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Black dots represent 20
training examples, and the
thick red line is the learned
model f(x). Vertical lines
represent residuals ||y — f(x)]|.

We want to minimize the squared sum of the residuals

In matrix form: min(y — f(X))2.

Adrien Marie Legendre (1805) N Il Sthodes pour la détermination des orbites des cométes. F. Didot.

Carl Friedrich Gauss (1809) Theoria motus corporum coelestium in sectionibus conicis solem ambientium, volume 7. Perthes et,
Besser.
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Offset trick

> In the linear case, we want y = f(X) =07X +b

» We can remove the offset b by increasing X with a row of ones.

>
N 0 \T
f(X):<b) (X 1)
>
X11  X12 - Xi,p 1
X2,1 X22 -+ X2p 1
X:
XN, XN2 - XNp 1

> If we rewrite y = f(X) = 07X, 6 is a vector of weights
» We minimize the residuals, thus
0" = min|ly — 7X|?
0 \‘/_J

L(6)
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Optimal linear model

L(0) = [ly - 0"X|*
= (y — X0)"(y — X0)
=y'y —y'X6 - (X0)Ty + (X6)"(X0)
=y'y —2(X0)Ty + (X8)"(X0)

At a minimum of a function, its derivative is null

OL(6) v w1
oo = 206XTX —XTy)
OL(0) ~ ot
“5g =0 OX'X =XTy

Thus min reached where 8* = (XTX) 'XTy

(1)
)
®3)
(4)
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Regularized Least Squares

Potential singularities in XTX can generate very large 8™ weights

>
> Regularized Least Squares (Ridge Regression, RR): penalize large weights
> Optimize with lower weights (sacrifice optimality):

>

* . A 2 1 2
0" = =|e ~|ly — X"0
arg min= 6] + 3 ly — X701, (5)
» Analytical solution:
0" = (M +X™X) 'XTy. (6)
» Tikhonov regularization = Ridge regression
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Next classes: regression for robotics

Linear model [TES (U ot Squares)
F(x) =atx+b T (Weghted Linear Least Squares)
A
EZ£1

Mixture of linear models
(irifiadmeddl)

Aad 5
_vE . P ® IWR (Locally Weighted R.)
F(X) =Yeo1 6(x,6e)- (aIx+be) @ | REWR (Receptive Field Weighted R)
sub-models: aTx + b, ~ Ay BFS ~ | IWPR (Locally Weighted Projection R.)
weights: ¢(x, 6.) -, XCSF
\ OXCar BFs 3 M5 (Model Tress)
Weighted sum of basis functions (" RBEN (Rl B Furctin o) n

| MR Ganmin Mo R)

09 = 5., 6(x,00) - be ¥ ey
sub-models: 6(x, 6) — Kernel ¢(x:X) ~7 GPR (Gaussian Process R) ‘
weights: b, ~ g:srne BFs —__|iRFRLS
Xcap o, 1-SSGPR.
"3/ M5 (Regression Trees)

» Two different approaches:
> Multiple local and weighted least square regressions (shown with LWR)
» Projecting the input space into a feature space using non-linear basis
functions (shown with RBFNs)
> We provide unifying views of algorithms from each family

» Then we highlight the similarity between both approaches

@ Stulp, F. and Sigaud, O. (2015). Many regression algorithms, one unified model: A review. Neural Networks, 69:60-79.
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Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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