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Regression for Robotics

Introduction

Learning one’s body

I Babies don’t know well their body
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Introduction

Motor adaptation

I Adapting one’s body model (kinematics, dynamics, ...) under changing
circumstances
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Introduction

Motor adaptation: standard experiment

I Standard view: Motor adaptation results from learning a model of the
dynamics

4 / 37



Regression for Robotics

Introduction

Interest for robotics

Learning interaction models

I Impossible to model unknown objects
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Introduction

Outline

non-linear
regression

model-based 
control

adaptive
control

research
at ISIR

mechanical
models

I Tools (regression + control framework) to give a basic account of motor
adaptation

I Quick recap on robotics model and control

I Tour of regression algorithms

I Applications
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Mechanical models

Kinematics

ξ: operational position
q: articular position

forward
kinematics

inverse
kinematics

ξx = l1cos(q1) + l2cos(q1 + q2) + l3cos(q1 + q2 + q3)
ξy = l1sin(q1) + l2sin(q1 + q2) + l3sin(q1 + q2 + q3)
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Mechanical models

Velocity kinematics - Jacobian

q̇: articular velocity
ν: operational velocity

forward
velocity

kinematics

inverse
velocity

kinematics

νx = −(l1sin(q1) + l2sin(q1 + q2) + l3sin(q1 + q2 + q3))q̇1 − (l2sin(q1 + q2) + l3sin(q1 + q2 +
q3))q̇2 − l3sin(q1 + q2 + q3)q̇3

νy = (l1cos(q1) + l2cos(q1 + q2) + l3cos(q1 + q2 + q3))q̇1 + (l2cos(q1 + q2) + l3cos(q1 + q2 +
q3))q̇2 + l3cos(q1 + q2 + q3)q̇3

ν = J (q) q̇
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Mechanical models

Dynamics: where forces come into play

inverse

dynamics

forward

dynamics

k

k+1

k+1

k

k

Forward and inverse dynamics (Lagrange or Newton-Euler equations)

q̈ = A (q)−1 (τ − n (q, q̇)− g (q)− ε (q, q̇) + τ ext
)

τ = A (q) q̈ + n (q, q̇) + g (q) + ε (q, q̇)− τ ext

A: inertia matrix
n: Coriolis and centrifugal effects
g: gravity
ε: unmodeled effects
τext: external forces

q: articular position
q̇: articular velocity
q̇: articular acceleration
τ : torques
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Control

Resolved Motion Rate Control (Whitney 1969)

Planning Inverse
Kinematics

Inverse
Dynamics

I Also called CLIK (Closed Loop Inverse Kinematics)

I From task to torques

I Three steps architecture
I Trajectory generation
I Inverse Kinematics and redundancy
I Inverse Dynamics
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Control

Resolve Motion Rate Control - Trajectory generation

First step, create a goal attractor. ν? = Kp

(
ξ† − ξ

)
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Control

Resolve Motion Rate Control - Inverse kinematics

Second step, inverse the kinematics. ν = J (q) q̇ → q̇? = J (q)+ ν?
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Control

Control redundancy

q̇? = J (q)+ ν? q̇? = J1 (q)+ ν?1 + (J2 (q)PJ1)+ν?2

I redundancy : more actuated degrees of freedom than those necessary to
realise a task

I PJ is a projector used to control redundancy

I necessary to have access to J to compute PJ
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Control

Resolve Motion Rate Control - Inverse Dynamics

Third step, compute the inverse dynamics
τ con = M (q) q̈? + b (q, q̇) + g (q) + ε (q, q̇)− τ ext

τ con = ID (q, q̇, q̈?)

14 / 37



Regression for Robotics

Learning Robotics models

Learning mechanical models

I Forward kinematics: ξ̇ = Fθ(q, q̇) (ξ̇ = J (q) q̇)

I Forward dynamics: q̈ = Gθ(q, q̇,Γ) q̈ = A (q)−1 (Γ− n (q, q̇))

I Regression methods can approximate such functions

I The mapping can be learned incrementally from samples

I Can be used for interaction with unknown objects or users
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Learning Robotics models

Learning inverse kinematics with LWPR

I The model is learned with random
movements along an operational
trajectory

I Input dimension: dim(ξ + q) = 29

I Output dimension: dim(q̇) = 26

D’Souza, A., Vijayakumar, S., and Schaal, S. (2001b). Learning inverse kinematics. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), volume 1, pages 298–303.
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Learning Robotics models

Learning forward/inverse velocity kinematics with LWPR

Forward kinematics Inverse kinematics

I Learning inverse kinematics is conceptually simpler

I But one loses the opportunity to make profit of redundancy

I Rather learn forward kinematics and inverse it
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Learning Robotics models

Learning forward velocity kinematics with LWPR/XCSF

Forward kinematics with LWPR Forward kinematics with XCSF
I Learning the forward velocity kinematics of a Kuka kr16 in simulation.

I They add a constraint to inverse the kinematics and determine the joint
velocities.

Butz, M., Pedersen, G., and Stalph, P. (2009) Learning sensorimotor control structures with XCSF: redundancy exploitation and

dynamic control. In Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages 1171–1178. ACM
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Learning Robotics models

Learning dynamics with XCSF

I Learning dynamics is more difficult

I In dynamics, there is no redundancy

I The dynamics model is 2/3 smaller with XCSF than with LWPR

19 / 37



Regression for Robotics

Learning Robotics models

Learning inverse dynamics with LWPR

I The model is learned along an
operational trajectory

I Input dimension:
dim(q + q̇ + q̈) = 90

I Output dimension: dim(Γ) = 30

I 7, 5.106 training data points and
2200 receptive fields

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). LWPR: A scalable method for incremental online learning in high

dimensions. Technical report, Edinburgh: Press of University of Edinburgh.
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Learning Robotics models

Learning inverse dynamics

q̈ = A (q)−1 (τ − n (q, q̇)− g (q)− ε (q, q̇) + τext
)

Learn Predict

Learning inverse dynamics Predict inverse dynamics
with random movements

along a trajectory

21 / 37



Regression for Robotics

Learning Robotics models

Learning inverse operational dynamics

I Peters and Schaal (2008) learn
inverse dynamics in the
operational space.

I The model is learned along an
operational trajectory.

I Input dimension :
dim(q + q̇ + ν) = 17

I Output dimension: dim(Γ) = 7

Peters, J. and Schaal, S. (2008). Learning to control in operational space. International Journal in Robotics Research,

27(2):197–212.
22 / 37



Regression for Robotics

Learning Robotics models

Optimal control with dynamics learned with LWPR

iLQG u plantlearned
dynamics model

+

feedback
controller

x, dx

L, x

u

u

perturbationsxcost function
(incl. target)

δ

-

- u +-
uδ

I The inverse dynamics model is learned in the
whole space.

I Input dimension :dim(q + q̇ + u) = 10 . Output
dimension : dim(q̈) = 2.

I 1, 2.106 training data points and 852 receptive
fields

I Learning a model of redundant actuation
Shoulder

Elbow

x

y

q
1

q
2

1

2

3

4

5

6

Mitrovic, D., Klanke, S., and Vijayakumar, S. (2008). Adaptive optimal control for redundantly actuated arms. In Proceedings of

the Tenth International Conference on Simulation of Adaptive Behavior.
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Learning Robotics models

Properties of models

I [D’Souza et al., 2001b], [Vijayakumar et al., 2005] and [?] learn
kinematics and dynamics along a trajectory.

I [Butz et al., 2009] learn kinematics in the whole space but do not make
profit of redundancy to combine several tasks.

I [Mitrovic et al., 2008] learn dynamics in the whole space to control
redundant actuators.
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Learning Robotics models

Camille Salaün’s work: combining tasks

To perform several tasks with learnt models, we have chosen to

I learn separately forward kinematics and inverse dynamics

I use classical mathematical inversion to resolve redundancy

I learn models on whole space

I use LWPR and XCSF as learning algorithms
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Results

Learning kinematics with LWPR

Point to point task
500 steps babbling with the kinematics model we want to learn.
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Results

Controlling redundancy with LWPR

compatible task incompatible task
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Results

Learning kinematics of iCub in simulation

I Simulation of a three degrees of freedom shoulder plus one degrees of
freedom elbow
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Results

Learning kinematics on the real robot

iCub realising two tasks: following a circle and clicking a numpad
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Results

Inverse dynamics and motor adaptation

Applying a vertical force after 2 seconds during a point to point task.
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Results

Inverse dynamics and after effects

0.3

0.35

Releasing the force after 2 seconds during a point to point task.

I We reproduce Shadmehr’s experiments
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Results

Learning dynamics

I Simulation of a three degrees of freedom planar arm
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Results

Learning forward models
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I For complex robots, the CAD model is not so accurate (calibration issue)

Sicard, G., Salaün, C., Ivaldi, S., Padois, V., and Sigaud, O. (2011) Learning the velocity kinematics of icub for model-based

control: XCSF versus LWPR. In Proceedings Humanoids 2011, pp. 570-575.
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Results

Comparing algorithms

I Main difficulty: tuning parameters for fair comparison

I Many specific difficulties for robotics reproducibility

Droniou, A., Ivaldi, S., Padois, V., and Sigaud, O. (2012) Autonomous Online Learning of Velocity Kinematics on the iCub: a

Comparative Study. In IROS 2012, to appear
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Perspectives

Motor adaptation and the cerebellum

s

s

MGD

x(t)

I Structural similarity between LWPR-like algos and cerebellum: Purkinje
Cells = receptive fields

I + the problem of state estimation over time given delays
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Perspectives

Learning dynamical interactions with objects

I Using a force/torque sensor to detect exerted force on shoulder

I Using artificial skin to detect contact points

I Compliant control of motion (CODYCO EU project)

I Learning high-dimensional models

36 / 37



Regression for Robotics

Perspectives

Any question?
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Edité dans Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 1, pages
298–303.

Mitrovic, D., Klanke, S., & Vijayakumar, S. (2008).

Adaptive optimal control for redundantly actuated arms.
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