e
From AlphaZero to AlphaNPI

From AlphaZero to AlphaNPI

Olivier Sigaud

Sorbonne Université
http://www.isir.upmc.fr/personnel /sigaud

e
From AlphaZero to AlphaNPI

Introduction

Background

» AlphaZero is very efficient at solving single-task, discrete action problems

» AlphaNPI is an extension to multitask, hierarchical problem solving

From AlphaZero to AlphaNPI
L AlphaNPI

Step 1: dealing with non-Markov problems

Critic Actor

plailhe) plal

» An LSTM stores some context from the previous state

e
From AlphaZero to AlphaNPI

L AlphaNPI

Step 2: making it multitask

Critic Actor

plathe) plailhy pilhe)

state

embedding embedding

state

SSS 153 028 - 316 -921
17273 645 —480 .- 222 401
(01...00)X\ 921 —045 -~ 321 -111
one-hot task embedding matrix
encoding

» Using the task as input makes the architecture multitask (equivalent to GC-RL)
> Additional feature inherited from NPI: using state and task embedding

» Impact of embeddings not studied, ablation needed

e
From AlphaZero to AlphaNPI

L AlphaNPI

Step 3: defining a (loose) hierarchy of tasks

[program [description [Tevel |
BUBBLESORT | sort the list 3
RESET move both pointers to the extreme left of the list 2
Bubble make one pass through the list 2
RSHIFT move both pointers once to the right 1
LSHIFT move both pointers once to the left 1
COMPSWAP if both pointers are at the same position, move pointer 2 to the left, 1

then swap elements at pointers positions if left element > right element
PTR_2_L move pointer 2 to the left 0
PTR_1_L move pointer 1 to the left 0
PTR_1_R move pointer 1 to the right 0
PTR_2_R move pointer 2 to the right 0
SWAP swap elements at the pointers positions 0
SToP terminates current program 0

Table 4: Program library for the list sorting environment.
» The list of task is where expert knowledge is inserted
> A task can only call a subtask of lower or equivalent level

» This helps constraining recursive tree search

» Additional constrainsts with preconditions can be used

5/7

e
From AlphaZero to AlphaNPI

L AlphaNPI

Recursive tree search: implementation

clean_and_stack move all blue

a; = move cl blue %top

s’ = BM (s, a1)

ay =move c2 blue/ | stop

s = BM(s', az)

stop

(a) (b) (c)
» When a task calls a subtask

» A subtree is created

» The current task context is stored into a stack

»> And unstacked upon termination (as when calling a function in
programming languages)

» Thus in AlphaNPI we have a tree of MCTS searches (tree of trees)

6/7

From AlphaZero to AlphaNPI
L AlphaNPI

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Olivier.Sigaud@upmc.fr

	Introduction
	AlphaNPI

