storing the policy

I Update the policy as a function of value updates

18 / 29

Tabular Reinforcement Learning

Biases

Maximization in RL

I Two maximization steps:
I In action selection:

π(s) ∼ argmax
a∈A

Q(s, a)

might be stochastic or contain some exploration
I In Q-learning, in the value update rule

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a∈A

Q(st+1, a)−Q(st, at)]

19 / 29

Tabular Reinforcement Learning

Biases

Maximization bias

I In action selection, a maximum over estimated Q(s, a) is performed

I “In these algorithms, a maximum over estimated values is used implicitly
as an estimate of the maximum value, which can lead to a significant
positive bias.”

I Example: imagine all true Q(s, a) values are null

Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction (Second edition). MIT Press

20 / 29

Tabular Reinforcement Learning

Biases

Double Q-learning

I Solution: using two Q-Tables, one for value estimation and one for action
selection

I a∗ = argmaxaQ1(a)

I Q2(a
∗) = Q2(argmaxaQ1(a)) unbiased estimate of Q(a∗)

I a′∗ = argmaxaQ2(a)

I Q1(a
′∗) = Q1(argmaxaQ2(a)) unbiased estimate of Q(a′∗)

I Randomly select one of each at all steps

Van Hasselt, H. (2010) Double q-learning. Advances in Neural Information Processing Systems, pages 2613–2621

21 / 29

Tabular Reinforcement Learning

Biases

Double Q-learning: results

22 / 29

Tabular Reinforcement Learning

Biases

Over-estimation bias propagation

I Some initial bias cannot be prevented due to Q-Table initialization

I In Q-learning, due to the max operator, the maximization bias
propagates

I No propagation of under-estimation

I The same holds for ddpg without a max operator!

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477

23 / 29

Tabular Reinforcement Learning

TD and Monte Carlo

Monte Carlo (MC) methods

I Much used in games (Go...) to evaluate a state
I It uses the average estimation method Ek+1(s) = Ek(s)+α[rk+1−Ek(s)]
I Generate a lot of trajectories: s0, s1, . . . , sN with observed rewards
r0, r1, . . . , rN

I Update state values V (sk), k = 0, . . . , N − 1 with:

V (sk)← V (sk) + α(sk)(rk + rk+1 + · · ·+ rN − V (sk))

24 / 29

Tabular Reinforcement Learning

TD and Monte Carlo

TD vs MC

I Temporal Difference (TD) methods combine the properties of DP
methods and Monte Carlo methods:

I In Monte Carlo, T and r are unknown, but the value update is global
along full trajectories

I In DP, T and r are known, but the value update is local

I TD: as in DP, V (st) is updated locally given an estimate of V (st+1) and
T and r are unknown

I Note: Monte Carlo can be reformulated incrementally using the temporal
difference δk update

25 / 29

Tabular Reinforcement Learning

TD and Monte Carlo

Eligibility traces

I Goal: improve over Q-learning

I Naive approach: store all (s, a) pair and back-propagate values

I Limited to finite horizon trajectories

I Speed/memory trade-off

I TD(λ), sarsa (λ) and Q(λ): more sophisticated approach to deal with
infinite horizon trajectories

I A variable e(s) is decayed with a factor λ after s was visited and
reinitialized each time s is visited again

I TD(λ): V (s)← V (s) + αδe(s), (similar for sarsa (λ) and Q(λ)),

I If λ = 0, e(s) goes to 0 immediately, thus we get TD(0), sarsa or
Q-learning

I TD(1) = Monte Carlo...

I Eligibility traces can be seen as a combination of N-step returns for all N

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015b) High-dimensional continuous control using Generalized

Advantage Estimation. arXiv preprint arXiv:1506.02438

26 / 29

Tabular Reinforcement Learning

Model-based reinforcement learning

Model-based Reinforcement Learning

I General idea: planning with a learnt model of T and r is performing back-ups “in
the agent’s head” ([Sutton, 1990, Sutton, 1991])

I Learning T and r is an incremental self-supervised learning problem
I Several approaches:

I Draw random transition in the model and apply TD back-ups
I dyna-PI, dyna-Q, dyna-AC
I Better propagation: Prioritized Sweeping

Moore, A. W. & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time. Machine

Learning, 13:103–130.

27 / 29

Tabular Reinforcement Learning

Model-based reinforcement learning

Dyna architecture and generalization

I Thanks to the model of transitions, dyna can propagate values more often

I Problem: in the stochastic case, the model of transitions is in
card(S)× card(S)× card(A)

I Usefulness of compact models

I MACS: dyna with generalisation (Learning Classifier Systems)

I SPITI: dyna with generalisation (Factored MDPs)

Gérard, P., Meyer, J.-A., & Sigaud, O. (2005) Combining latent learning with dynamic programming in MACS. European Journal

of Operational Research, 160:614–637.

Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006) Learning the Structure of Factored Markov Decision Processes in Reinforcement

Learning Problems. Proceedings of the 23rd International Conference on Machine Learning (ICML’2006), pages 257–264

28 / 29

Tabular Reinforcement Learning

Model-based reinforcement learning

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

29 / 29

Olivier.Sigaud@upmc.fr

Tabular Reinforcement Learning

References

Dayan, P. and Sejnowski, T. (1994).

TD(lambda) converges with probability 1.
Machine Learning, 14(3):295–301.

Degris, T., Sigaud, O., and Wuillemin, P.-H. (2006).

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems.
In Proceedings of the 23rd International Conference on Machine Learning, pages 257–264, CMU, Pennsylvania.

Fujimoto, S., van Hoof, H., and Meger, D. (2018).

Addressing function approximation error in actor-critic methods.
In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1582–1591. PMLR.

Gérard, P., Meyer, J.-A., and Sigaud, O. (2005).

Combining latent learning with dynamic programming in MACS.
European Journal of Operational Research, 160:614–637.

Moore, A. W. and Atkeson, C. (1993).

Prioritized sweeping: Reinforcement learning with less data and less real time.
Machine Learning, 13:103–130.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016).

High-dimensional continuous control using generalized advantage estimation.
In Bengio, Y. and LeCun, Y., editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings.

Singh, S. P., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000).

Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine learning, 38(3):287–308.

Sutton, R. S. (1990).

Integrating architectures for learning, planning, and reacting based on approximating dynamic programming.
In Proceedings of the Seventh International Conference on Machine Learning, pages 216–224, San Mateo, CA. Morgan Kaufmann.

29 / 29

Tabular Reinforcement Learning

References

Sutton, R. S. (1991).

DYNA, an integrated architecture for learning, planning and reacting.
SIGART Bulletin, 2:160–163.

Sutton, R. S. and Barto, A. G. (2018).

Reinforcement Learning: An Introduction (Second edition).
MIT Press.

van Hasselt, H. (2010).

Double q-learning.
In Lafferty, J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors, Advances in Neural Information
Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held
6-9 December 2010, Vancouver, British Columbia, Canada, pages 2613–2621. Curran Associates, Inc.

Velentzas, G., Tzafestas, C., and Khamassi, M. (2017).

Bio-inspired meta-learning for active exploration during non-stationary multi-armed bandit tasks.
In 2017 Intelligent Systems Conference (IntelliSys), pages 661–669. IEEE.

Watkins, C. J. C. H. (1989).

Learning with Delayed Rewards.
PhD thesis, Psychology Department, University of Cambridge, England.

Watkins, C. J. C. H. and Dayan, P. (1992).

Q-learning.
Machine Learning, 8:279–292.

29 / 29

	Temporal difference methods
	Action Value Function Approaches
	Actor-Critic approaches

	Biases
	TD and Monte Carlo
	Model-based reinforcement learning
	References

