e
Tabular Reinforcement Learning

Tabular Reinforcement Learning

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud

e
Tabular Reinforcement Learning

Reinforcement learning

In Dynamic Programming (planning), T" and r are given
Reinforcement learning goal: build 7* without knowing T" and r
Model-free approach: build 7* without estimating T" nor r

Actor-critic approach: special case of model-free

vvyVvyyvyy

Model-based approach: build a model of T" and r and use it to improve
the policy

ISIR

DESSISTEMES

2 /29

Tabular Reinforcement Learning

Temporal difference methods

Incremental estimation

vVvVvVvYyVvVvYVYyYVvYyyYy

Estimating the average immediate (stochastic) reward in a state s
Ey(s)=(ri+re+...+r)/k

Eyt1(s) = (ri+r2+ ...+ rptres1)/(k+1)

Thus Exy1(s) = k/(k+ 1)Ex(s) + res1/(k+1)

OF Ejpa(s) = (k+1)/(k + 1) By(s) — Ei()/(k +1) + i1 /(k + 1)
Or Eky1(s) = Ex(s) + 1/(k + Dlrrt1 — Ex(s)]

Still needs to store k

Can be approximated as

Ei+1(s) = Ex(s) + afrir1 — Ex(s)] (1)

Converges to the true average (slower or faster depending on a)) without
storing anything

Equation (1) is everywhere in reinforcement learning

3/29

Tabular Reinforcement Learning

Temporal difference methods

Temporal Difference error

V(st) V(st11)

G

» The goal of TD methods is to estimate the value function V(s)

> If estimations V' (s;) and V(s;4+1) were exact, we would get
V(st) = re + 9V (st4+1)
» The approximation error is

0y =1e + YV (se41) — V(se) (2)

> J, measures the error between V (s;) and the value it should have given
re + YV (St41)
» If 6; > 0, V(s¢) is under-evaluated, otherwise it is over-evaluated

> V(s¢) < V(s¢) + ad; should decrease the error (value propagation)

4/29

e
Tabular Reinforcement Learning

Temporal difference methods

Temporal Difference update rule

e

V(si.1) «—V(st)«<—V(st41)

DO B

V(st) « V(st) +afre + 4V (se41) — V(se)] (3)

» Combines two estimation processes:

» incremental estimation (1)
> value propagation from V(s¢41) to V(s¢) (2)

5/29

e
Tabular Reinforcement Learning

Temporal difference methods

The Policy evaluation algorithm: TD(0)

> An agent performs a sequence S0, a0, T0, "« , St, Aty Tty St41, Qtt1, Ttt1s " *
» Performs local Temporal Difference updates from s;, si+1 and r;

> Proved in 1994 provided e-greedy exploration

Dayan, P. & Sejnowski, T. (1994). TD(lambda) converges with probability 1. Machine Learning, 14(3):295-301.

e
Tabular Reinforcement Learning

Temporal difference methods

e-greedy exploration

15 50 30 — s N |
Vi) V(a) V(@) V(ay) pla) pla) p(a) pa)

» Choose the best action with a high probability, other actions at random
with low probability

» Same properties as random search
» Every state-action pair will be enough visited under an infinite horizon

» Useful for convergence proofs

7/29

Tabular Reinforcement Learning

Temporal difference methods

Roulette wheel

)

k "
p(a)
15 50| |30
V(ay) V(as)

V() V()

N V()
P(08) = =V lay)

» The probability of choosing each action is proportional to its value

Tabular Reinforcement Learning

Temporal difference methods

Softmax exploration

15 50 m [
Ve

Vi) V() V(ay) pla) pla) @) play
v(; i)
e
p (a;) - V()

Z]‘e B

The parameter (3 is called the temperature

If B — 0, increase contrast between values

If B — o0, all actions have the same probability — random choice
Meta-learning: tune 8 dynamically (exploration/exploitation)
More used in computational neurosciences

\ A A A/

@ George Velentzas, Costas Tzafestas, and Mehdi Khamassi. (2017) Bio-inspired meta-learning for active exploration during
non-stationary multi-armed bandit tasks. In 2017 Intelligent Systems Conference (IntelliSys), pp. 661-669. IEEE

9/29

e
Tabular Reinforcement Learning

Temporal difference methods

TD(0): limitation

» TD(0) evaluates V(s)

» One cannot infer 7(s) from V (s) without knowing T": one must know
which a leads to the best V(s')
» Three solutions:

> Q-LEARNING, SARSA: Work with Q(s, a) rather than V(s).
» ACTOR-CRITIC methods: Simultaneously learn V' and update 7
» DYNA: Learn a model of T: model-based (or indirect) reinforcement learning

R

Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

Value function and Action Value function

» The value function V™ : S — IR records the agregation of reward on the

long run for each state (following policy 7). It is a vector with one entry
per state

» The action value function Q™ : S x A — IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy 7). It is a matrix with one entry per state and per actio

11/ 29

e
Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

SARSA

» Reminder (TD):V (s:) + V(s¢) + afre + vV (se41) — V(se)]
> SARSA: For each observed (s, at, 7t, St41, Ge41):

Qs at) < Q(se,ar) + afre + yQ(st41, ary1) — Q(se, ar)]
» Policy: perform exploration (e.g. e-greedy)
» One must know the action a1, thus constrains exploration
» On-policy method: more complex convergence proof

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence Results for Single-Step On-Policy Reinforcement
Learning Algorithms. Machine Learning, 38(3):287-308.

e
Tabular Reinforcement Learning

Temporal difference methods

Action Value Function Approaches

SARSA: the algorithm

a (on-policy TD control) for estimating Q ~ ¢,

Algorithm parameters: step size o € (0, 1], small £ > 0
Initialize Q(s,a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal, -) = 0
Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q5. 4) - Q(S, 4) + o[R +7Q(S". 4') — Q(S. 4)]
S« S A+ AL
until S is terminal

» Taken from Sutton & Barto, 2018

Tabular Reinforcement Learning
Temporal difference methods

Action Value Function Approaches

Q-LEARNING

» For each observed (st, a, 7, St41):
Q(st; ar) = Q(se, ar) + afre + ymax Q(se+1,a) — Q(se, ar)]
maxqeca Q(St+1,a) instead of Q(s¢41,at+1)

Off-policy method: no more need to know a1

Policy: perform exploration (e.g. e-greedy)

vvyyvyy

Convergence proven given infinite exploration

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge,
England.

Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning. Machine Learning, 8:279-292

Tabular Reinforcement Learning
Temporal difference methods

Action Value Function Approaches

Q-LEARNING: the algorithm

Q-learning (off-policy TD control) for estimating 7 ~ m,

Algorithm parameters: step size a € (0,1], small ¢ > 0
Initialize Q(s, a), for all s € $T,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) + Q(S, A) + a[R + ymax, Q(5,a) — Q(S, A)]
S« 9

until S is terminal

» Taken from Sutton & Barto, 2018

15 / 29

Tabular Reinforcement Learning
Temporal difference methods

L Action Value Function Approaches

Q-LEARNING in practice

-+
<0.0»
+

+ + +
<+0.0» 40.0» <40.0»
+ + +

+
“0.0»
+

<0.0»

+ *
«0.0» <0.0»
+ +

+ +
«0.0» <0.0»
+ +

<0.0»
+

> Build a statesxactions table (Q-Table, eventually incremental)

» Initialise it (randomly or with O is not a good choice)

» Apply update equation after each

» Problem: it is (very) slow

action

e
Tabular Reinforcement Learning

Temporal difference methods

Actor-Critic approaches

Actor-critic: Naive design

sensations
Environment
....... reward 5
A actions
> Discrete states and actions, stochastic policy
» An update in the critic generates a local update in the actor
» Critic: compute § and update V(s) with Vi1 (s) < Vi (s) + o0y
> Actor: PT,(als) < P (als) + ay/d
» Link to Policy Iteration: a representation of the value (critic) and the policy
(actor)

» NB: no need for a max over actions
»> NB2: one must know how to “draw” an action from a probabilistic policy (not

straightforward for continuous actions)

17 / 29

Tabular Reinforcement Learning
Temporal difference methods

L Actor-Critic approaches

From Q(s, a) to Actor-Critic

state / action ao a1 as as state chosen action
€o 0.66 | 0.88* | 0.81 | 0.73 €o a1
e1 0.73 | 0.63 0.9% | 043 el az
€2 0.73 0.9 0.95*% | 0.73 e az
es 0.81 0.9 1.0* | 0.81 es3 az
n 0.81 | 1.0* 0.81 0.9 e4 a1
es 0.9 1.0* 0.0 0.9 es a1
» Given a Q — Table, one must determine the max at each step
» This becomes expensive if there are numerous actions
» Store the best value for each state
» Update the max by just comparing the changed value and the max
» No more maximum over actions (only in one case)
» Storing the max is equivalent to storing the policy
» Update the policy as a function of value updates

18 / 29

Tabular Reinforcement Learning

Biases

Maximization in RL

» Two maximization steps:
> In action selection:
7(s) ~ argmax Q(s, a)
acA

might be stochastic or contain some exploration
» In Q-LEARNING, in the value update rule

Q(st,at) + Q(st,at) + afre41 + 7y max Q(st+1,a) — Q(st,at)]

Tabular Reinforcement Learning

Biases

Maximization bias

max of
estimates

max of true
values

» In action selection, a maximum over estimated Q(s, a) is performed

» “In these algorithms, a maximum over estimated values is used implicitly
as an estimate of the maximum value, which can lead to a significant
positive bias.”

» Example: imagine all true Q(s, a) values are null

Ia Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction (Second edition). MIT Press

20 /29

Tabular Reinforcement Learning

Biases

Double Q-LEARNING

a* = argmaz,Q1(a)

Q2(a”)
Q1 Q2
» Solution: using two Q-Tables, one for value estimation and one for action

selection

a* = argmax, Q1(a)

Q2(a*) = Q2(argmax, Q1(a)) unbiased estimate of Q(a™)
a’* = argmax, Q2(a)

Q1(a"™) = Q1(argmax, Q2(a)) unbiased estimate of Q(a’")

Randomly select one of each at all steps

vVvyVvyyvyy

ISIR

hed
DESSISTEMES

@ Van Hasselt, H. (2010) Double g-learning. Advances in Neural Information Processing Systems, pages 2613-2621

21 /29

Tabular Reinforcement Learning

Biases

Double Q-LEARNING: results

100% N(=0.1,1)

75%

% left
actions 50%r "
from A

Double

2509 \Q-learning

5%!
0

1 100 200 300
Episodes

Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with e = 0.1. In contrast, Double Q-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.

u}

)]
I
i

it

22 /29

Tabular Reinforcement Learning

Biases

Over-estimation bias propagation

- - - - N

“or | tur | o> | €wr | <
- - - - -
+ + + +

“ur | €ur | <ur «u
- - - -
+ 2 +

g <l «o
- - -
+ -+

“«or P
- -

» Some initial bias cannot be prevented due to Q-Table initialization

» In Q-LEARNING, due to the max operator, the maximization bias
propagates

» No propagation of under-estimation

» The same holds for DDPG without a max operator! o

arXiv:1802.09477 —

Tabular Reinforcement Learning
LTD and Monte Carlo

Monte Carlo (MC) methods

» Much used in games (Go...) to evaluate a state

» It uses the average estimation method Ei11(s) = Ex(s) + a[rk+1 — Ex(s)]

» Generate a lot of trajectories: so, s1,...,Sn with observed rewards
ro,T1,...,T"N

» Update state values V(s), k =0,..., N — 1 with:

V(sk) < V(sk)+ alsp)(re +resr + - +rv — V(sk))

24 /29

Tabular Reinforcement Learning
LTD and Monte Carlo

TD vs MC

» Temporal Difference (TD) methods combine the properties of DP
methods and Monte Carlo methods:

» In Monte Carlo, T and r are unknown, but the value update is global
along full trajectories

» In DP, T and r are known, but the value update is local

» TD: as in DP, V(s;) is updated locally given an estimate of V (s¢11) and
T and r are unknown

» Note: Monte Carlo can be reformulated incrementally using the temporal
difference §x update

ISIR

hed
DESSISTEMES

25 /29

Tabular Reinforcement Learning
LTD and Monte Carlo

Eligibility traces

>

>
>
>
>

v

Goal: improve over (Q-LEARNING

Naive approach: store all (s,a) pair and back-propagate values
Limited to finite horizon trajectories

Speed/memory trade-off

TD(A), sarsA (M) and Q(\): more sophisticated approach to deal with
infinite horizon trajectories

A variable e(s) is decayed with a factor \ after s was visited and
reinitialized each time s is visited again

TD(A): V(s) < V(s) + ade(s), (similar for SARSA (A) and Q(A)),
If A =0, e(s) goes to 0 immediately, thus we get TD(0), SARSA or
(Q-LEARNING

TD(1) = Monte Carlo...

Eligibility traces can be seen as a combination of N-step returns for all N »—
(ISR

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015b) High-dimensional continuous control using Generalized“\ s /

Advantage Estimation. arXiv preprint arXiv:1506.02438

26 / 29

Tabular Reinforcement Learning

Model-based reinforcement learning

Model-based Reinforcement Learning

____________ _ rcward_ _
1 situation
i
'] .
mode] of the g | model ofthe g
payoff E trapsitions g
action

> General idea: planning with a learnt model of T" and r is performing back-ups “in
the agent’s head” ([Sutton, 1990, Sutton, 1991])
» Learning T and r is an incremental self-supervised learning problem
> Several approaches:
» Draw random transition in the model and apply TD back-ups
» DYNA-PI, DYNA-Q, DYNA-AC
> Better propagation: Prioritized Sweeping

@ Moore, A. W. & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time. Machine
Learning, 13:103-130.

27 /29

Tabular Reinforcement Learning

Model-based reinforcement learning

Dyna architecture and generalization

vy

=) &

s

Thanks to the model of transitions, DYNA can propagate values more often

Problem: in the stochastic case, the model of transitions is in
card(S) x card(S) x card(A)

Usefulness of compact models
MACS: DYNA with generalisation (Learning Classifier Systems)
SPITI: DYNA with generalisation (Factored MDPs)

Gérard, P., Meyer, J.-A., & Sigaud, O. (2005) Combining latent learning with dynamic programming in MACS. European Journal
of Operational Research, 160:614-637

o °

e
(|S|R,

Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006) Learning the Structure of Factored Markov Decision Processes in Reinforcen;we\n

Learning Problems. Proceedings of the 23rd International Conference on Machine Learning (ICML'2006), pages 257-264

Tabular Reinforcement Learning

Model-based reinforcement learning

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Olivier.Sigaud@upmc.fr

Tabular Reinforcement Learning

References

Dayan, P. and Sejnowski, T. (1994).

TD(lambda) converges with probability 1.
Machine Learning, 14(3):295-301.

Degris, T., Sigaud, O., and Wauillemin, P.-H. (2006).

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems.
In Proceedings of the 23rd International Conference on Machine Learning, pages 257-264, CMU, Pennsylvania.

Fujimoto, S., van Hoof, H., and Meger, D. (2018).

g function approxil ion error in actor-critic methods.

In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmassan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1582-1591. PMLR

Gérard, P., Meyer, J.-A., and Sigaud, O. (2005).

Combining latent learning with dynamic programming in MACS.
European Journal of Operational Research, 160:614-637.

Moore, A. W. and Atkeson, C. (1993).

Prioritized sweeping: Reinforcement learning with less data and less real time.
Machine Learning, 13:103-130.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016).

High-dimensional continuous control using generalized advantage estimation.
In Bengio, Y. and LeCun, Y., editors, 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings.

Singh, S. P., Jaakkola, T., Littman, M. L., and Szepesvari, C. (2000).

Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine learning, 38(3):287-308

Sutton, R. S. (1990).

Integrating architectures for learning, planning, and reacting based on approxil ing dynamic progr
In Proceedings of the Seventh International Conference on Machine Learning, pages 216=224, San“Mateo CA. Morgam: Kaufmagn.) (>

29 /29

Tabular Reinforcement Learning

References

Sutton, R. S. (1991).

DYNA, an integrated architecture for learning, planning and reacting.
SIGART Bulletin, 2:160-163.

Sutton, R. S. and Barto, A. G. (2018).
Reinforcement Learning: An Introduction (Second edition).
MIT Press.

van Hasselt, H. (2010).

Double g-learning.

In Lafferty, J. D., Williams, C. K. ., Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors, Advances in Neural Information
Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held
6-9 December 2010, Vancouver, British Columbia, Canada, pages 2613—-2621. Curran Associates, Inc.

Velentzas, G., Tzafestas, C., and Khamassi, M. (2017).

Bio-inspired meta-learning for active exploration during non-stationary multi-armed bandit tasks.
In 2017 Intelligent Systems Conference (IntelliSys), pages 661-669. IEEE.

Watkins, C. J. C. H. (1989).

Learning with Delayed Rewards.

PhD thesis, Psychology Department, University of Cambridge, England.

Watkins, C. J. C. H. and Dayan, P. (1992).

Q-learning.
Machine Learning, 8:279-292

	Temporal difference methods
	Action Value Function Approaches
	Actor-Critic approaches

	Biases
	TD and Monte Carlo
	Model-based reinforcement learning
	References

