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The Big Picture
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> A very partial view of the whole RL literature
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The four routes to deep RL
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» Four different ways to come to Deep RL
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The Tabular RL route
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» The favorite route of beginners
» Start from Sutton&Barto, present Q-learning, SARSA and Actor-Critic

» Add function approximation with NNs, go to DQN, then DDPG
o (w1 =

Sutton, R. S. & Barto, A. G. (1998) Reinforcement Learning: An Introduction. MIT Press.
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The Approximate Dynamic Programming route

Sequential :
Decision Making H

Dynamic |
programming

Approx. Dyna. Prog.

» The favorite route of mathematicians
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» | never travelled this route
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: Solving the curses of dimensiorEIIity, volﬁe 703. John Wiley & SO"SCE Hao
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The Evolutionary route
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Deep Neuroevolution

» The favorite route of black-box optimisation people
» Much more efficient than RL people think

Tim Salimans, Jonathan Ho, Xi Chen, and llya Sutskever. Evolution strategies as a scalable alterpative to reinforcement learning. ) o v
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arXiv preprint arXiv:1703.03864, 2017
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The Policy Search route
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Deep RL bias-variance

» The favorite route of roboticists
» The one I'm travelling in these lessons
» Central question: difference between PG with baseline and Actor-Critic

Marc P. Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics. Foundations and Trends® i
Robotics, 2(1-2):1-142, 2013
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The policy search problem

Policy Gradient derivation (3 parts)

From policy gradient with baseline to actor-critic
Bias-variance trade-off

On-policy vs off-policy

TRPO, ACKTR
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DDPG, TD3
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. Wrap-up
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Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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