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State-of-the-art RL methods

TRPO and ACKTR

Outline

» Start from algorithms close to PG: TRPO and ACKTR
» Three aspects distinguish TRPO:

> Surrogate return objective

» Natural policy gradient

» Conjugate gradient approach
» Differences in ACKTR:

> Approximate second order gradient descent (Hessian)
» Using Kronecker Factored Approximated Curvature
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L-TrRPO

Surrogate return objective
» The standard policy gradient algorithm for stochastic policies is:
VeJ(0) =IE; [Vglogwe(aﬂst)flge]
» This gradient is obtained from differentiating
LossTG(0) = IE; [lOgTK‘g(at|St)A3;9]
» But we obtain the same gradient from differentiating

7o (atlst) i)

Loss™5(0) = By
Tooa(atls:) ?

where Tg,14 is the policy at the previous iteration

> Because Vglogf(0)|eotda = % = VG(%)'Gold

» Another view based on importance sampling

» See John Schulmann’s Deep RL bootcamp lecture #5
https://www.youtube.com/watch?v=SQt0I9jsrJO (8")

ISIR

hed
DESSISTEMES

3/35


https://www.youtube.com/watch?v=SQtOI9jsrJ0
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LTrPO

Trust region

L(6
AR
loss function
0
Go 0.\ firstorder o
approximation
» The gradient of a function is only accurate close to the point where it is
calculated
> Ve J(0) is only accurate close to the current policy mg
>

Thus, when updating, mg must not move too far away from a “trust region”
around Tgold

Kakade, S. & Langford, J. (2002) Approximately optimal approximate reinforcement learning. In ICML, volume 2, pages 267-274
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L-TrRPO

Natural Policy Gradient

KL(py,p2) = 0.78 KL(p1,p2) = 1.65 KL(p1,p2) = 3.02

P2

» One way to constrain two stochastic policies to stay close is constraining their
KL divergence

» The KL divergence is smaller when the variance is larger

» Under fixed KL constraint, it is easier to move the mean further away when the
variance is large

» Thus the mean policy converges first, then the variance is reduced

v

Ensures a large enough amount of exploration noise

» Other properties presented in the Pierrot et al. (2018) paper

Sham M. Kakade. A natural policy gradient. In Advances in neural information processing systems, pp. 1531-1538, 2002

&) &

Pierrot, T., Perrin, N., & Sigaud, O. (2018) First-order and second-order variants of the gradient descent: a unified framework\
arXiv preprint arXiv:1810.08102
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L-TrRPO

Trust Region Policy Optimization

» Theory: monotonous improvement towards the optimal policy
(Assumptions do not hold in practice)

» To ensure small steps, TRPO uses a natural gradient update instead of
standard gradient

» Minimize Kullback-Leibler divergence to previous policy

e (at |St) AT0old
Toold(at|st)

subject to IE; [K L(meo1a(.|s)| 7o (ac]s:))] <

Il’lg),X ]Et [ (St, at)]

» In TRPO, optimization performed using a conjugate gradient method to
avoid approximating the Fisher Information matrix

Ia Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015) Trust Region Policy Optimization. CoRR, abs/1502.054,
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LTrPO
;
Advantage estimation
AT ..

(as for the policy)

> To get A.?, an empirical estimate of V"€ (s) is needed

» TRPO uses a MC estimate approach through regression, but constrains it
mmz V39 (50) = V™ (50
IVg? (sn) — Vg©
bject to — i
subject to 7;

2
(sl
202
» Equivalent to a mean KL divergence constraint between V°

and V¢ "
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LTrPO

Properties

Moves slowly away from current policy
Key: use of line search to deal with the gradient step size

More stable than DDPG, performs well in practice, but less sample efficient

vvyyy

Conjugate gradient approach not provided in standard tensor gradient
librairies, thus not much used

v

Greater impact of PPO

v

Related work: NAC, REPS

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71 (7-9):1180-1190, 2008

Jan Peters, Katharina Miilling, and Yasemin Altun. Relative entropy policy search. In AAAI, pp. 1607-1612. Atlanta, 2010
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L AckTr

First order versus second order derivative

L(0)

loss function
loss function

second order
approximation

160}

6 6.\ firstorder
approximation

» In first order methods, need to define a step size

» Second order methods provide a more accurate approximation
» They also provide a true minimum, when the Hessian matrix is symmetric
positive-definite (SPD)

» In both cases, the derivative is very local

» The trust region constraint applies too

9/35
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L ACKTR

ACKTR

» K-FAC: Kronecker Factored Approximated Curvature: efficient estimate of
the gradient

v

Using block diagonal estimations of the Hessian matrix, to do better than
first order

ACKTR: TRPO with K-FAC natural gradient calculation

But closer to actor-critic updates (see PPO)

The per-update cost of ACKTR is only 10% to 25% higher than SGD
Improves sample efficiency

Not much excitement: less robust gradient approximation?

vVvyVvyVvyyvyy

Next lesson: PPO

@ Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba (2017) Scalable trust-region method for deep
reinforcement learning using Kronecker-factored approximation. arXiv preprint arXiv:1708.05144
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Lppo

Outline

» There are two PPO algorithms

» They are well covered on youtube videos
> So only a quick overview here

» Easy implementation, a lot used

» Key question: is it Actor-Critic?
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Lppo

Proximal

Policy Optimization (Algorithm 1)

The conjugate gradient method of TRPO is not available in tensor libraries

Same idea as TRPO, but uses a soft constraint on trust region rather than
a hard one

Instead of: o
7o (At |St

— A

7.‘-Gold(at|st) TOold (St7 at)]

subject to IE:[K L(mgoid(.|s)||me(at|s:))] < 6

max [E¢|
]

Rather use:

uICUED)
IESN an~T 7147\' 9 - Es~ KL o .
g B amr 7€ 50 5 A (50,20) | I [ K L outa(19)] o (0]

Makes it possible to use SGD instead of conjugate gradient

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv
preprint arXiv:1707.06347.

Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, A., Riedmiller, M., et al. (201

Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286
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Lppo

Proximal Policy Optimization (Algorithm 2)

If the action was good.... If the action was bad....
and it became more probable the last time | ...and it became less probable, dorit keep making it

you took a gradient step, don't keep updating| oo much less probable or else the policy might

it too far o else the policy might get worse |~ get worse (i.e., don't step too far)

LeLe

and it became less probable,you are free v
t0 undo that step (in the wrongdirection)

as much as you want \

0 11l+e Leur

and it became more probable, you are free
to undo that step as much as you want
(i.e., you can fix your mistakes)

Figure 1: Plots showing one term (i.c., a single timestep) of the surrogate function L°L” as a function of
the probability ratio r. for positive advantages (left) and negative advantages (right). The red circle on each
plot shows the starting point for the optimization. ie.. r = 1. Note that LOX/” sums many of these terms.

» Image taken from stackoverflow.com
» _meolals)
Tootd(als)
> Clipped importance sampling loss (clipping the surrogate objective)
7o (atlst)
Toold(at|st)

LEIE (0) = By [min(ri (0) Ay, clip(r:(0),1 — €, 1 + €) Ap)]

may get huge if Tgy1q is very small

ri(0) =

> Back-propagate LEL1F () through a policy network
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Lppo

Is PPO actor-critic?

v

vvyVvyy

Improvement over TRPO, thus REINFORCE-like policy update
But:

» Algorithm: “PPO, actor-critic style”
» In the Dota-2 paper: “PPO, a variant of advantage actor-critic, ..."

What matters is the critic (or baseline) update method
Uses N-step Generalized Advantage Estimate instead of Monte Carlo

Thus somewhere between MC and TD (same for ACKTR)

Other properties:
> Simpler implementation, better performance than TRPO
» Does not use a replay buffer — more stable, less sample efficient
» Still on-policy, mg and mg,q cannot differ much

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy Dennison, David Farhi, Quirin

Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680;
2019
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Lppo

PPO applications

) oy y

1536 GPU at peak, 0 months  a pool of 384 worker machines, 64 V100 GPU + 900 workers,

for training, 40.000 years each with 16 CPU cores  With 32 CPU cores, several months,
13.000 years

Massive parallel versions of PPO, with dedicated architectures

Very few teams can afford such engineering and computing effort

llge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert,
Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur Petron,

Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand manipulation. The International Journal of Robotics
Research, 39(1):3-20, 2020
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Lppo

Massive parallel updates

@@VVV

One worker Many workers
Several workers in parallel: more i.i.d and faster exploration
The acceleration is better than linear in the number of workers
No need for a replay buffer (as in A3c), but loss of sample efficiency

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., et al. (2018)

Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561 o
Adamski, ., Adamski, R., Grel, T., Jedrych, A., Kaczmarek, K., & Michalewski, H. (2018) Distributed deep reinforcement | e
learning: Learn how to play atari games in 21 minutes. arXiv preprint arXiv:1801.02852 /
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Lppo
OpenlA five
Tied Weights
Flattened Value
Observation \ Function
Observation LSTM
Processing ﬁ
N Hero Action
Embedding Heads
» The LSTM deals with non-Markov data
| 2

The vision layers are problem specific

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy Dennison, David Farhi, Quirin
Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680,
2019
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Lsac

Soft Actor Critic: The best of two worlds

) &) Dy yyvyvwy

‘ TRPO ‘ ‘ A2C ‘ ‘DDPG‘

'

SAC

TRPO and PPO: mg stochastic, on-policy, low sample efficiency, stable

DDPG and TD3: 7g deterministic, replay buffer, better sample efficiency, unstable
SAC: “Soft” means “entropy regularized”, mg stochastic, replay buffer

Adds entropy regularization to favor exploration (follow-up of several papers)
Attempt to be stable and sample efficient

Three successive versions

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft
actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. arXiv preprint arXiv:1801.01290

Haarnoja, T. Tang, H., Abbeel, P. and Levine, S. (2017) Reinforcement learning with deep energy-based policies. arXiv preprint
arXiv:1702.08165

o (w1 =
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Lsac

Soft Actor-Critic

SAC learns a stochastic policy 7™ maximizing both rewards and entropy:
T = argrgrgxzm@,a»pm [r(st,a:) + aH(mo(.[st))]
t

The entropy is defined as: H(mo(.|s:)) = IBa,~rg(.|s;) [— 10g Ta (as|st)]
SAC changes the traditional MDP objective
Thus, it converges toward different solutions

Consequently, it introduces a new value function, the soft value function

vVvyVvyyy

As usual, we consider a policy mg and a soft action-value function Qg"

Ia Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and
Koray Kavukcuoglu. (2016) Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783
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sac

:
Soft policy evaluation

> Usually, we define V,;®(s) = Ea, ~rg (s [Qg" (st, at)]

» In soft updates, we rather use:

Vi (st) = BEayorg (.lse) [QA?(St,at)} + aH(me(.|st))

=IEa,vrg(lse) [Qge(st,at)] + olEa, wrg(|se) [—log mo(at]st)]

= Ea,nmg(|se) [Q;e(st,at) - alogﬁe(at|st)]
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Lsac

Critic updates

» We define a standard Bellman operator:

TWQZB (st,a¢) = r(st,ae) + ’yv(;'e (st+1)

=7(st,at) + VEa,vmg(sig1) [Q;e(st+1’ at) — alog We(at|st+1)]

Critic parameters can be learned by minimizing the loss associated to
Jg (vth):

A & 2
lOSSQ(O) =S ]E(st;atxst+1)ND |:(T(St, at) - ’YV(;G (St+1) — Q:;? (St, at)) :|

where V(;re (St+1) = ]Ea"’ﬂe(~|5t+1) I:Q;e (st+1,a) — alogﬂg(a|st+1)]

» Similar to DDPG update, but with entropy

22 /35
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Lsac

Actor updates

» Update policy such as to become greedy w.r.t to the soft Q-value
» Choice: update the policy towards the exponential of the soft Q-value

J2(8) = Bayn K L(mo(s1))]|~ I

( Q¢ (st7'))
Zo(st)
» Zo(st) is just a normalizing term to have a distribution

» SAC does not minimize directly this expression but a surrogate one that
has the same gradient w.r.t 6

The policy parameters can be learned by minimizing:

Jw(e) = ]EStND |:]Eat"""'6(-|st) [a 10g7r9(at|st) — QZG (st,at):H

23 /35
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Lsac

Continuous vs discrete actions setting

Critic Actor Critic

Qi(s.a1) Q3(s.a2) Q3(s.an) plails)  plaals) planls) Q3 (s.a)

discrete actions

P> SAC works in both the discrete action and the continuous action setting

» Discrete action setting:

» The critic takes a state and returns a Q-value per action
» The actor takes a state and returns probabilities over actions

» Continuous action setting:

» The critic takes a state and an action vector and returns a scalar Q-value
» Need to choose a distribution function for the actor

> SAC uses a squashed Gaussian: a = tanh(n) where n. ~ N(ng,04)

24 /35
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Lsac

Continuous vs discrete actions setting

> In Jx(0) = Es,np []Eatha(~\St) [a log me (a|st) — Q;e (St,at)“

» SAC updates require to estimate an expectation over actions sampled from
the actor,

» That is IE,, rp(.|s) [F'(St,a:)] where F' is a scalar function.

» In the discrete action setting, mo(.|s¢) is a vector of probabilities
> IEat~7r9(.|st) [F(St7at)] = 779('|St)TF(St7 )

» In the continuous action setting:
» The actor returns ug and og
» Re-parameterization trick: a; = tanh(ug + €.09) where € ~ N(0,1)
> Thus, Ba,rg(|s,) [F(st,a1)] = Benr(0,1) [F(st, tanh(pg + €og))]
» This trick reduces the variance of the expectation estimate
» And allows to backprop through the expectation w.r.t 8

ISIR
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L7p3

Twin Delayed Deep Deterministic PG

WVVVVVV

MeanQualuss

SSe=ont

All descendants of Q-learning suffer from over-estimation bias
Clipping the critic from the knowledge of Ry,qz helps
. itics OO e
TD3: Introduce two critics Q¢1 and Q¢2
Compute the TD-target as the minimum to reduce the over-estimation bias

Less problem knowledge than critic clipping

Next lesson: Soft Actor Critic

SIR

hed

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprift oeserees
arXiv:1802.09477

u}
)]
I
i
it
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TD3

Critic update improvements (from TD3)

» The TD-target becomes:

> As in TD3, SAC uses two critics Qge and ng

Y =7+ Y EBa,,  ~ro(lsitr) [minQ Q}Z(Stﬂ,am) - alogﬂe(at+1|5t+1)}
And the losses:

arXiv:1802.09477

AT AT 2
J(0) = Es, a,5,1)~D [(Qd,‘j (st,ar) — yt) + <Q¢62(St>at) - yt)

2
J(0) = Esup |:IEatN‘"'e(~|St) [a log o (at|s:) — min;=1 2 Qg‘: (st, at)]

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods.

arXiv preprint
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L7p3

Automatic Entropy Adjustment

» The temperature o needs to be tuned for each task
» Finding a good « is non trivial
» Instead of tuning «, tune a lower bound H, for the policy entropy

» And change the optimization problem into a constrained one

T = argma’XEIE(St,at)NPwe [T(Stvat)]
T t
s.t. V¢ E(Styat)"’ﬂ-rre [_ log 7T9(at|st)] > Ho,

» Use heuristic to compute H from the action space size

a can be learned to satisfy this constraint by minimizing:

ISIR

hed
DESSISTEMES

J(a) = Es,~p []EatNWB(-lst) [—alog me(at|st) — ofHo]]
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LTo3

Practical algorithm

Initialize neural networks g and Qg" weights
Play k steps in the environment by sampling actions with mg

Store the collected transitions in a replay buffer

>

>

>

» Sample k batches of transitions in the replay buffer

» Update the temperature «, the actor and the critic using SGD
>

Repeat this cycle until convergence

ISIR

hed
DESSISTEMES
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LTqc

Truncated Quantile Critics

M atoms NM atoms Smallest kN atoms

Voo 1
= == f

c=M—d
I dN atoms removed

Truncate Discount, shift

Zy(s',a') Zn(s',d) 235 (8',d), i € [L.NM] 2 (s',ad'), i € [1..kN]

i St 60+ [z — alogr])
N critics Mixture

Truncated mixture Target distribution, Y (s, a)

Figure 2. Step-by-step construction of the temporal difference target distribution Y (s, ). First, we compute approximations of the return
distribution conditioned on s’ and @’ by evaluating N separate target critics. Second, we make a mixture out of the N distributions from
the previous step. Third, we truncate the right tail of this mixture to obtain atoms z(;)(s’, a’) from equation 11. Fourthly, we add entropy
term, discount and add reward as in soft Bellman equation.

To fight overestimation bias, TD3 and SAC take the min over two critics

Using a distribution of estimates is more stable than a single estimate

vwvyy

TQC uses stochastic critics and truncates the higher quantiles

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overestimation bias with truncated

mixture of continuous distributional quantile critics. In International Conference on Machine Learning, pp. 5556-5566. PMLR,
2020

o (w1 =
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Lrac

Performance

= TaC 1 net, buncation
= TQC 1net, no truncation
= SACLnet

= TQC full metod (ours)
= SAC full methad

Evaluation returns

T i
Frames £

= TQC == SAC == TD3 == TrulyPPO

e Hopper 13 HalfCheetah 163 Walker2d 1004 Ant 13 Humanoid
. s
00
: s
£s - - 3
€ A 6 i 7.5
H 0
£2 ‘ . 50
3
H B 2 2 25
o o 00
g T 3 T 5 1 3 T 1 ¢ 3 % %6 1 3 5 & 5 6 f i & & 0
Frames o Frames e Frames B Frames i Frames e

» From 5 to a single critic

» Outperforms SAC, easier to use
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Wrap-up

Key Policy Gradient Steps

1. Splitting the trajectory into steps: Markov Hypothesis required

Key difference to Direct Policy Search methods

Makes it possible to optimize trajectories using a gradient over policy params
2. Introducing the Q function

Makes it possible to perform policy updates from a single step

Opens the way to the replay buffer, critic networks, partly off-policy methods
3. Using baselines

Makes it possible to reduce variance

vV VVYyVvVVYVYy VY VvYyYy

When learning critics from bootstrap, becomes actor-critic
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Wrap-up

:
Bias-variance, Being Off-policy

T

Viso) ( w o L Monte Carlo ’B(S)
M -6 Y
V(so) 51 One-step TD iti
A OO O—E critic

+ + + *
¥\ ¥\ ¥ N-step TD

N F\
V(s V(sy)
X et
OLOFOLOFEFE return 7(s)

» Continuum between Monte Carlo methods and bootstrap methods

» Playing on the continuum helps finding the right bias-variance trade-off
» Being off-policy requires bootstrap

» No deep RL algorithm is truly off-policy, it's a matter of degree

ISIR

DESSISTEMES
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Wrap-up

Final view

[R(T)J [Zﬁim} [&;M)J [z na] (45600

— stochastic /
RWR OIEES TRPO [AZC, A3C
ACKTR
det inisti
PPO S poiicies
on-policy \_ off-poli
more variance, more bias,
more stable, less stable
less sample efficient more sample efficient

~— —

continuum using N-step return or A return
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Wrap-up

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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