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Abstract

lifeactuary is a Python library to perform actuarial mathematics on life contingencies and classical
financial mathematics computations. Versatile, simple and easy to use. The main functions are implemented
using the usual actuarial approach, making it a natural choice for the life actuary.

This document is produced as a descriptive tool on how to use the package and as a user guide for the

developed actuarial functions. For each actuarial function, an illustrative example is provided.
The package uses Python version 3.7 or higher.

This package and functions herein are provided as is, without any guarantee regarding the accuracy of
calculations. It’s distributed using the MIT License and the authors disclaim any liability arising by any

losses due to direct or indirect use of this package.

This package is still under development and further useful and interesting functions will be available any

time soon.
Version 1.2 includes a new class CommutationTableFrac, which computes actuarial tables for non-integer
ages and includes some improvements on the previous version. Namely:

e We solve the problem of reading the tables_manual.xlsx and having to deal with the “nan” produced

by pandas when reading from excel columns with different number of rows.

e We change the way we deal with the “w” in mortality_table.py so that we are able to deal with fractional

ages and produce fractional commutation tables.


https://github.com/parcr/lifeactuary_1.2
https://en.wikipedia.org/wiki/MIT_License
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1 Introduction

The lifeactuary library for Python aims to provide a wide range of actuarial functions for life contingencies.
The names of the functions follow the International Actuarial Notation and are intuitive (g, p., lz, an, azn,
nEz, Az, ...) and the common parameters are set as usual (x for actuarial age, n for term of the contract, p

for term of payments, ...). This aims to provide with an easy to use and “guessable” list of functions.

Using mortality tables, the library provides functions for computing (a) survival probabilities for integer and
non-integer ages and terms, (b) life expectancy for both integer and non integer ages and terms, (c) expected
present value of life annuities and (d) expected present value of traditional life insurances. All these features

allow for the development of simple or more complicated actuarial evaluations and product developments.

This library can be used for academic or professional purposes. The library contains the functions of main
traditional products in Life Insurance, allows for an easy computation of actuarial tables but also provides the

tools for designing new products, building tariffs, computing reserves.

It incorporates a very generic and simple to use function to compute the Expected Present Value (aka, actuarial

expected present value) what is becoming a very relevant tool in the solvency analysis.

A set of examples is presented in the end of this manual, showing some potential uses of this library in life

contingencies products and evaluations.

This package is still under development and further useful functions will be available any time soon. In the
next release, the package will include functions that allow the computation of: (1) variance of life annuities, (2)

variance of classical life insurances and (3) expected present value of annuities for multiple lives.



2 Mortality Tables

The functions developed on this section are related to common actuarial biometric functions, computed upon a

mortality table.

2.1 Class MortalityTable

class MortalityTable

This class instantiates a life table. Data can be provided in the form of the [, ¢, or p,. Note that the first value
is the first age considered in the table. The life table will be complete, that is, from age 0 to age w (the last age
where I, > 0). Tt includes the computation of common biometric functions: I, pz, ¢z, ds, e, for integer ages
and for non-integers ages, using methods as Uniform Distribution of Death (udd), Constant Force of Mortality

(cfm) and Balducci approximation (bal).

Usage

MortalityTable (data_type=’q’, mt=None, perc=100, last_q=1)
Description
Initializes the MortalityTable class so that we can construct a mortality table with the usual fields.

Parameters

data_type | Use 'l for I, 'p’ for p, and 'q’ for g¢,.

mt The mortality table, in array format, according to the data_type defined
perc The percentage of ¢, to use, e.g., use 50 for 50%.
last_q The value for q,,.

2.2 Importing Mortality Tables

The package includes a wide number of mortality tables and allows for the inclusion of any other mortality
tables extracted from SOA, in xml format, or by importing other ones in usual formats, such as xIsx, csv, txt.
For instance, in the manual, one of the tables that we will be using is the TV7377 in the xml format supported
by the SOA.

2.2.1 Reading from lifeactuary Package

Example

from lifeactuary import mortality_table as mt, read_soa_table_xml as rst

; # reads TV7377 mortality table from SOA table

soa = rst.SoaTable(’soa_tables/’ + ’TV7377° + ’.xml’)

s # creates mortality table from gx of SOA table

tv7377 = mt.MortalityTable(data_type=’q’, mt=soa.table_gx, perc=100, last_q=1)


https://mort.soa.org/
https://mort.soa.org/data/t32006.xml

N

2.2.2 Importing from File

Usage

from lifeactuary import mortality_table as mt

import pandas as pd

# reads manually imported mortality table

table_manual_gx = pd.read_excel(’soa_tables/’ + ’tables_manual’ + ’.xlsx’,

# creates mortality table from 1x of a xlsx file

grf95 = mt.MortalityTable(data_type='q’,

; table_manual_1lx = pd.read_excel(’soa_tables/’ + ’tables_manual’ + ’.xlsx’,

When building a new mortality table to import from a file, please note that the first value of the table corresponds
to the first age considered in the table. For instance, if the first value of the table is 20, it means that [, = 0,
forx=0,...,19.

sheet_name=’qx’)
sheet_name=’1x7)

mt=1list (table_manual_qx[’GRF95°]), perc=80)

grm95 = mt.MortalityTable (data_type=’1’, mt=1list(table_manual_1x[’GRM95°]), perc=80)

2.3 Demographic Functions

After the mortality table is instantiated, the common demographic functions are available in the package, such

as I (expected number of subjects alive at age z), d, (expected number of deaths with age z), ¢, (mortality

rate at age x), e, (complete life expectancy at age x), w (terminal age of the mortality table):

2.3.1 Ix[x]
Actuarial Notation | [,
Usage mt.1x[x]
Args x: age as an integer number
Example tv7377.1x[50]
Result 94055.99997478718
2.3.2 dx[x]
Actuarial Notation | d,
Usage mt.dx[x]
Args X: age as an integer number
Example tv7377.dx[50]
Result 353.99999675630613
2.3.3 qx[x]
Actuarial Notation | ¢,
Usage mt.qx[x]
Args x: age as an integer number
Example tv7377.9x[50]

Result

0.0037637152



2.3.4 px[x]

Actuarial Notation | p,
Usage mt.qx[x]
Args x: age as an integer number
Example tv7377.px[50]
Result 0.9962362848
2.3.5 ex[x]
Actuarial Notation | e,
Usage mt.ex|[x]
Args X: age as an integer number
Example tv7377.ex[50]
Result 30.07981415164423
2.3.6 w
Actuarial Notation | w
Usage mt.w
Example tv7377.w
Result 106

Other Examples

## Consulting information from an object

3 # Outputs the information necessary to clone the object

3 grm95.

tv7377

# consults the 1x of TV7377
tv7377 . 1x

# Consults the ex of GRF95
grf95.ex

# extracts all methods from the object grm95
_dict_

2.4 Survival Probabilities Functions

The package also allows for the direct computation of survival probabilities for an aged x individual. Focusing
on the common actuarial probabilities, some functions are available for the computations of the following
probabilities: Gz, nPz, ¢jnge for integer and non-integer ages and periods. In fact, in this library, the non-
integer ages and periods are just a particular case when using any method.



2.4.1 nqgx

Actuarial Notation: ,q,

Usage

ngx (x, n=1,

method=’udd’)

Parameters
X age at the beginning
n period
method | For non-integer ages and periods, use 'udd’ for Uniform Distribution of Death, ’cfm’ for
Constant Force of Mortality and "bal’ for Balducci approzimation
return | probability of (z) dying before age x +n
Examples

# probability that (50) dies before age 52.
tv7377.n9x (50, 2) # 0.0078038614928698236

# probability that an aged 50.5 individual dies before age 53.
tv7377.nqx(50.5, 2.5 ,method=’udd’) # 0.010321797187509807
tv7377.nqx(50.5, 2.5 ,method=’cfm’) # 0.010320038151286903
tv7377.nqx(50.5, 2.5 ,method=’bal’) # 0.010318279111937612

2.4.2 npx

Actuarial Notation: ,,p,

Usage

npx (x, n=1,

method=’udd’)

Parameters
X age at the beginning
n period
method | For non-integer ages and periods, use 'udd’ for Uniform Distribution of Death, cfm’ for
Constant Force of Mortality and ’bal’ for Balducci approximation
return probability of (x) surviving beyond age = + n
Examples

# probability that (80) reaches age 82.
tv7377 .npx (80, 2) # 0.8563257446904969

# probability that an aged 80.5 individual reaches age 85.
tv7377 .npx(80.5, 4.5 ,method=’udd’) # 0.3512032870461814
tv7377 .npx(80.5, 4.5 ,method=’cfm’) # 0.3507713780990377
tv7377 .npx(80.5, 4.5 ,method=’bal’) # 0.35033918162679567



2

2.4.3 tngx

Actuarial Notation: ;,p.

Usage

t_ngx(x, t=1, n=1, method=’udd’)

Parameters
X age at the beginning
t deferment period
n period

method | For non-integer ages and periods, use 'udd’ for Uniform Distribution of Death, ’cfm’ for

Constant Force of Mortality and "bal’ for Balducci approzimation

return probability of (z) surviving beyond age = + ¢ and die before age © +t +n

Examples

# probability that (80) reaches age 82.
tv7377 .npx (80, 2) # 0.8563257446904969

# probability that an aged 80.5 individual reaches age 85.
tv7377 .npx(80.5, 4.5 , ’udd’) # 0.3512032870461814
tv7377 .npx(80.5, 4.5 , ’cfm’) # 0.3507713780990377
tv7377 .npx(80.5, 4.5 , ’bal’) # 0.35033918162679567

2.5 Life Expectancy Function

The library allows for the computation of Complete Life Expectancy for integer and non-integer ages and

periods.

Usage

exn(x, n, method=’udd’)

Parameters
X age at the beginning
n period

method | For non-integer ages, use 'udd’ for Uniform Distribution of Death, 'cfm’ for Constant Force of
Mortality and 'bal’ for Balducci approzimation

return | life expectancy for (x) over the next n years

Examples

# complete life expectancy for (60) over the next 10 years
tv7377.exn (60, 10) # 9.498277332706456

3 tv7377.exn(60, 10,’cfm’) # 9.498146560076156

8

9

tv7377.exn(60, 10,’bal’) # 9.498015788406414

# complete life expectancy for (60.1) over the next 10.2 years
tv7377.exn(60.1, 10.2) # 9.673511678284852
tv7377.exn(60.1, 10.2,°cfm’) # 9.67338786347054
tv7377.exn(60.1, 10.2,’bal’) # 9.673264041773342

10



2.6 Actuarial Tables

From a given Mortality Table, the library allows for the construction of an Actuarial Table (or Commutation
Table) providing and allowing to access the values of the common commutation symbols.

This functions are useful for academic purposes, or to implement “old” life contingency products where com-
mutation symbols were commonly used.

At the moment, actuarial evaluation should use cashflow projections, for which interest rate curves should be
considered instead of a fixed one, as in the case of actuarial tables.

Despite this, this library allows for the computation of traditional methods in life insurance.

2.6.1 Class CommutationTable

class CommutationTable
This class instantiates, for a specific mortality table and interest rate, all the usual commutation functions: D,,
N, Sz, C M, and R,.

Usage

1 CommutationFunctions (i=None, g=0, data_type=’q’, mt=None, perc=100, app_cont=False)

Description
Initializes the CommutationTable class so that we can construct an actuarial table with the usual fields.

Parameters
i Interest Rate, in percentage. For instance, use 5 for 5%.
g Rate of growing (in percentage), for capitals evolving geometrically.

g > 0 for increasing capitals and g < 0 for decreasing capitals

data_type | Use 'l for I, 'p’ for p, and 'q’ for ¢,.

mt The mortality table, in array format, according to the data_type defined

perc The percentage of ¢, to use, e.g., use 50 for 50%.

app-cont | Use True for continuous approach (deaths occur, in average, in the middle of the year)

or False for considering death payments are considered in the end of the year.

Examples

I from lifeactuary import commutation_table as ct, read_soa_table_xml as rst
3 # reads SOA table
4 soa = rst.SoaTable(’soa_tables/’ + ’>TV7377’ + °’.xml’)

6 # creates an actuarial table from qx of SOA table
7 tv7377_ct = ct.CommutationFunctions(i=2, g=0, data_type=’q’, mt=soa.table_qgx, perc=100,
app_cont=False)

o # creates an actuarial table from the 1x of an Excel file, with death payments to be processed
in the moment of death
10 grm95_ct = ct.CommutationFunctions(i=1.5, g=0, data_type=’1’, mt=list(table_manual_l1x[’GRM95’
1), perc=100, app_cont=False)

11



With the construction of the commutation table (ct), the class computes methods that are useful when com-

puting actuarial evaluations, which are described in subsections 2.6.4 to 2.6.10.

2.6.2 Class CommutationTableFrac

class CommutationTableFrac
This class instantiates, for a specific mortality table and interest rate, all the usual commutation functions: D,
frac—1 }

1 1
N, Sz, Cpy M, and R, for agesz 4+ —— €0, —,...,w+
frac frac frac

Usage

CommutationFunctions (i=None, g=0, data_type=’q’, mt=None, perc=100, frac=2, method=’udd’)

Description
Initializes the CommutationTableFrac class so that we can construct an actuarial table with the usual fields,

for all indented fractional ages, considering that payments are made in the end of the fractional times.

Parameters
i Interest Rate, in percentage. For instance, use 5 for 5%.
g Rate of growing (in percentage), for capitals evolving geometrically.

g > 0 for increasing capitals and g < 0 for decreasing capitals. For instance, use 2 for 2%.
data_type | Use I’ for [, 'p’ for p, and 'q’ for g.

mt The mortality table, in array format, according to the data_type defined

perc The percentage of ¢, to use, e.g., use 50 for 50%.

frac Number of fractional ages for each age x

method Approximation method for non-integer ages. Use 'udd’ for Uniform Distribution of Death,

‘cfm’ for Constant Force of Mortality and 'bal’ for Balducci approzimation.

Examples

from lifeactuary import mortality_table as mt, commutation_table as ct, commutation_table_frac
, read_soa_table_xml as rst

3 # reads S0A table

soa = rst.SoaTable(’soa_tables/’ + ’TV7377°’ + ’.xml’)

# creates an actuarial table from qx of SOA table, for ages x+k*0.5, x=0,...,w, k=0,1.
tv7377_ct_f2 = CommutationFunctionsFrac(i=2, g=0, data_type=’q’, mt=soa.table_gx, perc=100,
frac=2, method=’udd’)

# creates an actuarial table from qx of SOA table, for ages x+k*0.25, x=0,...,w, k=0,1,2,3
tv7377_ct_f4 = CommutationFunctionsFrac(i=2, g=0, data_type=’q’, mt=soa.table_qx, perc=100,
frac=4, method=’udd’)

# creates an actuarial table from gqx of SOA table, for ages x+kx*1/6, x=0,...,w, k=0,1,...,5

tv7377_ct_£f6 = CommutationFunctionsFrac(i=2, g=0, data_type=’q’, mt=soa.table_qx, perc=100,
frac=6, method=’udd’)

12
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16

17

18

19

N

# creates an actuarial table from gqx of SOA table, for ages x+k*x1/365, x=0,...,w,
k=0,1,...,364

tv7377_ct_£365 = CommutationFunctionsFrac(i=2, g=0, data_type=’q’, mt=soa.table_qx, perc=100,
frac=365, method=’udd’)

# creates an actuarial table from qx of SOA table, for ages x+k*0.5, x=0,...,w, k=0,1 with
rate of growing of 1%
tv7377_ct_f2_gl = CommutationFunctionsFrac(i=2, g=1, data_type=’q’, mt=soa.table_qx, perc=100,
frac=2, method=’udd’)

With the construction of the fractional commutation table, the class computes methods that may be useful

when computing actuarial evaluations.

Observation: Naturally, the CommutationTableFrac class with frac=1 produces the same results as the class

CommutationTable.

2.6.3 Function age_to_index()

The CommutationTableFrac class produces, for each commutation symbol, a vector with w + (frac — 1) x w
components. To simplify the access of each method to each fractional age, the user should use the following

function:

Usage

age_to_index (age_int, age_frac)

Description: Returns the index of the vector position in a given method of an actuarial table, corresponding
to the age_int+age_frac position.

Parameters

age_int | integer part of the age

age_frac | fractional part of the age

Examples

tv7377_ct_f2.age_to_index (50, 0.5) # 101
tv7377_ct_f4.age_to_index (50, 0.75) # 203
tv7377_ct_f6.age_to_index (50, 5/6) # 305

2.6.4 v
Actuarial Notation | v
e 1
Definition T
Usage ct.v
Example tv7377_ct.v
Result 0.9803921568627451

13



2.6.5 Dx and Dx_frac

Actuarial Notation | D,

Usage ct.Dx[x]

Args X: age as an integer
Example tv7377_ct.Dx[50]
Result 34944.42647196618

As for the Dx_frac method, the following examples illustrate the use of the method:

Examples

x=50.5

index_age=tv7377_ct_f2.age_to_index(int(x), x-int(x)) #101

a=tv7377_ct_f2.Dx_frac[index_age]

print (£ ’For age {x} with index {index_agel}, Dx={al}’)
# For age 50.5, with index 101, Dx=34535.02547926754

2.6.6 Nx and Nx_frac

Actuarial Notation | N,

Usage ct.Nx[x]

Args X: age as an integer
Example tv7377_ct.Nx[50]
Result 788151.7176774722

As for the Nx_frac method, the following examples illustrates the use of the method:

Examples

x=35+1/6

index_age=tv7377_ct_f6.age_to_index(int(x), x-int(x)) # 211

a=tv7377_ct_£f6.Nx_frac[index_agel

print (f’For age {x} with index {index_age}, Nx={al}’)
# For age 35.166666666666664, with index 211, Nx=8333822.587495911

## Present value of an unitary whole life annuity due, paid quarterly to an individual aged

x=65.25
x=65.25

index_age=tv7377_ct_f4.age_to_index(int(x), x-int(x)) # 261

a=tv7377_ct_f4.Nx_frac[index_age]

/tvT7377_ct_£f4.Dx_frac[index_age]

print (f’For age {x} with index {index_agel}, ax={al}’)

3 # For age 65.25, with index 261,

ax=56.9123257953868

## Present value of an unitary whole life annuity due, paid annually to an individual aged

x=65.25

print (f’For age {x}, with index {index_agel}, ax(4)={a/4}’)

# For age 65.25, with index 261,

ax(4)=14.2280814488467

14



21 ## Present value of an unitary whole life annuity immediate, paid daily to an individual aged
x=66+120/365

22 x=66+120/365

23 index_age=tv7377_ct_£f365.age_to_index(int(x), x-int(x)) # 24210

24 a=tv7377_ct_f4 .Nx_frac[index_age]/tv7377_ct_f4.Dx_frac[index_agel

25 print (f’For age {x} with index {index_age}, ax={al}’)

26 # For age 66.32876712328768, with index 24210, ax=4572.698998279401

29 ## Present value of an unitary whole life annuity immediate, paid annually to an individual
aged x=66+120/365

30 print (f’For age {x}, with index {index_age}, ax(365)={b/365}’)

31 # For age 66.32876712328768, with index 24210, ax(365)=12.527942461039455

2.6.7 Sx and Sx_frac

Actuarial Notation | S,

Usage ct.Sx[x]

Args X: age as an integer
Example tv7377_ct.Sx[50]
Result 12024274.4751688

Examples for using Sx_frac are similar to the previous methods and will be omitted.

In the following methods, the choice between payments made in the “end of the year” or in the “moment of
death” must be performed when constructing the commutation table (False or True in the app_cont parameter,
respectively). In that sense, the actuarial notation in each of the following methods is given for both scenarios.
As for the computation of these commutation symbols for non-integer ages, the reasoning is the same as the
previous sub-sections: define a fractional actuarial table and use the methods for non-integer ages, according
the defined fractions of the year. In that sense, examples will not the included.

2.6.8 Cx and Cx_frac

Actuarial Notation | C, or C,

Usage ct.Cx[x]

Args x: age as an integer number
Example tv7377_ct.Cx[50]

Result 128.94202849786421

2.6.9 Mx and Mx_frac

Actuarial Notation | M, or M,

Usage ct.Mx([x]

Args X: age as an integer number
Example tv7377_ct.Mx[50]

Result 19490.471223388264
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2.6.10 Rx and Rx_frac

Actuarial Notation | R, or R,

Usage ct.Rx[x]

Args x: age as an integer number

Example tv7377_ct.Rx[50]

Result 552381.6299290637
Examples

# Actuarial present value of a unitary due whole life annuity for (50) paid annually

tv7377_ct.Nx[50]/tv7377_ct.Dx[50] # 22.55443277

# Actuarial present value of a whole life insurance for (50) with 100.000 m.u. capital.

Payment is made in the moment of death

tv7377_ct_md = ct.CommutationFunctions (2, 0, ’q’,

100000*tv7377_ct_md.Mx [50]/tv7377_ct_md.Dx [50]

# Present value of an unitary whole life annuity due,

x=65.25
x = 65.25

soa.table_qgx, 100, True)
# 56330.616995

paid quarterly to an individual aged

index_age = tv7377_ct_f4.age_to_index(int(x), x - int(x)) # 261

a = tv7377_ct_f4.Nx_frac[index_agel / tv7377_ct_f4.Dx_frac[index_age]
print (f’For age {x}, with index {index_age}, ax(4)={al}’)

# For age 65.25, with index 261, ax(4)=56.9123257953868

## Actuarial present Value of unitary annuity due,

x = 35.5
n=10/2

paid semiannually with 10 terms for (35.5)

index_age = tv7377_ct_f2.age_to_index(int(x), x - int(x))

index_age_end = tv7377_ct_f2.age_to_index(int(x+n), x+n - int(x+n))
b = (tv7377_ct_£2.Nx_frac[index_agel - tv7377_ct_£f2.Nx_fracl[index_age_end])/tv7377_ct_£2.

Dx_frac[index_age]

print (f’For age {x}, with index {index_age}, with semiannual payments until age {x+n},

index {index_age_end}, ax:n={b}’)

with

# For age 35.5, with index 71, with semiannual payments until age 40.5, with index 81,

ax:n=9.542714980644465

## Actuarial present value of a whole life insurance for (50.75) with 100.000 m.u.

x=50.75

index_age=tv7377_ct_f4.age_to_index(int(x), x-int(x))

capital.

# 203

100000*tv7377_ct_f4 .Mx_frac[index_age]/tv7377_ct_f4.Dx_frac[index_age]
print (f’For age {x}, with index {index_age}, the risk premium is Ax={b}’)
# For age 50.75, with index 203, the risk premium is Ax=56909.96956118816

## Actuarial present Value of a whole life annuity paid semiannually to an individual aged

x = 35.5. Payments have a growth rate of 1%

x = 35.5

index_age = tv7377_ct_f2_gl.age_to_index(int(x), x - int(x)) # 151

a = tv7377_ct_£f2_gl.Nx_frac[index_age] / tv7377_ct_£f2_gl.Dx_frac[index_age]
print (£ ’For age {x}, with index {index_agel}, Gax(2)={al}’)

# For age 35.5, with index 71, Gax(2)=70.31380781464682

16



3 Export Actuarial Table to Excel

Actuarial Tables may be exported to Excel files, using the standard Python functions.
For example, the following instruction produces a xlIsx file with actuarial commutation symbols for all integer
and half year ages, for TV7377 mortality table:

1 tv7377_ct_f2.df_commutation_table_frac().to_excel(excel_writer=’frac2’ + ’.xlsx’,

2 sheet_name=’frac2’, index=False, freeze_panes=(1, 1))

Figure 1 illustrates an excerpt of the the produced excel file for TV7377 actuarial table for years fractioned in

semesters.

X Ix dx qx px Dx MNx SX Cx Mx Rx

0 100000 584 0,00584 0,99416 100000 7794804 464818252,1 578,2462 23202,03 3215202
0,5 99416 584 0,005874 0,994126 98436,51 7694804 457023448,5 572,549 22623,79 3192000
1 98832 48 0,000486 0,999514 968594,12 7596367 4493280644,9 46,59518 22051,24 3169376
1,5 98734 43 0,000436 0,999514 95892,88 7499473 441732277,7 46,1361 22004,64 3147325
2 98736 29,5 0,000299 0,999701 94901,96 7403580 434232804,7 28,07512 2195851 3125320
2,5 98706,5 29,5 0,000299 0,999701 9393887 7308673 426829224,6 27,79851 21930,43 3103362
3 98677 23 0,000233 0,999767 9298554 7214739 4195205464 21,45988 21902,63 3081431
3,5 98654 23 0,000233 0,999767 92047,95 7121754 412305807,1 21,24845 21881,17 3059529
104 12 4 0,333333 0,666667 1,530254 3,533177 7,265558967 0,505059 1,495443 3,461593
104,5 8 4 0,5 0,5 1,010118 2,002923 3,7323B2231 0,500083 0,990384 1,96615
105 4 1,5 0,375 0,625 0,500083 0,992805 1,729458998 0,185683 0,490301 0,975766
105,5 2,5 1,5 0,6 0,4 0,300472 0492723 0,736653597 0,183854 0,304618 0,485485
106 1 0,5 0,5 0,5 0,122569 0,18325 0,24393104 0,060681 0,120764 0,180847
106,5 0,5 0,5 1 0 0,060681 0,060681 0,060680858 0,060083 0,060083 0,060083
107 ] ] 1 ] ] ] ] ] ] ]

Figure 1: Excerpt of TV7377 semiannually fractional actuarial table
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4 Some lifeactuary Functions and Syntax

4.1 Life Annuities

Table 1: Actuarial Notation and Syntax Formula for Life Annuities

Notation | Description Syntax
ay whole life annuity ax(x,1)
(g whole life annuity due aax(x,1)
t|0z t years deferred whole life annuity t-ax(x,1,t)
e t years deferred whole life annuity due t_aax(x,1,t)
a&”” whole life annuity payable m times per year ax(x,m)
d&m) whole life annuity due payable m times per year aax(x,m)
t|a§;m) t years deferred whole life annuity payable m times per year t_ax(x,m,t)
t|d§;’”> t years deferred whole life annuity due payable m times per year t_aax(x,m,t)
Qgim n year temporary life annuity nax(x,n,1)
(g n year temporary life annuity due naax(x,n,1)
t| Q7 t year deferred n year temporary life annuity t_nax(x,n,1,t)
¢ t year deferred n year temporary life annuity due t-naax(x,n,1,t)
agzb) n year temporary life annuity payable m times per year nax(x,n,m)
a:((";) n year temporary life annuity due payable m times per year naax(x,n,m)
t|a§:%) t year deferred n year temporary life annuity payable m times per year t_nax(x,n,m,t)
t|d§::nm) t year deferred n year temporary life annuity due payable m times per year | t_naax(x,n,m,t)
Table 2: Actuarial Notation and Syntax Formula for Increasing Life Annuities
Notation | Description Syntax
"l ag%)r t-years deferred n-year temporary increasing life annuity, payable m | t_nlax(x,n,m,t,C,r)
times per year. First payment C and increasing/decreasing amount r
oL ai”;}" t-years deferred n-year temporary increasing life annuity, payable m | t_nlaax(x,n,m,t,C,r)
times per year. First payment C' and increasing/decreasing amount r

For life annuities with terms varying geometrically, the Actuarial Table must be built with an increasing rate g

and the functions from Table 1 are applied.
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4.2 Life Insurances

The following table resumes the available function for life insurances. As usual in the acturial notation, the
capital letters with bar refer to payments due in the moment of death and the absense of bar refers to payments
due in the end of the year in which the death occurs.

Table 3: Actuarial Notation and Syntax Formula for Life Insurances - fixed capitals

Notation | Description Syntax

nEy pure endowment nEx(x,n)

A, whole life insurance (end of the year) Ax(x)

A, whole life insurance (moment of death) Ax_(x)

¢ Az t years deferred whole life insurance (end of the year) t-Ax(x,t)
1Az t years deferred whole life insurance (moment of death) t_Ax_(x,t)

Al term life insurance (end of the year) nAx(x,n)
Al term life insurance (moment of death) nAx_(x,n)
AL t years deferred term life insurance (end of the year) tnAx(x,n,t)
H AL t years deferred term life insurance (moment of death) tnAx_(x,n,t)
Apm endowment insurance (end of the year) nAEx(x,n)
Apm endowment insurance (moment of death) nAEx_(x,n)
t| Az t-years deferred endowment insurance (end of the year) t nAEx(x,n,t)
1| Azim t-years deferred endowment insurance (moment of death) | t_-nAEx_(x,n,t)

Table 4: Actuarial Notation and Syntax Formula for Life Insurances - variable capitals

Notation | Description Syntax
(IA), whole life insurance with arithmetically increasing capitals (end of the | TAx(x)
year)
(IA), whole life insurance with arithmetically increasing capitals (moment of | TAx_(x)
death)
(IA)zm | term life insurance with arithmetically increasing capitals (end of the | nIAx(x,n)
year)
(IA),7 | term life insurance with arithmetically increasing capitals (moment of | nIAx_(x,n)
death)
t|({A)L7 | t-years deferred term life insurance with capitals evolving arithmetically | nIArx(x,n,t,C,r)
(increasing or decreasing). First Capital C' and increase amount r (end
of the year)
e A)r | t-years deferred term life insurance with capitals evolving arithmetically | nIArx_(x,n,t,C,r)
(increasing or decreasing). First Capital C' and increase amount r (mo-
ment of death)
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4.3 Financial Annuities

Table 5: Actuarial Notation and Syntax Formula for Financial Annuities

Notation | Description Syntax
Ay n-year immediate financial annuity an(n)
dimy n-year due financial annuity aan(n)
Goo perpetual immediate financial annuity a(None)
oo perpetual due financial annuity aa(None)
ne a)(mm) n-year immediate financial annuity with first payment C and evolving | Tan(n,C,r)
arithmetically (increasing [r > 0] or decreasing [r < 0]). Payment in-
creases in each period of the interest rate.
(L d)(mm) n-year due financial annuity with first payment C' and evolving arith- | Iaan(n,C,r)
metically (increasing [r > 0] or decreasing [r < 0]). Payment increases
in each period of the interest rate.
- (m)a)(mm) n-year immediate financial annuity with first payment C and evolving | Iman(n,C,r)
arithmetically (increasing [r > 0] or decreasing [r < 0]). Payments
increase in each payment period.
nei (m)d)(mm) n-year due financial annuity with first payment C' and evolving arith- | Imaan(n,C,r)
metically (increasing [r > 0] or decreasing [r < 0]). Payments increase
in each payment period.
g(Ga)(mm) n-year immediate financial annuity with first payment C and evolving | Gan(n,C,g)
geometrically with rate g. Payments change in each period of the interest
rate.
g(Gd)(mm) n-year due financial annuity with first payment C' and evolving geomet- | Gaan(n,C,g)
rically with rate g. Payments change in each period of the interest rate.
g(G(m)a)(mm) n-year immediate financial annuity with first payment C and evolving | Gman(n,C,g)
geometrically with rate g. Payments change in each payment period.
g(G(m)d)(mm) n-year due financial annuity with first payment C' and evolving geomet- | Gmaan(n,C,g)
rically with rate g. Payments change in each payment period.

For annuities paid m times per year, the class Annuities Certain must be initiated with the correspondent

frequency m. Examples are presented in section 7.
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5 Life Annuities

A life annuity corresponds to a series of payments paid as long as an individual is alive on the payment date.
The life annuity can be temporary or payable for whole life, the payments are due in the beginning (annuity
due) or at the end of the periods (annuity immediate) and starts immediately in the next period or after some
delay (deferred annuities). The payments are constant through the all term of contract or are variable (with or
without a mathematical regularity). The number of payments in each period of the interest rate may also be
defined.

The computation of the present value of all these life annuities is available in the library, and are presented in
this chapter. If using the CommutationTable class, defined in section 2.6.1, life annuities functions are available
for integer ages and terms. If using CommutationTableFrac class, see section 2.6.2, life annuities function will
be available for fractional ages and non-integer terms.

For a more general approach, the library includes a function, see subsection 5.3.4, which computes the present

value of a given series of cash-flows, with a given set of interest rates and a defined set of probabilities.

5.1 Whole Life Annuities

5.1.1 ax

Actuarial Notation: a, and a&m)

Usage

ax(x, m=1)

Description: Returns the actuarial present value of a whole life annuity of 1 per time period. Payments of
1/m are made m times per year at the end of the periods.

Parameters

X | age at the beginning of the contract

m | number of payments in each period of the interest rate

Examples

tv7377_ct.ax(50, 1) # 21.554432773700235
> tv7377_ct.ax(50, 4) # 21.929432773700235

5.1.2 aax

Actuarial Notation: d, and &5}”)

Usage

aax(x, m=1)

Description: Returns the actuarial present value of a whole life annuity due of 1 per time period. The payments

of 1/m are made m times per year at the beginning of the periods.
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Parameters

x | age at the beginning of the contract

m | number of payments in each period of the interest rate

Examples

tv7377_ct.aax (50, 1) # 22.55443277370024
tv7377_ct.aax (50, 4) # 22.17943277370024

5.1.3 t_ax

Actuarial Notation: ;a, and t|a§m)

Usage

t_ax(x, m=1, defer=0)

Description: Returns the actuarial present value of a immediate whole life annuity of 1 per time period,

deferred t periods. The payments of 1/m are made m times per year at the end of the periods.

Parameters
b 4 age at the beginning of the contract
m number of payments in each period of the interest rate

defer | number of deferment years
Observation: t_ax(x, m, defer=0) = ax(x, m)

Examples

tv7377_ct.t_ax(50, 1, 5) # 16.899196591768252
tv7377_ct.t_ax (50, 4, 5) # 17.231374204075433

5.1.4 t_aax

Actuarial Notation: ;d, and t|£i§;m)

Usage

t_aax(x, m=1, defer=0)

Description: Returns the actuarial present value of a whole life annuity due of 1 per time period, deferred ¢

periods. The payments of 1/m are made m times per year at the beginning of the periods.

Parameters
X age at the beginning of the contract
m number of payments in each period of the interest rate

defer | number of deferment years

Observation: t_aax(x, m, defer=0) = aax(x, m)
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Examples

1 tv7377_ct.t_aax (50, 1, 5) # 17.78500355792074
tv7377_ct.t_aax (50, 4, 5) # 17.45282594561355

5.2 Temporary Life Annuities

5.2.1 nax

Actuarial Notation: a,. and aitnm)
Usage

1 nax(x, n, m=1)

Description: Returns the actuarial present value of an immediate n term life annuity of 1 per time period.
The payments of 1/m are made m times per year at the end of the periods.

Parameters

X | age at the beginning of the contract
n | number of periods until the end of the contract (measured in periods of the interest rate)

m | number of payments in each period of the interest rate

Examples

1 tv7377_ct.nax (50, 10, 1) # 8.756215803256639
tv7377_ct .nax (50, 10, 4) # 8.839775242816884

5.2.2 naax

Actuarial Notation: d;.m and aimm)

Usage

| naax(x, n, m=1)

Description: Returns the actuarial present value of a n term life annuity due of 1 per time period. The
payments of 1/m are made m times per year at the beginning of the periods.
Parameters

x | age at the beginning of the contract
n | number of periods until the end of the contract (measured in periods of the interest rate)
m | number of payments in each period of the interest rate

Examples

1 tv7377_ct.naax (50, 10, 1) # 8.979040975417291
2 tv7377_ct.naax (50, 10, 4) # 8.895481535857046
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5.2.3 t_nax

Actuarial Notation: #| Qg and t‘ag%)

Usage

t_nax(x, n, m=1, defer=0)

Description: Returns the actuarial present value of a immediate n term life annuity of 1 per time period,

deferred t periods. The payments of 1/m are made m times per year at the end of the periods.

Parameters
X age at the beginning of the contract
n number of periods until the end of the contract (measured in periods of the interest rate)
m number of payments in each period of the interest rate

defer | number of deferment years
Observation: t-nax(x, m, defer=0) = nax(x, m)

Examples

tv7377_ct.t_nax (50, 10, 1, 5) # 7.670292001795834
tv7377_ct.t_nax (50, 10, 4, 5) # 7.750622055449898

5.2.4 t_naax

Actuarial Notation: i, and t‘d;%)

Usage

t_naax(x, m=1, defer=0)

Description: Returns the actuarial present value of a n term life annuity due of 1 per time period, deferred ¢

periods. The payments of 1/m are made m times per year at the beginning of the periods.

Parameters
X age at the beginning of the contract
n number of periods until the end of the contract (measured in periods of the interest rate)
m number of payments in each period of the interest rate

defer | number of deferment years

Observation: t_naax(x, m, defer=0) = naax(x, m)
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Examples

tv7377_ct.t_naax (50, 10, 1, 5) # 7.8845054782066715
tv7377_ct.t_naax(50, 10, 4, 5) # 7.804175424552608

5.3 Life Annuities with variable terms

In this section, are presented functions that compute the actuarial present value of life annuities whose payments
are not constant overtime.

As special regularities, life annuities with terms evolving in arithmetic or geometric progression (increasing or
decreasing) are well known and easily computed and this library presents easy to use solutions and functions.
As a general case, the library allows for the computation of the actuarial present value for a given set of cash-
flows, interest rates and , that can vary without any regularity. The set of parameters should be provided in

vector formats.
5.3.1 t_nlax

Actuarial Notation: ;(/a).m and t|(Ia)(;%)

Usage

t_nlax(x, n, m=1, defer=0, first_amount=1, increase_amount=1)

Description: Returns the actuarial present value of an immediate n term life annuity, deferred ¢ periods, with
payments evolving in arithmetic progression. Payments of 1/m are made m times per year at the end of the
periods. First amount and Increase amount may be different. For decreasing life annuities, the Increase Amount

should be negative.

Parameters
X age at the beginning of the contract
n number of periods of the contract (measured in periods of the interest rate)
m number of payments in each period of the interest rate
defer number of deferment years
first_amount amount of the first payment
increase_amount | amount of the increase amount
increasing life annuities: increase_amount > 0
decreasing life annuities: increase_amount < 0

Observation: t.nlax(x, n, m, defer, 1, increase_amount=0) = t_nax(x, n, m, defer)

Examples
tv7377_ct.t_nlax(x=50, n=10, m=1, defer=0, first_amount=1, increase_amount=1) # 46.33017
tv7377_ct.t_nlax(x=50, n=10, m=1, defer=0, first_amount=1, increase_amount=5) # 196.62599

3 tv7377_ct.t_nlax(x=50, n=10, m=1, defer=0, first_amount=100, increase_amount=-5) # 687.75180
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3

6

7

5.3.2 t_nlaax

Actuarial Notation: ;(/d),m and t|(1d)g%)

Usage

t_nlaax(x, n, m=1, defer=0, first_amount=1, increase_amount=1)

Description: Returns the actuarial present value of a n term life annuity due, deferred ¢ periods, with payments
evolving in arithmetic progression. The payments are made m times per year at the beginning of the periods
and the payment of each period is divided into m equal payments. First amount and Increase amount may be
different. For decreasing life annuities, the Increase Amount should be negative.

Parameters
b'¢ age at the beginning of the contract
n number of periods until the end of the contract (measured in periods of the interest rate)
m number of payments in each period of the interest rate
defer number of deferment years
first_amount amount of the first payment
increase_amount | amount of the increase amount
increasing life annuities: increase_amount > 0
decreasing life annuities: increase_amount < 0

Observation: t_nlaax(x, n, m, defer, 1, increase_amount=0) = t_naax(x, n, m, defer)

Examples
tv7377_ct.t_nlaax(x=50, n=10, m=1, defer=0, first_amount=1, increase_amount=1) # 47 .5374643
tv7377_ct.t_nlaax(x=50, n=10, m=1, defer=0, first_amount=1, increase_amount=5) # 201.771158

tv7377_ct.t_nlaax(x=50, n=10, m=1, defer=0, first_amount=100, increase_amount=-5) # 705.111980

5.3.3 Geometric Life Annuities

For life annuities with payments evolving in geometric progression (increasing or decreasing) the growth rate
(g) should be included when computing the actuarial table (see section 2.6.1) and then use the life annuities

functions presented in the previous sections.

Examples

from lifeactuary import commutation_table as ct

# reads SO0A table
soa = rst.SoaTable(’/soa_tables/’ + ’TV7377° + ’.xml’)

# creates an actuarial table from qx of SOA table with geometric increase of 5J on payments

tv7377_ctg_inc = ct.CommutationFunctions(i=2, g=5, data_type=’q’, mt=soa.table_qx, perc=100,
app_cont=False)
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10 # creates an actuarial table from gx of SOA table with geometric decrease of 5% on payments

11

12

13

14

15

1

tv7377_ctg_dec = ct.CommutationFunctions(i=2, g=-5, data_type=’q’,

app_cont=False)

mt=soa.table_qx,

perc=100,

# actuarial present value of a geometrically evolving life annuity for a 50 years old

indidivual, for 10 years period
tv7377_ctg_inc.naax(50,10,1) # 11.18091822195998
tv7377_ctg_dec.naax(50,10,1) # 7.281682932595854

5.3.4 Present_Value Function

This function generalizes any of the above, returning the present value of a series of cash-flows (introduced
in vector mode), where the interest rate for each period may differ as well as the probability assigned to each
payment /benefit. According to the defined probabilities, the function returns the present value (for probabilities

equal to 1) or the actuarial present value of the series of cash-flows.

Usage

present_value (probs, age, spot_rates, capital)

Description: This function computes the expected present value of a cash-flow, that can be contingent on

some probabilities. The payments are considered at the end of the period.

Parameters
probs vector of probabilities. For using the instantiated actuarial table, introduce probs=None.
age age at the beginning of the contract
spot_rates | vector of interest rates for the considered time periods
capital vector of cash-flow amounts
Examples

pvl = tv7377_ct.present_value(probs=1, age=None,
spot_rates=[1.2, 1.4, 1.8, 1.6, 1.9], capital=[100,

print (’Present Value:’, pvl)

# 425.750701233034

pv2 = tv7377_ct.present_value(probs=None, age=35,
spot_rates=[1.2, 1.4, 1.8, 1.6, 1.9], capital=[100,

print (’Present Value:’, pv2)

# 424.2408517830521
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6 Pricing Life Insurance

When pricing life insurance, there is a need to compute the present value of the benefit payment, for a given
mortality table and an interest rate.

This library includes functions that allow for pricing the most common contracts in life insurance, such as
Pure Endowment, Whole Life and Temporary Insurances, Endowment Insurance as well as the traditional life
insurance with increasing (or decreasing) capitals.

The available functions allow for the pricing of any other type of life insurance, whose actuarial evaluation
makes use of the functions available in this library.

All the functions are available for non-integer ages and terms, if the CommutationTableFrac is used for building
the Actuarial Table.

6.1 Pure Endowment / Deferred Capital / Expected Present Value

Actuarial Notation: , F,

Usage

nEx(x, n)

Description: Returns the present value of a Pure Endowment of 1 for an aged z individual, paid at age = + n.

Parameters

X | age at the beginning of the contract

m | years until payment, if (z) is alive

Examples

tv7377_ct .nEx(50, 5) # 0.8858069661524854
tv7377_ct .nEx (50, 10) # 0.7771748278393479

3 tv7377_ct.nEx (80, 10) # 0.2283081320230277

6.2 Whole Life Insurance
6.2.1 Ax

Actuarial Notation: A,
Usage

Ax (x)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a whole life

insurance (i.e. net single premium), that pays 1 at the end of the year of death.
Parameters

X ‘ age at the beginning of the contract
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Examples

1 tv7377_ct.Ax(50) # 0.5577562201235239

6.2.2 Ax_

Actuarial Notation: A,

Usage

1 Ax_(x)
Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a whole life
insurance (i.e. net single premium), that pays 1 at the moment of death.
Parameters

X ‘ age at the beginning of the contract

Examples

1 tv7377_ct.Ax_(50) # 0.5633061699539695

6.2.3 t_Ax

Actuarial Notation: ; A,

Usage

I t_Ax(x, defer=0)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a whole life
insurance (i.e. net single premium), that pays 1 at the end of year of death. The contract is deferred ¢ years.

Parameters

x | age at the beginning of the contract

t | deferment period (in years)
Observation: t_Ax(x, defer=0) = Ax(x)

Examples

1 tv7377_ct.t_Ax(50,2) # 0.550183040772438
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6.2.4 t_ Ax_

Actuarial Notation: ,ﬂm
Usage
1 t_Ax_(x, defer=0)
Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a whole life
insurance (i.e. net single premium), that pays 1 at the moment of death. The contract is deferred ¢ years.

Parameters

X age at the beginning of the contract

defer | deferment period (in years)

Observation: t_Ax_(x, defer=0) = Ax_(x)

Examples

1 tv7377_ct.t_Ax(50,2) # 0.5556576337284301

6.3 Temporary Life Insurance
6.3.1 nAx

Actuarial Notation: A}
Usage
1 nAx(x, n)
Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a term (tempo-
rary) life insurance (i.e. net single premium), that pays 1, at the end of the year of death.

Parameters

X | age at the beginning of the contract

n | number of years of the contract

Examples

1 tv7377_ct.nAx(50,10) # 0.046765545191685375

6.3.2 nAx_

Actuarial Notation: A}

Usage

1 nAx_(x, n)
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Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a term (tempo-
rary) life insurance (i.e. net single premium), that pays 1, at the moment of death.

Parameters

x | age at the beginning of the contract

n | number of years of the contract

Examples

tv7377_ct.t_Ax_(50,10) # 0.047230885460862126

6.3.3 t_nAx

Actuarial Notation: A}
Usage

t_nAx(x, n, defer=0)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a term (tempo-

rary) deferred life insurance (i.e. net single premium), that pays 1, at the end of the year of death.

Parameters
b'¢ age at the beginning of the contract
n number of years of the contract

defer | number of years of deferment
Observation: t_nAx(x, n, defer=0) = nAx(x, n)

Examples

tv7377_ct.t_nAx(50,10,5) # 0.059615329779334834

6.3.4 tnAx_

Actuarial Notation: 4 A} -
Usage

t_nAx_(x, n, defer=0)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a term (tempo-

rary) deferred life insurance (i.e. net single premium), that pays 1, at the moment of death.

Parameters
b'¢ age at the beginning of the contract
n number of years of the contract

defer | number of years of deferment
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Observation: t_nAx_(x, n, defer=0) = nAx_(x, n)

Examples

1 tv7377_ct.t_nAx_(50,10,5) # 0.060208531750847685

6.4 Endowment Insurance
6.4.1 nAEx

Actuarial Notation: A,.x

Usage

1 nAEx(x, n)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of an Endowment
life insurance (i.e. net single premium), that pays 1, at the end of year of death or 1 if (x) survives to age x + n.

Parameters

x | age at the beginning of the contract

n | number of years of the contract

Examples

tv7377_ct .nAEx(50,10) # 0.8239403730310333

6.4.2 nAEx_

Actuarial Notation: flw:m
Usage
I nAEx(x, n)
Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of an Endowment
life insurance (i.e. net single premium), that pays 1, at the moment of death or 1 if (x) survives to age x + n.

Parameters

x | age at the beginning of the contract

n | number of years of the contract

Examples

1 tv7377_ct.nAEx_(50,10) # 0.8244057133002101
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6.4.3 t.nAEx

Actuarial Notation: ; A,

Usage

1 t_nAEx(x, n, defer=0)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a deferred
Endowment life insurance (i.e. net single premium) that pays 1, at the end of year of death or 1 if (x) survives
to age x +t+n.

Parameters
b'¢ age at the beginning of the contract
n number of years of the contract

defer | number of years of deferment

Examples

1 tv7377_ct.t_nAEx(50,10,2) # 0.7863040688470341

6.4.4 t_ AEx_

Actuarial Notation: ;4,5

Usage

1 t_nAEx_(x, n, defer=0)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a deferred
Endowment life insurance (i.e. net single premium) that pays 1, at the moment of death or 1 if (z) survives to
age ¢ + ¢ + n.
Parameters

b'¢ age at the beginning of the contract
n number of years of the contract

defer | number of years of deferment

Examples

1 tv7377_ct.t_nAEx_(50,10,2) # 0.7868146552887256
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6.5 Temporary Life Insurance with variable Capitals
6.5.1 IAx

Actuarial Notation: ([A4),

Usage

1 IAx (x)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a Term Life
Insurance (i.e. net single premium), that pays 1 + k, at the end of year of death, if death occurs between ages
x+kand x +k+ 1, for k=0, 1, .... The capital of the first year is equal to the rate of the progression.

Parameters

b'¢ ‘ age at the beginning of the contract

Examples

1 tv7377_ct.IAx(50) # 15.807431562003355

6.5.2 nlIAx

Actuarial Notation: (IA),.5

Usage

nIAx(x,n)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of an arithmetically
increasing life insurance (i.e. net single premium), that pays 1 + k, at the end of the year if death happens
between age r + k and x + k + 1, k=0,..., n — 1.

Parameters

x | age at the beginning of the contract

n | number of years of the contract

Examples

1 tv7377_ct.nIAx(50,10) # 0.2751855520152587
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3 tv7377_ct.nIArx(50,10,0,1000,-50)

6.5.3 nlIArx

This function computes the actuarial present value of a term insurance whose capitals increase arithmetically,
allowing for different amounts of initial capital and increase amount. It corresponds to a generalization of

function nIAx, where the first amount is equal to increase amount.
Actuarial Notation: ,(IA),.x5

Usage

nIArx_ct(x,n, defer=0, first_amount=1, increase_amount=1)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a term life
insurance (i.e. net single premium), that pays (first_amount + kX increase_amount), at the end of the year if
death occurs between ages z + k and x + k + 1, for k = 0,...,n — 1. Allows the computation for decreasing

capitals. The first capital may differ from the increasing/decreasing amount.

Parameters
X age at the beginning of the contract
n number of years of the contract
defer number of deferment years
first_amount insured amount in the first year of the contract
increase_amount | rate of increasing (if > 0) or decreasing (if < 0)

Examples

58.18654553286392
133.3402470815534
35.344544850506836
28.027981923486493

tv7377_ct.nIArx (50,10,0,1000,50)
tv7377_ct.nIArx (50,10,10,1000,50)

tv7377_ct.nTArx (50,10,10,1000, -50)
Observation: nlAx(x, n) = nIArx(x, n, defer=0,first_amount=1, increase_amount=1)
6.5.4 nlArx_

This function computes the actuarial present value of a term insurance whose capitals increase arithmetically,
allowing for different amounts of initial capital and increase amount. It corresponds to a generalization of

function nIAx_, where the first amount is equal to increase amount.
Actuarial Notation: (Lzl);:m
Usage

nIArx_(x,n, defer=0, first_amount=1, increase_amount=1)

Description: Returns the Expected Present Value (EPV) [Actuarial Present Value (APV)] of a term life
insurance (i.e. net single premium), that pays (first_.amount + kX increase_amount), at the moment of death if
death happens between age x + k and x + k+ 1, for k=0,...,n— 1.
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Parameters

X age at the beginning of the contract

n number of years of the contract

defer number of deferment years

first_amount insured amount in the first year of the contract
increase_amount | rate of increasing (if > 0) or decreasing (if < 0)

Examples

| tv7377_ct.nIArx_(50,10,0,1000,50)
tv7377_ct.nIArx_(50,10,10,1000,50)
tv7377_ct.nIArx_(50,10,0,1000,-50)
4 tv7377_ct.nIArx_(50,10,10,1000,-50)

58.765530395538875
134.66704838825683
35.69624052618538

28.306874184857506

N}
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7 Financial Annuities

7.1 Class Annuities_Certain

class Annuities_Certain
This class instantiates the methods for the computation of financial annuities, for a given interest rate and a

chosen frequency of payments m (in each period of the interest rate).

Usage

AnnuitiesCertain(interest_rate, m=1)

Description

Initializes the AnnuitiesCertain class so that we can compute the present value of financial annuities.

Parameters

interest_rate | interest rate, in percentage (e.g. use 5 for 5%)

m frequency of payments, in each period of the interest rate

Examples
from lifeactuary import annuities_certain as ac
3 # instantiates a methods for computing financial annuities with a 5% annual interest rate,

with annual payments
il=ac.Annuities_Certain(5,1)

# instantiates a methods for computing financial annuities with a 5% annual interest rate,

with quarterly payments

7 i4=ac.Annuities_Certain (5,4)

The following methods are available after instantiating the class:

7.1.1 im

Actuarial Notation | i,

Definition m [(14 i)™ —1]

Usage irate.im

Example i4.im

Result 0.04908893771615741
7.1.2 vm

Actuarial Notation | v,,

Definition L

14+

Usage irate.vm

Example i4.vm

Result 0.9878765474230741
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7.1.3 dm

Actuarial Notation | d,,

o \1/m
Definition (1 - m) -1
Usage irate.dm
Example i4.dm
Result 0.0484938103077039

7.2 Constant Terms Financial Annuities

7.2.1 an

Actuarial Notation: ap and a(mm) or asg and a%n)

Usage

an(terms)

Description: Returns the present value of an immediate n term financial annuity with payments equal to 1.
Payments are made in the end of the periods. In fractional annuities, payments of 1/m are made m times per

year at the end of the periods.

Parameters

terms | number of periods (measured in periods of the interest rate)

(terms=None) or (terms=0) returns the present value of the perpetual annuity

Examples

il.an(10) # 7.721734929184813
i4.an(10) # 7.86504586209782

il.an(None) # 19.999999999999982

5 i4.an(0) # 20.371188429095998

7.2.2 aan

Actuarial Notation: dz and d(mm) or (= and d%” )

Usage

aan(terms)

Description: Returns the present value of a due n term financial annuity with payments equal to 1. Payments
are made in the beginning of periods. In fractional annuities, payments of 1/m are made m times per year at

the end of the periods.

Parameters

terms | number of periods (measured in periods of the interest rate)
(terms=None) or (terms=0) returns the present value of the perpetual annuity
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Examples

il.aan(10) # 8.107821675644054
i4.aan(10) # 7.9615675487126305

il.aan(None) # 20.999999999999982
i4.aan(0) # 20.621188429095998

7.3 Variable Terms Financial Annuities

In this section we present functions that allow the computation of the present value of financial annuities with
variable terms, for the particular cases where the terms evolve in arithmetic or geometric progressions.

For both cases, functions are defined in a general way such that the first term may differ from the rate of growth
and the same function allows for increasing and decreasing terms.

For annuities with payments more frequent than the interest rate period, two approaches are considered and
corresponding functions are developed: (1) payments level within each interest period and increase/decrease

from one interest period to the next and (2) payments increase in each payment period.

Annuities with terms evolving Arithmetically

7.3.1 Ian

Actuarial Notation: (/a); and (Ia)(mm) or (Da)y; and (Da)(mm)

Usage

Ian(terms, payment=1, increase=1)

Description: Returns the present value of an immediate n term financial annuity with payments increasing/de-
creasing arithmetically. Payments are made in the end of the periods. First payment and increase amount may
differ. In fractional annuities, payments level within each interest period and increase/decrease from one interest

period to the next.

Parameters

terms number of periods (measured in periods of the interest rate)
payment | amount of the first payment

increase | increase amount of payments (> 0 for increasing annuities and < 0 for decreasing annuities)

Actuarial Formula
For C - first payment , r - rate of increasing/decreasing, i-annual interest rate, n - number of terms, m-frequency

of payments

A — no™

(,r (Ia)(mm) =C a(mm) +7r )
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Examples

a4 = ac.Annuities_Certain(interest_rate=5, m=12)
r4 = a4.Ilan(terms=20, payment=2000 * 12, increase=400 * 12)

» print (réd)

#789369.5624059099

7.3.2 ITaan

Actuarial Notation: Iz and [ d(mm) or Dim and Dd(mm)

Usage

Taan(terms, payment=1, increase=1)

Description: Returns the present value of a due n term financial annuity with payments increasing/decreasing
arithmetically. Payments are made in the beginning of the periods. First payment and increase amount may
differ. In fractional annuities, payments level within each interest period and increase/decrease from one interest

period to the next.

Parameters
terms number of periods (measured in periods of the interest rate)
payment | amount of the first payment

increase | increase amount of payments (> 0 for increasing annuities and < 0 for decreasing annuities)

Examples
ab = ac.Annuities_Certain(interest_rate=2, m=2)
r5 = ab.laan(terms=2, payment=1, increase=1)

3 print (r5)

# 2.946198813622495

7.3.3 Iman

(m)
m

(m)

Actuarial Notation: (I(m)a)m and (I'™a) I

or (D(m)a)m and (D™ a)

Usage

Iman (terms, payment=1, increase=1)

Description: Returns the present value of an immediate n-term financial annuity with payments increasing/de-
creasing arithmetically. Payments are made in the end of the periods. First payment and increase amount may

differ. In fractional annuities, payments increase in each payment period.
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Parameters

terms number of periods (measured in periods of the interest rate)
payment | amount of the first payment

increase | increase amount of payments (> 0 for increasing annuities and < 0 for decreasing annuities)

Actuarial Formula
For C - first payment , r - rate of increasing/decreasing, i-annual interest rate, n - number of terms, m-frequency

of payments

n

(m) _

gy — MW

m) (™) m
(C,'r‘)(]( )a)m :Ca/(m )—i—?“mZ(T

Examples

a3 = ac.Annuities_Certain(interest_rate=3.3, m=12)

r3 = a3.Iman(terms=8, payment=25 * 12, increase=2 * 12)
3 print (r3)

# 9781.284321297218

Annuities with terms evolving Geometrically

For computing the present value of geometric financial annuities, let us consider the interest rate i, which

reflects the annual interest rate of the annuity, 7, and the growth rate g. For these cases, let us define

_1+g

1—yg
= Vg = .
I 144

YT 1

and

7.3.4 Gan
Actuarial Notation: ;,(Ga)m and g(Ga)(mm)

Usage

Gan (terms ,payment=1, grow=0)

Description: Returns the present value of an immediate n term financial annuity with payments increasing/de-
creasing geometrically. Payments are made in the end of the periods. In fractional annuities, payments level
within each interest period and increase/decrease from one interest period to the next.

Parameters

terms number of periods (measured in periods of the interest rate)
payment | amount of the first payment

grow rate of growing of payments, in percentage
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Actuarial Formula
For C - first payment , g - rate of increasing/decreasing, i-annual interest rate, n - number of terms, m-frequency
of payments
%%fTIéﬁ7ﬁra%ﬂz , 1FY
(c,g)(Ga)(mm) =
Cnv'/m

Examples

1 gl=ac.Annuities_Certain(interest_rate=5, m=2)

N

gl.Gan(terms=5,payment=10, grow=10)
s # 108.60048398210647

7.3.5 Gaan
Actuarial Notation: g(Gd)(mm)

Usage

I Gaan(terms ,payment=1, grow=0)

Description: Returns the present value of an immediate n term financial annuity with payments increasing/de-
creasing geometrically. Payments are made in the end of the periods. In fractional annuities, payments level

within each interest period and increase/decrease from one interest period to the next.

Parameters
terms number of periods (measured in periods of the interest rate)
payment | amount of the first payment
grow rate of growing of payments, in percentage

Examples

| g2=ac.Annuities_Certain(interest_rate=5, m=4)

g2.Gaan(terms=5,payment=100, grow=10)
3 # 2185.9539086346845

7.3.6 Gman
Actuarial Notation: g(G(m)a)m or g(G(m)a)(mm)

Usage

| Gman (terms ,payment=1, grow=0)
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Description: Returns the present value of an immediate n term financial annuity with payments increasing/de-
creasing geometrically. Payments are made in the end of the periods. In fractional annuities, payments increase
in each payment period.

Parameters

terms number of periods (measured in periods of the interest rate)
payment | amount of the first payment

grow rate of growing of payments, in percentage

Actuarial Formula
For C - first payment , g - rate of increasing/decreasing, i-annual interest rate, n - number of terms, m-frequency
of payments

Ca(ﬂ"il) X dmi, , 179
(C)g)(Ga)(mm) =
Cn a(ﬂwil) , t=g

Examples

1 g3=ac.Annuities_Certain(interest_rate=5, m=2)

g3.Gman (terms=5, payment=10, grow=10)
3 # 53.022051853437205

7.3.7 Gmaan

Actuarial Notation: ,(G™id)7 or ,(G™i)y

Usage

| Gmaan (terms ,payment=1, grow=0)

Description: Returns the present value of an immediate n term financial annuity with payments increasing/de-
creasing geometrically. Payments are made in the beginning of the periods. In fractional annuities, payments
increase in each payment period.

Parameters
terms number of periods (measured in periods of the interest rate)
payment | amount of the first payment
grow rate of growing of payments, in percentage

Examples

| g4=ac.Annuities_Certain(interest_rate=5, m=2)
2> g4.Gmaan (terms=5, payment=10, grow=10)
3 #  51.80299115517991
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8 Examples

In this section we present some interesting and more complete examples of application, for which the use of
lifeactuary package is helpful and provides “easy to use” solutions and functions.

8.1 Survival Probabilities

Example 1
Consider a 50 year old individual and the TV7377 mortality table.

1. Determine the probabilities of (50) being alive in the end of each month of the following ten years,

considering the Uniform Distribution of Death approximation.

2. Determine the probabilities of (50) not surviving up to the end of each month of the following ten years,

considering the Uniform Distribution of Death approximation.
3. Build a dataframe with ages and estimated probabilities.
4. Export data to an Excel file.

5. Plot the estimated probabilities in a scatterplot.

from lifeactuary import mortality_table as mtable, read_soa_table_xml as rst

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

mt
1t

rst.SoaTable(’/soa_tables/TV7377’ + ’.xml’)
mtable.MortalityTable (mt=mt.table_qx)

# Question 1

x = b5

n = np.linspace(0, 10, 10%12)

sprobs = [1t.npx(x=x, n=i, method=’udd’) for i in n]
dprobs = [lt.nqx(x=x, n=i, method=’udd’) for i in n]
ages = x + n

df = pd.DataFrame.from_dict({’n’: n, ’x’: ages, ’npx’: sprobs, ’ngx’: dprobs})

# Question 2
df .to_excel (excel _writer=’examplel.xlsx’, sheet_name=’examplel’, index=False, freeze_panes=(1,

1))

# Question 3

plt.scatter(n, sprobs, s=.5, color=’blue’)

plt.xlabel (r’$n$’)

plt.ylabel(r’${}_{n}p_{55}$’)

plt.title(’Probability of Survival’)

plt.grid(visible=True, which=’both’, axis=’both’, color=’grey’, linestyle=’-’, linewidth=.1)
plt.savefig(’examplels’ + ’.eps’, format=’eps’, dpi=3600)

plt.show ()
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plt.

plt

plt.
5 plt.
plt.
plt.
plt.

scatter (n,

dprobs, s=.5, color=’red’)

.xlabel (r’$n$’)

ylabel (r’${}_{n}q_<{55}%’)
title(’Probability of Dying’)

grid(visible=True, which=’both’, axis=’both’, color=’grey’,

savefig(’exampleld’ + ’.eps’, format=’eps’, dpi=3600)

show ()
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1

3

8.2

Life Tables and Life Annuities

Example 2

In this example, let us develop the Python code for answering the following questions:

1.

Import mortality tables TV7377, GRF95 and GRM95, from SOA Mortality Tables, with the columns z,

ley Py Gzy €a-

. Construct an actuarial table considering a technical rate of interest of 4% per annum, and append the

columns D, and N, to the tables produced in the previous question.
Plot the I, gz, Pz, € and In(D, ), comparing, in the same graph, the values of each mortality table.

Determine the net single premium (risk single premium) of a whole life annuity immediate, if someone 55
years old today, wants to receive 1000€ per year considering that:

(a) The contract is paid at single premium.

(b) The contract is paid at level premiums during 5 years.

Determine the net single premium (risk single premium) of a 10 years temporary due life annuity, if

someone 55 years old today, wants to receive 1000 m.u. per year.

from

impo
impo
impo

impo

this

def

tabl
mt_1
1t_1

# Qu
inte
ct_1

3 for

lifeactuary import mortality_table as mtable, commutation_table as ct, read_soa_table_xml

as rst

rt numpy as np
rt os
rt sys

rt matplotlib.pyplot as plt

_py = os.path.split(sys.argv[0]) [-1]1[:-3]

parse_table_name (name) :
return name.replace(’ ’, ’’).replace(’/’, ’7)

3 # Question 1

e_names = [’TV7377°’, ’GRF95°’, ’GRM95°’]

st = [rst.SoaTable(’../../../soa_tables/’ + name + ’.xml’) for name in table_names]
st = [mtable.MortalityTable(mt=mt.table_qx) for mt in mt_1lst]

estion 2

rest_rate = 4

st = [ct.CommutationFunctions(i=interest_rate, g=0, mt=mt.table_qx) for mt in mt_lst]
idx, 1t in enumerate(lt_lst):

name = parse_table_name(mt_lst[idx].name)
1t.df_life_table().to_excel(excel_writer=name + ’.xlsx’, sheet_name=name, index=False,
freeze_panes=(1, 1))

ct_lst[idx].df_commutation_table().to_excel(excel_writer=name + ’ _comm’ + ’.xlsx’,

sheet_name=name, index=False, freeze_panes=(1, 1))
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; plt.

7 plt

; plt.

# Question 3

PEE I}

Plot 1x

PER AN

fig, axes = plt.subplots()

for idx, 1t in enumerate(lt_1lst):
ages = np.arange(0, lt.w + 2)

plt.plot(ages, 1lt.lx, label=table_names[idx])

plt.xlabel(r’$x$’)
plt.ylabel(r’$1_x$’)
plt.title(’Expected Number of Individuals Alive’)
plt.grid(visible=True, which=’both’, axis=’both’, color=’grey’,
plt.legend ()
plt.savefig(this_py + ’1x’ + ’.eps’, format=’eps’, dpi=3600)
plt.show ()
)20
Plot dx
)3
fig, axes = plt.subplots()
for idx, 1t in enumerate(lt_1lst):
ages = np.arange(0, 1lt.w + 1)

plt.plot(ages, 1lt.dx, label=table_names[idx])
xlabel (r’$x$ )

ylabel (r’$d_x$’)

title (’Expected Number of Deaths’)

which=’both’,

plt.
plt.

plt.
plt.
plt
plt.

grid(visible=True, axis=’both’,
legend ()
7dxl

.savefig(this_py + dpi=3600)

show ()

+’.eps’, format=’eps’,

PEE IS}

Plot qgx

)23

fig, axes = plt.subplots()

for idx, 1t in enumerate(lt_1lst):
ages = np.arange(0, lt.w + 1)

plt.plot (ages, label=table_names [idx])
plt.xlabel(r’$x$’)

.ylabel(r’$q_x$’)

title(’Mortality Rate’)

which=’both’,

1t.qgx,

plt.
plt.
plt.
plt.
plt.

grid(visible=True, axis=’both’,
legend ()
savefig(this_py +

show ()

‘qx’ +’.eps’, format=’eps’, dpi=3600)

PEE IS}

Plot px

300

fig, axes = plt.subplots()
1t in enumerate(lt_1lst):
1t.w + 1)

label=table_names [idx])

for idx,
ages = np.arange (0,
plt.plot(ages,
xlabel (r’ $x$ )
ylabel (r’$p_x$’)
title(’Probability of Survival?’)
which=’both’,

1t.px,
plt.
plt.
axis=’both’,

plt.grid(visible=True,
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color=’grey’,

color=’grey’,

color=’grey’,

linestyle=’-’, linewidth=.1)
linestyle=’-’, linewidth=.1)
linestyle=’-’, linewidth=.1)
linestyle=’-’, linewidth=.1)



s5 plt.legend ()

36 plt.savefig(this_py + ’px’ +’.eps’, format=’eps’, dpi=3600)
87 plt.show ()

88

8o 27

90 Plot ex

91 27
92 fig, axes = plt.subplots()

o3 for idx, 1t in enumerate(lt_1lst):

94 ages = np.arange(0, lt.w + 1)

95 plt.plot(ages, lt.ex, label=table_names[idx])

96 plt.xlabel (r’$x$’)

o7 plt.ylabel (r’${e}_{x}+1/2%")

98 plt.title(’Complete Expectation of Life’)

90 plt.grid(visible=True, which=’both’, axis=’both’, color=’grey’, linestyle=’-’, linewidth=.1)
100 plt.legend ()

101 plt.savefig(this_py + ’ex’ + ’.eps’, format=’eps’, dpi=3600)

102 plt.show()

103

104 277

105 Plot 1n(Dx)

106 77
107 fig, axes = plt.subplots()

10s for idx, 1t in enumerate(ct_1lst):

109 ages = np.arange(0, 1lt.w + 1)

110 plt.plot(ages, np.log(lt.Dx), label=table_names[idx])

111 plt.xlabel (r’$x$’)

112 plt.ylabel(r’$1n(D_x)$’)

113 plt.title(r’1n(D_x)’)

114 plt.grid(visible=True, which=’both’, axis=’both’, color=’grey’, linestyle=’-’, linewidth=.1)
115 plt.legend ()

116 plt.savefig(this_py +’1nDx’ + ’.eps’, format=’eps’, dpi=3600)

117 plt.show ()

119 # Question 4

120 for idx, ct in enumerate(ct_lst):

121 print (table_names [idx] + ": " + f’{round (1000 * ct.ax(x=55, m=1), 2):,}’)
122 print ()

124 # Question 5

125 for idx, ct in enumerate(ct_lst):

126 print (table_names [idx]+":"+f’{round (1000 * ct.ax(x=55, m=1) / ct.naax(x=55, n=5, m=1), 2)
5ok ?)

128 # Consult the values used each computation (Nx, Dx)
120 for idx, ct in enumerate(ct_1lst):

130 print (ct.msn)

131 print ()

133 # Consult the values used in the computation, only for TV7377
134 ct_1st [0].msn
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8.3 Life Insurance

Example 3
Consider a Pure Endowment insurance with duration 10 years, if someone 55 years old today, subscribes 1000€,
considering ¢ = 4%/year. Considering the mortatily tables TV7377, GRF95 and GRM95:

1. Determine the net single premium (risk single premium).
2. Determine the annual premium paid during 5 years if the insured is alive.

3. Evaluate the price of contract, including the refund of all premiums paid at the end of the year of death
and at the end of the term.

from lifeactuary import mortality_table as mtable, commutation_table as ct, read_soa_table_xml
as rst

import numpy as np

table_names = [’TV7377°’, ’GRF95°’, ’GRM95°’]
interest_rate = 4
mt_lst = [rst.SoaTable(’soa_tables/’ + name + ’.xml’) for name in table_names]

1t_1st = [mtable.MortalityTable(mt=mt.table_qx) for mt in mt_1lst]
ct_lst = [ct.CommutationFunctions(i=interest_rate, g=0, mt=mt.table_qgx) for mt in mt_1lst]

# General Information

x = b5

capital = 1000

term = 10

term_annuity = 5

# pure endowment

pureEndow = [ct.nEx(x=x, n=term) for ct in ct_1lst]
# temporary annuity due

tad = [ct.naax(x=x, n=term_annuity, m=1) for ct in ct_1lst]

### Question (a)
print (’\nnet single premium?’)
for idx, ct in enumerate(ct_1lst):
print (table_names [idx] + ": " + f’{round(capital * pureEndow[idx], 5):,}’)

### Question (b)
print (’\nlevel premium?’)
for idx, ct in enumerate(ct_1lst):

print (table_names[idx] + ":" + f’{round(capital * pureEndow[idx] / tad[idx], 5):,}’)

# show the annuities
print (’\nannuities’)
for idx, ct in enumerate(ct_1lst):
print (table_names[idx] + ":" + f’{round(tad([idx], 5):,}’)

### Question (c)
## Refund of Net Single Premium
print (’\nSingle Net Risk Premium Refund at End of the Year of Death?’)

termLifeInsurance = [ct.nAx(x=x, n=term) for ct in ct_1lst]

pureEndow_refund = [ct.nEx(x=x, n=term) / (1 - ct.nAx(x=x, n=term)) for ct in ct_1lst]
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print (’\nTerm Life Insurance’)
for idx, ct in enumerate(ct_1lst):

print (table_names[idx] + ":" + f’{round(termLifeInsurance[idx], 5):,}’)

print (’\nSingle Net Premium Refund Cost at End of the Year of Death?’)
for idx, ct in enumerate(ct_1lst):
print (table_names[idx] + ":" + f’{round(capital * pureEndow[idx] / (1 - termLifeInsurance|[

idx]), 5):,}?)

print (’Refund Cost at End of the Year of Death’)

for idx, ct in enumerate(ct_1lst):
print (table_names[idx] + ":" + f’{round(capital * (pureEndow_refund[idx] - pureEndow[idx])
5 B)g k7))

print (’\nSingle Net Risk Premium Refund at End of the Term’)

pureEndow_refund_eot = [ct.nEx(x=x, n=term) / (1 - (1 + interest_rate / 100) ** (-term) + ct.
nEx (x=x, n=term))
for ct in ct_1lst]

for idx, ct in enumerate(ct_1lst):
print (table_names[idx] + ":" + f’{round(capital * pureEndow_refund_eot[idx], 5):,}’)

print (’Refund Cost at End of the the Term’)

for idx, ct in enumerate(ct_1lst):
print (table_names[idx] + ":" + f’{round(capital * (pureEndow_refund_eot[idx] - pureEndowl[
idx]1), 5):,}%)

## Refund of Net Level Premiums

print (’\nLeveled Net Risk Premium Refund at End of the Year of Death?’)

tli_increasing = [ct.nIAx(x=x, n=term_annuity) for ct in ct_1lst]
tli_deferred = [ct.t_nAx(x=x, n=term - term_annuity, defer=term_annuity) for ct in ct_1lst]
pureEndow_leveled_refund = [

pureEndow [idx_ct] / (tad[idx_ct] - tli_increasing[idx_ct] - term_annuity * tli_deferredl[
idx_ct])

for idx_ct, ct in enumerate(ct_lst)]

for idx, ct in enumerate(ct_1lst):
print (table_names[idx] + ":" + f’{round(capital * pureEndow_leveled_refund[idx], 5):,}’)

Solutions:

Question 1:
PP =1000 10E55

TV7377: 624.36092 GRF95: 653.67485 GRM95: 615.65987

o1



Question 2:

E
Piiss = 1000 22225

U55.10]

TV7377: 136.39495 GRF95: 141.86738 GRM95: 134.72276

Question 3:
Single Premium with Refund paid at the end of the Year of Death

10E55

1
1- ASS:W

P = 1000

TV7377: 664.2747 GRF95: 670.91998 GRM95: 662.20316

Single Premium with Refund paid at the end of the contract

10E55

P=1000 ————"—
1 — 01044055

TVT7377: 658.0555 GRF95: 668.30356 GRM95: 654.89063

Level Premium with Refund paid at the end of the year of death

10E55

P =1000 -
Q55.70] — (IA)E.szm

TVT7377: 144.14453 GRF95: 145.18891 GRM95: 143.8195
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Example 4

For the contract in Example 3.2, estimate the net premium reserves until the end of the contract, export the

estimates to and EXcel file and plot the evolution of the reserves in a graph.

## Net premium reserves path

10 = 1000
reserves_dict = {’table’: [], ’x’: [], ’insurer’: [], ’insured’: [], ’reserve’: []}
fund_dict = {’1x’: [1, ’claim’: [1, ’premium’: [], ’fund’: [1}

# Expected reserves value, that is, considering the survivorship of the group
expected_reserve_dict = {’insurer_exp’: [], ’insured_exp’: [], ’reserve_exp’: []1}
ages = range(x, x + term + 1)

print (’\n\n Net Premium reserves \n\n’)

for idx_clt, clt in enumerate(ct_1lst):

premium_unit = pureEndow[idx_clt]

premium_capital = capital * premium_unit
premium_unit_leveled = premium_unit / tad[idx_clt]
premium_leveled = premium_unit_leveled * capital

for age in ages:
# reserves
reserves_dict[’table’].append(table_names [idx_clt])
reserves_dict[’x’].append(age)
insurer_liability = clt.nEx(x=age, n=term - (age - x)) * \

capital

reserves_dict[’insurer’].append(insurer_liability)
tad2 = clt.naax(x=age, n=term_annuity - (age - x))
insured_liability = premium_leveled * tad2
reserves_dict[’insured’].append(insured_liability)
reserve = insurer_liability - insured_liability

reserves_dict[’reserve’].append(reserve)

prob_survival = clt.npx(x=x, n=age - Xx)

1x = 10 * prob_survival
expected_reserve_dict[’insurer_exp’].append(insurer_liability*1lx)
expected_reserve_dict[’insured_exp’].append(insured_liability*1x)

expected_reserve_dict[’reserve_exp’].append(reserve*prob_survival#*1lx)

# fund
fund_dict[’1x’].append(1lx)
gx_1 = clt.ngx(x=age, n=1)

claim = 0
if age == x + term:
claim = capital * 1x

fund_dict[’claim’].append(claim)
premium = 0
if tad2 > 0:

premium = premium_leveledx*1lx
fund_dict[’premium’].append (premium)

if age == x:
fund = 1x * premium_leveled
else:
fund = fund_dict[’fund’][-1] * (1 + interest_rate / 100) - claim + premium

fund_dict[’fund’].append (fund)
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reserves_df = pd.DataFrame(reserves_dict)

expected_reserve_df = pd.DataFrame (expected_reserve_dict)

fund_df = pd.DataFrame(fund_dict)

name = ’pureEndowment_55_1"

reserves_df.to_excel (excel_writer=name + ’ _netReserves’ + ’.xlsx’, sheet_name=name, index=
False, freeze_panes=(1, 1))

123

plot the reserves

1200

for idx_clt, clt in enumerate(ct_1lst):
plt.plot(ages, reserves_df.loc[reserves_df[’table’] == table_names[idx_clt]][’reserve’],

plt.
plt.

plt

plt.
plt.

plt

label=table_names [idx_clt])

xlabel (r’ $x$’)

ylabel (’Reserves’)

.title(’Net Premium Reserves Pure Endowment’)

grid(visible=True, which=’both’, axis=’both’, color=’grey’, linestyle=’-’,
legend ()

.show ()

# save the graph

plt

.savefig(this_py + ’.eps’, format=’eps’, dpi=3600)
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