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Monte Carlo Tree Search

Motivation

I A domain independent algorithm to plan in one’s head to determine the
best next action

I Example: two-player games (Chess, Go...).

I Minimax defeated Kasparov in 1998, was considering the whole tree, too
expensive at Go

I MCTS was the leading technique at Go before AlphaZero

I Requires an internal simulator

I Requires a capability to reset anywhere

I Very efficient tree search method

Gelly, S., Wang, Y., Munos, R., and Teytaud, O. Modification of UCT with patterns in Monte-Carlo go. Technical Report 32,

RR-6062, INRIA, 2006.

2 / 24



From MCTS to Hilbert

Monte Carlo Tree Search

Overview

I Somewhere between breadth-first and depth-first search

I Similar to A∗ without the admissible heuristic

I The cost is in the numerous simulations → AlphaZero improves this

I Four processes: Selection, Expansion, Simulation, Update
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Monte Carlo Tree Search

Initial step

I A node represents a discrete state, an edge represents a discrete action

I The process starts with an empty node

I This node corresponds to the current state where the next action has to
be chosen
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Monte Carlo Tree Search

Initial step: Expansion

I The MCTS agent tries actions (in its head), resulting in adding child nodes
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Monte Carlo Tree Search

Initial step: Simulation

I From each selected node, it performs random simulations (Monte Carlo)
to evaluate the node (without adding nodes yet)

I Initial child node selection is random
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Monte Carlo Tree Search

Initial step: Update

I It updates the values of children based on the statistics of the simulations

I The value is a state value V (s)
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Monte Carlo Tree Search

Initial step: Update parents

I It also updates the values of parents

I Note that state values V (s) could be changed into state-action values
Q(s, a) using Q(s, a) = r(s, a) + γV (s′)

I In Go, Q(s, a) = V (s′) (no intermediate reward)
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Monte Carlo Tree Search

Selection

I Selection operates over all expanded nodes
I That’s where the reset-anywhere property is necessary
I It favors leaf nodes with a higher chance of success
I But it avoids ignoring too much lower success nodes
I A lower N(s, a) results in a higher U(s, a)
I The selected node is expanded, and the process is repeated
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Monte Carlo Tree Search

Action Selection

I After some budget, the search process stops

I The agent performs the action leading to the most visited first level child

I In exploration mode, some noise is added

I The current agent state is updated, and the process starts again

I MPC-like process

I A lot of computations are forgotten...
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Monte Carlo Tree Search

Summary

I MCTS plays well Go or chess, but is quite inefficient
I Areas for improvement:

I Avoid forgetting Q(s, a) after each step
I Avoid using Monte Carlo simulations again each time to evaluate Q(s, a)
I Instead of running random simulations, play good moves with higher

probabilities

I Adding a critic network solves these issues
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AlphaZero

Actor-Critic vs Monte Carlo

I Monte Carlo direct gradient: Estimate Q(s, a) over rollouts

I Monte Carlo model: learn a model Q̂(s, a) over rollouts using MC regression,
throw it away after each update

I Bootstrap: Update a model Q̂(s, a) over samples using TD methods,
keep it over policy gradient steps

I The bootstrap approach is much more sample efficient

I It introduces bias and reduces variance
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AlphaZero

MCTS + Critic

I Learns a critic Q̂(s, a) for all states over all rollouts

I Using a DQN-like architecture

I Still builds a plan with an MPC-like approach, not using maxa Q̂(s, a) as policy

I The MCTS search process helps balancing samples, favors exploration

I In AlphaZero:

I Instead of playing random rollouts, can play rollouts driven by Q̂(s, a)
I The critic Q̂(s, a) can be pre-trained with expert moves (AlphaGo vs

AlphaZero)
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AlphaZero

AlphaZero: from DQN-like to actor-critic

I Learning a policy and a V̂ (s) function is more efficient than using a Q̂(s, a)
function
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AlphaNPI

Motivation

I AlphaZero is very efficient at solving single-task, discrete action problems

I AlphaNPI is an extension to multitask, hierarchical problem solving
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AlphaNPI

Step 1: dealing with non-Markov problems

I An LSTM stores some context from the previous state
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AlphaNPI

Step 2: making it multitask

I Using the task as input makes the architecture multitask (equivalent to GC-RL)

I Additional feature inherited from NPI: using state and task embedding

I Impact of embeddings not studied, ablation needed
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AlphaNPI

Step 3: defining a (loose) hierarchy of tasks

I The list of task is where expert knowledge is inserted

I A task can only call a subtask of lower or equivalent level

I This helps constraining recursive tree search

I Additional constrainsts with preconditions can be used
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AlphaNPI

Recursive tree search: implementation

I When a task calls a subtask

I A subtree is created
I The current task context is stored into a stack
I And unstacked upon termination (as when calling a function in

programming languages)

I Thus in AlphaNPI we have a tree of MCTS searches (tree of trees)
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AlphaNPI

Summary

I AlphaNPI is applied to discrete actions

I hilbert deals with continuous actions

I It learns forward models of the lowest level

I It provides a very sample efficient approach to continuous action HRL
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Hilbert

Low-level controller: GC-RL

I GC-RL using ddpg (or sac) + her
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Hilbert

Learning a behavioral model of low level controller

I This is a supervised learning problem

I The FiLM layer improves accuracy

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018) Film: Visual reasoning with a general conditioning

layer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32
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Hilbert

Recursive tree search: continuous action case

I The lowest level stops the recursion

I hilbert can perform hierarchical planning without rolling the low-level policy

I By using the behavioral model, higher level planning is learned without sampling

I Extremely sample efficient search approach
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Hilbert

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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