
Regression

Regression
4. Batch non-linear projection methods

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud

1 / 22

Regression

Reminder: Outline of methods

I Projecting the input space into a feature space using non-linear basis
functions (shown with RBFNs)

Stulp, F. and Sigaud, O. (2015). Many regression algorithms, one unified model: A review. Neural Networks, 69:60–79.

2 / 22

Regression

Least Square Projection Methods

Basis Function Networks: general idea

I With linear regression, we look for f̂(x) = w · x + b

I This is not general enough for non-linear functions

I More general form: f̂(x) =
∑E
e=0 we · φθe(x) with φθ0(x) = 1

I This can be seen as projecting the input to a different space...

I ... where the latent function is linear

Bishop, C. M. (2007) Pattern recognition and machine learning. Springer Berlin/Heidelberg, Germany

3 / 22

Regression

Least Square Projection Methods

Understanding projection

I The point x = (x1, x2) is projected to (φ1(x), φ2(x), φ3(x))

4 / 22

Regression

Least Square Projection Methods

Regression with features: example

I The (unkown) function to be approximated is
f(x1, x2) = |x1 − 2|2 + 3.|x2|2 + 4

I We define features φi(x1, x2) over (x1, x2)

I We look for w such that f̂(x1, x2) = Σiwiφi(x1, x2)

5 / 22

Regression

Least Square Projection Methods

With poor features

I If we take 3 feature functions φ0(x1, x2) = 1, φ1(x1, x2) = x1 and
φ2(x1, x2) = x2

I We cannot do better than f̂(x1, x2) = w1x1 + w2x2 + c

I Very poor linear approximation

6 / 22

Regression

Least Square Projection Methods

With good features

I If we take φ0(x1, x2) = 1, φ1(x1, x2) = |x1 − 2|2 and φ2(x1, x2) = |x2|2

I Then f̂(x1, x2) = w0 + w1|x1 − 2|2 + w2|x2|2

I If we take w0 = 4, w1 = 1 and w2 = 3, we get exactly
f̂(x1, x2) = |x1 − 2|2 + 3.|x2|2 + 4 = f(x1, x2)

I Perfect approximation

I Finding good features is critical

7 / 22

Regression

Least Square Projection Methods

Standard features: Gaussian basis functions

I The more features, the better the approximation

I ... but the more expensive the computation

I All the following algorithms use this structure

I In particular, we may use one kernel per known data point

8 / 22

Regression

Least Square Projection Methods

Kernel Ridge Regression (KRR) = Kernel Regularised Least Squares (KRGLS)

I Define features with a kernel function k(x,xi) per point xi
I Define the Gram matrix as a kernel matrix:

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN)
k(x2,x1) k(x2,x2) · · · k(x2,xN)

...
...

. . .
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)

 . (1)

I If we had an infinity of data points, the linear approximation in feature
space would become perfect

I Intuition: the error is a function of the distance to data points

I Computing the weights is done with RR using

θ∗ = (λI + K)−1y, (2)

I Note that K is symmetric

I The kernel matrix K grows with the number of points (kernel expansion)

I The matrix inversion may become too expensive

I Solution: finite set of features (RBFNs), incremental methods

9 / 22

Regression

Least Square Projection Methods

Gaussian Process Regression (GPR)

I Predicting y for a novel input x is done by assuming that the novel output y is
sampled from a multi-variate Gaussian.

I Information for some x removes uncertainty in its neighborhood using some
kernel-related covariance function k(x,X)

I The best estimate for y is the mean y = k(x,X)K−1y

I The variance in y is var(y) = k(x,x)− k(x,X)K−1k(x,X)ᵀ

Ebden, M. (2008). Gaussian processes for regression: A quick introduction. Technical report, Department of Engineering Science,

University of Oxford

10 / 22

Regression

Least Square Projection Methods

GPR ∼ KRR

I When computing the mean y, K and y depend only on the training data, not
the novel input x.

I Therefore, K−1y can be compacted into one weight vector, which does not
depend on the query x.

I We call this vector θ∗ and we get θ∗ = K−1y,

I We can rewrite y as follows:

y = k(x,X)K
−1

y

= [k(x,x1) . . . k(x,xN)] · θ∗

=
N∑

n=1

θ
∗
n · k(x,xn).

(3)

I The mean of GPR is the same weighted sum of basis functions as in KRR

I KRR computes a regularized version of the weights computed by GPR, with an
additional regularization parameter λ.

I See the tutorial paper for details

Stulp, F. and Sigaud, O. (2015). Many regression algorithms, one unified model: A review. Neural Networks, 69:60–79.

11 / 22

Regression

Least Square Projection Methods

Radial Basis Function Networks: definition and solution

I Radial Basis Functions versus Kernels (Gaussians

φ(x,θe) = e−
1
2
(x−µe)

T Σ−1
e (x−µe) are both)

I We define a set of E basis functions (often Gaussian)

f̂(x) =
E∑
e=1

we · φ(x,θe) (4)

= θᵀ · φ(x). (5)

I We also define the Gram matrix

G =


φ(x1,θ1) φ(x1,θ2) · · · φ(x1,θE)
φ(x2,θ1) φ(x2,θ2) · · · φ(x2,θE)

...
...

. . .
...

φ(xN ,θ1) φ(xN ,θ2) · · · φ(xN ,θE)

 (6)

I and we get the least squares solution

θ∗ = (GᵀG)−1Gᵀy. (7)

12 / 22

Regression

Least Square Projection Methods

Incremental Receptive Fields Regularized Least Squares

W

W

W

W

1

2

3

4

I Approximate the function through its (approximate) Fourier transform

using random features zk(Xi) =
√
2√
D
cos(ωTkXi + bk), with

ωk ∼ N (0, 2γI) and bk ∼ U(0, 2π).
I As RBFNs, but with K cosinus features → global versus local
I Provides a strong grip against over-fitting (ignoring the high frequencies)
I In practice, efficient for large enough K, and easy to tune
I I-SSGPR: same tricks based on GPR

Gijsberts, A. & Metta, G. (2011) “Incremental learning of robot dynamics using random features.” In IEEE International

Conference on Robotics and Automation (pp. 951–956).

13 / 22

Regression

Least Square Projection Methods

Least Square Projection Methods: summary of computations

I Linear case

θ∗ = (XᵀX)−1Xᵀy (LS) (8)

θ∗ = (λI + XᵀX)−1Xᵀy. (RLS) (9)

I Gram matrix case

θ∗ = (GᵀG)−1Gᵀy (RBFN) (10)

I Kernel matrix case

θ∗ = K−1y, (GPR) (11)

θ∗ = (λI + K)−1y. (KRR) (12)

14 / 22

Regression

Least Square Projection Methods

Least Square Projection Methods: summary of approaches

A
lg

or
it

h
m

R
eg

u
la

ri
ze

d
?

N
u

m
b

er
o

f
B

F
s?

F
ea

tu
re

s?

rbfn No E RBFs
KRR Yes N kernels
GPR No N kernels
iRFRLS Yes E cosine
I-SSGPR Yes E cosine

Table: Design of all weigthed basis function algorithms.

15 / 22

Regression

Beyond Linear Architectures: Deep Neural Networks

The case of (feedforward) neural networks

I The activation function is non local (sigmoid, ReLu, LeakyReLu...) vs
Gaussians

I Weights of output layer: regression

I Weight of intermediate layer(s): tuning basis functions

I Shares the same structure as all basis function networks

I Sigmoids instead of Gaussians: better split of space in high dimensions

16 / 22

Regression

Beyond Linear Architectures: Deep Neural Networks

Regression with neural networks: discovering features

I The backprop algo tunes both kinds of weights

I Discovers the adequate features by itself

I Deep versus shallow: get more tunable features with less parameters

I Cannot be performed batch, see incremental methods (Classes 5, 6 and 7)

17 / 22

Regression

Beyond Linear Architectures: Deep Neural Networks

Regression with neural networks: variants

I If only the weights at the last layer are tuned, still defines a linear
architecture (Extreme Learning Machine)

I Stochastic optimization of intermediate weights, linear regression on
output weights?

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012) Extreme learning machine for regression and multiclass classification. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):513–529

18 / 22

Regression

Summary

LWR versus RBFNs

f̂(x) =

E∑
e=1

φ(x,θe)·(be + aᵀ
ex) (13)

f̂(x) =
E∑
e=1

φ(x,θe)· we, (14)

I Eq. (14) is a special case of (13) with ae = 0 and be = we.

I RBFNs: performs one LS computation in a projected space

I LWR: performs many LS computation in local domains

19 / 22

Regression

Summary

Wrap-up

I Image taken from Freek Stulp’s IROS 2018 Tutorial

20 / 22

Regression

Summary

Take home messages for robot model learning

−5 0 5 10 15
−3

−2

−1

0

1

2

3

4

5

I Mixture of linear models vs Basis Function Networks

I Neural networks: tuning the features

I ISSGPR: easy tuning, no over-fitting

I LWPR: PLS, fast implementation, the reference method

I XCSF: distinguish Gaussian weights space and linear models space

I GMR: few features, the richest representation

Sigaud, O. , Salaün, C. and Padois, V. (2011) “On-line regression algorithms for learning mechanical models of robots: a survey,”

Robotics and Autonomous Systems, 59:1115-1129

21 / 22

Regression

Summary

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

22 / 22

Olivier.Sigaud@upmc.fr

Regression

References

Bishop, C. M.

Pattern recognition and machine learning.
Springer Berlin/Heidelberg, Germany, 2007.

Ebden, M.

Gaussian processes for regression: A quick introduction.
Technical report, Department on Engineering Science, University of Oxford, 2008.

Gijsberts, A. and Metta, G.

Incremental learning of robot dynamics using random features.
In IEEE International Conference on Robotics and Automation, pp. 951–956, 2011.

Huang, G.-B., Zhou, H., Ding, X., and Zhang, R.

Extreme learning machine for regression and multiclass classification.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):513–529, 2012.

Sigaud, O., Salaün, C., and Padois, V.

On-line regression algorithms for learning mechanical models of robots: a survey.
Robotics and Autonomous Systems, 59(12):1115–1129, December 2011.

Stulp, F. and Sigaud, O.

Many regression algorithms, one unified model: A review.
Neural Networks, 69:60–79, 2015.

22 / 22

	Least Square Projection Methods
	Beyond Linear Architectures: Deep Neural Networks
	Summary
	References

