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Advanced gradient descent

Outline

I A reminder about vanilla gradient descent

Standard background knowledge...

I Advanced gradient descent methods

Pierrot, T., Perrin, N., & Sigaud, O. (2018) First-order and second-order variants of the gradient descent: a unified

framework. arXiv preprint arXiv:1810.08102

I I won’t cover adaptive gradient descent methods, see:

Ruder, S. (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

I The underlying motivation is explaining advanced gradient descent
concepts used in deep RL
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Advanced gradient descent

Vanilla gradient descent

Vanilla gradient descent

I Gradient descent is an iterative process with local steps

I We want to reach a minimum

I At each step, we need a direction and a step size
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Advanced gradient descent

Vanilla gradient descent

I. Getting the right direction

I We want to minimize L(θi + δθi) over δθi.

I How to choose δθi?
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Vanilla gradient descent

First order approximation of the loss

I The optimum on δθ is reached when
∂L(θ + δθ)

∂δθ
= 0

I L(θ + δθ) can be approximated at the first order as
L(θ) +∇θL(θ)δθ + νδθT δθ + higher order terms

I
∂L(θ + δθ)

∂δθ
∼ ∇θL(θ) + 2νδθ

I Thus δθ∗ = − 1
2ν
∇θL(θ)

I We rewrite it δθ∗ = −α∇θL(θ)

I And the iteration rule is θi+1 ← θi − αi∇θL(θ)

I The steepest descent direction is given by the first order derivative!
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Advanced gradient descent

Vanilla gradient descent

II. Finding the right step size

I The first order local derivative ∇θL(θ)|θ=θi gives the right direction

I But minimizing the first order derivative is not lower bounded

I We need a step size α to determine how far to go

I (a) αi are too small, (b) αi are adequate, (c) αi are too large

I If too small, too many steps. If too large, may miss a local optimum

I Line search: iterate to find the best step size (used e.g. in trpo)

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015) Trust region policy optimization. CoRR, abs/1502.05477
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Vanilla gradient descent

Local Optima

I Gradient descent is a local improvement approach where, at each step, we
follow the steepest descent direction

I But we do not know where is the target optimum
I Unless the cost function is convex in the parameter space, gradient descent

can end-up in different local optima depending on the starting point
I Adding small noise can result in very different local optima and paths
I Anything that basically goes down will end up somewhere low!
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Vanilla gradient descent

Steepest descent: limitations

I Always following the steepest descent direction does not necessarily:
I Result in the lowest minimum
I Result in the shortest path to a given optimum

I Using momentum can help escape from local minima and “climb bumps”
when useful

I Adaptive and second order gradient descent can help finding better
minima or shorter paths
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Vanilla gradient descent

Other limitations

I Vanilla gradient descent may converge very slowly if the step size is not
properly tuned.

I Its efficiency depends on arbitrary parameterizations θ
I We focus on two lines of improvement:

I First-order methods such as the natural gradient introduce particular
metrics to restrict gradient steps and make them independent from
parametrization choices

I Second-order methods use the Hessian matrix of the loss or its
approximations to take into account its local curvature

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998
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First order and second order gradient descent

First order versus second order derivative

I In first order methods, need to define a step size

I Second order methods provide a more accurate approximation

I They can even provide a true minimum, when the Hessian matrix is a
symmetric positive-definite matrix (SPD)

I In both cases, the derivative is very local

I The gradient should not be applied too far away from the current point

I Find a trust region where gradient can be trusted
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First order and second order gradient descent

Defining a trust region: formulation

I To perform safe steps, we put a constraint on how far we can go

I We still want to find the δθ providing the best decrease of L(θ + δθ)

I General constrained optimization problem:{
minδθ L(θ + δθ)
under constraint δθTM(θ)δθ ≤ ε2, (1)

I M(θ) has to be an SPD matrix (because we will invert it)
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First order and second order gradient descent

Damping

I Matrices M(θ) are often symmetric but might not be definite positive

I To invert it, we add a damping term λI

I We use a λ as small as possible so that the matrix is positive in all
dimensions

I Thus we invert M(θ) + λI
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First order and second order gradient descent

Defining a metrics on the step size

I Different metrics M(θ) affect both the gradient step size and direction

I The colored ellipses correspond to trust regions
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First order and second order gradient descent

First order approximation of the loss

I We still want to find the δθ providing the best decrease of L(θ + δθ)

I L(θ + δθ) can be approximated at the first order as L(θ) +∇θL(θ)
T δθ+

higher order terms

I L(θ) does not depend on δθ, thus is can be removed from the
minimization problem

I Problem (1) can be reformulated as{
minδθ∇θL(θ)

T δθ
under constraint δθTM(θ)δθ ≤ ε2. (2)

I How can we solve it?

14 / 26



Advanced gradient descent

First order and second order gradient descent

Finding the steepest descent direction: Lagrangian method

I The Lagrangian of (2) is

L(δθ) = L(θ) +∇θL(θ)
T δθ + ν(δθTM(θ)δθ − ε2)

where ν is the Lagrange multiplier

I The optimum on δθ is when the derivative of the Lagrangian is null

I (L(δθ))′ = ∇θL(θ)
T + 2νM(θ)δθ

I Thus δθ∗ = − 1
2ν

M(θ)−1∇θL(θ) (M(θ) is SPD, thus invertible)

I We rewrite it δθ∗ = αM(θ)−1∇θL(θ) with α = − ε√
∇θL(θ)TM(θ)−1∇θL(θ)

I When M(θ) = I, we recover the standard gradient descent equation

I θi+1 ← θi − αi∇θL(θ)
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Advanced gradient descent

Six methods

Six different choices for M(θ)

I M(θ) defines metrics transforming from parameters θ to another space

M(θ) Corresponding approach

I Vanilla gradient descent

IEx

[
J(x, θ)T J(x, θ)

]
+ λI Classical Gauss-Newton

IE(x,y)

[
∇θ log(pθ(y|x))∇θ log(pθ(y|x))T

]
+ λI Natural gradient (with empirical Fisher matrix)

IEx

[
∇θlθ(x)∇θlθ(x)T

]
+ λI Gradient covariance matrix

H(θ) + λI Newton’s method

IE(x,y)

[
J(x, θ)THy(hθ(x))J(x, θ)

]
+ λI Generalized Gauss-Newton

I Correspond to 6 popular variants of the gradient descent

I In the first 3, M(θ) does not depend on the loss, in the last 3, it does

I The first four are first order, the last two are second order methods

Pierrot, T., Perrin, N., & Sigaud, O. (2018) First-order and second-order variants of the gradient descent: a unified framework.

arXiv preprint arXiv:1810.08102
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Six methods

Loss independent methods

I. Classical Gauss-Newton

I In vanilla gradient descent, the constraint δθT I(θ)δθ ≤ ε2 acts as if all
components of θ had the same importance, which is not necessarily true

I Rather constrain the output hθ(x) of the function to optimize

I We want to minimize IEx[||hθ+δθ(x)− hθ(x)||2]
I At first order, hθ+δθ(x)− hθ(x) ∼ Jx(θ)δθ where Jx(θ) is the Jacobian of the

function θ → hθ(x)

I IEx[||hθ+δθ(x)− hθ(x)||2] ∼ IEx[||Jx(θ)δθ||2] = δθT IEx
[
J(x,θ)T J(x,θ)

]
δθ

I Thus we want to minimize M(θ) = IEx
[
J(x,θ)T J(x,θ)

]
I The loss does not appear in the constraint

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. Siam Review,

60(2):223–311, 2018
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Six methods

Loss independent methods

II. Natural Policy Gradient

I To constrain stochastic objects to stay close to each other, one can constrain
their KL divergence

I Under KL constraint, moving further away is easier when the variance is large

I Thus the mean converges first, then variance is reduced

I Ensures a large enough amount of exploration

I Other properties listed in the Pierrot et al. (2018) paper

I Many RL algorithms use the Natural Policy Gradient: nac, enac, trpo...

I M(θ) = IE(x,y)[∇θ log(pθ(y|x))∇θ log(pθ(y|x))T ](+λI)

Sham M. Kakade. A natural policy gradient. In Advances in neural information processing systems, pp. 1531–1538, 2002
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Six methods

Loss dependent methods

III. Gradient covariance matrix

I We want to use the loss to measure the magnitude of a change due to δθ

I Consider the expected squared difference between both losses at each
atomic sample x:

I We want to minimize IEx[(lθ+δθ(x)− lθ(x))2]
I Let us replace lθ+δθ(x) by a first-order approximation:
lθ+δθ(x) ∼ lθ(x) +∇θlθ(x)

T δθ

I The above expectation simplifies to
IEx[(∇θlθ(x)

T δθ)2] = δθT IEx[(∇θlθ(x)∇θlθ(x)
T ]δθ

I M(θ) = IEx[(∇θlθ(x)∇θlθ(x)
T ] is called the gradient covariance matrix

or the outer product metric

I If the loss is the negative log-likelihood ∇θlθ(x) = ∇θ log(pθ(.|x)), we
recover the empirical Fisher, hence a natural gradient method

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances in neural information processing systems,

pp. 161–168, 2008

Yann Ollivier. Riemannian metrics for neural networks I: feedforward networks. Information and Inference: A Journal of the IMA,

4(2):108–153, 2015
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Six methods

Loss dependent methods

IV. Newton’s method

I Newton’s method is the second order counterpart of the gradient covariance
matrix method

I The second order approximation of the loss is

L(θ + δθ) ∼ L(θ) +∇θL(θ)
T δθ + 1

2
δθTH(θ)δθ where H(θ) is the Hessian

matrix of the loss
I The approximation of L(θ + δθ) is probably accurate as long as 1

2
δθTH(θ)δθ is

small
I Thus we constrain on δθTH(θ)δθ ≤ ε2
I Thus M(θ) = H(θ)

Andreas Fischer. A special newton-type optimization method. Optimization, 24(3-4):269–284, 1992

20 / 26



Advanced gradient descent

Six methods

Loss dependent methods

V. Generalized Gauss-Newton

I The generalized Gauss-Newton approach combines several of the above
ideas

I Well... it is complicated! ;)

I Read the Pierrot et al. (2018) paper if you want to know more

I The sixth method is vanilla gradient descent

O Knoth. A globalization scheme for the generalized Gauss-Newton method. Numerische Mathematik, 56(6):591–607, 1989
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Practical computation

Computation methods

I To solve the constrained optimization problem (2), we need to invert M(θ)

I This is why we need it to be SPD

I But estimating and inverting the Fisher or Gauss-Newton matrix is costly

I kfac and kfra use block diagonal approximation of the Gauss-Newton
matrix

I Lehman uses an even simpler diagonal approx of the Gauss-Newton

I trpo uses a conjugate gradient method (avoids using matrices by only
multiplying vectors)

I nac and enac use the fact that, under some compatibility condition, the
empirical Fisher calculation simplifies and even vanishes away

I Conjugate gradient is a “Hessian-free” method

Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O. Stanley. Safe mutations for deep and recurrent neural networks through

output gradients. In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 117–124, 2018

Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba (2017) Scalable trust-region method for deep

reinforcement learning using Kronecker-factored approximation. arXiv preprint arXiv:1708.05144
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Adaptive gradient descent

Using momentum

I It can be the case that at some point along the shortest path, you have to
increase the cost function instead of decreasing it

I It can also be the case that you need to increase the cost function to
escape from a local minimum

I In such a case, momentum can help you follow the shortest path by
“climbing the bump”

Qian, N. (1999) On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151
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Adaptive gradient descent

Is momentum good or bad?

I Depends on the cost function landscape!

I Other adaptive gradient mechanisms: RmsProp, Adam, Nesterov...

Ruder, S. (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747
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Conclusion

Messages

I Six different well-founded methods, six directions

I All six directions are in the same half-plane as vanilla gradient descent

I Does the direction really matter?

I Given the local steps, highly depends on the landscape

I No free lunch: each method might be the best in some landscape

I What about the step size? Use line search, see trpo and ppo

I Open question: why is Adam often superior in many DNN applications?

25 / 26



Advanced gradient descent

Conclusion

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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