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Replay buffer

Introducing a replay buffer

I Helps decorrelating the agent trajectory and samples fed to the critic

I Samples can be fed to the critic randomly or through various heuristics

I Introduces sample efficiency discussion
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Replay buffer

Replay buffer and sample efficiency

I Important intuition: in the discrete deterministic case, one sample from
each (state, action) pair in the buffer is enough for Q-learning to
converge

I Thus using a replay buffer can be very sample efficient

I In the stochastic case, samples in the replay buffer should reflect the
distribution over next state

I This may require a large replay buffer (over 1e6 samples)

I In the continuous case, the state (and action) spaces cannot be covered

I But off-policy deep RL algorithms using a replay buffer still benefit from
the initial intuition
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Biases

Maximization in RL

I Two maximization steps:
I In action selection:

π(s) ∼ argmax
a∈A

Q(s, a)

might be stochastic or contain some exploration
I In Q-learning, in the value update rule

Q(st , at)← Q(st , at) + α[rt+1 + γmax
a∈A

Q(st+1, a)− Q(st , at)]
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Biases

Maximization bias

I In action selection, a maximum over estimated Q(s, a) is performed

I “In these algorithms, a maximum over estimated values is used implicitly
as an estimate of the maximum value, which can lead to a significant
positive bias.”

I Example: imagine all true Q(s, a) values are null

Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction (Second edition). MIT Press
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Biases

Double Q-learning

I Solution: using two Q-Tables, one for value estimation and one for action
selection

I a∗ = argmaxa Q1(a)
I Q2(a∗) = Q2(argmaxa Q1(a)) unbiased estimate of Q(a∗)
I a′∗ = argmaxa Q2(a)
I Q1(a′∗) = Q1(argmaxa Q2(a)) unbiased estimate of Q(a′∗)
I Randomly select one of each at all steps

Van Hasselt, H. (2010) Double q-learning. Advances in Neural Information Processing Systems, pages 2613–2621
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Biases

Double Q-learning: results
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Biases

Over-estimation bias propagation

I Some initial bias cannot be prevented due to Q-Table initialization
I In Q-learning, due to the max operator, the maximization bias

propagates
I No propagation of under-estimation
I The same holds for ddpg without a max operator!

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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TD and Monte Carlo

Monte Carlo (MC) methods

I Much used in games (Go...) to evaluate a state
I It uses the average estimation method Ek+1(s) = Ek(s) + α[rk+1 − Ek(s)]
I Generate a lot of trajectories: s0, s1, . . . , sN with observed rewards

r0, r1, . . . , rN
I Update state values V (sk), k = 0, . . . ,N − 1 with:

V (sk)← V (sk) + α(sk)(rk + rk+1 + · · ·+ rN − V (sk))
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TD and Monte Carlo

TD vs MC

I Temporal Difference (TD) methods combine the properties of DP
methods and Monte Carlo methods:

I In Monte Carlo, T and r are unknown, but the value update is global
along full trajectories

I In DP, T and r are known, but the value update is local

I TD: as in DP, V (st) is updated locally given an estimate of V (st+1) and
T and r are unknown

I Note: Monte Carlo can be reformulated incrementally using the temporal
difference δk update
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TD and Monte Carlo

Eligibility traces

I Goal: improve over Q-learning

I Naive approach: store all (s, a) pair and back-propagate values

I Limited to finite horizon trajectories

I Speed/memory trade-off

I TD(λ), sarsa (λ) and Q(λ): more sophisticated approach to deal with
infinite horizon trajectories

I A variable e(s) is decayed with a factor λ after s was visited and
reinitialized each time s is visited again

I TD(λ): V (s)← V (s) + αδe(s), (similar for sarsa (λ) and Q(λ)),

I If λ = 0, e(s) goes to 0 immediately, thus we get TD(0), sarsa or
Q-learning

I TD(1) = Monte Carlo...

I Eligibility traces can be seen as a combination of N-step returns for all N

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015b) High-dimensional continuous control using Generalized

Advantage Estimation. arXiv preprint arXiv:1506.02438
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The bias variance trade-off

Bias versus variance

I If you compute an expectation over infinitely many samples, you get the
same expectation each time

I But if you compute it over a finite set of samples, you get a different
expectation each time

I This is known as variance

I Given a large variance, you need many samples to get an accurate
estimate of the mean

I If you update an expectation based on a previous (wrong) expectation
estimate, the expectation estimate you get provided infinitely many
samples is wrong

I This is known as bias

Geman, S., Bienenstock, E., & Doursat, R. (1992) Neural networks and the bias/variance dilemma. Neural computation,

4(1):1–58
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The bias variance trade-off

Bias, variance, overfitting and underfitting

I With high bias, the risk is underfitting

I With high variance, the risk is overfitting

I You need low bias and low variance

13 / 20



Reinforcement Learning

The bias variance trade-off

Monte Carlo, One-step TD and N-step return

I One-step TD suffers from bias

I MC suffers from variance due to exploration (+ stochastic trajectories)

I MC is on-policy → less sample efficient

I N-step TD: tuning N to control the bias-variance compromize
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The bias variance trade-off

Bias-variance compromize

I Total error = bias2 + variance + irreducible error

I A more complex model (e.g. bigger network) generally has more variance,
but less bias

I Tuning N in the N-step return or λ in an eligilibity trace method helps
finding the right compromize.
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The bias variance trade-off

The N-step return in practice

I How do we store into the replay buffer?

I N-step Q-learning is more efficient than Q-learning

I Various implementations are possible

Sharma, S., Ramesh, S., Ravindran, B., et al. (2017) Learning to mix N-step returns: Generalizing λ-returns for deep

reinforcement learning. arXiv preprint arXiv:1705.07445
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Model-based reinforcement learning

Model-based Reinforcement Learning

I General idea: planning with a learnt model of T and r is performing back-ups “in
the agent’s head” ([Sutton, 1990, Sutton, 1991])

I Learning T and r is an incremental self-supervised learning problem
I Several approaches:

I Draw random transition in the model and apply TD back-ups
I dyna-PI, dyna-Q, dyna-AC
I Better propagation: Prioritized Sweeping

Moore, A. W. & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time. Machine

Learning, 13:103–130.
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Model-based reinforcement learning

Dyna architecture and generalization

I Thanks to the model of transitions, dyna can propagate values more often

I Problem: in the stochastic case, the model of transitions is in
card(S)× card(S)× card(A)

I Usefulness of compact models

I MACS: dyna with generalisation (Learning Classifier Systems)

I SPITI: dyna with generalisation (Factored MDPs)

Gérard, P., Meyer, J.-A., & Sigaud, O. (2005) Combining latent learning with dynamic programming in MACS. European Journal

of Operational Research, 160:614–637.

Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006) Learning the Structure of Factored Markov Decision Processes in Reinforcement

Learning Problems. Proceedings of the 23rd International Conference on Machine Learning (ICML’2006), pages 257–264
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Model-based reinforcement learning

Corresponding labs

I See https://github.com/osigaud/rl_labs_notebooks

I One notebook about N-step return

I One notebook about model-based RL, based on RTDP
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Model-based reinforcement learning

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

20 / 20

Olivier.Sigaud@upmc.fr


Reinforcement Learning

References

Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006).

Learning the Structure of Factored Markov Decision Processes in Reinforcement Learning Problems.
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