R
From MCTS to Hilbert

From MCTS to Hilbert

Olivier Sigaud

Sorbonne Université
http://www.isir.upmc.fr/personnel /sigaud

From MCTS to Hilbert

Monte Carlo Tree Search

Motivation

» A domain independent algorithm to plan in one’s head to determine the
best next action

» Example: two-player games (Chess, Go...).

» Minimax defeated Kasparov in 1998, was considering the whole tree, too
expensive at Go

» MCTS was the leading technique at Go before AlphaZero

» Requires an internal simulator

» Requires a capability to reset anywhere

» Very efficient tree search method

Gelly, S., Wang, Y., Munos, R., and Teytaud, O. Modification of UCT with patterns in Monte-Carlo go. Technical Report 32,
RR-6062, INRIA, 2006.

2/24

From MCTS to Hilbert

Monte Carlo Tree Search

Overview

» Somewhere between breadth-first and depth-first search
» Similar to A* without the admissible heuristic
» The cost is in the numerous simulations — AlphaZero improves this

» Four processes: Selection, Expansion, Simulation, Update

From MCTS to Hilbert

Monte Carlo Tree Search

Initial step

» A node represents a discrete state, an edge represents a discrete action
» The process starts with an empty node

» This node corresponds to the current state where the next action has to
be chosen

R
From MCTS to Hilbert

Monte Carlo Tree Search

Initial step: Expansion

R
From MCTS to Hilbert

Monte Carlo Tree Search

Initial step: Simulation

Oorl? Oorl? Oorl?

» From each selected node, it performs random simulations (Monte
to evaluate the node (without adding nodes yet)

» Initial child node selection is random

R
From MCTS to Hilbert
|—Monte Carlo Tree Search
: :
Initial step: Update
6
Oorl? Oorl?

Oorl?

» |t updates the values of children based on the statistics of the simulations
» The value is a state value V(s)

From MCTS to Hilbert

Monte Carlo Tree Search

Initial step: Update parents

/‘\
@
Oorl? Oorl? Oorl?

» [t also updates the values of parents

> Note that state values V (s) could be changed into state-action values
Q(s, a) using Q(s,a) = r(s,a) + 7V (s')

> In Go, Q(s,a) = V(s") (no intermediate reward)

ISIR

hed
DESSISTEMES

From MCTS to Hilbert
LMonte Carlo Tree Search

Selection
[
@
TN
O Select action a from
Qls,a) +U(s,0)
with
_ 2y N(s,b)
U(s, a) = cpuet-P(s,0). H?N(S,a)
Oorl?
» Selection operates over all expanded nodes
» That's where the reset-anywhere property is necessary
» |t favors leaf nodes with a higher chance of success
» But it avoids ignoring too much lower success nodes |S|R
> A lower N(s,a) results in a higher U(s, a) L
» The selected node is expanded, and the process is repeated

9/ 24

From MCTS to Hilbert

Monte Carlo Tree Search

Action Selection

@
5\@
/@@'°°@)\
@B 06 FO

Oorl?

After some budget, the search process stops

The agent performs the action leading to the most visited first level child
In exploration mode, some noise is added

The current agent state is updated, and the process starts again
MPC-like process |§IR

DESSISTEMES

vVvyyVvyVvVvyy

A lot of computations are forgotten...

10 / 24

R
From MCTS to Hilbert

Monte Carlo Tree Search

Summary

» MCTS plays well Go or chess, but is quite inefficient
» Areas for improvement:

> Avoid forgetting Q(s, a) after each step

> Avoid using Monte Carlo simulations again each time to evaluate Q(s, a)

» Instead of running random simulations, play good moves with higher
probabilities

» Adding a critic network solves these issues

From MCTS to Hilbert
|—AIphaZero

Actor-Critic vs Monte Carlo

data

\

direct
radient ~ —-

previous —p-|
g it critic
computation

Monte Carlo direct gradient

Monte Carlo model

Bootstrap model
Monte Carlo direct gradient: Estimate Q(s, a) over rollouts

Monte Carlo model: learn a model Q(s, a) over rollouts using MC regression,
throw it away after each update

Bootstrap: Update a model Q(s,a) over samples using TD methods,
keep it over policy gradient steps

The bootstrap approach is much more sample efficient

» It introduces bias and reduces variance

From MCTS to Hilbert

LAIphaZero
: :
MCTS + Critic
» Learns a critic Q(s, a) for all states over all rollouts
» Using a DQN-like architecture
» Still builds a plan with an MPC-like approach, not using max, Q(s,a) as policy
» The MCTS search process helps balancing samples, favors exploration
» In AlphaZero:

» Instead of playing random rollouts, can play rollouts driven by Q(s7 a)
» The critic Q(s,a) can be pre-trained with expert moves (AlphaGo vs
AlphaZero)

13 /24

R
From MCTS to Hilbert

|—AIphaZero

AlphaZero: from DQN-like to actor-critic

Critic Actor

plalhy) p@lh) palhe)

> Learning a policy and a V/(s) function is more efficient than using a Q(s, a)
function

From MCTS to Hilbert
L AlphaNPI

Motivation

» AlphaZero is very efficient at solving single-task, discrete action problems

» AlphaNPI is an extension to multitask, hierarchical problem solving

From MCTS to Hilbert
L AlphaNPI

Step 1: dealing with non-Markov problems

Critic Actor

plaithy) plailhy p(lhe)

» An LSTM stores some context from the previous state

R

From MCTS to Hilbert
L AlphaNPI

Step 2: making it multitask

Critic Actor

state task
embedding embedding
state
SSS 153 028 - 316 -921
17273 645 —480 .- 222 401
(01...00)X\ 921 —045 -~ 321 -111
one-hot task embedding matrix

encoding

» Using the task as input makes the architecture multitask (equivalent to
> Additional feature inherited from NPI: using state and task embedding

» Impact of embeddings not studied, ablation needed

GC-RL)

e
From MCTS to Hilbert

L AlphanpI

Step 3: defining a (loose) hierarchy of tasks

[program [description [Tevel |
BUBBLESORT | sort the list 3
RESET move both pointers to the extreme left of the list 2
Bubble make one pass through the list 2
RSHIFT move both pointers once to the right 1
LSHIFT move both pointers once to the left 1
COMPSWAP if both pointers are at the same position, move pointer 2 to the left, 1

then swap elements at pointers positions if left element > right element
PTR_2_L move pointer 2 to the left 0
PTR_1_L move pointer 1 to the left 0
PTR_1_R move pointer 1 to the right 0
PTR_2_R move pointer 2 to the right 0
SWAP swap elements at the pointers positions 0
SToP terminates current program 0

Table 4: Program library for the list sorting environment.
» The list of task is where expert knowledge is inserted
> A task can only call a subtask of lower or equivalent level

» This helps constraining recursive tree search

» Additional constrainsts with preconditions can be used

18 / 24

R
From MCTS to Hilbert

L AlphanpI

Recursive tree search: implementation

clean_and_stack

(a) (b)
» When a task calls a subtask

» A subtree is created

» The current task context is stored into a stack

» And unstacked upon termination (as when calling a function in
programming languages)

» Thus in AlphaNPI we have a tree of MCTS searches (tree of trees)

e
From MCTS to Hilbert
L AlphaNPI

Summary

» AlphaNPI is applied to discrete actions
P> HILBERT deals with continuous actions

» It learns forward models of the lowest level

» |t provides a very sample efficient approach to continuous action HRL

u}
)]
1
n
[
N
el
Q

e
From MCTS to Hilbert

L Hilbert

Low-level controller: GC-RL

Q(Stity q)

atomic action

embedding one-hot encoding

» GC-RL using DDPG (or SAC) + HER

R

From MCTS to Hilbert
L Hilbert

Learning a behavioral model of low level controller

St4+1

FiLM
connections

concat
state
embedding w St tt

» This is a supervised learning problem

atomic action
one-hot encoding

» The FiLM layer improves accuracy

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018) Film: Visual reasoning with a general conditioning
layer. In Proceedings of the AAAI Conference on Atrtificial Intelligence, volume 32

R

From MCTS to Hilbert
L Hilbert

Recursive tree search: continuous action case

clean_and_stack move all blue

a; = move cl blue %top

S = BM (s, a1)

az =move c2 blue/ | stop

s = BM(s',a>)

stop

(@) (b) (c)
P> The lowest level stops the recursion
» HILBERT can perform hierarchical planning without rolling the low-level policy
> By using the behavioral model, higher level planning is learned without sampling

» Extremely sample efficient search approach

From MCTS to Hilbert
L Hilbert

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Olivier.Sigaud@upmc.fr

R
From MCTS to Hilbert

References

Gelly, S., Wang, Y., Munos, R., and Teytaud, O.

Modification of UCT with patterns in monte-carlo go.
Technical Report 32, RR-6062, INRIA, 2006.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A.

Film: Visual reasoning with a general conditioning layer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

	Monte Carlo Tree Search
	AlphaZero
	AlphaNPI
	Hilbert
	References

