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[ Replay buffer

Introducing a replay buffer
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» Helps decorrelating the agent trajectory and samples fed to the critic
» Samples can be fed to the critic randomly or through various heuristics

» Introduces sample efficiency discussion
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Replay buffer

Replay buffer and sample efficiency

» Important intuition: in the discrete deterministic case, one sample from
each (state, action) pair in the buffer is enough for Q-LEARNING to
converge

> Thus using a replay buffer can be very sample efficient

> In the stochastic case, samples in the replay buffer should reflect the
distribution over next state

» This may require a large replay buffer (over 1e® samples)
> In the continuous case, the state (and action) spaces cannot be covered

» But off-policy deep RL algorithms using a replay buffer still benefit from
the initial intuition
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Biases

Maximization in RL

» Two maximization steps:
> In action selection:
m(s) ~ argmax Q(s, a)
acA

might be stochastic or contain some exploration
> In Q-LEARNING, in the value update rule

Q(st; at) < Q(st,ar) + afre1 + ymax Q(st+1,2) — Q(st, at)]
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Biases

Maximization bias

max of
estimates

max of true
values

> In action selection, a maximum over estimated Q(s, a) is performed

> “In these algorithms, a maximum over estimated values is used implicitly
as an estimate of the maximum value, which can lead to a significant
positive bias.”

» Example: imagine all true Q(s, a) values are null

@ Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction (Second edition). MIT Press
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Biases

Double Q-LEARNING

a* = argmaz,Q1(a)

o Q2

» Solution: using two Q-Tables, one for value estimation and one for action
selection

a* = argmax, Q:(a)

@2(a%) = Q:(argmax, Q1(a)) unbiased estimate of Q(a*)
a”* = argmax, @(a)

@1(a”") = Q:(argmax, Q2(a)) unbiased estimate of Q(a'*)

Randomly select one of each at all steps

vV vy vy Vvyy

Ia Van Hasselt, H. (2010) Double g-learning. Advances in Neural Information Processing Systems, pages 2613-2621

6/20



Reinforcement Learning

Biases

Double Q-LEARNING: results
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Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with e = 0.1. In contrast, Double Q-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.
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Over-estimation bias propagation
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» Some initial bias cannot be prevented due to Q-Table initialization
In Q-LEARNING, due to the max operator, the maximization bias
propagates
No propagation of under-estimation

» The same holds for DDPG without a max operator!

arXiv:1802.09477 ~—
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LTD and Monte Carlo

Monte Carlo (MC) methods

\4

Much used in games (Go...) to evaluate a state
It uses the average estimation method Exy1(s) = Ek(s) + afrk+1 — Ex(s)]
> Generate a lot of trajectories: o, s1, ..., sy with observed rewards

v

h,Mn,...,rn
Update state values V(sk), k =0,..., N — 1 with:

V(sk) < V(sk) + a(se)(re + risr + -+ -+ v — V(s«))

v
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LTD and Monte Carlo

TD vs MC

» Temporal Difference (TD) methods combine the properties of DP
methods and Monte Carlo methods:

> In Monte Carlo, T and r are unknown, but the value update is global
along full trajectories

» In DP, T and r are known, but the value update is local

» TD: as in DP, V/(s;) is updated locally given an estimate of V/(s:11) and
T and r are unknown

> Note: Monte Carlo can be reformulated incrementally using the temporal
difference §x update
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LTD and Monte Carlo

Eligibility traces

> Goal: improve over Q-LEARNING

» Naive approach: store all (s, a) pair and back-propagate values

» Limited to finite horizon trajectories

> Speed/memory trade-off

» TD(A), sARsA (M) and Q()\): more sophisticated approach to deal with
infinite horizon trajectories

> A variable e(s) is decayed with a factor A after s was visited and
reinitialized each time s is visited again

» TD(A): V(s) « V(s) + ade(s), (similar for saARsA (A) and Q())),

> If A =0, e(s) goes to 0 immediately, thus we get TD(0), SARSA or
Q-LEARNING

» TD(1) = Monte Carlo...

> Eligibility traces can be seen as a combination of N-step returns for all N _e—e
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@ Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015b) High-dimensional continuous control using Generalized‘\ ke

Advantage Estimation. arXiv preprint arXiv:1506.02438
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The bias variance trade-off

Bias versus variance

> If you compute an expectation over infinitely many samples, you get the
same expectation each time

» But if you compute it over a finite set of samples, you get a different
expectation each time

» This is known as variance

> Given a large variance, you need many samples to get an accurate
estimate of the mean

> If you update an expectation based on a previous (wrong) expectation
estimate, the expectation estimate you get provided infinitely many
samples is wrong

» This is known as bias

@ Geman, S., Bienenstock, E., & Doursat, R. (1992) Neural networks and the bias/variance dilemma. Neural computation,
4(1):1-58
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The bias variance trade-off

Bias, variance, overfitting and underfitting

Low High
Variance Variance
Underfitting 2
X X
High variance High bias Low bias, low variance
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Truth
overfitting

underfitting Good balance

Overfitting

» With high bias, the risk is underfitting
» With high variance, the risk is overfitting

» You need low bias and low variance

DA
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The bias variance trade-off

Monte Carlo, One-step TD and N-step return
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One-step TD suffers from bias

>
> MC suffers from variance due to exploration (4 stochastic trajectories)
» MC is on-policy — less sample efficient

>

N-step TD: tuning N to control the bias-variance compromize
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The bias variance trade-off

Bias-variance compromize

Total Error

Variance

Optimum Model Complexity

Error
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» Total error = bias? 4 variance + irreducible error

» A more complex model (e.g. bigger network) generally has more variance,
but less bias

» Tuning N in the N-step return or X in an eligilibity trace method helps
finding the right compromize.
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The bias variance trade-off

The N-step return in practice
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» How do we store into the replay buffer?
> N-step Q-LEARNING is more efficient than Q-LEARNING

» Various implementations are possible

Sharma, S., Ramesh, S., Ravindran, B., et al. (2017) Learning to mix N-step returns: Generalizing A-returns for deep

reinforcement learning. arXiv preprint arXiv:1705.07445
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Model-based reinforcement learning

Model-based Reinforcement Learning
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> General idea: planning with a learnt model of T and r is performing back-ups “in
the agent’s head” ([Sutton, 1990, Sutton, 1991])
> Learning T and r is an incremental self-supervised learning problem
> Several approaches:
> Draw random transition in the model and apply TD back-ups
> DYNA-PI, DYNA-Q, DYNA-AC
> Better propagation: Prioritized Sweeping

Ia Moore, A. W. & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less data and less real time. Machine
Learning, 13:103-130.
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Model-based reinforcement learning

Dyna architecture and generalization
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» Thanks to the model of transitions, DYNA can propagate values more often
Problem: in the stochastic case, the model of transitions is in
card(S) x card(S) x card(A)
Usefulness of compact models
MACS: DYNA with generalisation (Learning Classifier Systems)
SPITI: DYNA with generalisation (Factored MDPs)

@ Gérard, P., Meyer, J.-A., & Sigaud, O. (2005) Combining latent learning with dynamic programming in MACS. European Journal
-~
of Operational Research, 160:614-637

| e
@ Degris, T., Sigaud, O., & Wuillemin, P.-H. (2006) Learning the Structure of Factored Markov Decision Processes in RelnfOrCementw n?‘ /
Learning Problems. Proceedings of the 23rd International Conference on Machine Learning (ICML’2006), pages 257264 NI —
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Model-based reinforcement learning

Corresponding labs

> See https://github.com/osigaud/rl_labs_notebooks
» One notebook about N-step return
» One notebook about model-based RL, based on RTDP



https://github.com/osigaud/rl_labs_notebooks
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Model-based reinforcement learning

Any question?

Send mail to: Olivier.Sigaud@upmc.fr



Olivier.Sigaud@upmc.fr
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