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Introduction

Why this class (1)?

I A lot of buzz about deep reinforcement learning as an engineering tool

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., et al. (2015) Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.

(2017) Mastering the game of go without human knowledge. Nature, 550(7676):354–359
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Introduction

Why this class (2)?

I The reinforcement learning framework is relevant in computational
neuroscience

I This aspect will be left out

Takahashi, Y., Schoenbaum, G., & Niv, Y. (2008) Silencing the critics: understanding the effects of cocaine sensitization on

dorsolateral and ventral striatum in the context of an actor/critic model. Frontiers in neuroscience, 2:14

Roesch, M. R., Calu, D. J., & Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between

differently delayed or sized rewards. Nature Neuroscience, 10(12):1615–1624
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Introduction

General goal

I Provide the machine learning background

I Explain basic concepts from the discrete case

I Provide an introduction to deep RL algorithms
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Introduction

Introductory books

1. [Sutton and Barto, 1998]: the ultimate introduction to the field, in the discrete
case

2. New edition available:
https://drive.google.com/file/d/1xeUDVGWGUUv1-ccUMAZHJLej2C7aAFWY/view

3. [Buffet and Sigaud, 2008]: in french

4. [Sigaud and Buffet, 2010]: (improved) translation of 3

Sutton, R. S. & Barto, A. G. (1998) Reinforcement Learning: An Introduction. MIT Press.
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Different learning mechanisms

Supervised learning

I The supervisor indicates to the agent the expected answer

I The agent corrects a model based on the answer

I Typical mechanism: gradient backpropagation, RLS

I Applications: classification, regression, function approximation...
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Different learning mechanisms

Cost-Sensitive Learning

I The environment provides the value of action (reward, penalty)

I Application: behaviour optimization
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Different learning mechanisms

Reinforcement learning

I In RL, the value signal is given as a scalar

I How good is -10.45?

I Necessity of exploration
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Different learning mechanisms

The exploration/exploitation trade-off

I Exploring can be (very) harmful

I Shall I exploit what I know or look for a better policy?

I Am I optimal? Shall I keep exploring or stop?

I Decrease the rate of exploration along time

I ε-greedy: take the best action most of the time, and a random action from time
to time
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Different learning mechanisms

What’s next?

1. Markov Decision Processes

2. Dynamic programming

3. Model-free Reinforcement Learning

4. Advanced discrete Reinforcement Learning
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Different learning mechanisms

Markov Decision Processes

I S: state space

I A: action space

I T : S ×A→ Π(S): transition function

I r : S ×A→ IR: reward function

I An MDP describes a problem, not a solution to that problem
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Different learning mechanisms

Stochastic transition function

I Deterministic problem = special case of stochastic

I T (st, at, st+1) = p(s′|s, a)
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Different learning mechanisms

Rewards: over states or action?

I Reward over states

I Reward over actions in states
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Different learning mechanisms

Deterministic versus stochastic policy

I Goal: find a policy π : S → A maximizing an agregation of rewards on the
long run

I Important theorem: for any MDP, there exists a deterministic policy that
is optimal
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Different learning mechanisms

Agregation criterion: mere sum

I The computation of value functions assumes the choice of an agregation
criterion (discounted, average, etc.)

I The sum over a infinite horizon may be infinite, thus hard to compare

I Mere sum (finite horizon N): V π(S0) = r0 + r1 + r2 + . . .+ rN
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Different learning mechanisms

Agregation criterion: average over a window

I Average criterion on a window: V π(S0) = r0+r1+r2
3

...
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Different learning mechanisms

Agregation criterion: discounted

I Discounted criterion: V π(st0) =
∑∞
t=t0

γtr(st, π(st))

I γ ∈ [0, 1]: discount factor
I if γ = 0, sensitive only to immediate reward
I if γ = 1, future rewards are as important as immediate rewards

I The discounted case is the most used
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Different learning mechanisms

Markov Property

I An MDP defines st+1 and rt+1 as f(st, at)

I Markov property : p(st+1|st, at) = p(st+1|st, at, st−1, at−1, ...s0, a0)

I In an MDP, a memory of the past does not provide any useful advantage

I Reactive agents at+1 = f(st), without internal states nor memory, can be
optimal
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Different learning mechanisms

Markov property: Limitations

I Markov property is not verified if:
I the state does not contain all useful information to take decisions

(POMDPs)
I or if the next state depends on decisions of several agents (Dec-MDPs,

Dec-POMDPs, Markov games)
I or if transitions depend on time
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Dynamic Programming

Dynamic Programming

I Once we have defined an MDP

I Dynamic programming methods can find the optimal policy

I Assuming they know everything about the MDP

I Reinforcement Learning applies when the transition and reward functions
are unknown

I To define dynamic programming methods, we need value functions
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Value functions

Value and action value functions

I The value function V π : S → IR records the agregation of reward on the
long run for each state (following policy π). It is a vector with one entry
per state

I The action value function Qπ : S ×A→ IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy π). It is a matrix with one entry per state and per action

I In the remainder, we focus on V , trivial to transpose to Q
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Value functions

Bellman equation over a Markov chain: recursion

Given the discounted reward agregation criterion:

I V (s0) = r0 + γr1 + γ2r2 + γ3r3 + ...

I V (s0) = r0 + γ(r1 + γr2 + γ2r3 + ...)

I V (s0) = r0 + γV (s1)

I More generally V (st) = rt + γV (st+1)
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Value functions

Bellman equation: general case

I Generalisation of V (st) = rt + γV (st+1) over all possible trajectories

I The expectation of a random variable is the sum of the realizations
weighted by their probabilities

I The realizations are the next states

I Deterministic π: V π(s) = r(s, π(s)) + γ
∑
s′ p(s

′|s, π(s))V π(s′)
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Value functions

Bellman equation: general case

I Generalisation of V (st) = rt + γV (st+1) over all possible trajectories

I The expectation of a random variable is the sum of the realizations
weighted by their probabilities

I The realizations are the next states

I Stochastic π: V π(s) =
∑
a π(a|s)[r(s, a) + γ

∑
s′ p(s

′|s, a)V π(s′)]
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Bellman operators

Recursive operators and convergence

I If we define an operator T such that Xn+1 ← TXn

I It T is contractive, then through repeated application of T , Xn will
converge to some fixed point

I For instance, if T divides by 2, Xn converges to 0
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Bellman operators

The Bellman optimality operator (Value Iteration)

I We call Bellman optimality operator (noted T ∗) the application

Vn+1(s)← max
a∈A

[
r(s, a) + γ

∑
s′

p(s′|s, a)Vn(s′)]

I If γ < 1, T ∗ is contractive

I By iterating, computes the value of the current policy

I The optimal value function is the fixed-point of T ∗: V ∗ = T ∗V ∗

I Value iteration: Vn+1 ← T ∗Vn

Puterman, M. L. (2014) Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.
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Bellman operators

The Bellman operator (Policy Iteration)

I We call Bellman operator (noted Tπ) the application

V πn+1(s)← r(s, π(s)) + γ
∑
s′

p(s′|s, π(s))V πn (s′)

I If γ < 1, T is contractive

I Converges to optimal value and policy
I Policy Iteration:

I Policy evaluation:
V πn+1 ← TπV πn

I Policy improvement:
∀s ∈ S, π′(s)← argmaxa∈A

∑
s′ p(s

′|s, a)[r(s, a) + γV πn (s′)]
or
∀s ∈ S, π′(s)← argmaxa∈A[r(s, a) + γ

∑
s′ p(s

′|s, a)V πn (s′)]

I Note:
∑
s′,r p(s

′, r|s, a)[r + γV (s′)] = r + γ
∑
s′ p(s

′|s, a)V (s′)
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Algorithms

Value Iteration: the algorithm

I Taken from Sutton & Barto, 2018, p. 83

I Reminder:
∑
s′,r p(s

′, r|s, a)[r + γV (s′)] = r + γ
∑
s′ p(s

′|s, a)V (s′)
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Algorithms

Value Iteration in practice

∀s ∈ S, Vi+1(s)← max
a∈A

[
r(s, a) + γ

∑
s′

p(s′|s, a)Vi(s
′)]
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Algorithms

Value Iteration in practice

We have iterated on values, and determined a policy out of it (without
necessarily representing it if using Q(s, a))
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Algorithms

Policy Iteration: the algorithm

I Taken from Sutton & Barto, 2018, p. 80

I Note:
∑
s′,r p(s

′, r|s, a)[r + γV (s′)] = r + γ
∑
s′ p(s

′|s, a)V (s′)
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Algorithms

Policy Iteration in practice

∀s ∈ S, Vi(s)← evaluate(πi(s))
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Algorithms

Policy Iteration in practice

Here we have managed a policy and a value representations at all steps
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Algorithms

Generalized Policy Iteration

I Policy iteration evaluates each intermediate policy up to convergence.
This is slow.

I Instead, evaluate the policy for N iterations, or even not for all states.

I Asynchronous dynamics programming: decoupling policy evaluation and
improvement

I Taken from Sutton & Barto, 2018
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Algorithms

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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