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Reminder: Outline of methods

I Projecting the input space into a feature space using non-linear basis
functions (shown with RBFNs)

Stulp, F. and Sigaud, O. (2015). Many regression algorithms, one unified model: A review. Neural Networks, 69:60–79.
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Regression

Least Square Projection Methods

Basis Function Networks: general idea

I With linear regression, we look for f̂(x) = w · x + b

I This is not general enough for non-linear functions

I More general form: f̂(x) =
∑E
e=0 we · φθe(x) with φθ0(x) = 1

I This can be seen as projecting the input to a different space...

I ... where the latent function is linear

Bishop, C. M. (2007) Pattern recognition and machine learning. Springer Berlin/Heidelberg, Germany
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Least Square Projection Methods

Understanding projection

I The point x = (x1, x2) is projected to (φ1(x), φ2(x), φ3(x))
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Least Square Projection Methods

Regression with features: example

I The (unkown) function to be approximated is
f(x1, x2) = |x1 − 2|2 + 3.|x2|2 + 4

I We define features φi(x1, x2) over (x1, x2)

I We look for w such that f̂(x1, x2) = Σiwiφi(x1, x2)
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Least Square Projection Methods

With poor features

I If we take 3 feature functions φ0(x1, x2) = 1, φ1(x1, x2) = x1 and
φ2(x1, x2) = x2

I We cannot do better than f̂(x1, x2) = w1x1 + w2x2 + c

I Very poor linear approximation
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Least Square Projection Methods

With good features

I If we take φ0(x1, x2) = 1, φ1(x1, x2) = |x1 − 2|2 and φ2(x1, x2) = |x2|2

I Then f̂(x1, x2) = w0 + w1|x1 − 2|2 + w2|x2|2

I If we take w0 = 4, w1 = 1 and w2 = 3, we get exactly
f̂(x1, x2) = |x1 − 2|2 + 3.|x2|2 + 4 = f(x1, x2)

I Perfect approximation

I Finding good features is critical
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Least Square Projection Methods

Standard features: Gaussian basis functions

I The more features, the better the approximation

I ... but the more expensive the computation

I All the following algorithms use this structure

I In particular, we may use one kernel per known data point
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Least Square Projection Methods

Kernel Ridge Regression (KRR) = Kernel Regularised Least Squares (KRGLS)

I Define features with a kernel function k(x,xi) per point xi
I Define the Gram matrix as a kernel matrix:

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

. . .
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )

 . (1)

I If we had an infinity of data points, the linear approximation in feature
space would become perfect

I Intuition: the error is a function of the distance to data points

I Computing the weights is done with RR using

θ∗ = (λI + K)−1y, (2)

I Note that K is symmetric

I The kernel matrix K grows with the number of points (kernel expansion)

I The matrix inversion may become too expensive

I Solution: finite set of features (RBFNs), incremental methods
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Least Square Projection Methods

Gaussian Process Regression (GPR)

I Predicting y for a novel input x is done by assuming that the novel output y is
sampled from a multi-variate Gaussian.

I Information for some x removes uncertainty in its neighborhood using some
kernel-related covariance function k(x,X)

I The best estimate for y is the mean y = k(x,X)K−1y

I The variance in y is var(y) = k(x,x)− k(x,X)K−1k(x,X)ᵀ

Ebden, M. (2008). Gaussian processes for regression: A quick introduction. Technical report, Department of Engineering Science,

University of Oxford
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Least Square Projection Methods

GPR ∼ KRR

I When computing the mean y, K and y depend only on the training data, not
the novel input x.

I Therefore, K−1y can be compacted into one weight vector, which does not
depend on the query x.

I We call this vector θ∗ and we get θ∗ = K−1y,

I We can rewrite y as follows:

y = k(x,X)K
−1

y

= [k(x,x1) . . . k(x,xN )] · θ∗

=
N∑

n=1

θ
∗
n · k(x,xn).

(3)

I The mean of GPR is the same weighted sum of basis functions as in KRR

I KRR computes a regularized version of the weights computed by GPR, with an
additional regularization parameter λ.

I See the tutorial paper for details

Stulp, F. and Sigaud, O. (2015). Many regression algorithms, one unified model: A review. Neural Networks, 69:60–79.

11 / 22



Regression

Least Square Projection Methods

Radial Basis Function Networks: definition and solution

I Radial Basis Functions versus Kernels (Gaussians

φ(x,θe) = e−
1
2
(x−µe)

T Σ−1
e (x−µe) are both)

I We define a set of E basis functions (often Gaussian)

f̂(x) =
E∑
e=1

we · φ(x,θe) (4)

= θᵀ · φ(x). (5)

I We also define the Gram matrix

G =


φ(x1,θ1) φ(x1,θ2) · · · φ(x1,θE)
φ(x2,θ1) φ(x2,θ2) · · · φ(x2,θE)

...
...

. . .
...

φ(xN ,θ1) φ(xN ,θ2) · · · φ(xN ,θE)

 (6)

I and we get the least squares solution

θ∗ = (GᵀG)−1Gᵀy. (7)
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Least Square Projection Methods

Incremental Receptive Fields Regularized Least Squares
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I Approximate the function through its (approximate) Fourier transform

using random features zk(Xi) =
√
2√
D
cos(ωTkXi + bk), with

ωk ∼ N (0, 2γI) and bk ∼ U(0, 2π).
I As RBFNs, but with K cosinus features → global versus local
I Provides a strong grip against over-fitting (ignoring the high frequencies)
I In practice, efficient for large enough K, and easy to tune
I I-SSGPR: same tricks based on GPR

Gijsberts, A. & Metta, G. (2011) “Incremental learning of robot dynamics using random features.” In IEEE International

Conference on Robotics and Automation (pp. 951–956).
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Least Square Projection Methods

Least Square Projection Methods: summary of computations

I Linear case

θ∗ = (XᵀX)−1Xᵀy (LS) (8)

θ∗ = (λI + XᵀX)−1Xᵀy. (RLS) (9)

I Gram matrix case

θ∗ = (GᵀG)−1Gᵀy (RBFN) (10)

I Kernel matrix case

θ∗ = K−1y, (GPR) (11)

θ∗ = (λI + K)−1y. (KRR) (12)

14 / 22



Regression

Least Square Projection Methods

Least Square Projection Methods: summary of approaches
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rbfn No E RBFs
KRR Yes N kernels
GPR No N kernels
iRFRLS Yes E cosine
I-SSGPR Yes E cosine

Table: Design of all weigthed basis function algorithms.
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Beyond Linear Architectures: Deep Neural Networks

The case of (feedforward) neural networks

I The activation function is non local (sigmoid, ReLu, LeakyReLu...) vs
Gaussians

I Weights of output layer: regression

I Weight of intermediate layer(s): tuning basis functions

I Shares the same structure as all basis function networks

I Sigmoids instead of Gaussians: better split of space in high dimensions
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Beyond Linear Architectures: Deep Neural Networks

Regression with neural networks: discovering features

I The backprop algo tunes both kinds of weights

I Discovers the adequate features by itself

I Deep versus shallow: get more tunable features with less parameters

I Cannot be performed batch, see incremental methods (Classes 5, 6 and 7)
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Beyond Linear Architectures: Deep Neural Networks

Regression with neural networks: variants

I If only the weights at the last layer are tuned, still defines a linear
architecture (Extreme Learning Machine)

I Stochastic optimization of intermediate weights, linear regression on
output weights?

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012) Extreme learning machine for regression and multiclass classification. IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):513–529
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Summary

LWR versus RBFNs

f̂(x) =

E∑
e=1

φ(x,θe)·(be + aᵀ
ex) (13)

f̂(x) =
E∑
e=1

φ(x,θe)· we, (14)

I Eq. (14) is a special case of (13) with ae = 0 and be = we.

I RBFNs: performs one LS computation in a projected space

I LWR: performs many LS computation in local domains
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Summary

Wrap-up

I Image taken from Freek Stulp’s IROS 2018 Tutorial
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Summary

Take home messages for robot model learning
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I Mixture of linear models vs Basis Function Networks

I Neural networks: tuning the features

I ISSGPR: easy tuning, no over-fitting

I LWPR: PLS, fast implementation, the reference method

I XCSF: distinguish Gaussian weights space and linear models space

I GMR: few features, the richest representation

Sigaud, O. , Salaün, C. and Padois, V. (2011) “On-line regression algorithms for learning mechanical models of robots: a survey,”

Robotics and Autonomous Systems, 59:1115-1129
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Summary

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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