
GML: A portable Graph File Format
Michael Himsolt

Universität Passau, 94030 Passau, Germany
himsolt@fmi.uni-passau.de

Abstract
GML, the G>raph Modelling Language, is our proposal for a portable file format for graphs. GML's key features are portability,
simple syntax, extensibility and flexibility. A GML file consists of a hierarchical key-value lists. Graphs can be annotated with
arbitrary data structures. The idea for a common file format was born at the GD'95; this proposal is the outcome of many
discussions. GML is the standard file format in the Graphlet graph editor system. It has been overtaken and adapted by several
other systems for drawing graphs.

Introduction
There are many different file formats for graphs. The capabilities of these file formats range from simple adjacency lists over
adjacency lists with labels or coordinates to complex formats which can store arbitrary data. This has lead to an almost
"babylonic" situation where we have a large number of different, mostly incompatible formats. Exchanging graphs between
different programs is painful, and sometimes impossible.

The obvious answer to this problem is the introduction of a common file format. The initiative for that was born at GD'95. As a
guideline, there are are several text and graphics interchange formats, like RTF, SGML, HTML, Postscript, GIF, TIFF, to name
just a few.

Why do programs still use their own formats ? One reason is that exchange formats often do not support all product and platform
specific features. This is inevitable, but should not exclude the exchange of platform independent parts, probably with a less-
efficient, portable replacement for product specific features. For example, Encapsulated Postscript defines that a drawing may
contain a bitmapped version which can be used by not Postscript capable programs. Software which does not understand
Postscript can use this picture for a preview.

Another concern is efficiency. One should not expect a universal format to be more efficient than one which is designed for a
specific purpose, but there is no reason that a common file format should be so inefficient that it cannot be used. In the case of
graphs, many file formats for graphs are not designed for efficiency, but for ease of use, so the overhead should be small.
Furthermore, there is no reason which prevents the use of both an optimized native format, and a second interchange format.

Requirements
Which features are neccessary for a common file format ? First, the format must be platform independent, and easy to
implement. Furthermore, it must have the capability to represent arbitrary data structures, since advanced programs have the
need to attach their specific data to nodes and edges. It should be flexible enough that a specific order of declarations is not
needed, and that any non-essential data may be omitted. GML attempts to satisfy all these requirements.

A first example
graph [
 comment "This is a sample graph"
 directed 1
 IsPlanar 1
 node [
 id 1
 label
 "Node 1"
]
 node [
 id 2
 label
 "Node 2"]
 node [
 id 3
 labe
 "Node 3"
]
 edge [
 source 1
 target 2
 label "Edge from node 1 to node 2"
]
 edge [
 source 2
 target 3
 label "Edge from node 2 to node 3"

]
 edge [
 source 3
 target 1 label
 "Edge from node 3 to node 1"
]
]

Figure 1: GML description of a circle of three nodes

The above example describes a circle of three nodes. This example shows several key issues of GML:

ASCII Representation for Simplicity and Portability.
A GML file is a 7-bit ASCII file. This makes it simple to write files through standard routines. Parsers are easy to
implement, either by hand or with standard tools like lex and yacc. Also, files are text files, they can be exchanged
between platforms without special converters.

Simple Structure.
A GML file consists of hierarchically organized key-value pairs. A key is a sequence of alphanumeric characters, such as
graph or id. A value is either an integer, a floating point number, a string or a list of key-value pairs enclosed in square
brackets.

Extensibility & Flexibility.
GML can represent arbitrary data, and it is possible to attach additional information to every object. For example, the
graph in Figure 1 adds a IsPlanar attribute to the graph.
This may lead to a situations in where an application adds data which cannot be understood by another application.
Therefore, applications are free to ignore any data which they do not understand. They should, however, save these data
and re-write them.

Representation of Graphs.
Graphs are represented by the keys graph, node and edge. The topological structure is modeled with the node's id and the
edge's source and target attributes: the id attributes assign numbers to nodes, which are referenced by source and
target.

Syntax
GML ::= List
List ::= (whitespace* Key whitespace+ Value)*

Value ::= Integer | Real | String | [List]
Key ::= [a-z A-Z] [a-z A-Z 0-9]*

Integer ::= sign digit+

Real ::= sign digit* . digit* mantissa
String ::= " instring "
sign ::= empty | + | -
digit ::= [0-9]
Mantissa ::= empty | E sign digit
instring ::= ASCII - {&,"} | & character+ ;
whitespace ::= space | tabulator | newline

Figure 2: The GML Grammar in BNF Format.

In addition to the above grammar, all lines starting with a "#" character are ignored by the parser. This is a standard behavior for
most UNIX software and allows the embedding of foreign data in a file. Of course, this information can also be added within the
GML structure. However, it is convenient to add large external data through this mechanism, as any lines starting with # will not
be read by another application.

Further reglementations are a maximum line length and a maximum key size of 254 characters (this is neccessary since some
operating systems and editors do not handle longer lines), and the use of 7-bit ASCII characters only. Any other characters are
coded in the ISO 8859-1 character set, and have the form &name;. Especially, the characters " and & within strings must be
coded this way to avoid ambiguity. The ISO 8859-1 ist also used by HTML, which is the most common format for distributing
data on the world wide web.

The above grammar is kept as simple as possible, and avoids unnecessary items like an "=" to stress assignments or specific
data types for boolean or enumeration values. Keys and values are separated by white space. With that, it is straightforward to
generate a GML file from a given structure, and a parser can easily be implemented on various platforms.

How Graphs and Other Data Structures are Represented
Up to this point, GML is not related to graphs. This is intentional: GML is designed to represent arbitrary data structures. In this
section, we will show in detail how to represent graphs, and then briefly discuss data structures in general.

A note on our notion

To simplify our notion, we observe that a GML file defines a tree. Each node in the tree is labeled by a key, and leaves have
integer, floating point or string values. We will use the notion

.k1.k2.kn

to specify a path in the tree where the nodes are labeled by keys k1, k2, ... kn. We will also use the notion

x.k1.k2.kn

to specify a path which starts at a specific node x in the tree.

Graphs
graph [
 node [
 id 7
 label "5"
 edgeAnchor "corners"
 labelAnchor "n"
 graphics [
 center [x 82.0000 y 42.0000]
 w 16.0000
 h 16.0000
 type "rectangle"
 fill "#000000"
]
]
 node [
 id 15
 label "13"
 edgeAnchor "corners"
 labelAnchor "c"
 graphics [
 center [x 73.0000 y 160.000]
 w 16.0000
 h 16.0000
 type "rectangle"
 fill "#FF0000"
]
]
 edge [
 label "24"
 labelAnchor "first"
 source 7
 target 15
 graphics [
 type "line"
 arrow "last"
 Line [
 point [x 82.0000 y 42.0000]
 point [x 10.0000 y 10.0000]
 point [x 100.000 y 100.000]
 point [x 80.0000 y 30.0000]
 point [x 120.000 y 230.000]
 point [x 73.0000 y 160.000]
]
]
]
]

Figure 3: A larger example. This graph is a edited text file which was generated by the Graphlet system.

We have already shown a simple graph in Figure 1. Figure 3 shows a larger example. A graph is defined by the keys graph,
node and edge, where node and edge are sons of graph in no particular order. Each non isolated node must have a unique
.graph.node.id attribute. Furthermore, the end nodes of the edges are given by the .graph.edge.source and
.graph.edge.target attributes. Their values are the the .graph.node.id values of end nodes.

Directed and undirected graphs are stored in the same format. The distinction is done with the .graph.directed attribute of a
graph, and is undirected if that attribute is omitted. In an undirected graph, .graph.edge.source and .graph.edge.target may
be assigned arbitrarily. There are two reasons why we did not define separate representations for directed and undirected
graphs. First, it would have made the parser more complex, especially in applications that read both directed and undirected
graphs. Second, if graphics get involved, source and target have a meaning even for undirected graphs: if an edge is
represented by a polyline, then the sequence of points implies a direction on the edge.

With these conventions, a simple parser for a Graph in GML works in four steps:

1. Read the file and build the three.
2. Scan the tree for a node g labeled graph.
3. Find and create all nodes in g.node. Remember their g.node.id values.
4. Find all edges in g.edge, and their g.edge.source and g.edge.target attributes. Find the end nodes and insert the edges.

Step 1 can of course be integrated into the other steps. This gains efficiency; we have however observed that the overhead is
acceptable, especially if all attributes are saved. Also, it makes it easier to extract data which is attached to nodes, edges and
graphs, especially if the program wants to preserve unknown data.

Writing Graph Files
Writing graphs in GML format is straightforward. All it needs are loops that run through the graph and print the nodes and edges.
Figure 4 shows a sample skeleton for a program.
procedure print (g : Graph)
begin
 print "graph ["
 foreach node n in g do
 print "node ["
 print "id", n.id
 (* Insert other node attributes here *)
 print "]"
 done
 foreach edge e in g do
 print "edge ["
 print "source", e.source.id
 print "target", e.target.id
 (* Insert other edge attributes here *)
 print "]"
 done
 (* Insert other graph attributes here *)
end

Figure 4: Program skeleton to write a graph in
GML format

Restrictions
There are only two restrictions for graphs:

1. The values of the .graph.node.id elements must be unique within the graph.
2. Each edge must have .graph.edge.source and .graph.edge.target attributes.

We do not require that all nodes have a .id field since this field is not neccessary for isolated nodes. Of course, all other nodes
need such a field.

How to Represent Common Data Structures
Integers

GML uses signed 32-bit integers, which are commonly available on all architectures and languages. Larger numbers
should be represented as strings. Especially, bitsets with more than 31 entries should be represented as strings.

Floating point
Floating point values should stay inside the range of double precision floating point values.

Boolean
Boolean values are represented by 0 (false) and 1 (true).

Pointers
Pointers are modeled by id attributes. id values are not necessarily unique through the file; details are specified by the
application. Alternatively, one could use a name attribute which assigns a string name to an object.

Record
A record data structure can easily be translated into a GML subtree, like in the following example:

name: record
 a: typea;
 b: typeb;
 c: typec;
end;

translates into

name: [
 a Insert the value(s) of a here
 b Insert the value(s) of b here
 c Insert the value(s) of c here
]

List, Set, Array
These data types are represented in the same ways as records are. e.g.

name: List of x;

translates into

name: [

 x Insert the value(s) of the first element here
 x Insert the value(s) of the second element here
 x Insert the value(s) of the third element here
]

Note that the key x occurs more than once within name. integrated intoParsers must preserve the order of objects to
guarantee that the list is read correctly (see also the next section). integrated intoArrays should make x a list and specify
the index in an an .x.id field if neccessary.

Order of Attributes
GML does usually not require that attributes come in a specific order in the file. More specific, the order of objects is not
considered significant as long as their keys are different. That is, if there are several attributes with the same key in a list, then
the parser integrated intomust preserve their order.

Unknown Attributes
GML is designed so that any application can add its own features to graphs, nodes and edges. Of course we cannot expect that
all applications can understand all attributes. There are two ways to deal with foreign data. The simple one is to ignore them.
Unfortunately, this means they get lost when a new file is written. For example, a program which does a simple graph theoretic
transformation would throw away any graphics data.

The more complex solution is to save all attributes in a generic structure, and write them back when a new file is written. This
guarantees that not data is lost, and will be appreciated by users. However, it can cause consistency problems if the application
changes the graph, as illustrated in the next section.

Consistency
Consider the following situation: a file includes information of some graph theoretical property, say the existence of a
Hamiltonian circle. It is easy to see that this information may become invalid if an edge is removed, but not if an edge is added.
However, a program that does not know about Hamilton cycles will not be able to check and guarantee this property.

Another example is if a node is moved, then the coordinates of its adjacent edges must be updated. However, some programs
always treat edges as straight lines from center to center and do not take care about this. Other programs might draw the edges
in a more complex way, for example adjust the arrows at the end of the edge to the node's shape. Even more, an attribute
IsDrawnPlanar might become invalid when node or edge coordinates have changed.

As these examples show, both changes in the structure and in the values of attributes can make other attributes invalid. We
therefore need a way to specify which attributes are safe with changes and which not. This is done my the following rule:

Any keyword which starts with a capital letter should be considered invalid as soon as any changes have occurred.
We call such a key unsafe.

This means that it is still possible to add the above information with keys like "HasHamiltonianCircle" or "IsDrawnPlanar", but in
practice, this information will not be written to a file unless the application knows how to deal with that particular attribute.

Graphics And Other Foreign Data
GML intentionally does not define any standards on how to represent graphics or other system dependent information. This is
done because there are already many data formats for graphics, so we can use one of these formats. It also seems unlikely that
a restriction to a certain format will really help.

Here are however some recommendations which will help for a better interchangeability of data:

Use common formats if possible. For example, bitmapped graphics are often stored as GIF and JPEG files, which can be
read on many platforms.
Do not translate external data into GML, use an external file instead.

List of Keys
Global Defined Keys
.id int

Defines an identification number for an object. This is usually used to represent pointers.
.label string

Defines a label attached to an object.
.comment string

Defines a comment embedded in a GML file. Comments are ignored by the application.
.Creator string

Shows which application created this file and should therefore only be used once per file at the top level. .Creator is
obviously unsafe.

.graphics list
Describes graphics which are used to draw a particular object.Within graphics, the following keys are defined:

.graphics.x float
Defines the x coordinate of the center of the object.

.graphics.y float
Defines the y coordinate of the center of the object.

.graphics.z float
Defines the z coordinate of the center of the object.

.graphics.w float
Defines the width of the object.

.graphics.h float
Defines the height of the object.

.graphics.d float
Defines the depth of the object.

Coordinates are pixel coordinates on a standard 72 dpi drawing area. Applications may use them as screen coordinates.

Keys for Graphs
.graph list

Describes a graph.
.graph int

Specifies whether a graph is directed (1) or undirected (0). Default is undirected.
.graph.node list

Describes a node. Each non isolated node must have an attribute
.graph.node.id, who's value must be unique within the graph.

.graph.edge list
Describes an edge. Each edge must have .graph.edge.source and
.graph.edge.source attributes.

.graph.edge.source int

.graph.edge.target int
Specify the end nodes of an edge by their id keys.

Other File Formats
In this section, we briefly discuss the designs of some other file formats and their relationship to GML.

Simple Adjacency lists

1 0.400927 0.939745 2
2 0.314021 0.911935 3
3 0.407879 1. 4
4 0.205098 0.799537 5
5 0.174971 0.689455 1

Simple adjacency list file format (from VEGA)

Many systems store graphs as simple adjacency lists, sometimes enriched with labels or coordinates. For example, each line
describes a node and its adjacent edges. Often, an adjacency list is terminated by the end of the line.

While these formats are convenient and easy to implement, it has several disadvantages. First, it is not expansible. Second,
labels are usually restricted to one character or a single word. Further, the degree of a node is limited on systems which do not
support arbitrary line lengths. Also, these formats are usually not extensible.

GraphEd

GRAPH "" =
1 {$ NS 32 32 $} ""
 2 ""
 ;
2 {$ NS 32 32 $} ""
 3 ""
 ;
3 {$ NS 32 32 $} ""
 1 ""
;
END

GraphEd file format

GraphEd uses a file format which is in spirit very similar to the one which is presented in this paper. Table However, its syntax is
more complex than necessary in several aspects:

1. There are several ways to represent lists: [...], {$... $} , number ... ; , and GRAPH ... END.
2. Some syntax elements are superficial, like the "=" after the GRAPH keyword.
3. GraphEd separates graph structure and labels from the rest, and uses a different syntax for each part, whereas GML

combines them. GraphEd's approach separates the topological structure more clearly from the attributes, but our
experience has shown that this is not neccessary.

On the positive side, the format supports generic attributes (inside {$... $}) which are similar to those in GML. The main
difference is that GraphEd's attributes have a key and a list of values, while GML uses only have one value per key, which
simplifies the data structure a lot. GraphEd's data structures need lists of attributes and lists of values, while GML only needs a
one list structure for the list of key-value pairs.

dot Format

digraph G {
 subgraph cluster_0 {
 label = "hello world";
 a -> b;
 a -> c;
 color = hot_pink;
 }
 subgraph cluster_1 {
 label = "MSDOT";
 style = "dashed";
 color = purple;
 x -> y;
 x -> z;
 y -> z;
 y -> q;
 }
 top -> a;
 top -> y;
 y -> b;
}

dot file format

The dot file format uses annotated adjacency lists similar to GraphEd, and is one of the most powerful formats around.
Application defined attributes can be attached to graphs, nodes and edges. Edges are represented by -> arrows in directed
and by - in undirected graphs. dot is also the only format (as known to the author) which supports subgraphs. However, the
syntax uses slightly more elements than neccessary, like the -> or the = for assignments. Directed and undirected graphs use a
slightly different syntax.

Tom Sawyer Software Format

// Graph Layout Toolkit
Hierarchical Layout
// minimumSlopePercent
20
// Nodes
// Node
Untitled2
Untitled42
// Edges
// Edge
Untitled42
Untitled2

Tom Sawyer file format

Their file format of Tom Sawyer Software uses keys and lists of values. Each key is started by "//", and followed by a list of
values, each on its line. The syntax does not define a hierarchical list structure, although that can be modeled with dummy
begin/end keys. The format is extensible; new key/value elements can be added through a C or C++ interface.

Conclusion
The GML file format is a flexible, portable file format for graphs which is easy to implement. GML is currently used by the
Graphlet system, and software for converting GML from and to other formats is under construction. GML will also be supported
by several other systems.

Acknowledgements
I would like to thank everybody on the file format mailing list, especially Jim Baker, Yves Carbonneaux, Jim Blythe, David
Dobson, Arne Frick, Serge Heiden, Uwe Hubert, Thomas Lange, Brendan Madden, Stephen North, Tomaz Pisanski, Georg

Sander, Roberto Tamassia, and Richard Webber.

References
1. M. Himsolt: GraphEd: A Graphical Platform for the Implementation of Graph Algorithms. In R. Tamassia, I.G. Tollis

(editors): Graph Drawing, Lecture Notes in Computer Science 894, pp. 182-193. (1994)
2. Information on GML is availabe on the world wide web at http://www.uni-passau.de/Graphlet/GML.
3. North, S.C., Koutsofios, E.: Applications of Graph Visualization. In: Graphics Interface'94, pages 235-245, 1994.
4. Tom Sawyer Software: Graph Layout Toolkit Reference Manual, Berkeley, CA (1992-1996).
5. Information on VEGA is available on the World Wide Web at http://www.mat.uni-

lj.si/ftp/ftpout/vegadoc/htmldoc/vega03.htm.
6. Details on HTML and the ISO 8859-1 charset are available on the World Wide Web at http://www.w3.org/.

Michael Himsolt

