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Key Policy Gradient Steps

1. Splitting the trajectory into steps: Markov Hypothesis required
Key difference to Direct Policy Search methods
Makes it possible to optimize trajectories using a gradient over policy params

2. Introducing the Q function
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» Makes it possible to perform policy updates from a single step
»> Opens the way to the replay buffer, critic networks, partly off-policy methods
» 3. Using baselines

P> Makes it possible to reduce variance

>

When learning critics from bootstrap, becomes actor-critic
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Bias-variance, Being Off-policy

+ + + + +
awawaNsT ,B(S)
V‘SG’E E E E E Monte Carlo
O e D D D O +
*
')
V‘SH’E Vis) One-step TD Critic
D D D D Do O
+ + + + *
N Y F Yy o N-step TD
Visg) ™= I I ) 3 ret (8)
return
MBO OO @ ® T

» Continuum between Monte Carlo methods and bootstrap methods
» Playing on the continuum helps finding the right bias-variance trade-off

» Being off-policy requires bootstrap

» No deep RL algorithm is truly off-policy, it's a matter of degree
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Final view
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continuum using N-step return or A return
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Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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