
From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic methods

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud

1 / 57

From Policy Gradient to Actor-Critic methods

The policy search problem

Example: a (cheap) tennis ball collector

I A robot without a ball sensor

I Travels on a tennis court based on a parametrized controller

I Performance: number of balls collected in a given time

I Just depends on robot trajectories and ball positions

2 / 57

From Policy Gradient to Actor-Critic methods

The policy search problem

Influence of policy parameters

I Controller parameters: proba of turn per time step, travelling speed

I How do the parameters influence the performance?

I Policy search: find the optimal policy parameters

3 / 57

From Policy Gradient to Actor-Critic methods

The policy search problem

Two sources of stochasticity

I From the environment: position of the balls

I From the policy, if it is stochastic

I The performance can vary a lot → need to repeat

I Tuning parameters can be hard

4 / 57

From Policy Gradient to Actor-Critic methods

The policy search problem

The policy search problem: formalization

I τi is a robot trajectory

I R(τi) is the corresponding return

I πθ is the parametrized policy of the robot

I We want to optimize J(θ) = IEτ∼πθ [R(τ)], the global utility function

I We tune policy parameters θ, thus the goal is to find

θ∗ = argmax
θ

J(θ) = argmax
θ

∑
τ

P (τ |θ)R(τ) (1)

I where P (τ |θ) is the probability of trajectory τ under policy πθ

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013) A survey on policy search for robotics. Foundations and Trends® in

Robotics, 2(1–2):1–142

5 / 57

From Policy Gradient to Actor-Critic methods

The policy search problem

Direct Policy Search is black box optimization

I J(θ) is the performance over policy parameters

I Choose a θ

I Generate trajectories τθ

I Get the return J(θ) of these trajectories

I Look for a better θ, repeat

I DPS uses (θ, J(θ)) pairs and directly looks for θ with the highest J(θ)

6 / 57

From Policy Gradient to Actor-Critic methods

Policy improvement

(Truly) Random Search

I Select θi randomly

I Evaluate J(θi)

I If J(θi) is the best so far, keep θi

I Loop until J(θi) > target

I Of course, this is not efficient if the space of θ is large

I General “blind” algorithm, no assumption on J(θ)

I We can do better if J(θ) shows some local regularity

Sigaud, O. & Stulp, F. (2019) Policy search in continuous action domains: an overview. Neural Networks, 113:28-40

7 / 57

From Policy Gradient to Actor-Critic methods

Policy improvement

Direct policy search

I Locality assumption: The function is locally smooth, good solutions are
close to each other

I Variation - selection: Perform well chosen variations, evaluate them

I Variations generally controlled using a multivariate Gaussian

8 / 57

From Policy Gradient to Actor-Critic methods

Policy improvement

Gradient ascent

I Gradient ascent: Following the gradient from analytical knowledge
I Issue: in general, the function J(θ) is unknown
I How can we apply gradient ascent without knowing the function?
I The answer is the Policy Gradient Theorem
I Next lessons: Policy Gradient methods

9 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Derivation

Reminder: policy search formalization

I τi is a robot trajectory

I R(τi) is the corresponding return

I πθ is the parametrized policy of the robot

I We want to optimize J(θ) = IEτ∼πθ [R(τ)], the global utility function

I We tune policy parameters θ, thus the goal is to find

θ∗ = argmax
θ

J(θ) = argmax
θ

∑
τ

P (τ |θ)R(τ) (2)

I where P (τ |θ) is the probability of trajectory τ under policy πθ

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013) A survey on policy search for robotics. Foundations and Trends® in

Robotics, 2(1–2):1–142

10 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Derivation

Policy Gradient approach

I General idea: increase P (τ |θ) for trajectories τ with a high return

I Gradient ascent: Following the gradient from analytical knowledge

I Issue: in general, the function J(θ) is unknown

I How can we apply gradient ascent without knowing the function?

I The answer is the Policy Gradient Theorem

11 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Derivation

Policy Gradient approach (2)

I Direct policy search works with < θ, J(θ) > samples

I It ignores that the return comes from state and action trajectories
generated by a controller πθ

I We can obtain explicit gradients by taking this information into account

I Not black-box anymore: access the state, action and reward at each step

I The transition and reward functions are still unknown (gray-box approach)

I Requires some math magics

I This lesson builds on “Deep RL bootcamp” youtube video #4A:
https://www.youtube.com/watch?v=S_gwYj1Q-44 (Pieter Abbeel)

12 / 57

https://www.youtube.com/watch?v=S_gwYj1Q-44

From Policy Gradient to Actor-Critic methods

Policy Gradient Derivation

Plain Policy Gradient (step 1)

I We are looking for θ∗ = argmaxθ J(θ) = argmaxθ

∑
τ P (τ |θ)R(τ)

∇θJ(θ) = ∇θ

∑
τ

P (τ |θ)R(τ)

=
∑
τ

∇θP (τ |θ)R(τ) * gradient of sum is sum of gradients

=
∑
τ

P (τ |θ)

P (τ |θ)
∇θP (τ |θ)R(τ) * Multiply by one

=
∑
τ

P (τ |θ)
∇θP (τ |θ)

P (τ |θ)
R(τ) * Move one term

=
∑
τ

P (τ |θ)∇θ logP (τ |θ)R(τ) * by property of gradient of log

= IEτ [∇θ logP (τ |θ)R(τ)] * by definition of the expectation

13 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Derivation

Plain Policy Gradient (step 2)

I We want to compute IEτ [∇θ logP (τ |θ)R(τ)]

I We do not have an analytical expression for P (τ |θ)

I Thus the gradient ∇θ logP (τ |θ)R(τ) cannot be computed

I Let us reformulate P (τ |θ) using the policy πθ

I What is the probability of a trajectory?

I At each step, probability of taking each action (defined by the policy)
times probability of reaching the next state given the action

I Then product over states for the whole horizon H

P (τ |θ) =
H∏
t=1

p(st+1|st,at).πθ(at|st) (3)

I (Strong) Markov assumption here: holds if steps are independent

14 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Derivation

Plain Policy Gradient (step 2 continued)

I Thus, under Markov assumption,

∇θ log P(τ |θ) = ∇θ log[
H∏
t=1

p(st+1|st,at).πθ(at|st)]

* log of product is sum of logs

= ∇θ [
H∑
t=1

log p(st+1|st,at) +
H∑
t=1

logπθ(at|st)]

= ∇θ

H∑
t=1

logπθ(at|st) * because first term independent of θ

=
H∑
t=1

∇θ logπθ(at|st) * no dynamics model required!

I The key is here: we know ∇θlogπθ(at|st)!

15 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Derivation

Plain Policy Gradient (step 2 continued)

I The expectation ∇θJ(θ) = IEτ [∇θ logP (τ |θ)R(τ)] can be rewritten

∇θJ(θ) = IEτ [

H∑
t=1

∇θ logπθ(at|st)R(τ)]

I The expectation can be approximated by sampling over m trajectories:

∇θJ(θ) =
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)R(τ (i)) (4)

I The policy structure πθ is known, thus the gradient ∇θ logπθ(a|s) can be
computed for any pair (s,a)

I We moved from direct policy search on J(θ) to gradient ascent on πθ

I Can be turned into a practical (but not so efficient) algorithm

16 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Derivation

Algorithm 1

I Sample a set of trajectories from πθ

I Compute:

Loss(θ) = − 1

m

m∑
i=1

H∑
t=1

logπθ(a
(i)
t |s

(i)
t)R(τ (i)) (5)

I Minimize the loss using the NN backprop function with your favorite
pytorch or tensorflow optimizer (Adam, RMSProp, SGD...)

I Iterate: sample again, for many time steps

I Note: if R(τ) = 0, does nothing

17 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Improvements

Limits of Algorithm 1

I Needs a large batch of trajectories or suffers from large variance

I The sum of rewards is not much informative
I Computing R from complete trajectories is not the best we can do

∇θJ(θ) ∼
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)R(τ (i))

∼
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)[

H∑
k=1

r(s
(i)
k ,a

(i)
k)]

* split into two parts

∼
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)[

t−1∑
k=1

r(s
(i)
k ,a

(i)
k) +

H∑
k=t

r(s
(i)
k ,a

(i)
k)]

* past rewards do not depend on the current action

∼
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)[

H∑
k=t

r(s
(i)
k ,a

(i)
k)]

https://www.youtube.com/watch?v=S_gwYj1Q-44 (28’)

18 / 57

https://www.youtube.com/watch?v=S_gwYj1Q-44

From Policy Gradient to Actor-Critic methods

Policy Gradient Improvements

Algorithm 2

I Same as Algorithm 1

I But the sum is incomplete, and computed backwards

I Slightly less variance, because it ignores irrelevant rewards

19 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient Improvements

Discounting rewards

∇θJ(θ) ∼ 1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)[

H∑
k=t

r(s
(i)
k ,a

(i)
k)]

* reduce the variance by discounting the rewards along the trajectory

∼ 1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)[

H∑
k=t

γk−tr(s
(i)
k ,a

(i)
k)]

https://www.youtube.com/watch?v=S_gwYj1Q-44 (39’)
20 / 57

https://www.youtube.com/watch?v=S_gwYj1Q-44

From Policy Gradient to Actor-Critic methods

Policy Gradient Improvements

Introducing the action-value function

I
∑H
k=t γ

k−tr(s
(i)
k ,a

(i)
k) can be rewritten Qπθ

(i)(s
(i)
t ,a

(i)
t)

I

∇θJ(θ) ∼ 1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)Q

πθ
(i)(s

(i)
t ,a

(i)
t)

I It is just rewriting, not a new algorithm

I But suggests that the gradient could be just a function of the local step if
we could estimate Qπθ

(i)(st,at) in one step

21 / 57

From Policy Gradient to Actor-Critic methods

From Monte Carlo to bootstrap

Estimating Qπθ (s, a)

I Instead of estimating Qπθ (s, a) = IE(i)[Q
πθ
(i)

(s, a)] from Monte Carlo,

I Build a model Q̂
πθ
φ of Qπθ through function approximation

I Two approaches:
I Monte Carlo estimate: Regression against empirical return

φj+1 → argmin
φj

1

m

m∑
i=1

H∑
t=1

(
H∑
k=t

γk−tr(s
(i)
k ,a

(i)
k)− Q̂πθ

φj
(s

(i)
t ,a

(i)
t))2

I Temporal Difference estimate: init Q̂
πθ
φ0

and fit using (s,a, r, s′) data

φj+1 → min
φj

∑
(s,a,r,s′)

||r + γf(Q̂
πθ
φj

(s′, .))− Q̂πθ
φj

(s,a)||2

I f(Q̂
πθ
φj

(s′, .)) = maxa Q̂
πθ
φj

(s′,a) (Q-learning), = Q̂
πθ
φj

(s′, πθ(s′)) (AC)...

I May need some regularization to prevent large steps in φ

https://www.youtube.com/watch?v=S_gwYj1Q-44 (36’)

Martin Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning method. In

European Conference on Machine Learning, pp. 317–328. Springer, 2005

András Antos, Csaba Szepesvári, and Rémi Munos. Fitted Q-iteration in continuous action-space MDPs. In Advances in neural

information processing systems, pp.9–16, 2008.

22 / 57

https://www.youtube.com/watch?v=S_gwYj1Q-44

From Policy Gradient to Actor-Critic methods

From Monte Carlo to bootstrap

Monte Carlo versus Bootstrap approaches

I Three options:
I MC direct gradient: Compute the true Qπθ over each trajectory
I MC model: Compute a model Q̂

πθ
φ over rollouts using MC regression, throw

it away after each policy gradient step
I Bootstrap: Update a model Q̂

πθ
φ over samples using TD methods,

keep it over policy gradient steps

I With bootstrap, update everything from the current state, see next parts

23 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient with Baseline

Policy Gradient with constant baseline

I Reminder:

∇θJ(θ) =
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)[

H∑
k=t

γkr(s
(i)
k ,a

(i)
k)] (6)

I If all rewards are positive, the gradient increases all probabilities

I But with renormalization, only the largest increases emerge

I We can substract a “baseline” to (6) without changing its mean:

∇θJ(θ) =
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)[

H∑
k=t

γkr(s
(i)
k ,a

(i)
k)− b]

I A first baseline is the average return r̄ over all states of the batch

I Intuition: returns greater than average get positive, smaller get negative

I Use (r
(i)
t − r̄) and divide by std → get a mean = 0 and a std = 1

I This improves variance (does the job of renormalization)

I Suggested in https://www.youtube.com/watch?v=tqrcjHuNdmQ

24 / 57

https://www.youtube.com/watch?v=tqrcjHuNdmQ

From Policy Gradient to Actor-Critic methods

Policy Gradient with Baseline

Algorithm 4: adding a constant baseline

I Estimate r̄ and std(r) from all rollouts

I Same as Algorithm 2, using (r
(i)
t − r̄)/std(r)

I Suffers from even less variance

I Does not work if all rewards r are identical (e.g. CartPole)

25 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient with Baseline

Policy Gradient with state-dependent baseline

I No impact on the gradient as long as the baseline does not depend on action

I A better baseline is b(st) = V π(st) = IEτ [rt + γrt+1 + γ2rt+2 + ...+ γH−trH]

I The expectation can be approximated from the batch of trajectories

I Thus we get

∇θJ(θ) =
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)[Qπθ (s

(i)
t |a

(i)
t)− V πθ (s

(i)
t)]

I Aπ(st,at) = Qπ(st|at)− V π(st) is the advantage function

I And we get

∇θJ(θ) =
1

m

m∑
i=1

H∑
t=1

∇θ logπθ(a
(i)
t |s

(i)
t)Aπθ (s

(i)
t ,a

(i)
t)

https://www.youtube.com/watch?v=S_gwYj1Q-44 (27’)

Williams, R. J. (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning,

8(3-4):229–256

26 / 57

https://www.youtube.com/watch?v=S_gwYj1Q-44

From Policy Gradient to Actor-Critic methods

Policy Gradient with Baseline

Estimating V π(s)

I As for estimating Qπ(s, a), but simpler
I Two approaches:

I Monte Carlo estimate: Regression against empirical return

φj+1 → argmin
φj

1

m

m∑
i=1

H∑
t=1

((
H∑
k=t

γkr(s
(i)
k ,a

(i)
k))− V̂ πφj (s

(i)
t))2

I Temporal Difference estimate: init V̂ πφ0
and fit using (s,a, r, s′) data

φj+1 → min
φj

∑
(s,a,r,s′)

||r + γV̂ πφj (s′)− V̂ πφj (s)||2

I May need some regularization to prevent large steps in φ

27 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient with Baseline

Algorithm 5: adding a state-dependent baseline

I Learn V̂ πφ from TD, from MC rollouts, or compute V πθ (s
(i)
t) from MC

I Learn Q̂π
φ′ from TD, from MC rollouts, or compute Qπθ (s

(i)
t ,a

(i)
t) from MC

I Compute Âπ(s
(i)
t |a

(i)
t) = Q̂πφ(s

(i)
t ,a

(i)
t)− V̂ πφ (s

(i)
t)

I Or even learn Âπφ directly from TD updates using Aπ(st,at) = IE[δt]

I Same as Algorithm 3 using Aπθ (s
(i)
t |a

(i)
t) instead of Qπθ (s

(i)
t |a

(i)
t)

I Suffers from even less variance

28 / 57

From Policy Gradient to Actor-Critic methods

Policy Gradient with Baseline

Synthesis

∇θJ(θ) = IEst,at∼πθ(.)[∇θ logπθ(a
(i)
t |s

(i)
t)]ψt where ψt can be:

1.
∑H
t=0 γ

trt: total (discounted) reward of trajectory

2.
∑H
k=t γ

k−trk: sum of rewards after at

3.
∑H
k=t γ

k−trk − b(st): sum of rewards after at with baseline

4. δt = rt + γV π(st+1)− V π(st): TD error, with V π(st) = IEat [
∑H
k=0 γ

krt+l]

5. Q̂
πθ
φ (st,at) = IEat+1 [

∑H
k=0 γ

krt+l]: action-value function

6. Â
πθ
φ (st,at) = Q̂

πθ
φ (st,at)− V̂ πθ

φ (st) = IE[δt], advantage function

I Next lesson: Difference to Actor-Critic

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional continuous control using

generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015

29 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Being truly actor-critic

I PG methods with V , Q or A baselines contain a policy and a critic

I Are they actor-critic?

I Only if the critic is learned from bootstrap!

30 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Being Actor-Critic

I “Although the REINFORCE-with-baseline method learns both a policy and
a state-value function, we do not consider it to be an actor–critic method
because its state-value function is used only as a baseline, not as a critic.”

I “That is, it is not used for bootstrapping (updating the value estimate for
a state from the estimated values of subsequent states), but only as a
baseline for the state whose estimate is being updated.”

I “This is a useful distinction, for only through bootstrapping do we
introduce bias and an asymptotic dependence on the quality of the
function approximation.”

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Second edition). MIT Press, 2018, p. 331

31 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Monte Carlo versus Bootstrap approaches

I Three options:
I MC direct gradient: Compute the true Qπθ over each trajectory
I MC model: Compute a model Q̂

πθ
φ over rollouts using MC regression, throw

it away after each policy gradient step
I Bootstrap: Update a model Q̂

πθ
φ over samples using TD methods,

keep it over policy gradient steps
I Sutton&Barto: Only the latter ensures “asymptotic convergence” (when

stable)

32 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Single step updates

I With a model ψt(s
(i)
t , a

(i)
t), we can compute ∇θJ(θ) over a single state using:

∇θ logπθ(a
(i)
t |s

(i)
t)ψt(s

(i)
t , a

(i)
t)

I With ψt = Q̂
πθ
φ (s

(i)
t , a

(i)
t) or ψt = Â

πθ
φ (s

(i)
t , a

(i)
t)

I This is true whatever the way to obtain Q̂
πθ
φ or Â

πθ
φ

I Crucially, samples used to update Q̂
πθ
φ or Â

πθ
φ do not need to be the same as

samples used to compute ∇θJ(θ)

33 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Using a replay buffer

I Agent samples are not independent and identically distributed (i.i.d.)

I Shuffling a replay buffer (RB) makes them more i.i.d.

I It improves a lot the sample efficiency

I Recent data in the RB come from policies close to the current one

Lin, L.-J. (1992) Self-Improving Reactive Agents based on Reinforcement Learning, Planning and Teaching. Machine Learning,

8(3/4), 293–321

34 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Bootstrap properties

I If Q̂
πθ
φ is obtained from bootstrap, everything can be done from a single sample

I Samples to compute ∇θJ(θ) still need to come from πθ

I Samples to update the critic do not need this anymore

I This defines the shift from policy gradient to actor-critic

I This is the crucial step to become off-policy

I However, using bootstrap comes with a bias

I Next lesson: bias-variance trade-off

35 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Bias versus variance

I PG methods estimate an expectation from a finite set of trajectories

I If you estimate an expectation over a finite set of samples, you get a different
number each time

I This is known as variance

I Given a large variance, you need many samples to get an accurate estimate of
the mean

I That’s the issue with MC methods

I If you update an expectation estimate based on a previous (wrong) expectation
estimate, the estimate you get even from infinitely many samples is wrong

I This is known as bias

I This is what bootstrap methods do

Geman, S., Bienenstock, E., & Doursat, R. (1992) Neural networks and the bias/variance dilemma. Neural computation, 4(1):1–58

36 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Bias variance trade-off

I More complex model (e.g. bigger network): more variance, less bias

I Total error = bias2 + variance + irreducible error

I There exists an optimum complexity to minimize total error

37 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Using the N-step return

I 1-step TD is poor at backpropagating values along trajectories

I N-step TD is better: N steps of backprop per trajectory instead of one

38 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

N-step return and replay buffer

I N-step TD can be implemented efficiently using a replay buffer

I A sample contains several steps

I Various implementations are possible

Lin, L.-J. (1992) Self-Improving Reactive Agents based on Reinforcement Learning, Planning and Teaching. Machine Learning,

8(3/4), 293–321

39 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Generalized Advantage Estimation: λ return

I The N-step return can be reformulated using a continuous parameter λ

I Â
(γ,λ)
φ =

∑H
l=0 (γλ)lδt+l

I Â
(γ,0)
φ = δt = one-step return

I Â
(γ,1)
φ =

∑H
l=0 (γ)lδt+l = MC estimate

I The λ return comes from eligilibity trace methods

I Provides a continuous grip on the bias-variance trade-off

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional continuous control using

generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015

Sharma, S., Ramesh, S., Ravindran, B., et al. (2017) Learning to mix N-step returns: Generalizing λ-returns for deep

reinforcement learning. arXiv preprint arXiv:1705.07445

40 / 57

From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic

Bias-variance compromize

I MC: unbiased estimate of the critic

I But MC suffers from variance due to exploration (+ stochastic trajectories)

I MC on-policy → no replay buffer → less sample efficient

I Bootstrap is sample efficient but suffers from bias and is unstable

I N-step TD or λ return: control the bias-variance compromize

I Acts on critic, indirect effect on performance

I Next lesson: on-policy vs off-policy

41 / 57

From Policy Gradient to Actor-Critic methods

Off-policy vs On-policy

Basic concepts

I To understand the distinction, one must consider three objects:
I The behavior policy β(s) used to generate samples.
I The critic, which is generally V (s) or Q(s, a)
I The target policy π(s) used to control the system in exploitation mode.

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvári, C. (2000) Convergence results for single-step on-policy

reinforcement-learning algorithms. Machine learning, 38(3):287–308

42 / 57

From Policy Gradient to Actor-Critic methods

Off-policy vs On-policy

Off-policy learning: definition

I “Off-policy learning” refers to learning about one way of behaving, called
the target policy, from data generated by another way of selecting actions,
called the behavior policy.

I Two notions:
I Off-policy policy evaluation (not covered)
I Off-policy control:

I Whatever the behavior policy (as few assumptions as possible)
I The target policy should be an approximation to the optimal policy
I Ex: stochastic behavior policy, deterministic target policy

Maei, H. R., Szepesvári, C., Bhatnagar, S., & Sutton, R. S. (2010) Toward off-policy learning control with function

approximation. ICML, pages 719–726.

43 / 57

From Policy Gradient to Actor-Critic methods

Off-policy vs On-policy

Why prefering off-policy to on-policy control?

I Reusing old data, e.g. from a replay buffer (sample efficiency)

I More freedom for exploration

I Learning from human data (imitation)

I Transfer between policies in a multitask context

44 / 57

From Policy Gradient to Actor-Critic methods

Mechanisms

Approach: two steps

I Open-loop study
I Use uniform sampling as “behavior policy” (few assumptions)
I No exploration issue, no bias towards good samples
I NB: in uniform sampling, samples do not correspond to an agent trajectory
I Study critic learning from these samples

I Then close the loop:
I Use the target policy + some exploration as behavior policy
I If the target policy gets good, bias more towards good samples

45 / 57

From Policy Gradient to Actor-Critic methods

Mechanisms

Learning a critic from samples

I General format of samples S: (st, at, rt, st+1, a
′)

I Makes it possible to apply a general update rule:

Q(st, at)← Q(st, at) + α[rt + γQ(st+1, a
′)−Q(st, at)]

I There are three possible update rules:
1. a′ = argmax aQ(st+1, a) (corresponds to Q-learning)
2. a′ = β(st+1) (corresponds to sarsa)
3. a′ = π(st+1) (corresponds e.g. to ddpg, an actor-critic algorithm)

46 / 57

From Policy Gradient to Actor-Critic methods

Mechanisms

Results

I Rule 1 learns an optimal critic (thus Q-learning is truly off-policy)

I Rule 2 fails (thus sarsa is not off-policy)

I Rule 3 fails too (thus an algorithm like ddpg is not truly off-policy!)

I NB: different actor-critic implementations behave differently

I E.g. if the critic estimates V (s), then equivalent to Rule 1

47 / 57

From Policy Gradient to Actor-Critic methods

Mechanisms

Closing the loop

I If β(s) = π∗(s), then Rules 2 and 3 are equivalent,

I Furthermore, Q(s, a) will converge to Q∗(s, a), and Rule 1 will be
equivalent too.

I Quite obviously, Q-learning still works

I sarsa and actor-critic work too: β(s) becomes “Greedy in the Limit
of Infinite Exploration” (GLIE)

48 / 57

From Policy Gradient to Actor-Critic methods

Mechanisms

Policy search case

I Q-learning is the only truly off-policy algorithm that I know about

I With continuous action, you cannot compute maxaQ
π
φ(st+1,a)

I An algorithm is more or less off-policy depending on assumptions on β(s)

I With a replay buffer, β(s) is generally close enough to π(s)

I DDPG, TD3, SAC are said off-policy because they use a replay buffer

49 / 57

From Policy Gradient to Actor-Critic methods

Mechanisms

Limits to being off-policy

I DDPG, TD3, SAC use the same off-policy samples to update both the
critic and the actor

I OK for the critic, not for the actor
I Does it make sense to sample differently for actor and critic?
I Yes, if several actors share one critic
I Towards offline reinforcement learning

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on

open problems. arXiv preprint arXiv:2005.01643, 2020

50 / 57

From Policy Gradient to Actor-Critic methods

A2C

Advantage Actor Critic (a2c)

I A crucial move from Policy Gradient methods to Actor-Critic methods

I The earliest actor-critic algorithm of the deep RL era using stochastic policies

I It directly derives from the basic Policy Gradient method

I The critic is learned using bootstrap, which makes it an actor-critic algorithm

I The a2c paper focuses more on a3c, an asynchronous version where several
agents generate data without using a replay buffer

I a2c can be seen as a simplified version of a3c with a single agent

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and

Koray Kavukcuoglu. (2016) Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783

51 / 57

From Policy Gradient to Actor-Critic methods

A2C

Main distinguishing features

I To perform policy gradient, you need the advantage function

I Computes the advantage function as value function minus the return of the
current N-step trajectory

I Adds entropy regularization to favor exploration in the gradient calculation step

I Uses n-step updates

I Does not use a replay buffer

I Note that a2c is Actor-Critic, but on-policy, so one cannot equate Actor-Critic
and off-policy

I But adding a replay buffer and making it more off-policy would be straightforward

52 / 57

From Policy Gradient to Actor-Critic methods

A2C

Choice of a V critic

I Main point: By contrast with Q(s, a), V (s) can be estimated in the same way
irrespective of using discrete or continuous actions

I V̂ πφ is smaller, but not necessarily easier to estimate (implicit max over actions)

I Temporal difference error: δ = [r(st) + γV iφ(st+1)− V iφ(st)]

I Standard update rule: V i+1
φ (st)← V iφ(st) + αδ

53 / 57

From Policy Gradient to Actor-Critic methods

A2C

Advantage function calculation

I To perform policy gradient updates, one needs to compute Âφ(st,at)

I By definition, A(st,at) = Q(st,at)− V (st)

I a2c computes the advantage with Âφ(st,at) = Rt(st)− Vφ(st)

I Rt(st) =
∑N−1
i=0 γirt+i + γNVφ(st+N) is the return of the current N-step

trajectory from state st

I Rt(st) can be seen as an approximate of Q(st,at) computed along one
trajectory

54 / 57

From Policy Gradient to Actor-Critic methods

A2C

Policy Gradient updates

I The standard Policy Gradient update is:

∇θJ(θ) = IEst,at∼πθ(.)[∇θ logπθ(a
(i)
t |s

(i)
t)]Âφ(st,at)

I But to favor exploration, a2c adds an entropy term to the gradient
calculation

I Thus the policy update rule is:

∇θJ(θ) = IEst,at∼πθ(.)[∇θ[logπθ(a
(i)
t |s

(i)
t)(Rt − Vφ(st))− βH(πθ(st))]]

I where H(πθ(st)) is the entropy of policy πθ at state st.

I Note that a2c adds entropy in the update of the actor, but outside the
critic, whereas sac adds it in the critic target, which has a deeper impact.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft

actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905

55 / 57

From Policy Gradient to Actor-Critic methods

A2C

N-step updates

I The agent performs N steps in the environment (or less if the episode
stops earlier in the episodic case) before each update

I At each update, the agent has collected up to N states and rewards

I It can update the value of the last state using the last reward, the value of
the second last step with two rewards

I And so on up to the first state of the current collection

I It updates both the critic and the policy at each update

56 / 57

From Policy Gradient to Actor-Critic methods

A2C

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

57 / 57

Olivier.Sigaud@upmc.fr

	The policy search problem
	Policy improvement
	Policy Gradient Derivation
	Policy Gradient Derivation
	Policy Gradient Improvements
	From Monte Carlo to bootstrap
	Policy Gradient with Baseline
	From Policy Gradient to Actor-Critic
	Off-policy vs On-policy
	Mechanisms
	A2C

