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• Blog: https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-
benchmark


• and some of the articles it depends on…

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark
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Atari Benchmark

• Atari games as a proxy to study Artificial General Intelligence

• Can we find a same learning algorithm that could defeat humans on all games ?

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment: An evaluation plat- form for 
general agents. Journal of Artificial Intelligence Research, 47:253–279, 06 2013. 
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At the beginning was DQN…

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level 
control through deep reinforcement learning. nature, 518(7540), 529-533.

• Deep Q-Learning with experience replay and iterative update

• One Q value for each action

• s is the sequence of observations (84x84x4 = 84x84 images at 4 time steps)



• Tested on 49 games


• > human expert on 23 
games


• Same architecture, same 
meta-parameters for all 
games


• Trained during 50million 
frames on each game 
(~38 days)



DQN improvements

• Double DQN: using 2 Deep Q-Networks one for policy 
determination, one for the value update (and switch them 
on a regular basis)


• Prioritised Replay: transitions are selected thanks to a 
probability that depends on the TD-error


• Dueling Heads: decompose Q into the value and 
advantage functions 
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DQN improvements

• Distributed Deep RL: several actors, several learners, 
each in charge of updating a part of the parameters
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Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt, and David Silver. 
Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933, 2018. 
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R2D2: Adding a short-term 
memory

• Recurrent Replay Distributed DQN (R2D2)

• Formalize the problem as a POMDP, i.e. a partially observable 

MDP, :

• : state (unobserved)

• : actions

• : transition function

• 

• : observation set

• : observation function mapping (unobserved) states to 

probability distributions over 

• Use a Recurrent NN (LSTM) to learn a representation that 

disambiguates the true state of the POMDP

• Propose mechanisms to train the LSTM from randomly sampled 

sequences (what initial internal state to use ?):

• Store internal state in the replay buffer

• Use a « burn-in » strategy to recover the state

(𝒮, 𝒜, T, R, Ω, 𝒪)
𝒮
𝒜
T
R : 𝒮 × 𝒜 → ℝ
Ω
𝒪
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R2D2: Kapturowski, Steven, et al. "Recurrent experience replay in distributed reinforcement learning." ICLR (2019).

https://openreview.net/pdf?id=r1lyTjAqYX
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Never Give Up: 
Some more memory and exploration

• How to make a better exploration than -greedy 
strategies ? 


• Propositions: 


• Combine extrinsic reward with an intrinsic 
reward:





•  includes long-term and short-term novelty 
over controllable states 

• Learn  to be able to act greedily 
( following ) or not
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Never Give Up: Puigdomènech Badia, Adrià, et al. "Never Give Up: Learning Directed Exploration Strategies." arXiv (2020): arXiv-2002.

https://arxiv.org/abs/2002.06038
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Never Give Up: Puigdomènech Badia, Adrià, et al. "Never Give Up: Learning Directed Exploration Strategies." arXiv (2020): arXiv-2002.
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Atari Benchmark: 
 what’s the situation before Agent57 ?

• Some games haven’t been solved yet: Pitfall, Skiiing, 
Montezuma revenge …


• The main challenges at this point:


• long term credit assignment


• exploration



Agent 57 
Improvements over NGU

• Increase of the backpropagation 
through time window ( )


• Decomposition of the Q network


• Dynamical adjustment of the 
discount factor and of the 
exploration/exploitation trade-off


➡ Relies on a multi-arm bandit

80 → 160
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Improvement over NGU: 
1. State-Action Value Function Parameterization 
• Splitting the state-value function:





with one NN per  function term where: 


•  is the extrinsic reward


•  is the intrinsic reward


• 


• optimized separately with resp. rewards  and  and same target policy:





• Training with the same sequence of transitions sampled from the replay buffer, but with 2 different 
transformed Retrace loss functions (with  and target policy  and with  and target policy )

Q(x, a, j; θ) = Q(x, a, j; θe) + βjQ(x, a, j; θi)

Q

Q(x, a, j; θe)

Q(x, a, j; θi)

θ = θi ∪ θe

re ri

π(x) = argmaxa∈𝒜Q(x, a, j; θ)

re π ri π
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Improvement over NGU: 
2. Adaptive Exploration over a Family of Policies  
• Select which policy to use at training and evaluation times


• Policies represented by 32 different  


• Non stationary multi-arm bandit running on each of the 256 actors:


• at episode , the meta-controller selects 


• -th actor acts -greedily w.r.t. 


• undiscounted extrinsic reward  used to train the multi-arm 
bandit (sliding window UCB with -greedy exploration

(βj, γj)

k Jk

l ϵl Q(x, a, Jk; θl)

Re
k(Jk)
ϵUCB
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Agent 57 overview
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Some results



On the importance of an appropriate 
choice of the quality measure…



Some results
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Some results

5.35 years !
>13 years !

>21 years !!
>41 years !!!

at 60 frames per second (averaged over 6 seeds)



Discussion
• Useful for robotics ? Some questions:


• How does it scale to higher number of actions ? 
Continuous actions ?


• Can it scale to more realistic images ?


• How robust is it to perturbations ?


• To what extent can the data efficiency be improved ?


• Is it possible to transfer the knowledge acquired ?





Thank you !


