
Reinforcement Learning

Reinforcement Learning
6. Replay buffer, Biases, Bias-Variance, Monte Carlo and Model-Based RL

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud

1 / 20



Reinforcement Learning

Replay buffer

Introducing a replay buffer

I Helps decorrelating the agent trajectory and samples fed to the critic

I Samples can be fed to the critic randomly or through various heuristics

I Introduces sample efficiency discussion

2 / 20



Reinforcement Learning

Replay buffer

Replay buffer and sample efficiency

I Important intuition: in the discrete deterministic case, one sample from
each (state, action) pair in the buffer is enough for Q-learning to
converge

I Thus using a replay buffer can be very sample efficient

I In the stochastic case, samples in the replay buffer should reflect the
distribution over next state

I This may require a large replay buffer (over 1e6 samples)

I In the continuous case, the state (and action) spaces cannot be covered

I But off-policy deep RL algorithms using a replay buffer still benefit from
the initial intuition

3 / 20



Reinforcement Learning

Biases

Maximization in RL

I Two maximization steps:
I In action selection:

π(s) ∼ argmax
a∈A

Q(s, a)

might be stochastic or contain some exploration
I In Q-learning, in the value update rule

Q(st , at)← Q(st , at) + α[rt+1 + γmax
a∈A

Q(st+1, a)− Q(st , at)]

4 / 20



Reinforcement Learning

Biases

Maximization bias

I In action selection, a maximum over estimated Q(s, a) is performed

I “In these algorithms, a maximum over estimated values is used implicitly
as an estimate of the maximum value, which can lead to a significant
positive bias.”

I Example: imagine all true Q(s, a) values are null

Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction (Second edition). MIT Press

5 / 20



Reinforcement Learning

Biases

Double Q-learning

I Solution: using two Q-Tables, one for value estimation and one for action
selection

I a∗ = argmaxa Q1(a)
I Q2(a∗) = Q2(argmaxa Q1(a)) unbiased estimate of Q(a∗)
I a′∗ = argmaxa Q2(a)
I Q1(a′∗) = Q1(argmaxa Q2(a)) unbiased estimate of Q(a′∗)
I Randomly select one of each at all steps

Van Hasselt, H. (2010) Double q-learning. Advances in Neural Information Processing Systems, pages 2613–2621

6 / 20



Reinforcement Learning

Biases

Double Q-learning: results

7 / 20



Reinforcement Learning

Biases

Over-estimation bias propagation

I Some initial bias cannot be prevented due to Q-Table initialization
I In Q-learning, due to the max operator, the maximization bias

propagates
I No propagation of under-estimation
I The same holds for ddpg without a max operator!

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477

8 / 20



Reinforcement Learning

TD and Monte Carlo

Monte Carlo (MC) methods

I Much used in games (Go...) to evaluate a state
I It uses the average estimation method Ek+1(s) = Ek(s) + α[rk+1 − Ek(s)]
I Generate a lot of trajectories: s0, s1, . . . , sN with observed rewards

r0, r1, . . . , rN
I Update state values V (sk), k = 0, . . . ,N − 1 with:

V (sk)← V (sk) + α(sk)(rk + rk+1 + · · ·+ rN − V (sk))

9 / 20



Reinforcement Learning

TD and Monte Carlo

TD vs MC

I Temporal Difference (TD) methods combine the properties of DP
methods and Monte Carlo methods:

I In Monte Carlo, T and r are unknown, but the value update is global
along full trajectories

I In DP, T and r are known, but the value update is local

I TD: as in DP, V (st) is updated locally given an estimate of V (st+1) and
T and r are unknown

I Note: Monte Carlo can be reformulated incrementally using the temporal
difference δk update

10 / 20



Reinforcement Learning

TD and Monte Carlo

Eligibility traces

I Goal: improve over Q-learning

I Naive approach: store all (s, a) pair and back-propagate values

I Limited to finite horizon trajectories

I Speed/memory trade-off

I TD(λ), sarsa (λ) and Q(λ): more sophisticated approach to deal with
infinite horizon trajectories

I A variable e(s) is decayed with a factor λ after s was visited and
reinitialized each time s is visited again

I TD(λ): V (s)← V (s) + αδe(s), (similar for sarsa (λ) and Q(λ)),

I If λ = 0, e(s) goes to 0 immediately, thus we get TD(0), sarsa or
Q-learning

I TD(1) = Monte Carlo...

I Eligibility traces can be seen as a combination of N-step returns for all N

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015b) High-dimensional continuous control using Generalized

Advantage Estimation. arXiv preprint arXiv:1506.02438

11 / 20



Reinforcement Learning

The bias variance trade-off

Bias versus variance

I If you compute an expectation over infinitely many samples, you get the
same expectation each time

I But if you compute it over a finite set of samples, you get a different
expectation each time

I This is known as variance

I Given a large variance, you need many samples to get an accurate
estimate of the mean

I If you update an expectation based on a previous (wrong) expectation
estimate, the expectation estimate you get provided infinitely many
samples is wrong

I This is known as bias

Geman, S., Bienenstock, E., & Doursat, R. (1992) Neural networks and the bias/variance dilemma. Neural computation,

4(1):1–58

12 / 20



Reinforcement Learning

The bias variance trade-off

Bias, variance, overfitting and underfitting

I With high bias, the risk is underfitting

I With high variance, the risk is overfitting

I You need low bias and low variance

13 / 20



Reinforcement Learning

The bias variance trade-off

Monte Carlo, One-step TD and N-step return

I One-step TD suffers from bias

I MC suffers from variance due to exploration (+ stochastic trajectories)

I MC is on-policy → less sample efficient

I N-step TD: tuning N to control the bias-variance compromize

14 / 20



Reinforcement Learning

The bias variance trade-off

Bias-variance compromize

I Total error = bias2 + variance + irreducible error

I A more complex model (e.g. bigger network) generally has more variance,
but less bias

I Tuning N in the N-step return or λ in an eligilibity trace method helps
finding the right compromize.

15 / 20



Reinforcement Learning

The bias variance trade-off

The N-step return in practice

I How do we store into the replay buffer?

I N-step Q-learning is more efficient than Q-learning

I Various implementations are possible

Sharma, S., Ramesh, S., Ravindran, B., et al. (2017) Learning to mix N-step returns: Generalizing λ-returns for deep

reinforcement learning. arXiv preprint arXiv:1705.07445

16 / 20



Reinforcement Learning

Model-based reinforcement learning

Model-based Reinforcement Learning

I General idea: planning with a learnt model of T and r is performing back-ups “in
the agent’s head” ([Sutton, 1990, Sutton, 1991])

I Learning T and r is an incremental self-supervised learning problem
I Several approaches:

I Draw random transition in the model and apply TD back-ups
I dyna-PI, dyna-Q, dyna-AC
I Better propagation: Prioritized Sweeping

Moore, A. W. & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time. Machine

Learning, 13:103–130.

17 / 20



Reinforcement Learning

Model-based reinforcement learning

Dyna architecture and generalization

I Thanks to the model of transitions, dyna can propagate values more often

I Problem: in the stochastic case, the model of transitions is in
card(S)× card(S)× card(A)

I Usefulness of compact models

I MACS: dyna with generalisation (Learning Classifier Systems)

I SPITI: dyna with generalisation (Factored MDPs)

Gérard, P., Meyer, J.-A., & Sigaud, O. (2005) Combining latent learning with dynamic programming in MACS. European Journal

of Operational Research, 160:614–637.

Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006) Learning the Structure of Factored Markov Decision Processes in Reinforcement

Learning Problems. Proceedings of the 23rd International Conference on Machine Learning (ICML’2006), pages 257–264

18 / 20



Reinforcement Learning

Model-based reinforcement learning

Corresponding labs

I See https://github.com/osigaud/rl_labs_notebooks

I One notebook about N-step return

I One notebook about model-based RL, based on RTDP

19 / 20

https://github.com/osigaud/rl_labs_notebooks


Reinforcement Learning

Model-based reinforcement learning

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

20 / 20

Olivier.Sigaud@upmc.fr


Reinforcement Learning

References

Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006).

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems.
Edité dans Proceedings of the 23rd International Conference on Machine Learning, pages 257–264, CMU, Pennsylvania.

Fujimoto, S., van Hoof, H., & Meger, D. (2018).

Addressing function approximation error in actor-critic methods.
arXiv preprint arXiv:1802.09477.

Geman, S., Bienenstock, E., & Doursat, R. (1992).

Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1–58.

Gérard, P., Meyer, J.-A., & Sigaud, O. (2005).

Combining latent learning with dynamic programming in MACS.
European Journal of Operational Research, 160:614–637.

Moore, A. W. & Atkeson, C. (1993).

Prioritized sweeping: Reinforcement learning with less data and less real time.
Machine Learning, 13:103–130.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., & Abbeel, P. (2015).

High-dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438.

Sharma, S., Ramesh, S., Ravindran, B., et al. (2017).

Learning to mix n-step returns: Generalizing lambda-returns for deep reinforcement learning.
arXiv preprint arXiv:1705.07445.

Sutton, R. S. (1990).

Integrating architectures for learning, planning, and reacting based on approximating dynamic programming.
Edité dans Proceedings of the Seventh International Conference on Machine Learning, pages 216–224, San Mateo, CA. Morgan
Kaufmann.

Sutton, R. S. (1991).

20 / 20



Reinforcement Learning

References

DYNA, an integrated architecture for learning, planning and reacting.
SIGART Bulletin, 2:160–163.

Sutton, R. S. & Barto, A. G. (2018).

Reinforcement Learning: An Introduction (Second edition).
MIT Press.

Van Hasselt, H. (2010).

Double q-learning.
Edité dans Advances in Neural Information Processing Systems, pages 2613–2621.

20 / 20


	Replay buffer
	Biases
	TD and Monte Carlo
	The bias variance trade-off
	Model-based reinforcement learning
	References

