
Reinforcement Learning

Reinforcement Learning
4. Model-free reinforcement Learning

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud

1 / 20

Reinforcement Learning

Introduction

Reinforcement learning

I In Dynamic Programming (planning), T and r are given

I Reinforcement learning goal: build π∗ without knowing T and r

I Model-free approach: build π∗ without estimating T nor r

I Actor-critic approach: special case of model-free

I Model-based approach: build a model of T and r and use it to improve
the policy

2 / 20

Reinforcement Learning

Temporal difference methods

Incremental estimation

I Estimating the average immediate (stochastic) reward in a state s

I Ek(s) = (r1 + r2 + ...+ rk)/k

I Ek+1(s) = (r1 + r2 + ...+ rk+rk+1)/(k+1)

I Thus Ek+1(s) = k/(k + 1)Ek(s) + rk+1/(k + 1)

I Or Ek+1(s) = (k + 1)/(k + 1)Ek(s)− Ek(s)/(k + 1) + rk+1/(k + 1)

I Or Ek+1(s) = Ek(s) + 1/(k + 1)[rk+1 − Ek(s)]
I Still needs to store k

I Can be approximated as

Ek+1(s) = Ek(s) + α[rk+1 − Ek(s)] (1)

I Converges to the true average (slower or faster depending on α) without
storing anything

I Equation (1) is everywhere in reinforcement learning

3 / 20

Reinforcement Learning

Temporal difference methods

Temporal Difference error

I The goal of TD methods is to estimate the value function V (s)

I If estimations V (st) and V (st+1) were exact, we would get
V (st) = rt + γV (st+1)

I The approximation error is

δt = rt + γV (st+1)− V (st) (2)

I δt measures the error between V (st) and the value it should have given
rt + γV (st+1)

I If δt > 0, V (st) is under-evaluated, otherwise it is over-evaluated

I V (st)← V (st) + αδt should decrease the error (value propagation)

4 / 20

Reinforcement Learning

Temporal difference methods

Temporal Difference update rule

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (3)

I Combines two estimation processes:
I incremental estimation (1)
I value propagation from V (st+1) to V (st) (2)

5 / 20

Reinforcement Learning

Temporal difference methods

The Policy evaluation algorithm: TD(0)

I An agent performs a sequence s0, a0, r0, · · · , st, at, rt, st+1, at+1, rt+1, · · ·
I Performs local Temporal Difference updates from st, st+1 and rt

I Proved in 1994 provided ε-greedy exploration

Dayan, P. & Sejnowski, T. (1994). TD(lambda) converges with probability 1. Machine Learning, 14(3):295–301.

6 / 20

Reinforcement Learning

Temporal difference methods

ε-greedy exploration

I Choose the best action with a high probability, other actions at random
with low probability

I Same properties as random search

I Every state-action pair will be enough visited under an infinite horizon

I Useful for convergence proofs

7 / 20

Reinforcement Learning

Temporal difference methods

Roulette wheel

p(ai) =
V (ai)∑
j V (aj)

I The probability of choosing each action is proportional to its value

8 / 20

Reinforcement Learning

Temporal difference methods

Softmax exploration

p(ai) =
e
V (ai)
β∑

j e
V (aj)

β

I The parameter β is called the temperature
I If β → 0, increase contrast between values
I If β →∞, all actions have the same probability → random choice
I Meta-learning: tune β dynamically (exploration/exploitation)
I More used in computational neurosciences

George Velentzas, Costas Tzafestas, and Mehdi Khamassi. (2017) Bio-inspired meta-learning for active exploration during

non-stationary multi-armed bandit tasks. In 2017 Intelligent Systems Conference (IntelliSys), pp. 661–669. IEEE
9 / 20

Reinforcement Learning

Temporal difference methods

TD(0): limitation

I TD(0) evaluates V (s)

I One cannot infer π(s) from V (s) without knowing T : one must know
which a leads to the best V (s′)

I Three solutions:
I Q-learning, sarsa: Work with Q(s, a) rather than V (s).
I actor-critic methods: Simultaneously learn V and update π
I dyna: Learn a model of T : model-based (or indirect) reinforcement learning

10 / 20

Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Value function and Action Value function

I The value function V π : S → IR records the agregation of reward on the
long run for each state (following policy π). It is a vector with one entry
per state

I The action value function Qπ : S ×A→ IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy π). It is a matrix with one entry per state and per action

11 / 20

Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

sarsa

I Reminder (TD):V (st)← V (st) + α[rt + γV (st+1)− V (st)]

I sarsa: For each observed (st, at, rt, st+1, at+1):
Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]

I Policy: perform exploration (e.g. ε-greedy)

I One must know the action at+1, thus constrains exploration

I On-policy method: more complex convergence proof

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence Results for Single-Step On-Policy Reinforcement

Learning Algorithms. Machine Learning, 38(3):287–308.

12 / 20

Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

sarsa: the algorithm

I Taken from Sutton & Barto, 2018

13 / 20

Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Q-learning

I For each observed (st, at, rt, st+1):

Q(st, at)← Q(st, at) + α[rt + γmax
a∈A

Q(st+1, a)−Q(st, at)]

I maxa∈AQ(st+1, a) instead of Q(st+1, at+1)

I Off-policy method: no more need to know at+1

I Policy: perform exploration (e.g. ε-greedy)

I Convergence proven given infinite exploration

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge,

England.

Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning. Machine Learning, 8:279–292

14 / 20

Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Q-learning: the algorithm

I Taken from Sutton & Barto, 2018

15 / 20

Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Q-learning in practice

I Build a states×actions table (Q-Table, eventually incremental)

I Initialise it (randomly or with 0 is not a good choice)

I Apply update equation after each action

I Problem: it is (very) slow

16 / 20

Reinforcement Learning

Temporal difference methods

Actor-Critic approaches

Actor-critic: Naive design

I Discrete states and actions, stochastic policy

I An update in the critic generates a local update in the actor

I Critic: compute δ and update V (s) with Vk+1(s)← Vk(s) + αkδk

I Actor: Pπk+1(a|s)← Pπk (a|s) + αk′δk
I Link to Policy Iteration: a representation of the value (critic) and the policy

(actor)

I NB: no need for a max over actions

I NB2: one must know how to “draw” an action from a probabilistic policy (not
straightforward for continuous actions)

17 / 20

Reinforcement Learning

Temporal difference methods

Actor-Critic approaches

From Q(s, a) to Actor-Critic

state / action a0 a1 a2 a3
e0 0.66 0.88* 0.81 0.73
e1 0.73 0.63 0.9* 0.43
e2 0.73 0.9 0.95* 0.73
e3 0.81 0.9 1.0* 0.81
e4 0.81 1.0* 0.81 0.9
e5 0.9 1.0* 0.0 0.9

state chosen action
e0 a1
e1 a2
e2 a2
e3 a2
e4 a1
e5 a1

I Given a Q− Table, one must determine the max at each step

I This becomes expensive if there are numerous actions

I Store the best value for each state

I Update the max by just comparing the changed value and the max

I No more maximum over actions (only in one case)

I Storing the max is equivalent to storing the policy

I Update the policy as a function of value updates

18 / 20

Reinforcement Learning

Temporal difference methods

Actor-Critic approaches

Corresponding labs

I See https://github.com/osigaud/rl_labs_notebooks

I One notebook about model free reinforcement learning

I Implement the TD-learning algorithm, the Q-learning algorithm, the
sarsa algorithm and compare them

I In a separate actor-critic notebook, implement the actor-critic algorithm,
using the V and the Q functions in the critic

19 / 20

https://github.com/osigaud/rl_labs_notebooks

Reinforcement Learning

Temporal difference methods

Actor-Critic approaches

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

20 / 20

Olivier.Sigaud@upmc.fr

Reinforcement Learning

References

Dayan, P. and Sejnowski, T.

TD(lambda) converges with probability 1.
Machine Learning, 14(3):295–301, 1994.

Velentzas, G., Tzafestas, C., and Khamassi, M.

Bio-inspired meta-learning for active exploration during non-stationary multi-armed bandit tasks.
In 2017 Intelligent Systems Conference (IntelliSys), pp. 661–669. IEEE, 2017.

Watkins, C. J. C. H.

Learning with Delayed Rewards.
PhD thesis, Psychology Department, University of Cambridge, England, 1989.

20 / 20

	Introduction
	Temporal difference methods
	Action Value Function Approaches
	Actor-Critic approaches

	References

