Vespa — Simulation
User Manual and Reference

Version 1.0.0rc2
Release date: October 5", 2020

Developed by:

Brian J. Soher, Ph.D.
Philip Semanchuk

Duke University Medical Center,
Department of Radiology, Durham, NC

Karl Young, Ph.D.
David Todd, Ph.D.

University of California, San Francisco
Department of Radiology, San Francisco, CA

Developed with support from NIH, grant # EBO08387-01A1

Table of Contents

Overview of the Vespa Package.......c.cccccoeveiiiiiiiiiiiicce e 5
INStallationcoovviiiiiiiiiiiiii Error! Bookmark not defined.
Other Online RESOUICEScoeevveeiiieeeeeeeeeeeeeeeee, Error! Bookmark not defined.

Introduction to Vespa-Simulationcccooevviiieviiiiiieeiice e 6

Using Simulation — A User Manualccccooeviiiiiiiiiieeiceeeee, 8
1. Overview — How to launch Vespa-Simulation...............cccccveviiiiiiiiiiiiiiiiiiinns 8
2. The Simulation Main WINAOW...........couuiiiiiiiiieeieeeeiiie e eeeeees 10

2.1 Experiment Derivations — COPY t0 NEW........cccviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 11
2.2 Experiment Derivations — Add/Subtract Tab in NEW............cccvvvvviiiiiiiiiiiiiiinnenn, 11
3. The Experiment NOtehOOK............oouuiiiiiii e 13
4. The EXperiment Tab ... 13
4.1 Loading an existing EXPerimentcooi i 14
4.2 Running a New EXPerimMent..........oooiiiiiiiii e 14
4.3 New Experiments with additional user defined parameterscccccvvvvvvennnnnns 16
4.4 Visualizing EXperiment RESUILSuuuuiumiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeenees 16
5. Management Dialogsccooeiiiiiiiii e 20
5.1 Manage Experiments dialog...........cccvvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee e 20
5.2 Manage MetaboliteS dialOgceiieeeiiiiiiiieee e 20
5.3 Manage Pulse Sequences dialog...........uueeiiiieiiiiiiiiiiiii e e 22
6. RESUIS OULPUL ..o 29
6.1 Results output into standard text editor............covvvviviiiiiiie e 29
6.2 Plot results to image file formats ... 29
6.3 Plot results to vector graphiCs fOrmatscoovvviiiiiiiiiiiiiiiiiiieeeeeeeeeeee 30

Appendix A. Pulse Sequence Designccccceeveveiiinieveiiineeeennnnn. 31

A.1 What is under the NOOA?ueiiiiiiiie e 31
A.1.1 Vespa-Simulation BasiC CONCEPLSuuuuuuuummiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeieeneeeeenee 31
ALL2 EXPEIIMENES ... 31

A.2 First Steps for Creating Your Own PulSe SEqQUENCES.........cccceevvvvervrieiieeeennn. 33
A2, L OVEBIVIBW. ..ttt e e e e ettt e e e e e e e e e eettt e e e e e eeeeeeenenn e e eeaaeeennnes 33
A.2.2 How Simulation Runs Your Pulse Sequence (A Brief Review)cccceeee. 33
A.2.3 The Interface Between Simulation and Your Pulse Sequences.............ccccc....... 33

A.3 Creating a Pulse Sequence without Extra Parameterscccccvvvvvineennnn. 34
A.3.1 How to create a “One-Pulse” pulse SEQUENCEuuvuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnes 34
A.3.2 A “One-Pulse” pulse sequence that does NOT use binning code....................... 38
A.3.3 The “Ideal-PRESS” pulse sequence — typical use of standard parameters......... 40

A.4 Creating a Pulse Sequence with Extra Parametersccccevvveviviiiinneeenn. 41

A.4.1 The “PRESS-CP with Variable R-groups” Pulse Sequence..........cccccccoeveeevreennes 41
A.5 Creating a Pulse Sequence with an RF Pulse Waveformcccccceeeeee. 45
A.5.1 A “PRESS” sequence that uses a ‘real’ RF pulse read in from afile................... 45
A.5.2 A “PRESS” sequence that uses a ‘real’ RF pulse from Pulse............ccccccccoo.... 46
Appendix B. Pulse Sequence Diagramscccceevevevvineeeeninnnnnn, 49
B.1 ONE-PUISE ...t 49
B.1.1 SEQUENCE DIAQIaIM ...ovviuiiii e e e e e e e et s s e e e e e e e aaat e s e eaaaaeennes 49
B.1.2 Loop Variable 1,2,3 DESCIIPLONSciiieeiiiieiiiiiie e eee et e et e e e e eananes 49
B.1.3 User Defined ParameterS.ccoooiiiiiooeeeeeee e 49
B.1.4 General DESCIIPUION ... 49
B.2 SPIN-ECRO....uuiiiiiiiiiiiiiii e 50
B.2.1 SEQUENCE DIAGIaIM ...t 50
B.2.2 Loop Variable 1,2,3 DESCIIPLONSciiiiiiiiieiiiiee et e e e e eaanes 50
B.2.3 User Defined Parameters........coooiiiiiiieieeeeeeeeeee e 50
B.2.4 General DESCIIPLIONuuuuii e e e et s e e e e e e e e e et e e e aeeeaanne 50
B.3 PRESS IAAIeeecieee e e 51
B.3.1 SEQUENCE DIAGIaIM ... 51
B.3.2 Loop Variable 1,2,3 DESCIIPLIONSiiiieiiiieiiiiiiee e e ee e et s e e e e e e eeeaennn e e e eeeennnes 51
B.3.3 User Defined Parameters........ccoouiioiioiieeeeeeeeeee e 51
B.3.4 General DESCIIPLIONuuuuii e e e e e e e e e e e e e a e e e e aaaeaanne 51
B.4 STEAM IAEAL......uuuiiiee et e e e e e e e e e e e eeenes 52
B.4.1 SEQUENCE DIAQIaM ..cuviuiiii i e e e et s e e e e e e e e e r e e e e aaeeeennes 52
B.4.2 Loop Variable 1,2,3 DESCIPLIONSoiiieeeiiieiiiiiei e e ee e eeeiiees e e e e e e evaeian e e e e eeaeannes 52
B.4.3 User Defined Parameters..........ouuuiiiiiii s e e e e e e e e eaanes 52
B.4.4 General DESCIIPLIONuuuuiii e e e e s e e e e e e e e r e e e e aaeeeaanes 52
B.5 JPRESS IUEAIuuuiiiieiiieeeeee e 53
B.5.1 SEQUENCE DIAQIaM ...oviiiiii i e e et s e e e e e e e e e bt e e e e aaeeeennes 53
B.5.2 Loop Variable 1,2,3 DESCIIPLONSciiiieiiiiiiiiiee et e e e e eaaees 53
B.5.3 User Defined Parameters..........ouuuiiiiii i s e e e eaaaaeaanes 53
B.5.4 General DESCIIPUION ... 53
B.6 PRESS With PUISE PUISESii i 54
B.6.1 SEQUENCE DIAQIaAIM ..ooviiiiii i e e e e et s e e e e e e e e ab e e e e aaaeeennes 54
B.6.2 Loop Variable 1,2,3 DESCIIPLIONScoiiiiiiieiiiiiiie e e e e e e e e eeeeees 54
B.6.3 User Defined Parameters. e e 54
B.6.4 General DESCIIPUIONoieiieeeeee e 54
Appendix C. Mixed Metabolite Qutput............ccoevviiiiiiiiiiiiieii, 56
C.1 General FUNCHONAIILYccooeeeeeeeeeeeeeee e 57
C.2 GAVA Text Format Specific Information ..., 59

C.2.1 USING the DiAl0g. ... i eeeeeiieiiiiiee et e e e e e e e e e eeeeeennes 59

C.2.2 Example GAVA Text OUIPUL File.......coovviiiiiiiiiiiiiiiiieieeeeeeeeeeeee 59

C.3 LCModel Format Specific Informationcoovvuviiiiiiiieiiiiieiiceee e, 61

(O I R U =TT I L= I =1 (o o TS 61

C.3.2 Example — Creating an LCModel Basis Set (by Hongji Chen)ccoovvvnnnnn. 62

C.4 JMRUI Data Text Format Specific Information..............ccccoeeiie 64

C.4.1 USING the DIAIOG.cciiiiiiiiiiiiiiiiieeie ettt 64

C.5 MIDAS Generic XML Format Specific Informationcccooeeeeeeeeeieeeeee. 66

C.5.1 USING the DIAIOG.cciiiiiiiiiiiiiiiiiiiie ettt 66

C.5.2 Example MIDAS Generic XML OUtput File..........ccovvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 67

C.6 Analysis Prior XML Format Specific Informationccccevvvviiiiiiiieeeieennnns 68

(O I R U =TT B g L= 0= (o o TS 68

C.6.2 Example Analysis Prior XML Output File.............ooiiiiiiiiiiiicci e, 69

Appendix D. Object State in Applications..............c.cccoeeeeevinnnnn... 70

D.1 Background and Design PhiloSOPphYccccoooeiiiiiiiiiiiii e 70

D.2 State Definitions and USAQE.........ccoviviiiiiiiiiii e e e e e 70

D.2.1 Private and PUBIICcoooiiiiieeeeeeeee e 70

D.2.2 TN USE et e et e e ea e e e er e aaee 71

D.2.3 FIOZEN .ottt ae 71
Appendix E. Report on Issue with Binning Heterogeneous Spin-

SYStem SIMUIALIONSccovviiiei e 72

E.1 Background —the Problem............cooiriiiii e 72

LT 0 [1T o 73

Overview of the Vespa Package

Vespa stands for “Versatile Simulation, Pulses and Analysis”. The Vespa package is an
integrated, open-source, platform for magnetic resonance spectroscopy (MRS) research
and data analysis. Applications in the Vespa package include:

e Vespa-Simulation — software for spectral simulation (using the GAMMA library)
e Vespa-Pulse — software for RF pulse design

e Vespa-Analysis — spectral data processing and analysis

e Vespa-DataSim — used to create ‘fake’ MRS data sets from Simulation results

The Vespa project addresses software limitations seen across the MRS field, including:
non-standard data access, closed source multiple language software that complicates
algorithm extension and comparison, lack of integration between programs for sharing
prior information, and incomplete or missing documentation and educational content.

Installation

Vespa is a Python package. It requires that a Python environment be installed with certain
required additional modules (all easily obtained) and then Vespa can be automatically
installed from the PyPI web site. For historical reasons, the package on PyPI is called
Vespa-Suite. As of version 1.0.0, Vespa only runs under Python 3.

Full instructions for installation can be accessed online at:
https://scion.duhs.duke.edu/vespa/project/wiki/HowTolnstallVespa

Vespa is an actively developed project that has frequent releases. Once you have it
installed, it is easy to upgrade as described here:

https://scion.duhs.duke.edu/vespa/project/wiki/Upgrading

Other Online Resources

The Vespa project and each of its applications have Trac Wiki sites with extensive information
about how to use, and develop new functionality for, each application. These can be accessed
through the main portal site at

https://scion.duhs.duke.edu/vespa/

https://scion.duhs.duke.edu/vespa/project/wiki/HowToInstallVespa
https://scion.duhs.duke.edu/vespa/project/wiki/Upgrading
https://scion.duhs.duke.edu/vespa/

Introduction to Vespa-Simulation

Vespa-Simulation is a graphical control and visualization program written in the Python
programming language that provides a user friendly front end to the GAMMA/PyGAMMA NMR
simulation libraries. The Vespa-Simulation interface allows users to:

1) Create and run a simulated Experiment (consisting of one or more spectral simulations)
from lists of metabolites and pulse sequences.

2) Store simulated Experiment results in a database.

3) Display the results in a flexible plotting/graphing tool.

4) Compare side-by-side results from one or more simulated Experiments

5) Output results in text or graphical format

6) Export/Import experiments, metabolites or pulse sequences from other users

7) Design and test their own PyGAMMA pulse sequences for addition to the list of pulse
sequences available for use in Experiments.

What is an Experiment? An ‘Experiment’ consists of one or more spectral Simulations. Each
Experiment uses only one “pulse sequence” but can contain one or more metabolites and one or
more sets of timings for the pulse sequence. Each Simulation contains results for a single
metabolite for one set of sequence timings. Each call to the PyGAMMA library produces results
for a single Simulation. Vespa-Simulation loops through the spectral simulations for all timings
and metabolites to completely fill out the Experiment’s results.

There are a number of predefined pulse sequences in the Vespa-Simulation environment, and
users can also design and test their own Python pulse sequence scripts using the PyGAMMA
library. The database also contains prior information (current literature values) for the NMR
parameters of available compounds (J-coupling and chemical shift values) necessary to run the
simulations. NMR parameters are available in this database for approximately 30 compounds
commonly observed for in vivo *H MRS.

The following chapters run through the operation of the Vespa-Simulation program both in general
and widget by widget.

In this manual, command line instructions will appear in a fixed-width font on individual lines, for
example:

~/Vespa-Simulation/ % 1s

Specific file and directory names will appear in a fixed-width font within the main text.

References: Examples of spectral simulation for pulse optimization, and spectral fitting:

Young K, Govindaraju V, Soher BJ and Maudsley AA. Automated Spectral Analysis |: Formation of a
Priori Information by Spectral Simulation. Magnetic Resonance in Medicine; 40:812-815 (1998)

Young K, Soher BJ and Maudsley AA. Automated Spectral Analysis II: Application of Wavelet
Shrinkage for Characterization of Non-Parameterized Signals. Magnetic Resonance in Medicine;
40:816-821 (1998)

Soher BJ, Young K, Govindaraju V and Maudsley AA. Automated Spectral Analysis Ill: Application to in
Vivo Proton MR Spectroscopy and Spectroscopic Imaging. Magnetic Resonance in Medicine; 40:822-
831 (1998)

Soher BJ, Vermathen P, Schuff N, Wiedermann D, Meyerhoff DJ, Weiner MW, Maudsley AA. Short TE
in vivo (1)H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis. Magn
Reson Imaging;18(9):1159-65 (2000).

Online Resources:

The Vespa project and each of its applications have Trac Wiki sites with extensive information
about how to use, and develop new functionality for, each application. These can be accessed
through the main portal site at

http://scion.duhs.duke.edu/vespa/

http://scion.duhs.duke.edu/vespa/

Using Simulation — A User Manual

This section assumes Vespa-Simulation has been downloaded and installed. See the Vespa
Installation guide on the Vespa main project wiki for details on how to install the software and

package dependencies. http://scion.duhs.duke.edu/vespa.

In the following, screenshots are based on running Simulation on the Windows OS, but aside
from starting the program, the basic commands are the same on all platforms.

1. Overview — How to launch Vespa-Simulation

Double click on the Simulation icon that the installer created on your Desktop.

Shown below is the Vespa-Simulation main window as it appears on first opening. No actual

Experiment windows are open, only the ‘Welcome’ banner is displayed.

Pperienent Management Yiew Help

" Walcome info

} Welcome to Vespa - Simulation

ST

)

T [“ T

| Currenily there are no sxperiments ioaded

A 30
20|
oI

|

- —

N Y
= . -

| : |
g'

- ‘- e
L R
0 [§) 90 23

You can use P Eapenmant meng 10 odd 81 exishing éspenment Of oreale i rew Sgerment

Hrady

Use the Experiment menu to open existing Experiments into tabs, or to create a tab for designing

a ‘new’ spectral simulation Experiment.

http://scion.duhs.duke.edu/vespa

Shown below is a screen shot of a Vespa-Simulation session with two Experiment tabs opened

side by side for comparison. The functionality of all tools will be described further in the following
sections.

:.:. . . :'-n- S . it =
v !] \
Ay | o e A ' \
- % e a0 4 W A few 1@ 4 k. ﬂ'“‘ 3 \
Curtw s Ty] o vt e M AN
~ A Do 1 s e oy . - 1401 —L e — . 1“]
Jppy— 1% ek« 55 frap— ST "k- \ /
i -y el T ma - s "v' '.. /
weun A p ¥ e] v \:/
= | | Sy S ———— e o T B I
T T P ——)

= |4'1 T— Pt
Voemee w0 3 \ L :

Fomwre e 2

Loan S Eanaddic L1080
S o Py S T ey
P T eidesades. Usmmtes 00
e Rt

PO+ LT TI0NY Vabue » £ OR}BOTTRRND

2. The Simulation Main Window

This is a view of the main Vespa-Simulation user interface window. It is the first window that
appears when you run the program. It contains the Experiment Notebook, a menu bar and status
bar. The Experiment Notebook can be populated with one or more Experiment Tabs, each of
which contains input data and results from one Experiment. As described above, an Experiment
is a group of spectral simulations. Each
simulation contains the result for one
metabolite that has been run through a |welcome to Vespa - Simulation
simulated pulse sequence for a given set of

Wit Management Yiew Hedgp

e
Walcome info

= oy B e
sequence parameters. Thus, an ke
Experiment may consist of one metabolite =" 2 &
for multiple sets of pulse sequence : ‘:."’q:,

parameters, or multiple metabolites for one
set of pulse sequence parameters, or : ‘
multiple metabolites for multiple collections , = N\ || e
of pulse sequence parameters. ‘ ' o

Currently there are no experimants ioaded
The Experiment Notebook is initially | o emuseseEpeimet i b e epsimed oo
populated with a welcome text window, but ...,
no Experiment results. From the
Experiment menu bar you can 1) load a previously run Experiment from the Simulation database
into a tab, or 2) create a new Experiment and set it up and run it. In either case a tab will appear
for each Experiment that is loaded or created. The Management menu allows users to access
pop-up dialogs to create, edit, view, delete and import/export Experiments, Metabolites and Pulse
Sequences from the Simulation database.

e 1

The status bar provides information about where the cursor is located within the various plots and
images in the interface throughout the program. It also reports short messages that reflect current
processing while events are running.

On the Menu Bar

Experiment — New

Opens a new Experiment Tab in the Experiment Notebook.

Experiment — Open Runs the Experiment Browser dialog, from which you can choose an

Experiment from the database to open.

Experiment — Derivations
—Copy Tab to New This will open a new Experiment Tab and populate it with the same values that

are listed in the current Experiment. No results are copied to the new tab.

—Calculate Add/Sub Tab in New This will open a dialog that allows you to perform an Add/Subtract operation on
one dimension of the currently selected Experiment. Results will be saved into

a new Experiment Tab.

Experiment — Save

Experiment — Close

Experiment — Third Party Export
Experiment — Exit

Management

—Manage Experiments

Management

Saves the Experiment in the current tab to the data base. Note. Experiment
results are not automatically saved to data base after the Run button is hit.

Closes current Experiment Tab. Will prompt for save if necessary.

Saves the Experiment result(s) to third party file formats that can be used in
other NMR/MRS applications. See Appendix C for more details.

Closes current entire application. Will prompt for save if necessary.

Launches the Manage Experiments dialog. Allows user to view, clone, delete,
import and export Experiments.

10

—Manage Metabolites Launches the Manage Metabolites dialog. Allows user to create, edit, view,
clone, (de-)activate, delete, import and export Metabolite prior information.

Management

—Manage Pulse Sequences Launches the Manage Pulse Sequences dialog. Allows user to create, edit,
view, clone, delete, import and export Pulse Sequence information.

View—<various> Changes plot options in the Visualize sub-tab of the active Experiment tab,
including: display a zero line, turn x-axis on/off or choose units, changing plot
color, selecting data type or line shape, turning axes on/off for the Integral or
Contour plot windows, and various output options for all plot windows.

Help — User Manual Launches the user manual (from vespa/docs) into a PDF file reader.

Help — Simulation/Vespa Online Help Online wiki for the Simulation application and Vespa project

Help — About Giving credit where credit is due.

2.1 Experiment Derivations — Copy to New

This selection will open a new Experiment Tab and populate it with the same values that are listed
in the current Experiment. No results are copied to the new tab. This is a short cut for varying
simulation parameters to get different results and still being able to compare back to a previous
results set without having to save them both to the data base.

2.2 Experiment Derivations — Add/Subtract Tab in New

This will open a dialog that allows you to perform an Add/Subtract operation on one dimension of
the currently selected Experiment. You'll note that a lot of the instructions are written on the dialog
widget. Here is the dialog widget you'll see.

Calculate Add/Sub to New Tab [=23a)

Instructions

Select the experiment dimension (by Loop name) that contains the OffjOn states
of the Edited pulse seqeunce Experiment.

Mote that the Loop dimension size must be at least two and that the Off state
is expected to be the first entry in the Loop followed by the On state in the
second entry in this Loop.

If a Loop selection does not have a dimension of atleas two, then the widget
will reset to the first dimension that does.

Loop1 - Edit State v

Comment - will be appended to new Add/Sub Experiment comment:

This Add-Sub Experiment was derived from existing Experiment ...
MName = Joon MEGA-PRESS localized
UUID = 4cefal85-c424-43d1-3132-3c091ff19144

Welcome [K]| Cancel |

You have to select a dimension that contains the Off and On states. Note that the states should
be in this order in the selected dimension for the Add and Subtract options to work properly. Only
the dimensions that exist in the Experiment are displayed. If the currently selected Experiment
Tab has no loops with dimensions >= 2 then the Add/Sub derivation can not be performed.

Also on the dialog is a box in which you can type in text that will be appended to the existing
Experiment comment in the new Experiment Tab. Information about the Experiment from which
the Add/Sub results were derived is pre-populated in this comment window for your convenience.

Results from the Add/Subtract operations will be saved into a new Experiment Tab. This tab will

11

NOT be saved into the database unless you select the Experiment — Save menu item. The results
are saved into the dimension that contained the Off/On states. The Add result is stored in the loop
location that the Off state was in, the Subtract is saved into the On state location. Note that
because this is an Experiment derived from pre-existing results, you are not allowed to add new
metabolites to it in the Simulate sub-tab.

Hitting the OK button causes the Add/Subtract operations to be performed and a new Experiment
Tab to be added to the Notebook.

Hitting the Cancel button exits this function without performing any actions.

12

3. The Experiment Notebook

The Experiment Notebook is an “advanced user interface” widget (AUINotebook). What that
means to you and me is a lot of flexibility: Multiple tabs can be opened up inside the window. They
can be moved around, arranged and “docked” as the user desires by left-click and dragging the
desired tab to a new location inside the notebook boundaries. In this manner, the tabs can be
positioned side-by-side, top-to-bottom or stacked (as show in Sections 1 and 4). They can also
be arranged in any mixture of these positions.

The Experiment Notebook can be populated with one or more Experiment Tabs, each of which
contains the results of one Experiment. Tabs can be closed using the X box on the tab or with a
middle-click on the tab itself. When a Tab is closed, the Experiment is removed from memory, but
can be reloaded from the database at a future time - assuming it was previously saved.

4. The Experiment Tab

An Experiment Tab is a tabbed window that | %= Bwsesnes - 1=
is added to the Experiment Notebook. EaCh | cwemest: - cwewe

tab contains one entire Experiment. An | ™™
Experiment Tab can be used to run a new
Experiment and view the results of that run.
It can also be used to load an existing
Experiment from the database to view
results, or to add more metabolites to the

Experiment.

Each Experiment Tab has two sub-tabs
called Visualize and Simulate. The
Simulate tab is where a new experiment is
set up and run. It is also where the Coris Pt
parameters and settings for an existing Lo o= i
Experiment can be reviewed when the e ursren P wmates ‘
Experiment is reloaded. The Visualize tab S bt

is where the results of an Experiment can A i —_— Aol
be visualized as 1D plots, stack plots, peak
integral maps and/or contour maps.

PPAS = 0022896135251 He = 10927501157 Viboe = DOOLASSEDI TGS nrys-noreel

When a new Experiment is set up, there are no results to be displayed so the program defaults
to the Simulate tab for New Experiments. When an existing Experiment is loaded, it typically
contains results from simulations that have been run, so the program defaults to the Visualize tab.

A New Experiment is typically created, set up and run. Results from running an Experiment are
only saved to the database when specifically requested by the user. The Visualize tab is updated
to display results after each time the Run button is pushed on the Simulate tab (i.e. after each
run). Experiments can be run multiple times, until it has been saved to the database. At that point
it is considered ‘frozen’ and it can only be “run again” to add additional metabolites. The same
parameters will be used for additional “add metabolite” runs.

The View menu on the main menu bar can be used to modify the display of the plots in the
Visualize tab. The resulting modifications only affect the settings in the currently activated
Experiment Tab. The following lists the functions on the View menu item:

13

On the Menu Bar

View (this menu affects the plots in the currently active Experiment tab)

—Show ZeroLine

—Xaxis —Show
—Xaxis—PPM/Hz

—Data Type

—Lineshape

—lIntegral Plot—Show Axis
—lIntegral Plot—Show X-axis
—lIntegral Plot—Show Y-axis
—Contour Plot—Show
—Contour Plot—Show Axes
—Output—1D/Stackplot

—Output—Integral Plot

—Output—Contour Plot

—Output—Text Results

toggle zero line off/on in 1D and stack display

white lines on black background or reversed

x-axis value in PPM or Hz

select Real, Imaginary, or Magnitude spectral data to display

select Gaussian or Lorentzian lineshapes for the basis functions plotted
toggles integral plot on/off

toggles x axis on/off

toggles y axis on/off

toggles contour plot on/off

toggles x/y axes on/off

writes the plot, currently in the 1D or StackPlot canvas, to file as either PNG,
SVG, EPS or PDF format

writes the plot, currently in the Integral plot canvas, to file as either PNG, SVG,
EPS or PDF format

writes the plot, currently in the Contour plot canvas, to file as either PNG, SVG,
EPS or PDF format

opens the operating systems standard text editor and inserts a textual
rendering of the Experimental parameters and results. Typically, this is a
summary of the general descriptive information, the specific pulse sequence
and metabolite parameters included and a listing of all metabolite lines for
every loop instance in the Experiment.

4.1 Loading an existing Experiment

The Experiment Browser dialog is launched from Experiment—Open menu which is shown
below. A list of Experiment names is shown on the left. When an Experiment listed in the browser
is clicked on once, its comment and metabolites are displayed on the right. Experiments can be
sorted by the isotopes contained within the simulated metabolites. They can also be sorted by

field strength (given in MHz).
When the Open button is clicked (OI’ an s

— _5_1

Experiment’s name is double-clicked on), the
program loads the information for that
Experiment from the database into an
Experiment object in memory. This object then
creates a set of basis functions for all
metabolites for use in the Visualization tab
plots. N.B. In the case of a large Experiment,
this may take a significant amount of time to
calculate, but is indicated on the lower left of the
status bar while calculating. o p—

mhke [=]

C il B Baawire OAVA
delndane

Metabolites: aspottate choinednncsing
reanne_gaha, ghilamate, gistamine, bactate
myomestal nacetylasganate, taime

4.2 Running a new Experiment

As noted previously, an ‘Experiment’ object consists of one or more spectral Simulation objects.
Each Experiment object uses only one “pulse sequence” but can contain one or more metabolites
and one or more sets of timings for the pulse sequence. Each Simulation object contains results
for a single metabolite for one set of sequence timings. Each call to the PyGAMMA library

14

produces results for a single Simulation object. Vespa-Simulation loops through spectral
simulations for all timings and metabolites to completely fill an Experiment object.

= Simulation - New Experiment ' =101 x!
Drperiment Management Yiew Heb
Exponmeantl Erpermentd Expersments
Pisrte! [msatmpln 13aal PRESS verson Prramters
Mk e Ozl 120.0
UID: A3 Ta-2230- 4074 b262- s 6 T a2
Paak Saarch Rangs (PPM) Elend Tofer e
Irrvwatigater: ['.h:n J Zohee Lowi '_,vn pory: ';,'3;,15
Created; 30 October, 2010 rgh ’p:: 0 Omy: [:J; 0
<
Looe nans commert . Pulss Secquerce
fame: [PRESS Tdeal -
_-J loops 1, 2and 3
TEL [ive; TEZ [ms
Lt : [re] r [ms]
5 : 110 82
fetnped 11 =] Sbart Vahuws: {10 8.2 [
- L >
In Experiaent; : Avaatie: | ||[See ot e li2 I
o = [-
logarcy — I G |‘. hdem | il R Saw:- |20 fio,2] |
GIC-pechobom?
: NAAG-trurated
el NAAG: L e aled sisrra
slanne _'_J
oun Expersrant l
eace Simalate
M2 = -4.74342810077 vake = 150017237663 chalne-rurcasd

When a user selects the Experiment — New menu option, a new Experiment Tab is created in
the Experiment Notebook and the default view is for the Simulate sub-tab. This panel enables the
user to select, define and run a new Experiment from the list of defined pulse sequences provided
with the Simulation program. Additional pulse sequences can be created by the user and
accessed using the methods covered in the next section.

A list of available pulse sequences is kept in the Vespa-Simulation database and can be selected
from the Pulse Sequence: Name dropdown menu. The Simulation widget will reconfigure itself
based on the parameters needed to run that sequence. Users must fill in the Name, Investigator,
Main Field, Peak Search Ranges, Blend Tolerances and all loop Start Value, Step Count and
Step Size fields. At least one metabolite must be selected and moved into the In Experiment list.
Some default values are already included.

Simulation provides the user with four loop variables for use in their pulses sequences. This is
covered in detail in Appendix A, however, in brief: The first loop is the list of selected metabolites.
The remaining three loops are defined as evenly spaced floating point number series.

Each series is defined by a starting value, a number of steps and a step size. So for these values,
start = 10.2, steps = 4, size = 2.0, that dimension would contain the following values [10.2, 12.2,
14.2, 16.2]. These values are passed directly to the user's PyGAMMA code and can be used in
any fashion. One might use these values directly as sequence timing values where they represent
[ms] timings between RF pulses. Another use might be as an integer series (e.g. [1,2,3,4,5,6])
indexing a series of RF pulses stored in a file. This way an Experiment could “loop” through the
effects of different RF pulses in an experiment. Either way, the user can set up three of these
loops inthe Loops 1, 2 and 3 section of the Simulation sub-tab. Shown in the figure is an example
of a new Experiment tab configured for a PRESS simulation.

Note: Metabolite Peak Normalization and Blending

The transition tables calculated by the GAMMA density matrix simulations frequently contain a
large number of transitions caused by degenerate splittings and other processes. At the
conclusion of each simulation run a routine is called to extract lines from the transition table.

15

These lines are then normalized using a closed form calculation based on the number of spins.
To reduce the number of lines required for display, multiple lines are blended by binning them
together based on their PPM locations and phases. The following parameters are used to
customize these procedures:

Peak Search Range — Low/High (PPM): the range in PPM that is searched for lines from the
metabolite simulation.

Peak Blending Tolerance (PPM and Degrees): the width of the bins (+/- in PPM and +/- in
PhaseDegrees) that are used to blend the lines in the simulation. Lines that are included in the
same bin are summed using complex addition based on Amplitude and Phase.

4.3 New Experiments with additional user defined parameters

A full explanation of how to ol x|
create additional pulse B i

sequences, with any additional " s ST ——

parameters that may be S e Menwdorer 10—

required, is given in Appendix A. | s e | 5 e

The Vespa-Simulation Manage Crestad 30 Ocioba, 2040 wore [f05 pos Fod

Pulse Sequences dialog | &5] ke searce

provides an interface for a user || R e =
to define the additional | .. 2 . e
parameters needed for a given | s < At Ve |) 5
pulse sequence. These are then | fle sy : : [.'__

saved to the Vespa-Simulation
database.

PubnlypaiD-ddeall1-3endl | ong)
el argie [dag) [: 0,000 {doutie)
aohalZ duration [sec) §0. 000600000

This section describes the

interface used to run an & 0,“::’ ;—_—1:7— :ﬁ)
Experiment using a pulse

sequence with additional

parameters. s y———

When a Sequence Wlth - = ?45":\1103.-’.7 Vahs = 18201?2'576621 ok TunGeEd

additional parameters is selected from the Pulse Sequences drop-list, the Simulate tab will be
modified to display input fields where the user can set the values for these additional parameters.
These additional parameters are displayed in a list below the loop fields. Each line contains only
one parameter description and a field to set a value. When appropriate, a default value is
provided. Note: Data types are limited to String, Long or Float data types for data entry. The user
is restricted to entering this type of data in any given field.

4.4 Visualizing Experiment Results

Experiments displayed in the Visualize widget can be considered to contain 2, 3, 4 or 5
dimensions that correspond to the Spectral dimension, the number of metabolites in the
experiment, and the number of steps in Loops 1, 2 and 3 respectively. Pulse sequences such as
One-Pulse or Spin-Echo only allow 0 or 1 Loop dimensions and are thus the types of available
display are appropriately restricted. However, other pulse sequences can typically use most of
the plot modes. The three plot modes for displaying results, 1D/StackPlot, Integral Plot and
Contour Plot, are shown below:

16

1 Simulation - Example PRESS Ideal =S

Experiment Management View Help

Experiment1 Experiment2

{: Main Plot
\! Display Mode |Stack Plot Index 1 v]
I{ x-Axis [PPM]
Max 4.404 > Min 2.983
Cursor Values [PPM]
Max 3.676 = Min 3.423
Looplindex: 3 - TE1 [ms] = 30.0
Loop2index: 16 - TE2 [ms] = 160.0 :
' Metaboites to Plot] Sum Plots {50 40 60 80 100 120 140 16

creatine ‘ :
i |lactate —"'—-\..,J"\’—V"*-'— ‘16

| A
¢ Contour Piot : 8
3 — AWy —
[V|Grayscale Levels: 22 = 6
Dimensions: |Contour Index 142 ¥ —— A W]
Basis Function Parameters N (‘\ AN
[SetResolution... | Line Width [Hz): 3.0 £ n |
[ASCII Display |4 4240383634 323 10 12 14 16
Visualize Simulate
PPM = 3.06586702527 Hz = 379.860924431 Value = 5.20419162058e-05 myo-inositol

The 1D/StackPlot window is always open and centered in the screen. The Integral Plot and the
Contour Plot can be toggled on/off using the check box next to their names (though their windows
remain ‘open’ whether they are being plotted or not). Both the Integral and Contour plot windows
can be undocked, repositioned and re-docked using the “grab bars” on the left hand side of each
window.

Under the 1D/StackPlot window, a 1D spectrum for one or more metabolites or a 2D spectral
stack plot along any two Loop dimensions for a single metabolite can be selected. If more than
one metabolite is selected for a stack plot, only the first metabolite in the list is displayed.

The mouse can be use to set the X-axis and Cursor values in the 1D plots. The left mouse button
sets the X-axis Min/Max PPM values. Click and hold the left mouse button in the window and a
vertical cursor will appear. Drag the mouse either left or right and a second vertical cursor will
appear. PPM value changes will be reflected in the Plot Control widget. Release the mouse and
the plot will be redisplayed for the Min/Max PPM axis values. This Zoom Span will display its
range in a pale yellow that disappears when the left mouse is released.

In a similar fashion, two vertical cursors can be set inside the plot window. Click and drag then
release to set the two cursors anywhere in the window. This Cursor Span will display as a light
gray span. Click in place with the right mouse button and the Cursor span will be turned off.

The cursor values are used to determine the “area under the peak” values that are plotted in the
Integral and Contour windows. Changes to the cursor settings, either by mouse or in the
respective widgets, will be updated in the Integral and Contour plots (described below) after these
values are changed by the user.

17

Click and release the left mouse button in place and the plot will zoom out to its max setting. Click
and release the right mouse button in place and the cursor span will be turned off.

An Integral plot can be created from a 2D Spectral stack plot experiment for a single metabolite.
Metabolite areas are measured between the Left and Right Cursor settings in each spectrum
and for the real, imaginary or magnitude data shown. The plot will show the integral along the
Stack Plot axis displayed in the 1D/StackPlot Once the Integral plot is displayed, changes to the
Left and Right Cursor values or to the Loop index widgets are reflected in the plot.

The Contour plot works best for Experiments that contain at least two Loop dimensions, but will
create a “pseudo-2D” contour plot from an Experiment with only one Loop dimension by repeating
the first dimension. Contours are integrated over all steps in the two loop dimensions selected in
the Contour Dimensions drop-box, for the Left and Right Cursor settings shown in the Plot
control widget and for the real, imaginary or magnitude data shown. Plotted contours change as

the cursor settings change, but are only refreshed when the right mouse button is released.
On the Visualize Widget

Display Mode

X Axis Max/Min

Cursor Max/Min

Index 1, 2, 3

Metabolites to Plot

Sum Plots

Integral Plot - Show
Contour Plot - Show

Grayscale

Levels

Contour Dimensions
Line Width

Sweep Width

Points

ASCII Display

(drop-list) Selects 1D, or Stack Plots along index 1, 2 or 3 to be displayed in the 1D
window.

(click fields) Controls the PPM limits of the spectrum displayed in the 1D and 2D plots.
Alternatively, the left mouse button can be used interactively in the 1D Display window to
set these axes. Click on the left mouse button and drag to set the min/max settings using
an interactive ‘rubber-band’ display method. X-axis cursors are displayed in gray/red.

(click fields) Controls the PPM limits of the cursors displayed in the 1D and Stack Plots.
These also act as the PPM integral regions calculated in the Integral and Contour plots.
The cursors are displayed in purple and may not be displayed on the screen if set to
values outside the X Axis min/max values. Alternatively, the right mouse button can be
used in an interactive ‘rubber-band’ display method in the 1D Display window to set these
axes. Click on the left mouse button and drag to set the left/right values. Cursors are
displayed in gray/yellow.

(click fields) These fields allow the user to step thru the Loopl, Loop2 and Loop3
dimensions for the various plot modes. As each Index widget is incremented, the
sequence timing’s actual value is shown in the adjoining field. If a given Experiment did
not use a Loop dimension, that index is not displayed (e.g. you will often not see Index 3).

(list) A list of metabolites in the experiment that can be included in the display.

Sums all metabolite plots selected (highlighted) in the list. For 1D display, this sums
different metabolite spectra together. For Stack Plots the different sequence timings for
one metabolite are summed.

(check) Toggles Integral Plot display.
(check) Toggles Contour Plot display.

(check) Toggles whether a grayscale image overlay is applied as a background to the
contour plot.

(click field) Select the number of levels to display in the Contour Plot. Note that setting too
many levels may limit the ability of level values from being displayed.

(drop-list) Selects index pairs among index 1, 2 and 3 for display in plot.

(click field) Set the full-width half-max linewidth in Hz of the peaks displayed in the plots.
(click field) Set the sweep width in Hz used to reconstruct the spectra.

The number of spectral points used to reconstruct the spectra.

Displays the current Experiment results in text form. The information at the top is a
summary of the Experiment parameters, which is followed by a line by line report of
metabolite results. Each line is tab-delineated and shows a: Metabolite Name, Loop1,

18

Loop2 Index, Loop3 Index, Group Number Index, Line Number Index, Frequency(PPM),
Amplitude, and Phase(deg) for each line extracted from the transition table for a given
simulation.

19

5. Management Dialogs

The Management dialogs allows the user to Create, Delete, Edit, Import, Export or View
Metabolites, Experiments and Pulse Sequences. These dialogs therefore allow the user to
manage the data in the Simulation database, and to add new metabolite and pulse sequence
information that can be used as prior information for simulation and processing. It also provides
the means for users to share information between themselves via XML files created using the
Import/Export functions.

5.1 Manage Experiments dialog

Access this dialog by clicking on the Management—Manage Experiments menu item. The
dialog opens and blocks other activity until it is closed. An example of this dialog is shown in the
figure. Experiment names are listed in the

window on the right. This list may be sorted x|
by isotope or main BO field strength from tsotepe: [any] B0: [ary]

the drop-list widgets above the list. Users R Fublic

may View, Delete, Import or Export — — — [ECHEEETERN
Experiments. These functions are e | Example SpinEcho mulki-TE £

summarized below.

View: Creates a brief textual description of
the Experiment that is displayed in a native
text editor for the platform being used. Use
View—Output—Text Results menu item
on the main menu bar with the Experiment
loaded into a tab in the Notebook for a
more detailed textual description of the

Experiment and it’s results. Import... Export... Coss |
Delete: Removes the Experiment from the
database.

Import: Allows the user to select an XML file that contains an Experiment. If the UUID in the file
is unigue, it is added to the Simulation database.

Export: The user selects an Experiment from the list. The program asks if both parameters and
results should be included in the export, or just parameters. A second dialog allows the user to
browse for the output filename, select if output should be compressed and allows an additional
export comment to be typed in. Note that the action of exporting an Experiment (or other objects)
caused it to be marked as “frozen” in the database. This means that no changes can be made.
This is for the sake of consistency as results are shared. However, a frozen Experiment can still
be deleted from the database if needed. This file can be imported into another Vespa-Simulation
installation using the Import function. If additional changes are desired a new Experiment, using
the same Pulse Sequence object, can be created and edited.

5.2 Manage Metabolites dialog

Access this dialog by clicking on the Management—Manage Metabolites menu item. Actions
that can be taken on the Metabolite dialog include, New, Edit, View, Clone, (De)activate, Delete,
Import and Export. An example of the Manage Metabolites window is shown below. The "Public"
column indicates if a metabolite has ever been exported (or imported from someone else). If the
public flag is set then it can not be edited. The "Use Count" column indicates how many local
Experiments use this metabolite. While in use by any Experiments, the metabolite can not be
deleted.

20

Manage Metabolites x|
Isotope: Iall 'I

Mew Mame

¥ show deactivated

Public

Use Count =

Edit... GPC-pcholine 1

GPC-pcholine2

MAAG-truncated

MAAG-truncated-siemens

acetate

alanine

aspartate

atp-adenosine

atp-ribose

choline-methylene

choline-methylene-siemens
choline-methylene_2010-06-25_dane (not active)
choline-trimethyl

choline-truncated X 5 LI

Close |

View

Clone

(De)activate

't

Delete

R T R R T TR~ R]

=

Import... | Export... |

New: A dialog will pop up that gives the user a blank metabolite form to fill out. Select the number
of spins in the metabolite and the form will enable the appropriate chemical shift and j-coupling
fields. Edit the fields appropriately and hit ACCEPT or Cancel. See the sample in the figure below.

Mew Mctabokte *l

L o |

=

LD

Deawr: |

Coastad: 23 Jow, 2010

e [=
or Detae

JCagdeg Coralarm i et
o Lsange H) . [i ? £ s n] Q 9 14

o
-

el

- ed - 2 e :,-..v 30
s ILK. _Ii_:] 3 lao an

M

Led
.
.—.—,—-—1—-(

l ']‘
)

|
I
[
r
|
I
[

g g et ey g g g ey

% s |
" O ~
» _] n

v _'l o
™ ==

............_...,._.._._
S S v——————

[o] comu |

Edit: The highlighted metabolite is opened in a metabolite form. Only the metabolite Name, and
Comment are editable. The name is editable because Experiments save Metabolite references
by UUID which are not editable. Use the "Clone" option to create a copy of a Metabolite that is
fully editable.

View: Similar to Edit but no fields are editable.

Clone: Select a metabolite in the list, hit clone and a copy of that metabolite is made that is now
fully editable. The new metabolite has the name of the original metabolite followed by the date
and the word "_clone".

21

Delete: Only metabolites that have not been used by an experiment may be deleted. This is
because to reconstruct any given Experiment, that object must refer to the original list of
metabolites used to create it. The "Use Count" column indicates if a metabolite is in use by an
Experiment. If not in use by an Experiment, the highlighted metabolite in the list can be deleted
from the database.

(De-)activate : When a metabolite is no longer being used, it can be set to a "deactivated" state
where it no longer shows up in the Experiment Tab - Simulate metabolite list for use in new
Experiments. This state is indicated in the Metabolite dialog by the word "(not active)" appended
to the metabolite name in the list.

Import: Allows the user to select an XML file that contains a Metabolite. If the UUID in the file is
unique, it is added to the Simulation database.

Export: The user selects a Metabolite from the list. A second dialog allows the user to browse for
the output filename, select if the output should be compressed and allows an additional export
comment to be typed in. Note that the action of exporting an object causes it to be marked as
“frozen” in the database. This means that no further changes can be made. This is for the sake
of consistency when results are shared. However, a frozen Metabolite can still be deleted from
the database if needed. The exported file can be imported into another Vespa-Simulation
installation using the Import function.

Note. An interesting case for which one might want to create a new metabolite would be if one
discovered during for example a long TE experiment that literature values for a particular
metabolite were not adequately precise in terms of modeling the result of the experiment. One
could obtain improved values via some combination of experimental and optimization methods,
then clone the existing metabolite and enter the improved values. These improved values could
later be submitted to the public VeSPA database, perhaps after publication of the results.

5.3 Manage Pulse Sequences dialog

Access this dialog by clicking on the Management—Manage Pulse Sequences menu item.
Actions that can be taken on the Pulse Sequences dialog include, New, Edit, View, Clone, Delete,
Import and Export. An example of the window used to display and edit pulse sequence information

is shown. The New, Edit, View, x
Import and Export buttons all
launch secondary dialogs as part of New... Name LE=inal

CF-PRESS_FlLoops
Example_CP-PRESS1
Example_SpinEcho
JPRESS _Ideal

Clone One-Pulse
PRESS_Ideal

their functionality. Clone and Delete Edit...
only affect the list in the main pulse
sequence management dialog.

View

The "Public" column indicates if a

b ppp

sequence has ever been exported e ot
i Delete Spin-Echo 1
(or imported from someone else). = oo
i / pleSegl
Pulse Sequences with the Public press_fullpulse_indiv
column marked ‘X’ can not be press_fullpulse_summed

edited except in the Name and
Comment fields. The "Use Count"
column indicates how many local

. . mport... rt... lose
Experiments use this sequence. et Bt _ e |
While in use by any Experiments,
the sequence can not be deleted.

View: Select a sequence from the main list. If more than one is selected the first on in the list is
viewed. This button pops up a secondary dialog with three tabs that contain the sequence creation

22

information, widget descriptors and pulse sequence and binning code. These tabs are not
editable. See figure below for example of View.

Pulse Sequence CP-PRESS_RLoops (frozen, not | x|

Description ISequence Code I Binning Code I
Mame: ICP—PRESS_RLDops Comments;

-
UUID: edcc37dé-c3es-40a9-base-22a4260das7h —I

Creator: |Brian Soher
Created: 30 April, 2010

—Labels For Loops 1, 2 and 3

|Rgr0ups (ink)

|TE2 {ms)
|

i~ Parameter Definitions
ILong ;I Marne: IPuIseType(D—IdeaI,l’l—Sand) Default Yalue: |1

|Double 7| name: [dphafz_angletdeg) Default Yalug: [100.000

[Double =] mame: [dphaiz_time{sec) Default Yalue: [1.000500000

[poutle =] mame: [TE1_period{sec) Default Yalue: [0.0100000

[Double | Mame: [rauRisec) Default alue: [0,005300000

Clone: This option allows a user to make a copy of an existing pulse sequence. This is most
useful when an existing sequence is “public” or otherwise not editable because it is referenced by
an existing Experiment. Select a sequence in the list, hit clone and a copy of that sequence is
made that is now fully editable. The new sequence has the name of the original sequence followed
by the date and the word "_clone".

Delete: Only sequences that are not referenced by an experiment may be deleted. To reconstruct
any given Experiment, that object must refer to the original sequence used to create it. The "Use
Count" column indicates if a sequence is in use by an Experiment. If not in use by an Experiment,
the highlighted sequence(s) in the list can be deleted from the database.

Import: Pops up a secondary dialog that allows the user to select an XML file that contains one
or more Vespa Simulation pulse sequences. Any pulse sequences in the file are added to the
database, provided that they aren't in the database already. Pulse sequences with UUIDs that
match those already in the database are simply ignored. Please be sure to import/export pulse
sequences with the “Manage Pulse Sequence” utility to ensure proper operation.

Export: Select a Pulse Sequence from the list. A second dialog pops up that allows the user to
browse for the output filename, select if output should be compressed and allows an additional
export comment to be typed in. Note that the action of exporting an object causes it to be marked
as “frozen” in the database and “public” in the pulse sequence management dialog. This means
that it can not be changed. This is for the sake of consistency as results are shared. However, a
frozen pulse sequence can still be deleted from the database if needed. This file can be imported
into another Vespa-Simulation installation using the Import function. Please be sure to
import/export pulse sequences with the “Manage Pulse Sequence” utility to ensure proper
operation.

New: A “Pulse Sequence Editor” dialog pops up that allows the user to design and test a pulse
sequence using PyGAMMA code. The user must provide general descriptive information about
the sequence. They must describe how to lay out the pulse sequence in the Experiment tab >
Simulate sub-tab, both for the standard loop variables as well as any user-defined parameters.

23

The user must also provide PyGAMMA code (i.e. a Python script that uses calls to the PyGAMMA
library) for the main pulse sequence. Default code for binning results is provided. You can keep
this code, alter it, replace it or delete it entirely. (See Appendix A for details.).

The New Pulse Sequence Editor widget is shown below. Please note that there are 2 main
windows: 1) the Design/Test notebook (left) and 2) the Code/Display notebook (right). To create
a pulse sequence, fill in the “Design” tab, the Sequence Code tab and Binning Code tab. At this
point, if you have filled them in correctly, you have created a pulse sequence and if desired, could
quit the dialog. Alternatively, you can hit the Update Testing Control button and proceed to test
and modify your pulse sequence as desired.

The “Test” tab and “Visualize” tab allow you to test your pulse sequence before running it in an
Experiment. Effectively, it allows you to run a mini-Experiment where only one metabolite and one
value, for any loops you defined, are allowed. More information on these is provided below.

When you hit the OK button (lower right), the pulse sequence is saved to the database, the New
Pulse Sequence dialog goes away, and you should see your new sequence listed in the main
Manage Pulse Sequence dialog list. If you do not wish to save your pulse sequence, hit Cancel.

rNew Pulse Sequence . l-ghr
Design Test | o NE
Identifying Information Loop Labels ‘
Name: Loop 1:
UUID: abd57eeb-48d2-4920-b41a-57a50ce0c0ab Loop 2:
Creator: Loop 3:
A Created: 24 October, 2011

F Your Static Parameters
|
| Add] ‘ Remove Selected

' { v! Name: Default Value:
‘ T
Your RF Pulses

I I Add J {Remove Selected

ﬂ Comments

<« [»

Sequence Code | Binning Code Visualize

OK] [Cancel

Design Tab — Data input fields

Name: This is how the pulse-sequence is displayed in the dropdown list in the Experiment tab
- Simulate sub-tab .

Creator: The name of the person creating the pulse sequence

Loop Labels: When the pulse sequence is called, it can make use of up to three looping
variables to create a variety of conditions for investigating metabolite behavior. In the Loop1,
Loop2 and Loop3 rows the user gives information that allows Simulation to parse these loop

24

variables. The Label field is a string used in creating the Experiment tab - Simulate sub-tab
that describe these loops. An example would be “TE [ms]” for a spin echo experiment. N.B.
If you indicate that a user should provide a timing in [ms], don’t forget to divide by 1000 in your
program to get a timing value in [sec] that PyYGAMMA requires. The examples demonstrate
how to define and use these parameters in PyGAMMA code.

Your Static Parameter Definitions: Each pulse sequence GUI has a section where users
can set values for additional static parameters that are passed into the simulation. The GUI
for these parameters needs to be described in the Pulse Sequence Editor so that the main
program can display them properly. By hitting the Add button, a row of widgets will appear
that contain three fields used to describe the GUI for one static parameter: A data type
(selected from a drop-list), a "Name" string, and a "Default Value" string. The Name string will
be used by the Experiment Tab - Simulate sub-tab as a label to describe this field when the
pulse sequence is selected for an Experiment. The data type shows up as a label in the far
right hand side as a reminder. The default value is inserted as the initial value that is displayed
in that field. The Remove Selected button can be used to remove unwanted static parameters
while designing a pulse sequence. Select the check box on the left side of each row of
parameters you want to remove, and then hit the Remove Selected button.

Note: By selecting a data type for a user-specified parameter in the drop down menu, the user
will be reminded to enter a variable of that type, but the actual field value will be passed as a
string that must be appropriately converted before being used in PyGAMMA simulation code.
Please select your default types and values accordingly.

Your RF Pulses Definitions: Each pulse sequence GUI has a section where users can set
up “real” RF pulse waveforms that are passed into the simulation. Pulses are browsed for from
the Vespa Pulse database using the Add button. The pulse must already exist in the Vespa
Pulse database for it to be added to a Simulation Pulse Sequence definition. The Remove
Selected button can be used to remove unwanted RF pulses while designing a pulse
sequence. Select the check box on the left side of each pulse you want to remove, and then
hit the Remove Selected button.

Note: Immediately upon browsing for an RF pulse and hitting OK, the sequence designer
dialog will take a “snapshot” of the selected pulse as it exists in the database at that moment.
If you are editing a Pulse PulseDesign to create the pulse to be used in Simulation, you should
hit Save before adding it to the Simulation pulse sequence. Also, when it is added, this will
freeze that version of the Pulse PulseDesign. If you go to save that PulseDesign again, you
will be prompted to save that version under a new name to preserve the original waveform for
use in Simulation. If you remove a pulse from a Simulation (and it's not being used anywhere
else in Vespa), then the Pulse PulseDesign will be unfrozen, and able to be edited and saved
again.

Note2: The RF pulses included using this mechanism are static, in that they cannot be altered
at pulse sequence run time. There is no GUI element to represent these pulses in the main
program. The RF pulses selected in the designer are always and only the ones available for
use within your PyGAMMA code. That said, a user could designate a for-loop or static variable
that could be used to select one or more pulses from the static RF pulse list if this flexibility
was needed. However, at this time Simulation does not provide the functionality to select
Pulse waveforms from the Simulate tab at Experiment run time.

As described in more detail Appendix A, the values of user-specified parameters and pulses
are passed to each Simulation that is run as part of an Experiment. The results of setting up
your pulse sequence loops and additional parameters can be viewed in the “Test” tab. The
examples demonstrate how to define and use these parameters in PyGAMMA code.

25

Comments: A field where you can enter a lot of text to remind yourself why you make this
pulse sequence when you check back on it 3 months from now. This is also a good place to
put information for users on how to use this sequence.

Sequence Code Notebook Tab

Note: This tab can be moved and positioned in a variety of ways. Left click and drag the tab
of the pane that you want to re-locate to the position that you want it.

The Sequence Code tab is a text window in which PyGamma code can be pasted and/or
edited. See Appendix A for details of how Simulation interacts with your PyGAMMA code.
There's an example in the figure below.

Binning Code Tab

Note: This tab can be moved and positioned in a variety of ways. Left click and drag the tab
of the pane that you want to re-locate to the position that you want it.

This is a text window (like the Sequence Code tab) in which PyGamma code can be pasted
and/or edited. Simulation adds default binning code when the New Pulse Sequence dialog
opens, but you can edit or delete it as you like. Again, details are in Appendix A.

Test Tab

When the user clicks on the Test tab, the settings in the Design tab are validated, and if
passed, then the Test tab widgets are updated to reflect the pulse sequence design. If there
are any missing fields or other errors in the Design tab, the user is prompted to fix these prior
to switching to the Test tab.

Note: A similar validation takes place when the user hits the OK button. Only a validated
pulse sequence can be saved into the database. However, the validation only checks to see
if all necessary data is available in a reasonable format, NOT if it is functional PyGAMMA
code.

An example is shown below of how settings in the Design tab are represented on the Test
tab. Note that the test values for each loop have been entered and that the default value for
the “my string” user parameter has been altered as well.

26

mlm ‘ 1 import pygsoes as pg 2
Heokt yvg Ifomston | Lodp Labess > z
Wape: [Test PRESS | boop MTEL [vs) 3 Odel tun(aim_desc)
e FATRET DY Oteue . :mfl'?-’f"l} . . — e
! 3 # T " que
Craaas- fres Lo 33 = # for
Crmatu: 04 Februwy, 2001 ¥ ”
Vour St Parsewsters & # A 1mvng Garen Tor it pulse segsence con b
A l ﬂmml) # fousd in e Appande 0f the Simulotios User Manuol
10 o
[E) =1 mawa o g Defast vabs: 5 o not 5b i1 Spiy_system = sim desc.spls_system
Cormrerts 1| ‘ |
- - - I[) 22 # wxtract tw dynenically chasging wrible
IS0rwe conent o serwnd e that thes & 3 tes saguence ;ll o # from Yaap1 and 2 fo e2°: divide
1% # by 1000 0 becouse th ater thot solues
‘ it # are entered in [n1], but PesAMMA wont lee {
ar
i tel = 3im deac.dima(l] / 1000.0
s TeZ = oim deso.dims[2] / L000.0
0
n # 6T up rready rrate and observarion saruab ks
2z H = py.Hoa(apin_aysten) ¢ pg.HI(2pin aysten)
‘ 3 H = »J.Fw{spin_systewm, "1H") &
0[| o'
=l Sequence Code | BeangCods | Veake | |
= Xl
—
Design Text |
“Pubte Sequerce P ameters |
Loop Yalues + Ussr Static Pacamebers
-
1€ [r}i[5 oy strng: Swﬂx-’b {Seing)
TE2 [rele|7
* Eperment Paraneters
MunFkd M} [t 0 (L) |
Mekoite: [1xctate =
 Pash Sewch Rarge [PM] Blerd Tokerance —
Low: fl.o pemi o015
w100 peg: [50.0
Rt Ft Opkicrs ‘
Spectyal Porry, | (040 ~ [Gasssen I
Sweep Wiath Mk | <000.0 i I Magntude . Text Resuks
e Wt Bzl [2.0 T v oG | il
Run Test = J LB &= 1
ookt~
20110204 20145 36! Test simdabion Firished successhully, :] l
2011-02-04 20;4%:26; Resukts plotted to deplyy cowas 7 6 5 4 3 2 1 0 —
:'j > Lode fernng Code Visualize
=3, 0E63,02238 Vahse={0, 000258900121 o l Caneel I

Loop Values: These loops were defined in the Design tab. Any loops without a label are not
included in the pulse sequence. The user must fill in a value for use in the test run for each
loop.

User Static Parameters: User parameters were defined in the Design tab. They are initially
populated with their default values, but may be altered for the test run as necessary.

Experiment Parameters: When the Run Test button is hit, a mini-Experiment will be run to
test the user’s pulse sequence. In order to properly run and display results the experiment
needs values for Main Field [MHz], the isotope, one metabolite to be run (select from the list
as sorted by isotope), and the binning parameters for Peak Search Range and Blend
Tolerance (see Appendix A for more information on the standard blending algorithm)

27

Results Plot Options: These values only affect how the metabolite result is plotted to the
Display Canvas tab in the notebook. Spectral Points are the number of points in the metabolite
FID, Sweep Width defines the FID dwell time, Line Width [Hz] defines the broadening applied
to the FID. Checking the Gaussian box applies a Gaussian lineshape, when it is not checked
a Lorentzian lineshape is applied. Checking Magnitude plots magnitude data on the canvas,
otherwise real data is plotted. Checking x,y Values will show in the lower left corner of the plot
the x and y axis values of the location of the mouse as it moves across the canvas.

Text Results Button: Creates a text representation of the metabolite test results and displays
them in a native text editor on your computer

Plot—PNG Button: Creates a PNG format image of the plot display and shows it in a native
image viewer on your computer.

Run Test Button: Runs a test Experiment on the pulse sequence. The Start and End times
should be reported in the Console window. Any additional exceptions that are raised should
be reported between these messages.

Console: The place where text messages about each Test Run are printed.
Visualize Notebook Tab

Note: This tab can be moved and positioned in a variety of ways. Left click and drag the tab
of the pane that you want to re-locate to the position that you want it.

The test metabolite results are reconstituted as a frequency domain spectrum as described in
the Results Plot Options and plotted to this display tab. The Left mouse button can be used
to draw a zoom box in both x and y directions. Multiple zooms can be performed. Left clicking
once in place will zoom you all the way out to the maximum x-axis extent and fit the y-axis to
approximately the min/max data range. Clicking and dragging on the Right mouse will draw a
Span Cursor, two vertical cursors on the screen, filled in with light gray. These will stay in
place between test runs as you vary loop and parameter values. Right clicking in place will
turn off the Span Zoom region.

Edit: The first highlighted sequence is opened in a form similar to the New Sequence dialog.
Note: Only the metabolite Name, and Comment are editable if the pulse sequence is “public” or
referred to by one or more Experiments. The name is editable because Experiments save Pulse
Sequence references by UUID which are not editable. Use the "Clone" option to create a copy of
a Pulse Sequence that is editable.

If the sequence is editable, the existing values of the pulse sequence object are populated into
the Design and Test tabs on startup. The name of the pulse sequence from the main dialog is
shown in the dialog title. The pulse sequence setting can be edited and tested just like a New
pulse sequence would be. Hitting OK saves any changes into the database. Cancel quits the
dialog without saving changes.

28

6. Results Output

6.1 Results output into standard text editor

The Vespa-Simulation View menu lists commands that only apply to the active Experiment Tab.
Select the View—Output—Text Results option and a tab-delineated text description of the
Experiment is created and loaded into the local computer’s standard text editor. On Windows, this
is typically Notepad. From here the user can save it wherever they please. N.B. This command
can also be launched from the Experiment Tab->Visualize sub-tab using the ASCII Results
button.

The first section of the text file describes the settings of the Experiment. Metabolite simulations
are saved as a collection of lines with amplitude, PPM and phase that can be used to recreate a
time domain spectrum. Each line contains: metabolite name, loopl_value, loop2_value,
loop3_value, line_number, PPM, area and phase (deg). The index_loop variables may be set to
other than O if the Experiment contains multiple steps in pulse sequence timings. E.g. an
Experiment could run NAA, Cr and Cho for 10 TE values, with TE1 being held fixed and TE2
having 10 values. In the output file, loopl_index would be fixed and loop2_index would increment
10 times. The metabolite name(s) would repeat 10 times as well, as loop2_value is incremented.
In this way, a 2D Experiment is flattened into a 1D output file.

--— Experiment 9al46ac7-c47d-4ae2-b7b2-961e942d7d18 ---
Name: Example OnePulse Data

Public: True

Created: 2010-03-24T16:20:18

Comment (abbr.): Simulation for baseline GAVA database
PI: bsoher

Parameters:

b0: 64.000000

Peak Search PPM low/high: 0.000000 / 10.000000

Blend tol. PPM/phase: 0.001500 / 50.000000

Pulse seq.: bf0b302c-celf-46c9-b852-0e7c6b77£95c (One-Pulse)
3 Metabolites: aspartate, choline-truncated, creatine

1 Simulations: (not shown)

Simulation Results

aspartate 0.0 0.0 0.0 0 2.3706 0.038360.0
aspartate 0.0 0.0 0.0 1 2.49372 0.02196 0.0
aspartate 0.0 0.0 0.0 2 2.642320.409 0.0
aspartate 0.0 0.0 0.0 3 2.70787 0.422190.0
aspartate 0.0 0.0 0.0 4 2.76544 0.52731 0.0
aspartate 0.0 0.0 0.0 5 2.78347 0.5175 0.0
aspartate 0.0 0.0 0.0 6 2.979590.04772 0.0
aspartate 0.0 0.0 0.0 7 3.055190.01597 0.0
aspartate 0.0 0.0 0.0 8 3.58274 0.00563 0.0
aspartate 0.0 0.0 0.0 9 3.796890.29328 0.0
aspartate 0.0 0.0 0.0 10 3.872490.25374 0.0
aspartate 0.0 0.0 0.0 11 3.92001 0.23456 0.0
aspartate 0.0 0.0 0.0 12 3.99561 0.21054 0.0
aspartate 0.0 0.0 0.0 13 4.209760.002250.0
choline-truncated 0.0 0.0 0.0 0 3.185 3.0 0.0
creatine 0.0 0.0 0.0 0 3.027 3.0 0.0
creatine 0.0 0.0 0.0 1 3.913 2.0 0.0
creatine 0.0 0.0 0.0 2 6.649 1.0 0.0

6.2 Plot results to image file formats

Results in the 1D/StackPlot, Integral Plot and Contour Plot windows can all be saved to file in
PNG (portable network graphic), PDF (portable document file) or EPS (encapsulated postscript)
formats to save the results as an image. The Vespa-Simulation View menu lists commands that

29

only apply to the active Experiment Tab. Select the View—Output— option and further select
either the 1D/StackPlot, IntegralPlot or ContourPlot menu item. Finally, select either Plot to
PNG, Plot to PDF or Plot to EPS item. The user will be prompted to pick an output filename to
which will be appended the appropriate suffix.

6.3 Plot results to vector graphics formats

Results in the 1D/StackPlot, Integral Plot and Contour Plot windows can all be saved to file in
SVG (scalable vector graphics) or EPS (encapsulated postscript) formats to save the results as
a vector graphics file that can be decomposed into various parts. This is particularly desirable
when creating graphics in PowerPoint or other drawing programs. At the time of writing this, only
the EPS files were readable into PowerPoint.

The Vespa-Simulation View menu lists commands that only apply to the active Experiment Tab.
Select the View—Output— option and further select either the 1D/StackPlot, IntegralPlot or
ContourPlot menu item. Finally, select either Plot to SVG, or Plot to EPS item. The user will be
prompted to pick an output filename to which will be appended the appropriate suffix.

30

Appendix A. Pulse Sequence Design

A.1 What is under the hood?

A.1.1 Vespa-Simulation Basic Concepts

This is a combination of logical concepts and constraints that determine how Simulation works.
These rules are enforced through the application and, to some extent, the database.

The main objects in the system are experiments, simulations, spectra, pulse sequences and
metabolites. Experiments are the primary objects; everything else is secondary. Here's how
they're related --

e [Each experiment has zero to many simulations. Simulations are the whole point of an
experiment, and there's not much to an experiment besides the metatdata that defines the
simulations. Since entering the experiment metadata is pretty trivial, we don't let users
save experiments that define zero simulations. Experiments with zero simulations can
exist, but only in memory. They are never saved to the database or an export file.

o Each experiment makes use of and refers to exactly one pulse sequence, but the
experiment may define one or more timing sets for the pulse sequence.

o Each simulation creates one spectrum.
e Each spectrum has zero or more lines. Zero is an unusual case, but possible.
o Each spectral line has one PPM, area and phase value in it.

We expect users to share data via Simulation's export and import functions. For this reason,
several of Simulation's objects (experiments, pulse sequences and metabolites) have universally
unigue ids (UUIDs) rather than just ordinary integer ids.

A.1.2 Experiments

Experiments are the main focus of the Simulation application. An Experiment's raison d'etre is to
run a set of simulations. This set of simulations is the experiment's results space.

Currently, that space is defined by one to four nested loops. The first loop covers the list of
metabolites the user has involved in the experiment. The other one, two or three loops are user-
defined lists of numbers.

The figure below is a visual representation of a 3D results space (one set of metabolites and two
lists of user-defined numbers). For clarity we do not show the 4™ dimension (a.k.a. the last user
defined loop) as stacks of cubes are hard to visualize.

31

http://en.wikipedia.org/wiki/Uuid
http://en.wikipedia.org/wiki/Uuid

Exampie of simulations for

10 rterations of loopl alang the Z axis

starting at 0.0 with a step size of 0.1,

8 iterations of loop2 along the X axis

starting at 0.4 with a step size of 0.2 and

4 metabolites (aspartate, creatine, glycne and lactate)
olong the Y axis,

There are 320 (=10 x 8 x 4) individual simulations.

1 00
=04
M = aspartate

e -l =09
2= LE

- L1=09 M = Bctate
Q=18

> =09 M = ghone
Q=18

U =09 M = grestine

k=18

M = aspanne

M = pspartate

(S g
L2 =04 =08 — 1 =09 T L1 =09
M = croastine L2=04 I2~056 2=04
M = sspartete M = aspartate M = aspartse

Simulations themselves know nothing about one another and are agnostic to the order in which
they're run. The existing Vespa-Simulation code is geared towards generating a regular results
space that we iterate over in a very straightforward order. (More complex result spaces and
iteration orders could be created provided you can dream up a GUI that allows users to describe
that results space.)

A few other “rules” of note:

e« Once an experiment has been saved, the following attributes become read-only: pulse
sequence, investigator, user parameters, b0, isotope, peak search _ppm_low,
peak_search_ppm_high, blend_tolerance_ppm, blend_tolerance_phase.

e« One can associate additional metabolites with an experiment, but once it is associated

and the experiment is saved, the metabolite remains with the experiment forever. In other
words, a metabolite can't be removed from a saved experiment.

e An experiment's b0 value is always stored in megahertz.
The take-home lesson from this section is that the Vespa-Simulation application provides 4

dynamic (looping) variables and 12 standard static variables to each spectral simulation that is
run. In the example below, we will specify what these are and how they can typically be used. In

32

the second example below, we will discuss how user defined static variables (ie. they do not
change as the loop variables are incremented) can also be passed into spectral simulations.

A.2 First Steps for Creating Your Own Pulse Sequences
A.2.1 Overview

This section contains a lot of information about how the PyGAMMA pulse sequences that you
design in the Pulse Sequence Designer dialog work within the Vespa-Simulation application.
There is a lot of information here, but the thing to keep in mind is that there are 5 very well
documented examples following this section. Please take the time to read the “rules of the road”
here. It should keep you from any rookie mistakes like not using the right name for the function
that your PyGAMMA code goes inside. And then dig into some “learn by doing” afterwards.

The interface between Simulation and pulse sequence code changed in version 0.1.2 of Vespa.
The new interface is not compatible with the old one. Pulse sequence code in prior versions
won't run under the new interface without some changes.

We're written a practical guide to upgrading to 0.1.2. This document explains the details behind
the change, such as --

« How Simulation Runs a Pulse Sequence
« Why We Changed the Interface
« What the New Interface Looks Like

A.2.2 How Simulation Runs Your Pulse Sequence (A Brief Review)

Each pulse sequence consists of two pieces of code -- the sequence code and the binning
code. The sequence code is generally where we put PyGAMMA code that describes the
simulation and generates the results. The binning code can subsequently be used to simplify
these results (e.g. the combination of degenerate lines - hence, the name 'binning’). The binning
step is optional.

A.2.3 The Interface Between Simulation and Your Pulse Sequences

Simulation imports your code as modules. Importing a module should be familiar to anyone who
has used Python, and that's how Simulation uses your pulse sequence code. The sequence
and binning code segments you provide are saved to temp files and then Simulation imports
those files as two individual modules: one module for the sequence code and another module
for the binning code.

This means that your sequence code is in its own namespace and your binning code is in its
own separate namespace. It's as if they were in modules
named my_sequence_code.py and my_binning_code.py.

Simulation calls the run() function in your code. Calling a function in an imported module should
also be familiar to anyone who has used Python. In this case, you provide a function

called run() in both your sequence and binning code. Those functions each accept a single
parameter as described below.

Simulation passes a class instance to your code instead of a dictionary. Simulation passes an
instance of a class that describes the simulation with a well-defined set of attributes.

33

http://scion.duhs.duke.edu/vespa/project/wiki/UpgradingTo_0_1_2
http://scion.duhs.duke.edu/vespa/project/wiki/PulseSequenceInterfaceChange#HowSimulationRunsaPulseSequence
http://scion.duhs.duke.edu/vespa/project/wiki/PulseSequenceInterfaceChange#WhyWeChangedtheInterface
http://scion.duhs.duke.edu/vespa/project/wiki/PulseSequenceInterfaceChange#WhattheNewInterfaceLooksLike

The class contains attributes like field, peak_search_ppm_low, dims, etc. It also contains an
attribute called spin_system that returns a spin system for the current simulation.

For a full list of the class attributes, examine the class definition (in
vespa/simulation/src/simulation_description.py) or see section A.3.1 below.

The same object is passed to both the sequence and binning code, so it's easy to "pass” a
variable created in the sequence code to the binning code. Just assign it to an attribute on the
object. For instance, to make the transition table matrix available to the binning code, add this to
your sequence code:

sim_desc.mx = PyGAMMA.TTablelD(ACQ.table(sigma0))

This demonstrates a larger point: once the simulation description object is passed to your code,
Simulation doesn't use it. Your code is free to manipulate it as you see fit. Not only can you add
attributes and methods, you can delete and overwrite them too.

Simulation passes 8 bit strings. All strings passed to your code in the simulation description are
UTF-8 encoded 8 bit strings. If you don't know what this means, you can probably just ignore it.
Specifically, it means that the strings are safe for PyYGAMMA. (see
http://scion.duhs.duke.edu/vespa/gamma/wiki/PyGammaAndPythonStrings)

Your code returns results via a return statement. Your code (sequence or binning, as explained
below) should return a 3-tuple of lists (or other iterables) of floats that represent the ppm, area,
and phase values. The phrase "...(or other iterables)..." means that the elements of the 3-tuple
can be lists, tuples, PyGAMMA.DoubleVector objects, numpy arrays, etc. They don't even have
to be of the same type. For instance, this is a valid set of results:

return ([0, O, 0], numpy.zeros(3), PyGAMMA.Doublevector(3))

The tuple elements must be the same length. If they're not, Simulation discards your results and
raises a ValueError.

You can return results from the sequence or binning code. Since not everyone will want to run a
binning step, we've made it easy to skip. If your sequence code returns a 3-tuple of results as
described above, Simulation won't call your binning code. If your sequence code

returns None(or doesn't have a return statement at all), then Simulation will call your binning
code which must return the 3-tuple of results.

Results must contain only Python float, int or long objects. The type of every element in the
ppm, area and phase lists must be float,int or long. One can't return, for example, Python
complex numbers, PyGAMMA complex numbers, or ctypes.c_float objects.

If this rule is violated, Simulation discards your results and raises a ValueError.

A.3 Creating a Pulse Sequence without Extra Parameters
A.3.1 How to create a “One-Pulse” pulse sequence

An important thing to remember in pulse sequence design is that regardless of how many looping
variables are defined, each spectral simulation (calculation) receives a standard set of pulse
sequence parameters as described below.

To achieve this, an object called “sim_desc” (the simulation description) is created to store these
common (and any other) parameters. A new sim_desc object is created for each Simulation within
an Experiment object (ie. You can not use this object to “pass messages” between simulations).
Each sim_desc object is sent to a function that executes the PyGAMMA spectral simulation that

34

http://scion.duhs.duke.edu/vespa/project/browser/trunk/simulation/src/simulation_description.py
http://scion.duhs.duke.edu/vespa/gamma/intertrac/wiki%3APyGammaAndPythonStrings
http://scion.duhs.duke.edu/vespa/gamma/wiki/PyGammaAndPythonStrings

it describes. On completion of each simulation, your code returns lists of results (area, ppm, and
phase values). Simulation adds start/finish time stamps and stores the results in the database.

The 15 standard parameters and one user defined parameter are stored as attributes of the
sim_desc object, and are:

‘vespa_version’ — (string) version number of the Vespa-Simulation program in string format
‘“field’ — (float) main BO field strength in MHz

‘observe_isotope — (string) the nuclei used to sort/select the metabolites of interest in the
Experiment, and thus assumed to be the one used to observe results. Can be used to keep your
code nuclei agnostic

‘peak_search_ppm_low’ — (float) lower end of range in ppm to be searched in binning code (see
below)

‘peak_search_ppm_high’ — (float) upper end of range in ppm to be searched in binning code
(see below)

‘blend_tolerance_ppm’ — (float) width of bins in ppm into which similar lines can be combined
(see below)

‘blend_tolerance_phase’ — (float) width of bins in phase (specified in degrees) into which similar
lines can be combined (see below)

‘dims — (list) this list contains the values of the 4 loops as set for this particular simulation.
Specifically, dims[0] is a string containing the metabolite name, dims[1] dims[2] and dims[3]
contain the float values of the three counting loops.

‘met_iso — (list) string value for the isotope of each spin in the current metabolite
‘met_cs — (list) float ppm value for chemical shift of each spin in the current metabolite
‘met_js — (list) float ppm value for J-couplings of each spin pair in the current metabolite
‘nspins — (int) number of spins in the metabolite (for convenience)

‘user_static_parameters’ — (list) static parameters defined by the user in the GUI that are stored
in this list as strings in the order that they are presented in the GUI (see below). Note: In this One-
Pulse experiment there are no user defined parameters so the list would be empty.

‘pulses’ — (list) contains zero or more MinimalistPulse objects. These objects pass the minimum
amount of data needed to use the results from a Pulse PulseDesign as a ‘real’ pulse in a
PyGAMMA simulation. A MinimalistPulse contains a string ‘name’ attribute, a float ‘dwell_time’
attribute and a ‘waveform’ attribute that is a list of complex floats in microTesla. The minimalist
pulse objects are in the same order as they were listed in the Pulse Sequence Designer dialog.

The formal definition of the MinimalistPulse class is in vespa/public/minimalist_pulse.py which
you can view online here:

http://scion.duhs.duke.edu/vespa/project/browser/trunk/public/minimalist pulse.py

‘spin_system’ — (object) Via the attribute "spin_system", the sim_desc object provides a
PyGamma spin_system object constructed from the field, isotopes, chemical shifts and j-coupling
values. This is only for your convenience and you're welcome to use the original values any way
you please.

The One-Pulse Example

Here is the PyGAMMA code that is in the sequence_code string for the One-Pulse sequence:

35

http://scion.duhs.duke.edu/vespa/project/browser/trunk/public/minimalist_pulse.py

import pygamma as pg
def run(sim desc):
Example PyGAMMA pulse sequence for use in Vespa-Simulation
i A timing diagram for this pulse sequence can be found in the

Appendix of the Simulation User Manual.

spin_system = sim desc.spin_ system

the isotope string used to sort/select the metabolites of

interest is passed in the sim desc object so the user can tailor
other object within their code to be nuclei specific, such as

the observe operator or pulses

obs iso = sim desc.observe isotope

set up steady state and observation variables

H = pg.Hcs(spin system) + pg.HJ(spin system)
D = pg.Fm(spin system, obs 1so0)

ac = pg.acquirelD(pg.gen op (D), H, 0.000001)
ACQ = ac

excite and acquire the data
sigma = pg.sigma eqg(spin_ system)
sigma0 = pg.Iypuls(spin system, sigma, obs iso, 90.0)

instantiate and save transition table of simulation results
note. this step copies the TTablelD result from the ACQ into

a TTablelD object in the sim desc object. Thus, when
we return from this function and the ACQ variable gets
garbage collected, our copy of the results in not affected

sim desc.mx = pg.TTablelD(ACQ.table (sigmaOl))

The first thing to note is that other than the “spin_system” attribute, this pulse sequence does not
make use of any of the parameters in the sim_desc object. There are no loops in this simulation
and no user-defined static parameters. (For examples of how to use these variables see the
following examples).

In this example the first line of code (ignoring comments) defines the Hamiltonian, in this case
consisting simply of chemical shift and J coupling terms. The second through fourth lines define
the detection and acquisition operators. Note that the observation nuclei is specified dynamically
using the string passed in within the sim desc.observe isotope attribute. The fifth line
defines an equilibrium density matrix. The sixth line applies an ideal 90 degree pulse to the density
matrix and returns the resulting density matrix. The final line applies the acquisition operator to
the final density matrix and returns a transition table. For more details on PyYGAMMA and GAMMA
objects consult the PyGAMMA documentation.

36

Note. The final line of code demonstrates the one “output” code requirement if the user plans on
using the standard ‘binning_code’ provided by Simulation as the default. In that case, the user
must create and fill a transition table attribute called “mx” in the sim_desc object.

Note. In the final line, we have to explicitly create a new TTable1D object and copy the simulation
results from the TTablelD in the ACQ variable. This is done by default if the TTablelD to be
copied is passed into the initialization of the object. We copy this information because otherwise
we would only have a reference to the ACQ object’s results. When we return from the function,
the ACQ object is ‘garbage collected’ and then our reference is broken.

Here is the PyGAMMA code that is the default binning_code string which is automatically inserted
into the Binning Code tab for each new pulse sequence definition, and subsequently is used in
the One-Pulse sequence:

import pygamma
import numpy as np

def run(sim desc):

area = pygamma.DoubleVector (0)

ppm = pygamma.DoubleVector (0)

phase = pygamma.DoubleVector (0)

field = sim desc.field

nspins = sim desc.nspins

tolppm = sim desc.blend tolerance ppm
tolpha = sim desc.blend tolerance phase
ppmlow = sim desc.peak search ppm low
ppmhi = sim desc.peak search ppm high

specfreq = field
numberspins = nspins
freqtol = tolppm
phasetol = tolpha
lowppm = ppmlow
highppm = ppmhi

fregs = []

fregout =
ampout = [
phaseout =
bincount
foundone

Il
O O

PI = 3.14159265358979323846
RAD2DEG = 180.0/PI

mx index = sim desc.mx.Sort(0,-1,0)
nlines = sim desc.mx.size ()

for ii in range(nlines):
fregs.append (-1 * sim_desc.mx.Fr(mx_index[ii])/(2.0*PI*specfreq))

normal = 2.0** (numberspins-1)
normal = normal / 2.0

for i in range(nlines):
freq = fregs([i]
if (freg > lowppm) and (freqg < highppm) :
val = sim desc.mx.I(mx index[i])
valr = val.real ()
vali = val.imag()

37

amptemp = np.sqrt(valr**2 + vali**2) / normal
phasetemp = -RAD2DEG * np.angle(valr+vali*1lj)

if bincount == 0:

freqgout.append (freq)

ampout.append (amptemp)

phaseout.append (phasetemp)

bincount += 1
else:

for k in range (bincount) :

if (freq >= fregout[k]-fregtol) and (freq <= freqoutl[k]+freqgtol):
if (phasetemp >= phaseout[k]-phasetol) and
(phasetemp <= phaseout[k]+phasetol) :

ampsum = ampout [k]+amptemp

fregout [k] = (ampout [k] *fregout [k] + amptemp*freq) /ampsum
phaseout [k] = (ampout[k]*phaseout[k] + amptemp*phasetemp) /ampsum
ampout [k] += amptemp;

foundone = 1;

if foundone ==
freqgout.append (freq)
ampout.append (amptemp)
phaseout.append (phasetemp)
bincount += 1

foundone = 0

ppm.resize (bincount)
area.resize (bincount)

phase.resize (bincount)

for i in range (bincount) :

pem[i] = freqout[i]
areali] = ampout[i]
phase[i] = -1.0*phaseout([i]

return (ppm, area, phase)

This code expects that an attribute named “mx” that is a PyGAMMA transition table, already exists
in the sim_desc object. All the lines in the transition table, mx, are extracted, sorted and combined
using a bootstrap method to create a group of bins containing lines within + fregtol Hertz and +
phasetol Degrees in common bins The results are three equal length lists called area, ppm and
phase that are subsequently returned from the execution of the binning function to the main
Simulation application for storage in the database.

If the user wants to write their own ‘binning’ code then they must follow these requirements. If the
user is careful about what is provided/executed in the ‘sequence_code’ and subsequently used
in the ‘binning_code’, there may be no need for the “mx” variable. But, your code must always
return the three equal length lists representing ppm, area and phase.

A.3.2 A “One-Pulse” pulse sequence that does NOT use binning code

Here is the PyGAMMA code that is in the sequence_code string for the One-Pulse No Binning
sequence

import math
import pygamma as pg

def run(sim desc):

This is an example PyGAMMA pulse sequence for use in Vespa-Simulation.

38

It demonstrates how results can be returned directly by the sequence
code as opposed to being returned by the binning code. When the

sequence code returns results, the binning code is never invoked.
#
#
#

A timing diagram for this pulse sequence can be found in the Appendix
of the Simulation User Manual.

spin_ system = sim desc.spin system

the isotope string used to sort/select the metabolites of

interest is passed in the sim desc object so the user can tailor
other object within their code to be nuclei specific, such as

the observe operator or pulses

obs iso = sim desc.observe isotope

set up steady state and observation variables

H = pg.Hcs(spin system) + pg.HJ(spin system)
D = pg.Fm(spin_system, obs iso)

ac = pg.acquirelD(pg.gen op (D), H, 0.000001)
ACQ = ac

excite and acquire the data
sigma = pg.sigma_ eq(spin_system)
sigmal0 = pg.Iypuls(spin_ system, sigma, obs iso, 90.0)

instantiate transition table of simulation results
mx = pg.TTablelD (ACQ.table(sigmal))

Calculate results
mx indices = mx.Sort (0, -1, 0)
normal = 0.5 * 2** (sim desc.nspins - 1)

ppms = []
areas = []
phases = []
for index in mx indices:
ctmp is a complex number

ctmp = mx.I (index)

ppms . append (-mx.Fr (index) / (2.0 * math.pi * sim desc.field))
areas.append (math.hypot (ctmp.Rec (), ctmp.Imc()) / normal)

if ctmp.Imc() or ctmp.Rec():

phase = (-180.0 / math.pi) * math.atan2 (ctmp.Imc (), ctmp.Rec())
else:

phase = 0
phases.append (phase)

phases = [(phase * -1.0) for phase in phases]

return (ppms, ares, phases)

39

Note that the lines in yellow further process the original One-Pulse sequence in order to extract
the transition lines from the PyGAMMA simulation and then process them so that they are
appropriately passed back to the Simulation program. Note also that some of this code is
PyGAMMA (mx.Sort, etc.), some is straight Python (math.pi, math.atan2, etc.).

The final line of code creates a tuple with three iterable objects (lists in this case, but it could also
be tuples or other iterable objects) that contain the ppm values, areas and phase values for all
lines. These lists MUST have the same length. These are the results values that are saved to the
database.

The fact that your sequence code returns something other than None tells Simulation not to call
the binning code.

A.3.3 The “ldeal-PRESS” pulse sequence —typical use of standard parameters
Here is the PyGAMMA code that is in the sequence_code string for the PRESS_Ideal sequence:

import pygamma as pg
def run(sim_desc):

This is an example PyGAMMA pulse sequence

for use in Vespa-Simulation

#

A timing diagram for this pulse sequence can be

found in the Appendix of the Simulation User Manual.

spin_system = sim desc.spin_ system

the isotope string used to sort/select the metabolites of
interest is passed in the sim desc object so the user can tailor
other object within their code to be nuclei specific, such as
the observe operator or pulses

=+ e

obs iso = sim desc.observe isotope

extract the dynamically changing variable
from loop 1 and 2 for 'tel' and 'te2', divide
by 1000.0 because the GUI states that wvalues
are entered in [ms], but PyGAMMA wants [sec]

H o e

tel = sim desc.dims[1] / 1000.0
te2 = sim desc.dims[2] / 1000.0

set up steady state and observation variables

H = pg.Hcs (spin_system) + pg.HJ(spin_ system)
D = pg.Fm(spin_system, obs iso)

ac = pg.acquirelD(pg.gen op (D), H, 0.000001)
ACQ = ac

sigma0 = pg.sigma eq(spin_ system)

excite, propagate, refocus and acquire the data
sigmal = pg.Iypuls(spin_system, sigma0O, obs iso, 90.0)
Udelay pg.prop (H, tel*0.5)

sigma0 = pg.evolve(sigmal, Udelay)

40

sigmal = pg.Iypuls(spin_system, sigma0O, obs_ iso, 180.0)
Udelay = pg.prop (H, (tel+te2)*0.5)

sigma0 = pg.evolve(sigmal, Udelay)

sigmal = pg.Iypuls(spin system, sigma0O, obs iso, 180.0)
Udelay = pg.prop(H, te2*0.5)

sigma0 = pg.evolve(sigmal, Udelay)

instantiate and save transition table of simulation results
note. this step copies the TTablelD result from the ACQ into

a TTablelD object in the sim desc object. Thus, when
we return from this function and the ACQ variable gets
garbage collected, our copy of the results in not affected

sim desc.mx = pg.TTablelD (ACQ.table (sigmaOl))

The first thing to note is that this pulse sequence utilizes the “spin_system” variable and also the
sim_desc object for the Loopl and Loop2 values in the “tel = sim desc.dims[1]” and
“te2 = sim desc.dims[2]” lines. There are no user-defined static parameters. Similarly to
the example above a transition table attribute called “mx” is set up in the last line of code.

(Not shown) The default binning_code string is used to return the values from the transition table
to the main Simulation program.

A.4 Creating a Pulse Sequence with Extra Parameters

A.4.1 The “PRESS-CP with Variable R-groups” Pulse Sequence

Here is the PyGAMMA code that is in the sequence_code string for the PRESS-CP with Variable
R-groups” sequence:

import pygamma as pg

def run(sim desc):
spin_system = sim desc.spin_system

S H 3=

=

obs_iso = sim desc.observe isotope

extract the dynamically changing variable from loops 1, 2 and 3, divide
'tel' and 'te2' by 1000.0 because the GUI states that values are entered
in [ms], but PyGAMMA wants [sec]

tel = sim desc.dims[1] / 1000.0

te2 = sim desc.dims[2] / 1000.0

rgroups = int(sim desc.dims([3])

extract user static parameter values from the control dictionary. They

are inserted into a list in the order that they are shown in the GUI.
pulse type = int(sim desc.user static parameters[0])

ang90 = float (sim desc.user static parameters[1])

pdo0 = float (sim desc.user static parameters[2])

tauR = float (sim desc.user static parameters[3])

pd180 = pd90 * 2.0

angl80 = ang90 * 2.0

offhz = 0.0

41

set up steady state and observation variables

H = pg.Hcs (spin_system) + pg.HJ(spin_system)
D = pg.Fm(spin system, obs iso)

ac = pg.acquirelD(pg.gen op(D), H, 0.000001)
ACQ = ac

apply excitation pulse and propagate to first 180 pulse
sigma0 = pg.sigma eq(spin system)
sigmal = pg.Iypuls(spin_system, sigmaO, obs iso, 90.0)

Udelay = pg.prop(H, tel*0.5)
sigmal0 = pg.evolve (sigmal, Udelay)

apply first 180 pulse and propagate to CP train start
sigmal = pg.Iypuls(spin system, sigma0, obs iso, 180.0)

Udelay pg.prop (H, tel*0.5)
sigma0 = pg.evolve(sigmal, Udelay)

sigmal = sigma0

apply the Carr-Purcell refocussing pulse train
if pulse type ==

using Ideal 180 pulses
for k in range (rgroups) :
Udelay = pg.prop(H, tauR/2.0)
sigma0 = pg.evolve (sigmal,Udelay)
sigmal = pg.Iypuls(spin_system,sigma0,180)

Udelay = pg.prop(H, tauR/2.0)
sigma0 = pg.evolve (sigmal,Udelay)

sigmal = sigmal
else:

for k in range (rgroups) :

using 90-180-90 square 'Sandwich' pulses with MLEV16 phase

cycling
if (k % 4) ==

Udelay = pg.prop(H, tauR/2.0)
sigma0 = pg.evolve (sigmal,Udelay)

sigmal = pg.Sxpuls(spin_ system, sigmaO, H, obs iso, offhz, pd90, ang90)
sigma0 = pg.Sypuls(spin_system, sigmal, H, obs iso, offhz, pdl80, angl80)
sigmal = pg.Sxpuls(spin_system, sigmal, H, obs_iso, offhz, pd90, ang9%0)

Udelay = pg.prop(H, tauR)
sigmal0 = pg.evolve (sigmal,Udelay)

sigmal = pg.Sxpuls(spin_system, sigmal, H, obs_iso, offhz, pd90, ang9%0)
sigma0 = pg.Sypuls(spin_system, sigmal, H, obs iso, offhz, pdl80, angl80)
sigmal = pg.Sxpuls(spin_system, sigmaO, H, obs iso, offhz, pd90, ang90)

Udelay = pg.prop(H, tauR)
sigmal0 = pg.evolve (sigmal,Udelay)

sigmal = pg.Sxpuls(spin_system, sigmaO, H, obs iso, offhz, pd90, -ang9%0)
sigmal = pg.Sypuls(spin_system, sigmal, H, obs iso, offhz, pdl80, -angl80)
sigmal = pg.Sxpuls(spin system, sigmaO, H, obs iso, offhz, pd90, -ang90)

Udelay = pg.prop(H, tauR)
sigma0 = pg.evolve (sigmal,Udelay)

sigmal = pg.Sxpuls(spin_ system, sigmaO, H, obs iso, offhz, pd90, -ang90)

sigmal = pg.Sypuls(spin_system, sigmal, H, obs iso, offhz, pdl80, -angl80)
sigmal = pg.Sxpuls(spin_system, sigma0, H, obs iso, offhz, pd90, -ang9%0)

42

Udelay
sigma0

sigmal

= P9

Udelay =

sigma0

sigmal
sigmal
sigmal

= Pg.
Pg.

Udelay =

sigmal

sigmal
sigmal
sigmal

Udelay
sigma0

sigmal
sigmal
sigmal

= Pg.
Pg.

P9

.prop (H, tauR/2.0)
.evolve (sigmal, Udelay)

sigmal

=1:

Pg.
= P9

P9

Pg.
= Pg.

Pg

= P9

= Pg9.
Pg.
= Pg.

Udelay =

sigma0

sigmal
sigmal
sigmal

= Pg.

= Pg.

Udelay =

sigma0
sigmal
if (k % 4)

Udelay
sigmal

sigmal
sigmal
sigmal

= Pg.

= Pg.
Pg.
Pg.

Udelay =

sigmal

sigmal
sigmal
sigmal

Pg.

Pg.
Pg.

Pg

Pg.
Pg.

prop (H, tauR/2.0)
.evolve (sigmal, Udelay)

Sxpuls (spin_system, sigma0,
Sypuls (spin_system, sigmal,
.Sxpuls (spin_system, sigmaO,

prop (H, tauR)
evolve (sigmal, Udelay)

Sxpuls (spin_system, sigma0,
Sypuls (spin_system, sigmal,
.Sxpuls (spin_ system, sigma0,

.prop (H, tauR)
evolve (sigmal,Udelay)

Sxpuls (spin_system, sigmaO,
Sypuls (spin_system, sigmal,
Sxpuls (spin_system, sigma0,

prop (H, tauR)
evolve (sigmal,Udelay)

Sxpuls (spin_ system, sigma0,
.Sypuls (spin system, sigmal,
Sxpuls (spin_system, sigma0,

prop (H, tauR/2.0)
evolve (sigmal,Udelay)

sigma0

= 2:

P9

Pg.

= P9

= P9

Udelay =

sigmal

sigmal
sigma0
sigmal

= Pg.
Pg.

Udelay =

sigma0

sigmal
sigmal
sigmal

Pg.
= P9

Pg.
= Pg.

P9

P9

= Pg.

= P9

Pg.
Pg.

prop (H, tauR/2.0)
.evolve (sigmal, Udelay)

Sxpuls (spin_system, sigma0,
Sypuls (spin_system, sigmal,
Sxpuls (spin_system, sigma0,

prop (H, tauR)
.evolve (sigmal,Udelay)

.Sxpuls (spin_system, sigmaO,
Sypuls (spin_system, sigmal,
.Sxpuls (spin_system, sigma0,

prop (H, tauR)
evolve (sigmal,Udelay)

Sxpuls (spin_system, sigma0,
Sypuls (spin_system, sigmal,
.Sxpuls (spin_system, sigmaO,

.prop (H, tauR)
evolve (sigmal,Udelay)

.Sxpuls (spin_system, sigma0,

Sypuls (spin_system, sigmal,
Sxpuls (spin_system, sigma0,

43

jasiigasi

jaxiigasi

jaxias

jaxiigasi

obs iso,
obs iso,
obs_iso,

obs_iso,
obs iso,
obs iso,

obs iso,
obs_iso,
obs_iso,

obs iso,
obs iso,
obs_iso,

obs iso,
obs iso,
obs iso,

obs_iso,
obs_iso,
obs iso,

obs iso,
obs_iso,
obs_iso,

obs iso,
obs iso,
obs_iso,

offhz,
offhz,
offhz,

offhz,
offhz,
offhz,

offhz,
offhz,
offhz,

offhz,
offhz,
offhz,

offhz,
offhz,
offhz,

offhz,
offhz,
offhz,

offhz,
offhz,
offhz,

offhz,
offhz,
offhz,

pd90,
pd180,
pd 90,

pdoo,
pdl180,
pd9o0,

pd9o0,
pd180,
pdoo,

pd9o0,
pdl180,
pdoo,

pdoo0,
pd180,
pdoo0,

pd9o0,
pdl180,
pdoo0,

pd9o0,
pdl180,
pd9o0,

pd9o0,
pdl180,
pd9o0,

-ang90)
-angl80)
-ang90)

ang90)
angl80)
ang90)

ang90)
angl80)
ang90)

-ang90)
-angl80)
-ang90)

-ang90)
-angl80)
-ang90)

-ang90)
-angl80)
-ang90)

ang90)
angl80)
ang90)

ang90)
angl80)
ang90)

Udelay = pg.prop (H, tauR/2.0)
sigma0 = pg.evolve (sigmal,Udelay)

sigmal = sigmal
if (k % 4) == 3:

Udelay = pg.prop (H, tauR/2.0)
sigmal0 = pg.evolve (sigmal,Udelay)

sigmal = pg.Sxpuls (spin_system, sigma0, H, obs iso, offhz, pd9%0, ang9%0)
sigma0 = pg.Sypuls(spin system, sigmal, H, obs iso, offhz, pdl80, angl80)
sigmal = pg.Sxpuls(spin system, sigmaO, H, obs iso, offhz, pd90, ang90)

Udelay = pg.prop(H, tauR)
sigmal0 = pg.evolve (sigmal,Udelay)

sigmal = pg.Sxpuls(spin_system, sigma0, H, obs iso, offhz, pd90, -ang9%0)
sigma0 = pg.Sypuls(spin_system, sigmal, H, obs iso, offhz, pdl80, -angl80)
sigmal = pg.Sxpuls(spin system, sigmaO, H, obs iso, offhz, pd90, -ang90)

Udelay = pg.prop(H, tauR)
sigmal0 = pg.evolve (sigmal,Udelay)

sigmal = pg.Sxpuls(spin system, sigmaO, H, obs iso, offhz, pd90, -ang90)
sigma0 = pg.Sypuls(spin system, sigmal, H, obs iso, offhz, pdl80, -angl80)
sigmal = pg.Sxpuls(spin_system, sigmaO, H, obs iso, offhz, pd90, -ang9%0)

Udelay = pg.prop(H, tauR)
sigma0 = pg.evolve (sigmal,Udelay)

sigmal = pg.Sxpuls(spin_system, sigma0, H, obs iso, offhz, pd9%0, ang9%0)
sigma0 = pg.Sypuls(spin system, sigmal, H, obs iso, offhz, pdl80, angl80)
sigmal = pg.Sxpuls(spin system, sigmaO, H, obs iso, offhz, pd90, ang90)

Udelay = pg.prop (H, tauR/2.0)
sigma0 = pg.evolve (sigmal,Udelay)

sigmal = sigmal
propagate to second 180 pulse
Udelay = pg.prop(H, te2*0.5)

sigmal0 = pg.evolve (sigmal, Udelay)

apply second 180 pulse and propagate to data acquisition
sigmal = pg.Iypuls(spin_system, sigma0, obs iso, 180.0)

Udelay = pg.prop(H, te2*0.5)
sigmal0 = pg.evolve (sigmal, Udelay)

instantiate and save the transition table of simulation results

note. this step copies the TTablelD result from the ACQ into

a TTablelD object in the sim desc object. Thus, when

we return from this function and the ACQ variable gets

garbage collected, our copy of the results in not affected

sim desc.mx = pg.TTablelD (ACQ.table (sigma0))

The pulse sequence makes use of the “spin_system” attribute. The first seven lines of code
(ignoring comments) are good examples of how to access the sim_desc object attributes for all
three loop parameters and some user-defined static parameters. Note that the object attribute
name for user-defined parameters is ‘user_static_parameters’ and that they are ordered into a list
in the order they are arranged in the GUI. Thus, the alpha/2 pulse duration is set by the line:
‘pd90 = float (sim desc.user static parameters[2])’

since this variable was the third one listed in the GUI. Similarly to the examples above a transition
table variable called “mx” is set up in the last line of code.

44

Also of note in this example is the fact that typical Python control structures can be used in these
sequence_code strings, for loops, if statements, etc. However, extreme care should be taken to
have consistent spacing and (lack of) tabs in the code that is pasted into the new pulse sequence
dialog tab.

A.5 Creating a Pulse Sequence with an RF Pulse Waveform

A.5.1 A“PRESS” sequence that uses a ‘real’ RF pulse read in from a file

A typical application might be to use one or more user defined pulses in a pulse sequence. Though
various ways of accessing pulses in the VeSPA database for use in pulse sequences is described
elsewhere a simple method that PyGAMMA provides is to read the complex values for a given
pulse from file. The following code, closely resembling the above PRESS sequence code but
using real pulses for the 180 pulses, illustrates how to accomplish this. In particular a
user_static_parameter is used to specify the name and path of the file containing the pulse values.
Note. That while this example is still valid, we strongly recommend that users include RF
waveforms into their sequences using the Pulse application and Simulation-Pulse Sequence
Designer mechanism. This provides significantly more provenance about the creation and content
of any included waveforms. See section A.5.2 for an example.

import pygamma as pg
def run(sim desc):

This is an example PyGAMMA pulse sequence
for use in Vespa-Simulation

A timing diagram for this pulse sequence can be
found in the Appendix of the Simulation User Manual.

#
#
#
#
#

spin_system = sim desc.spin_ system

~d to

string us
d in the

vithin their

the observe operator or pulses

obs iso = sim _desc.observe isotope

extract the dynamically changing variable

from loop 1 and 2 for 'tel' and 'te2', divide

by 1000.0 because the GUI states that wvalues

are entered in [ms], but PyGAMMA wants [sec]

#

evolution after 90 before first 180 in msec and
divide by 1000 so PyGAMMA TE is in msec

tel = float(sim desc.dims[1]) /1000.0

te2 = float(sim desc.dims[2]) /1000.0

extract user static parameter values from the control dictionary. They
are inserted into a list in the order that they are shown in the GUI.

pulsestep
pulsel80file

float (sim desc.user static parameters[0])
str(sim desc.user static parameters([1])

set up a container and read pulse values into it. You could also

45

read a file using Python code and subsequently inset values into
the PyGAMMA row vector container. Then create a “time axis” array
with a time value for each point in the pulse vector

pulse = pg.row vector.read pulse(pulsel80file,

pg.row vector.ASCII MT DEG)
ptime = pg.row vector (pulse.size())
total = pulse.size() * pulsestep

for j in range (pulse.size()):
ptime.put (pg.complex (pulsestep, 0), Jj)

create the pulse waveform and composite pulse objects from the
file and pulse sequence information

pwf = pg.PulWaveform(pulse, ptime, "TestPulse")
pulc = pg.PulComposite (pwf, , Obs iso)

note that below we have to now account for the time of
the pulse in our propagation intervals in order to have
our TE calculate correctly.

H = pg.Hcs(spin_system) + pg.HJ(spin_ system)

D = pg.Fm(spin system)

Udelayl = pg.prop(H, 0.5*%*(tel-total))

Udelay2 = pg.prop(H, 0.5* (tel-total + te2-total))
Udelay3 = pg.prop(H, 0.5*%*(te2-total))

ac = pg.acquirelD(pg.gen op(D), H, 0.001)

ACQ = ac

sigma0 = pg.sigma eq(sys)

sigmal = pg.Iypuls(sys, sigmaO, 90.0)
sigma0 = pg.evolve (sigmal, Udelayl)
Ureall80 = pulc.GetUsum(-1)

sigmal = Ureall80.evolve (sigmal)
sigma0 = pg.evolve(sigmal, Udelay2)
sigmal = Ureall80.evolve (sigmal)
sigma0 = pg.evolve(sigmal, Udelay3)

instantiate and save the transition table of simulation results
note. this step copies the TTablelD result from the ACQ into

a TTablelD object in the sim desc object. Thus, when
we return from this function and the ACQ variable gets
garbage collected, our copy of the results in not affected

sim desc.mx = pg.TTablelD (ACQ.table (sigma0l))

A.5.2 A “PRESS” sequence that uses a ‘real’ RF pulse from Pulse

As of Vespa release 0.3.0, users can include a list of Pulse waveforms to be sent to each
simulation. These pulses are selected during the design of the pulse sequences (see section 5.3)
and remain fixed throughout the entire Experiment calculation. The following code, closely
resembling the above PRESS sequence code but using real pulses for the 180 pulses, which are
sent into the simulation as part of the sim_desc parameter:

import pygamma as pg
import numpy as np
import math

46

def run(sim desc):

This is an example PyGAMMA pulse sequence

for use in Vespa-Simulation

#

A timing diagram for this pulse sequence can be

found in the Appendix of the Simulation User Manual.

spin_system = sim desc.spin_system

extract the dynamically changing variable
from loop 1 and 2 for 'tel' and 'te2', divide
by 1000.0 because the GUI states that values
are entered in [ms], but PyGAMMA wants [sec]

evolution after 90 before first 180 in msec and
divide by 1000 so PyGAMMA TE is in msec

S o S S R o

tel float (sim desc.dims[1])/1000.0
te2 = float(sim desc.dims[2])/1000.0

extract static RF pulses from the control dictionary. They are
inserted into a list in the order that they are shown in GUI.
The pulse name, dwell time and waveform are all part of each
MinimalPulse object in the list. Dwell time is in micro-seconds,
so it needs to be converted to sec. Waveforms are the complex
time array that would be played out on MR scanner. These values
are complex numbers in mT, so taking the magnitude/phase of

each waveform, we can convert these values into the Hz and phase
in degrees that a PulWaveform in PyGAMMA requires.

S oS e S S o o e o

pulsestep = float(sim desc.pulses[0] .dwell time) * le-6

waveform = sim desc.pulses[0].waveform

waveform = np.array(waveform)

PulWaveform expects Hz amplitude and angle in degrees, while

Simulation gives us mT amplitude and angle in radians.

We need to use the appropriate gyromagnetic ratio to do the

conversion. This depends on our observe isotope, since the pulse
is not isotope specific, but the spins we expect it to affect,

is.

(e.g. we use 42576.0 for 1H to covert mT and RAD2DEG for phase)

obs iso = sim desc.observe isotope
if obs iso == '"lH':
gyratio = 42576.0
elif obs iso == '13C':
gyratio = 67262.0
elif obs iso == '19F':
gyratio = 251662.0
elif obs iso == '23Na':
gyratio = 70761.0
elif obs iso == '31P':

gyratio = 108291.0

ampl arr = np.abs(waveform) * gyratio
phas arr = np.angle(waveform) * 180.0 / math.pi

47

set up a container and read pulse values into it. You could also
read a file using Python code and subsequently inset values into
the PyGAMMA row vector container. Then create a time axis array
with a time value for each point in the pulse vector

H o e 3

pulse = pg.row vector (len(waveform))

ptime = pg.row vector (len(waveform))

for j,val in enumerate (zip(ampl arr,phas arr)) :
pulse.put (pg.complex (val[0],val[l]), 3J)
ptime.put (pg.complex (pulsestep,0), 7J)

total = pulse.size() * pulsestep

create the pulse waveform and composite pulse objects from the
file and pulse sequence information

pwf = pg.PulWaveform(pulse, ptime, "adiabaticl80")
pulc pPg.PulComposite (pwf, spin system, obs iso)

note that below we have to now account for the time of
the pulse in our propagation intervals in order to have
our TE calculate correctly.

H = pg.Hcs(spin system) + pg.HJ(spin system)

D = pg.Fm(spin_system, obs iso)

Udelayl = pg.prop(H, 0.5* (tel-total))

Udelay?2 pg.prop(H, 0.5*(tel-total + te2-total))
Udelay3 = pg.prop(H, 0.5* (te2-total))

ac = pg.acquirelD(pg.gen op(D), H, 0.001)

ACQ = ac

sigma0 = pg.sigma eqg(spin_system)

sigmal = pg.Iypuls(spin_ system, sigma0O, 90.0)
sigma0 = pg.evolve(sigmal, Udelayl)

Ureall80 = pulc.GetUsum(-1)

sigmal = Ureall80.evolve (sigmal)

sigma0 = pg.evolve(sigmal, Udelay2)

sigmal Ureall80.evolve (sigma0)

sigma0 = pg.evolve (sigmal, Udelay3)

instantiate and save the transition table of simulation results
note. this step copies the TTablelD result from the ACQ into

a TTablelD object in the sim desc object. Thus, when

we return from this function and the ACQ variable gets

garbage collected, our copy of the results in not affected

S o S S o

sim desc.mx = pg.TTablelD (ACQ.table(sigmaOl))

48

Appendix B. Pulse Sequence Diagrams

This section provides some basic information about the standard simulated pulse sequences that
are provided as part of the Vespa distribution. The full PyYGAMMA code for each pulse sequence
can be accessed through the Pulse Sequence Management Dialog widget using the View or Edit
functions.

B.1 One-Pulse

B.1.1 Sequence Diagram

lg, Acquisition

Unuﬁuhvnvﬁ

V

B.1.2 Loop Variable 1,2,3 Descriptions
Loopl — not used
Loop2 — not used
Loop3 — not used

B.1.3 User Defined Parameters
Static Parameters

None

Static Pulses from Pulse Database

None

B.1.4 General Description

This is a simulation of a pulse and observe, or one-pulse, pulse sequence. The typical 90y degree hard
pulse is modeled by an ideal GAMMA pulse. Despite the slight spacing in the sequence diagram, there is
no evolution period after the excitation pulse prior to transition table acquisition.

49

B.2 Spin-Echo
B.2.1 Sequence Diagram

TE Acquisition

ra

IQOy |180y \
B.2.2 Loop Variable 1,2,3 Descriptions

Loopl — Describes the number of TE values to loop over in [ms].
Loop2 — not used
Loop3 — not used

B.2.3 User Defined Parameters

Static Parameters

None

Static Pulses from Pulse Database

None

B.2.4 General Description

This is a simulation of a spin-echo sequence using ideal GAMMA pulses for the 90y and 180y localization
pulses.

50

B.3 PRESS Ideal

B.3.1 Sequence Diagram

TE1 TEZ2 Acquisition
|"" Fl"i }I
I] 1
| TE1 = | TE2 | TE2 |
o2 L2 o2 A T2
|]]
: | |
|] 1
|]]
| I 1
] 1
]
|
|
: ﬂ
l “ N A A A
U Vv vy
IQL’]y I 180y I1B'D:.-' U

B.3.2 Loop Variable 1,2,3 Descriptions

Loopl — Describes the number of TEL values to loop over in [ms].

Loop2 — Describes the number of TE2 values to loop over in [ms].

Loop3 — not used
Notes — Pulse sequence TE = TE1+TE2.

B.3.3 User Defined Parameters
Static Parameters

None

Static Pulses from Pulse Database

None

B.3.4 General Description

This is a simulation of a Point Resolved Spectroscopy (PRESS). The typical 90-180-180 localization
pulses of the PRESS sequence are modeled by ideal GAMMA pulses. The TE1 period is controlled by
the settings of loop variable 1, the TE2 period is controlled by the settings of loop variable 2; thus either a
symmetric or asymmetric PRESS experiment can be simulated.

51

B.4 STEAM ldeal

B.4.1 Sequence Diagram

— ™ -5 Acquisition

A
lg0x I-gt}y | g0x U

B.4.2 Loop Variable 1,2,3 Descriptions
Loopl — Describes the number of TE values to loop over in [ms].
Loop2 — Describes the number of TM values to loop over in [ms].

Loop3 — not used

B.4.3 User Defined Parameters
Static Parameters

None

Static Pulses from Pulse Database

None

B.4.4 General Description

This is a simulation of a STimulated Excitation Acquisition Mode (STEAM) pulse sequence. The typical
90-90-90 pulses of the STEAM sequence are modeled by ideal GAMMA pulses. The total TE period is
controlled by the settings of loop variable 1, the TM (mixing time) period is controlled by the settings of
loop variable 2.

52

B.5 JPRESS ldeal

B.5.1 Sequence Diagram

- - = - -, o
y TE1 o TE1 ¢ TET } TE1 1 Acquisition
] 2 1 2] 2 1 2 i
| I |
I : I
| i |
| i |
VT
Igﬂx | 180y | 90y | 180y

B.5.2 Loop Variable 1,2,3 Descriptions

Loopl — Describes the number of TE1 values to loop over in [ms].
Loop2 — not used

Loop3 — not used

B.5.3 User Defined Parameters

Static Parameters

None

Static Pulses from Pulse Database

None

B.5.4 General Description

This is a simulation of a J-PRESS pulse sequence. The typical 90-180-90-180 pulses of the JPRESS
sequence are modeled by ideal GAMMA pulses. The total TE period is controlled by the settings of loop
variable 1.

53

B.6 PRESS with Pulse Pulses

B.6.1 Sequence Diagram

TE] TE2 Acquisition
= g
T T
! 1 1
i TE1l-t ,:.‘ TE1l-t 5 TE2 -1 ,:-; TE2 -t i
2 || T2 VT2) T2
| | : | '
1 | : 1 | :
A i.. 1 : | ‘: {-- n : 2 A '.. “ 1 h f. N, : n nVnUAUI\
~‘.Il|‘: ‘.‘Ilg."-’ "."\?"‘ ";'v" ~
|" \ LI \
I90y HSec, g HSec, g,

B.6.2 Loop Variable 1,2,3 Descriptions

Loopl — Describes the number of TE1 values to loop over in [ms].
Loop2 — Describes the number of TE2 values to loop over in [ms].
Loop3 — not used

Notes — Pulse sequence TE = TE1+TE2.

B.6.3 User Defined Parameters
Static Parameters

None

Static Pulses from Pulse Database

1. Adiabatic 180 for Simulation real pulse test

B.6.4 General Description

This is a simulation of a Point Resolved Spectroscopy (PRESS). The typical 90-180-180 localization
pulses of the PRESS sequence are modeled by ideal GAMMA pulses and real RF waveforms using
GAMMA PulWaveform and PulComposite objects. The 90 excite pulse is ideal, the subsequent 180
refocus pulses are the same “real” pulse waveforms. Note that in this PRESS sequence, the TE1 and
TE2 periods must be long enough to contain the duration of the “real” pulse waveforms or the periods
between the pulses could result in negative timings.

The TE1 period is controlled by the settings of loop variable 1, the TE2 period is controlled by the settings
of loop variable 2; thus either a symmetric or asymmetric PRESS experiment can be simulated.

54

There are important changes in this version of Simulation and the example code provided. The sim_desc
object passed into the sequence code contains two new attributes, one called 'observe_isotope' and the
other called 'pulses'.

The 'observe_isotope' is a string indicating the nuclei used to populate the metabolite list widget. For
example, if the user selected '1H' metabolites, then the string '1H' is passed into the sequence code. This
value can be used to tailor the other PyGAMMA objects in the code to the metabolites of interest. For
example, the observation operator "D" in line 78 of this code can be set to whatever nuclei we want
because it uses the sim_desc.observe_isotope value to set itself up.

The "pulses" attribute is a list of "real" RF pulses that were copied from Pulse projects in the Vespa
database. Each item in the list is an instance of the MinimalistPulse class. That class contains attributes:

‘name’ the pulse name (just for your information),

‘dwell_time’ the dwell time as a single float in microseconds (all waveforms are assumed to have
evenly spaced time axis points)

‘waveform’ the waveform as a list of complex floats in micro-Tesla.

As shown in the sequence code, this waveform can be converted for the field strength and gyromagnetic
ratio required and turned into a PyGAMMA PulWaveform and from there inserted into a PulComposite
that can be used in the pulse sequence.

The formal definition of the MinimalistPulse class is in vespa/public/minimalist_pulse.py which you can
view online here:

http://scion.duhs.duke.edu/vespa/project/browser/trunk/public/minimalist_pulse.py

55

http://scion.duhs.duke.edu/vespa/project/browser/trunk/public/minimalist_pulse.py

Appendix C. Mixed Metabolite Output

This section describes the implementation and usage of the Mixed Metabolite Output dialog. This
dialog is used to convert Simulation results into various third party readable file formats. At the
moment, there are five supported formats:

1) The GAVA format, so-called because it was part of the original GAVA program. It is used
extensively in the SITools/FITT program as metabolite prior information files.

2) LCModel RAW import file format.
3) jMRUI Data Text file format.
4) MIDAS Generic XML format
5) Vespa-Analysis Prior format
The same dialog is used to output all formats; an example is shown below:

Mixed Metabolite Qutput - Example PRESS_|deal m x|

— Dukpuk Format, Location and Comment

Format: Cuput Loop Yalues: Al loops will be sawed For this Format
Qukput Location; Browse... |
Comment:

—Metabolite and Mixed Metabolites Output List

L]

Metabolice Unique Scale Frequency Range Start Range End
Lisk Abbreviation Shift [ppmm] [ppmi] [ppmi]
I [eholine-truncate | [ehoine-truncated [1.00000 <4 [a.000 == =
I Jereatine = frreatine [1.0o000 =H[0.000 H[siws Hfesz
I~ |aabs =] foata [1.00000 = 0,000 Hf[siws H[zsiz =
I autamste =] [alutamate [1.00000 j [0.000 j [-3.105 j [12.512 j
I Jlactate =] flactate [1.00000 = [o.000 == =
I [myoinostol] [rmvo-nosital [1oooo0 =H[o.000 H[si0s Hesiz =
I [r-acetylasparta v | [rracetylaspartate | 1.00000 j [0.000 j [-3.105 j [12.512 j

Select Al | De-5elect All | Add Metabolite | Remove Selected | Add Metabolite Mixture ... |

(04 | Cancel

Please note the following requirements to access this widget:
* You must have loaded at least one Experiment.

» The active Experiment tab (if more than one Experiment is loaded) is the one for which the
third party files will be output.

56

« If the output format requires that only one set of metabolite results is output (e.g. LCModel
and jMRUI) then the loop indices currently selected in the Visualize tab are used.

* The Experiment—ThirdPartyExport... menu on the main application launches the dialog.

C.1 General Functionality

The Mixed Metabolite Output dialog acts on the Experiment that is active when the dialog is
launched. The GUI reformats itself depending on the Format pull down list. GAVA format saves
all Experiment results (i.e. every simulation for each set of loop values). LCModel, jMRUI, MIDAS
and Analysis Prior formats save all metabolites for only one set of loop values from the selected
Experiment. The indices selected in the active Experiment in the Visualize tab when the dialog is
launched are the ones used. This is indicated in the “Output Loop Values” comment at the top of
the dialog.

The Output Location into which results are saved can be selected using the Browse... button.
This selection is used slightly differently in each format. The differences will be discussed
specifically for each format in the sections below. A comment can be added in the dialog that is
included in all text output. The dialog defaults to listing all metabolites in the Experiment, but these
can be removed or put back in with the Add Metabolite and Remove Selected buttons. The Add
Metabolite Mixture ...button will pop up another small dialog in which you can design a “mixture”
of two or more metabolite results with different scaling factors. This will be described in detail
later. The Cancel button quits the dialog without performing any output. The OK button outputs
the described collection of metabolite results and mixtures to the indicated format and Output
Location.

For all formats, the dialog creates a header comment block that is prepended to all text files being
output. This header describes the Experiment and results/mixtures being output, and lists the
modifying parameters for metabolites and formulae for any mixtures.

The Metabolite and Mixed Metabolite Output List is a dynamic list that changes length as
entries are added or deleted. Each row in this list is a result that will be saved upon output. The
widgets in each row affect the way the results are output as defined below:

+ Checkbox —is used to select rows to delete from the output list, but otherwise does not affect
whether a given metabolite/mixture is output or not. All rows present when you hit OK are
used to create the output.

» Metabolite List — drop list, is used to select which metabolite to output. The other widget
settings in this row modify the results for the selected metabolite/mixture. It is possible to have
two or more of the same metabolite selected for output. The only requirement is that they have
unique strings in the Unique Abbreviation field.

» Unique Abbreviation — text field, a unique string used to identify this output row. In LCModel
and jMRUI Data Text, this is the metabolite output filename. In GAVA Text, this is the first
column metabolite name string.

» Scale — floatspin field, should contain a float value and should be positive. The area values
for all lines in an Experiment Simulation result are multiplied by this scale value before being
output.

» Shift — floatspin field, should contain a floating point PPM value and can be positive or
negative. This shift value is added to all ppm values for all lines in an Experiment Simulation
result before being output.

57

+ Range Start and Range End — floatspin fields, should contain floating point ppm values.
These values default to the min/max ppm values displayed for the active Experiment. They
can be set narrower to filter the results that are output. Only the Experiment Simulation lines
that lie between the start and end ppm range will be included in the output files. Each row can
have a different range. Again, all these settings are saved in the header comment block on
output.

Add Metabolite Mixture ... Button

This button allows users to add a “mixture” result to the Output list. Each mixture can consist of
two or more metabolites, each with a different mixture scaling factor (as opposed to the Scale
field on the main dialog). The Mixed Metabolite Designer widget is shown below. The user has to
specify a Unigue Name string that is different from all other strings in the Abbreviation column in
the main dialog. The user can click on the Add Metabolite and Remove Selected (with a check
box selected) buttons to change the number of metabolites in the mix. The drop list widget in each
row of the dynamic list is used to select a metabolite from existing metabolite results. A mixture
can contain metabolites that are not being saved in the main dialog.

For example, as shown below, an Experiment might have GABA and lactate in its results list drop
down widget. But the user could remove both GABA and lactate from the list in the main widget,
and create a mixture called “gaba+lac” with a 1:5 ratio. This would show up in the main dialog as
shown in the second figure below. Note. A more realistic mixture might be to mix NAA to NAAG
in a 1:0.05 mixture.

[x

Mixed Metabolite Designer

Unigue Mame: Igal:na+|a::

—5Scaled Metaboalites to Add to Mixture
Scale

=
I |oaba =] 1.00000 =
=
I lactate =] [5.00000 =
Select Al | De-Select All | &dd Metabolite | Remove Selected |
(0] 4 | Cancel |

Mixture Creation Caveats:

The Metabolite drop list is populated only with the concatenation of all full metabolite names (in
this case “gaba+lactate”) as a reminder of what the mixture contains. When metabolite names get
long, sometimes these can not be fully seen in this widget. Widening the dialog can make these
more visible.

The scales set in the mixture design dialog and main mixed output dialog are cumulative. E.g. if
you create a mixture of NAA+NAAG at 1:0.05 in the designer, and then set the Scale value in the
main dialog to 3.0, then the actual multiplier for NAA line areas will be 3.0 and NAAG line areas
will be 0.15.

58

Mixed Metabolite Output - Example PRESS_|deal pd

— Cwkpuk Formak, Lacation and Comment

Format: I GAYA Text ;I Cuput Loop Yalues: All loops will be saved For this Farmat

Qutput Location: Browse... | Cbsoheritemploava_oukput, bxk

Carmmenk:

Just one simple line ;l
~ Metabaolite and Mixed Metabolites Oukput Lisk

Metabolite IInique Scale Frequency Range Start Range End
Lisk Abbreviation Shift [ppm] [ppm] [ppm]
[[choline-truncate | [eholine-truncated [1.00000 = [0.000 a5 H[izsiz =
I [ereatine 7] [reatine [1.00000 j [0.000 j [-3.108 j [12.512 j
[[gabatlactate =] [asba+ac [1oooo0 = o.000 s Hfizsiz =
Select All | De-3elect All | Add Metabolice | Remove Selected | : Add Metabalite Mixture ... §

Ik | Cancel

C.2 GAVA Text Format Specific Information

The first figure in this section shows the Mixed Metabolite Output dialog configured for the GAVA
Text format output. The main difference in this configuration is that there are no Format Specific
Parameters in the middle the dialog (as for LCModel and jMRUI). Otherwise, the top and bottom
widgets perform similarly to the general descriptions in section C.1.

c.21 Using the Dialog

Since GAVA Text format is a simple “flattened” text output of the Experiment results, there is no
user-set header data that is required to be filled into widgets. The results are output into a single
file. The Output Location can be set using the Browse... button. The user is prompted to select
a directory and a filename. As stated in the section at the top, results for selected metabolites in
for all loop values in the currently selected tab will be saved.

C.22 Example GAVA Text Output File

Following in the steps of the example shown above with two metabolites and one mixture, here
is a short example of the data output to the simulation_mixed_output.txt file

;Vespa-Simulation Mixed Metabolite Output

;Output Path/Filename = C:\bsoher\temp\simulation_mixed_output.txt
;output Loop Values = All loops will be saved for this format
;output Comment

’ . -
;EXperiment Information

59

;—-- Experiment 91291fb0-95d0-4e62-b95e-028d96d5e853 ---
;Name: Example SpinEcho multi-TE

;Pub11c True

;Created: 2010-10-11T711:22:17

;Commgnt (abbr.): example of a spin-echo experiment at 3T
;PI: bjs

;b0: 128.000000

;Peak Search pPM low/high: 0.000000 / 10.000000

;B1end tol. PPM/phase: 0.001500 / 50.000000

;Pulse seq.: 2e9c8f33-06d4-4934-ae2b-199b605fe98a (Spin-Echo)
O User static parameters:

7 Metabolites: choline-truncated, creatine, gaba, glutamate, Tactate, myo-inositol, n-acetylaspartate
;98 Simulations: (not shown)

;Metabo1ite Formatting Information

jName=choline-truncated Abbr=choline-truncated Scale=1.0 Shift=0.0 PPM Start=-3.10487060547 PPM End=12.5125
;Name=creatine Abbr=creatine Scale=1.0 shift=0.0 PPM Start=-3.10487060547 PPM End=12.5125
;Name=gaba+lactate Abbr=gaba+lac Scale=1.0 shift=0.0 PPM Start=-3.10487060547 PPM End=12.5125
; Mixture of [metab*scale] = gaba*1.0 + lactate*5.0

'Simu1ation Spectral Results

choline-truncated 10.0 0.0 0.0 0 3.185 3.0 -9.93923337957e-16

creatine 10.0 0.0 0.0 0 3.027 3.0 -7.95138670366e-16

creatine 10.0 0.0 0.0 1 3.913 2.0 -4.96961668979%e-17

creatine 10.0 0.0 0.0 2 6.649 1.0 9.93923337957e-17

gaba+lac 10.0 0.0 0.0 0 1.64314237348 6.82464923377e-05 46.1587697321
gaba+lac 10.0 0.0 0.0 1 1.76022959161 0.0599190291344 47 .6446766073

In the GAVA Text format, lines starting with a semicolon are ignored as comments. Thus the
prepended header comment block starts all lines with “;”. The actual data starts on the final 6 lines
shown, with a tab-delineated layout. Each row of data in the file contains the name of the
metabolite, the loopl value, the loop2 value, the loop3 value, the transition table line number for
the metabolite, the ppm value, area value and phase value for each spectral line in the metabolite
Simulation result. For choline and creatine, these are only 1 and 3 lines respectively. But, for
other multiplet resonance metabolite results, such as the gaba+lac mixture, this can run to 10s to
100s of lines of data. And if the Experiment had more that one loop in it, the first set of results is
written out for all metabolites, then the next loop value for all metabolites, and so on. In the
example above with two metabolites and one mixture output for a spin-echo pulse sequence
Experiment with 10 TE settings, there were 2838 lines of results in the final file.

60

C.3 LCModel Format Specific Information

The following figure shows the Mixed Metabolite Output dialog configured for LCModel format
output. The main difference in this configuration is the Format Specific Parameters panel half way
down the dialog. Otherwise, the top and bottom widgets perform similarly to the general
descriptions above.

Mixed Metabolite Output - Example PRESS_Ideal m x|

— Cukput Format, Location and Comment
Li_Model Cuput Loop Values: (1,3,1) § TEL [ms] =10.0, TE1 [ms]=30.0, TE1 [ms]=0.0}

Format:

Oubput Location: — Browse.., |C:'|,I:usu:nher'|,temp'l,lcmodel_output_summary.txt

Cormrment:
Just one simple line ;I

— Format Specific Parameters

~Header Paramters
FMTDAT: [(ZEL6.6) TRAMP:| 1.00000 = WOLUME: | 1.00000 =
—FID Creation

Sweep Width [Hz]:| 2000.00 =i Daka Poinks: | 2045 = Apodize [Hz]:| 3.00000 = Lineshape: |Gaussian =

¥ add singlet at 0.0 PPM

— Metabolite and Mixed Metabolites Cukput Lisk

Metabolite Unigque Scale Frequency Range Start Range End
Lisk Abbreviation Shift [ppm] [ppm] [ppm]
I [eholine-truncate =] [eholine-truncated [1.00000 < 0,000 == =
I [ereatine =] [ereatine [1.00000 :|| [0.000 :l| [-3.108 :|| [1z2512 :l|
I [asbatlactate =] [aabatiac [tooooo = [0.000 Hf-s10s Hfizsz
Select All | De-Select Al | Add Metabolite | Remove Selected | Add Metabolite Mixture ... |
K | Cancel
C.3.1 Using the Dialog

LCModel results are saved in a format compatible for import into the LCModel software package.
This format creates a single text file for each metabolite that contains a comment section followed
by a LCModel specific header section, which is followed by a textual representation of a complex
array containing a FID of the metabolite of interest created for specific sweep width, points and
lineshape parameters.

The Output Location can be set using the Browse... button. The user is prompted to select a
directory. LCModel RAW files are output to the directory selected. The Output Location is set to
show that directory plus a filename (e.g. C:\data\temp\icmodel_output_summary.txt). After the
LCModel RAW files are created, a final text file called ‘lcmodel _output_summary.txt’ is created
in the directory that lists the details about what data was exported from Vespa-Simulation, the
details about how any mixtures were created, and any other parameters used to modify the
simulation results.

61

The Header Parameter section is used to control LCModel specific header parameters that the
program uses on import. These parameters are: FMTDAT, TRAMP and VOLUME fields. For
more information on these settings, see the LCModel user manual. The FID Creation section
contains parameters that are used to create the FID representation of the metabolite result. These
include Sweep Width in Hz, number of Data Points, the Apodize value in Hz and the Lineshape
type (either Gaussian or Lorentzian).

A reference line singlet at 0.0 PPM can be added to the spectrum, as required by LCModel for
import, by checking the box.

Upon hitting the OK button the dialog will create individual output files for each metabolite. These
files are names according to the Abbreviation field in each row in the dynamic list (e.qg.
<abbreviation>.RAW). The files are saved in the same directory chosen by the user at the top of
the dialog. A copy of the Mixed Metabolite Output header comment block is stored in the filename
specified at the top of the dialog. A separate copy of the header comment is saved in each RAW
file prior to the LCModel specific header parameters.

C.3.2 Example — Creating an LCModel Basis Set (by Hongji Chen)

Open the Vespa-Simulation program and, if an Experiment is not already loaded, load an
Experiment. Click on the Experiment tab that you want to output. Select the loop values in the
Visualize Tab for the specific metabolite results that you want to output. Select
Simulation—ThirdPartyExport menu item.

The Mixed Metabolite Output widget pops up. Make sure that the Format widget is set to
LCmodel. Select a directory and output filename for files. Add a comment if you want. Change
the DataPoints value to 2048 and make sure the Add Singlet at 0 ppm is selected. Add/Remove
the metabolites or mixes you want to output and click OK. Your results are written to the
designated folder.

There are two sets of files in the folder - One is the data in frequency domain (with ‘_freq’) and
the other one in time domain. To make basis sets by LCModel, only the time domain files are
needed.

How to make basis set by LCModel is described in section 8.6 in the following manual.
http://s-provencher.com/pub/LCModel/manual/manual.pdf

The only thing you need to do is to create your own ‘makebasis.in’. An example is listed below.
All the control parameters in this example are specified in the LCModel manual. The one critical
pitfall: the first column of each line is always ignored; so each line must start with one space.

Ssegpar
seg="'PRESS'
echot=40.
fwhmba=.013
Send

Snmall

hzpppm=123.25

deltat=.0005

nunfil=2048
filbas="'/na/homes/username/.lcmodel/test gava/output/test gava.basis'
filps='/na/homes/username/.lcmodel/test gava/output/basis.ps'
autosc=.false.

autoph=.false.

consistent scaling=.false.

idbasi="'test basis set (gava)'

62

http://s-provencher.com/pub/LCModel/manual/manual.pdf

Send

Snmeach
filraw='/na/homes/username/.lcmodel/test gava/raw/naa.RAW'
metabo="NAA"
degzer=0.
degppm=0.

conc=1.
ppmapp=0.2, -.2
ppmpk=0.
ppmoff=-1.2, -1.4
fwhmsm=0.015

Send

$Snmeach
filraw='/na/homes/username/.lcmodel/test gava/raw/cr.RAW'
metabo='Cr'
degzer=0.
degppm=0.

conc=1.
ppmapp=0.2, -.2
ppmpk=0.
ppmoff=-1.2, -1.4
fwhmsm=0.015

Send

$Snmeach
send
When your own ‘makebasis.in’ is ready, you run MakeBasis with a command like

$HOME/.Icmodel/bin/makebasis < makebasis.in

The basis set generated will be saved in the filbas’ folder specified in the ‘makebasis.in’ file.

63

C.4 jMRUI Data Text Format Specific Information

The following figure shows the Mixed Metabolite Output dialog configured for]MRU Data Text
format output. The main differences in this configuration are the Format Specific Parameters
panel half way down the dialog. Otherwise, the top and bottom widgets perform similarly to the
general descriptions in section C.1.

Mixed Metabolite Qutput - Example PRESS _|deal mult x|
— Cukput Format, Location and Comment
Farmat: I jMRUI Data Text LI Cuput Loop Yalues: (1,3,13 { TE1 [ms] =10.0, TE1 [ms]=30.0, TE1 [ms]=0.0}
Cukput Locstion: Browse... | Cibsoheritempljmrui-text_oukpuk_surmmary . bxk
Zomment:
Another comment to ignore .. ;I

[-]
—Faormat Specific Parameters

FID Creation
’75weep Mifidth [Hz]:| 2000.00 = Daka Points:| 2043 =i Apodize [Hz]:| 3.00000 = Lineshape: IGau55|an vI
—Metabolite and Mixed Metabolites Output List
Metabolite Unigque Scale Frequency Range Stark Range End
Lisk Abbreviation Shift [ppm] [ppm] [ppm]
[[choline-truncated =] frholine-truncated 100000 < [0.000 Hfaws H[izsiz =
r Icreatine =] Icreatine | 1.00000 j | 0,000 j |-3.105 j | 12,517 j
I~ [aaba =] Jaaba [1.00000 = fo.000 Hfaws Hlizsz =
I [glutamate = Jalutamate [t.oo000 = [o.000 =i[-3.105 =[izs1z2 =
I lactate =] factate [1.00000 :jl||u.|:u:u:| :I' [-3.105 :I' [12.512 :||
I~ Jmyc-inositol =] Jmvo-inasitel | 1.00000 :II | 0.000 :II |-3.105 :II [12.512 :II
[[n-acetylaspartate | Jrracetylaspartate | Looooo = [0,000 Hfaws Hlizse =
Select all | De-Select Al | &dd Metabolite | Remove Selecked | &dd Metabolite Mixture .. |
OF | Cancel

C4.1 Using the Dialog

jMRUI results are saved in a text format compatible for import into the jMRUI software package.
This format creates a single text file for each metabolite that contains a jMRUI specific header
section followed by a textual representation of a complex array containing a FID of the metabolite
of interest created for specific sweep width, points and lineshape parameters.

The Output Location can be set using the Browse... button. The user is prompted to select a
directory.]MRUI Data Text files are output to the directory selected. The Output Location is set to
show that directory plus a filename (e.g. C:\data\temp\jmrui-text_output_summary.txt). After the
jMRUI Data Text files are created, a final text file called ‘jmrui-text_output_summary.txt’ is created
in the directory that lists the details about what data was exported from Vespa-Simulation, the

64

details about how any mixtures were created, and any other parameters used to modify the
simulation results.

There are a number of text parameters that are set in each file to describe the data. These values
are extracted automatically from the Experiment data or from the FID Creation section values in
the Mixed Metabolite Output dialog. For more information on jMRUI settings, see the j]MRUI user
manual. The FID Creation section contains parameters that are used to create the FID
representation of the metabolite result. These include Sweep Width in Hz, number of Data
Points, the Apodize value in Hz and the Lineshape type (either Gaussian or Lorentzian).

Upon hitting the OK button the dialog will create individual output files for each metabolite. These
files are names according to the Abbreviation field in each row in the dynamic list (e.g.
<abbreviation>.RAW). The files are saved in the same directory chosen by the user at the top of
the dialog. A copy of the Mixed Metabolite Output header comment block is stored in the filename
specified at the top of the dialog.

65

C.5 MIDAS Generic XML Format Specific Information

The following figure shows the Mixed Metabolite Output dialog configured MIDAS Generic XML
format output. The main difference in this configuration is that there are no Format Specific
Parameters in the middle the dialog (as for LCModel and jJMRUI). Otherwise, the top and bottom
widgets perform similarly to the general descriptions in section C.1.

Mixed Metabolite Qutput - PRESS output example I,iE-J

Cutput Format, Location and Comment

Format: | MIDAS XML * | Ouput Loop Values: (1,1,1) (TE1 [ms] = 10.0, TEZ [ms] = 10.0, Inactive Loop3)

Output Location C:\Users\bsoher \midas_output, xml

Comment:

Metabolite and Mixed Metabolites Output List

Metabolite Unique Scale Frequency Range Start Range End
List Abbreviation Shift [ppm] [ppm] [ppm]
|choline-truncated | choline-truncated 1,00000 =l p.000 £ 3357 £ 0.000 :
||:reatine v| creatine 100000 = 0.000 S -3.357 = 0,000 =
|gaba+|actate v| gaba Hac 1.00000 = 0.000 = -3.357 = 0.000 =
| SelectAl | | DeSelect Al | [AddMetabolite | | Remove Selected | | Add Metabolite Mixture ... |
| oK | | Cancel
LS
C5.1 Using the Dialog

MIDAS Generic XML format is a simple “flattened” text output of the Experiment results using a
variant on an XML format that is specific to the MIDAS program. There is no user-set header data
that is required to be filled into widgets. Results are output into a single file. The Output Location
can be set using the Browse... button. The user is prompted to select a directory and a filename.
As stated in the section at the top, results for selected metabolites in a single set of loop values
in the currently selected tab will be saved.

This XML file contains two nodes,

1) VESPA SIMULATION_MIDAS EXPORT - has the description of how the metabolites and
metabolite mixtures were organized for output from the Experiment.
2) FITT _Generic_XML - contains the Experiment results in a line-by-line output style.

In both nodes, there are multiple "comment” or "param" tags, respectively, which contain "name"
and "value" attributes in which data is stored. There is no data stored in the actual tag, just
attributes. This type of file is typically read into the MIDAS program to provide prior metabolite
information for the FITT2 application.

Experiment data is stored in the FITT_Generic_XML node. Metabolite data starts in the <param>

tag with “name” attribute equal to “fitt_PriorLine00001”. Each <param> tag of data in the file
contains a “value” attribute that contains the name of the metabolite, the loopl value, the loop2

66

value, the loop3 value, the transition table line number for the metabolite, the ppm value, area
value and phase value for each spectral line in the metabolite Simulation result. These are all
stored in one text string separated by “++” symbols. For choline and creatine, these are only 1
and 3 lines respectively. But, for other multiplet resonance metabolite results, such as the
gaba+lac mixture, this can run to 10s to 100s of lines of data.

C5.2 Example MIDAS Generic XML Output File

Following in the steps of previous examples (with two metabolites and one mixture), here is a
short example of the data output to the midas_output.xml file

<FITT_Generic_XML Creation_date="2011-03-08" Creation_time="11:55:32">
<VESPA_SIMULATION_MIDAS_EXPORT>
<comment line="1ine0000" value="vespa-Simulation Mixed Metabolite Output" />
<comment Tline="1ine0001" va]ue—"" />
<comment Tine="T1ine0002" value="output Path/Filename = C:\bsoher\code\repository_ svn\vespa\s1mu]at1on\m1das output.xml" />
<comment line="1ine0003" value="output Loop Vvalues = A1l Toops will be saved for this format" />
<comment line="1ine0004" value="output Comment" />

<comment line="1ine0005" value="--------------"---"-~-~—~" -~~~ —~ -~~~ />
<comment line="1ine0006" value="" />

<comment line="1ine0007" value="" />

<comment line="1ine0008" value="Experiment Information" />

<comment line="1ine0009" value="----------—--—-—————————— - " />
<comment line="1ine0010" value="--- Experiment 92adae26-137e-48ce-8c35-02905bb5cfd5 ---" />

<comment line="1ine0011" value="Name: Example PRESS_Ideal multi-TE" />
<comment line="1ine0012" value="Public: True" />
<comment line="1ine0013" value="Created: 2011-01-24T11:01:16" />
<comment line="1ine0014" value="Comment (abbr.): Example of a PRESS experiment at 3T usin" />
<comment line="1ine0015" value="PI: bjs" />
<comment line="1ine0016" value="b0: 128.000000" />
<comment line="1ine0017" value="pPeak Search PPM Tow/high: 0.000000 / 10.000000" />
<comment line="1ine0018" value="Blend tol. PPM/phase: 0.001500 / 50.000000" />
<comment line="1ine0019" value="Pulse seq.: Ob3db82e-d04b-4719-b8f9-95f1153f0d50 (PRESS Ideal)" />
<comment line="1ine0020" value="0 User static parameters: " />
<comment line="1ine0021" value="7 Metabolites: choline,creatine,gaba,glutamate,lactate,myo-inositol,n-acetylaspartate"” />
<comment line="1ine0022" value="98 Simulations: (not shown)" />
<comment line="1ine0023" value=
<comment line="1ine0024" value="Metabolite Formatting Information" />
<comment line="1ine0025" value="----------—--—~-——~—~ -~ - -~
<comment line="1ine0026" value="Name=choline Abbr=choline Scale=1.0 Shift=0.0 PPM Start=-3.10487 PPM End=12.5125" />
<comment line="1ine0027" value="Name=creatine Abbr=creatine Scale=1.0 shift=0.0 PPM Start=-3.10487060547 PPM End=12.5125" />
<comment line="1ine0028" value="Name=gaba+lactate Abbr=gaba+lac Scale=1.0 Shift=0.0 PPM Start=-3.10487 PPM End=12.5125" />
<comment line="1ine0029" value=" Mixture of [metab*scale] = gaba*1.0 + lactate*1.0" />
</VESPA_SIMULATION_MIDAS_EXPORT>
<PRIOR_METABOLITE_INFORMATION>
<param name="fitt_PriorLine00001" value="choline-truncated++10.0++30.0++0.0++0++3.185++3.0++3. 2680199352e- 13" />
<param name="fitt_PriorLine00002" value="creatine++10.0++30.0++0.0++0++3.027++3.0++2.85844069302e-13" />
<param name="fitt_PriorLine00003" value="creatine++10.0++30.0++0.0++1++3.913++2.0++1.90976157368e-13" />
<param name="fitt_PriorLine00004" value="creatine++10.0++30.0++0.0++2++6.649++1.0++4.77915613015e-13" />

<param name="fitt_PriorLine00005" value="gaba+lac++10.0++30.0++0.0++0++1.30216386911++6.56750777889e-05++-138.531997369" />
<param name="fitt_PriorLine00006" value="gaba+lac++10.0++30.0++0.0++1++1.39807431416++8.34965132792e-05++94.719201079" />

<param name="fitt_PriorLine00182" value="gaba+lac++10.0++30.0++0.0++177++4.17942135846++0.117527687393++-149.811478877" />
</PRIOR_METABOLITE_INFORMATION>
</FITT_Generic_XML>

67

C.6 Analysis Prior XML Format Specific Information

The following figure shows the Mixed Metabolite Output dialog configured for Analysis Prior XML
format output. This format allows users to output to a file the information from an Experiment that
could be used in the Analysis application to create a set of bases functions to model real MRS
data. This information can also be accessed using direct query of the Vespa database from the
Analysis application GUI, however, we also include it here for convenience.

The main difference in this configuration is that there are no Format Specific Parameters in the
middle the dialog (as for LCModel and jMRUI). Otherwise, the top and bottom widgets perform
similarly to the general descriptions in section C.1.

4 N
Mixed Metabolite CQutput - PRESS output example et e

QOutput Format, Location and Comment
Format: * | Ouput Loop Values: (1,1,1) (TE1 [ms] = 10.0, TE2 [ms] = 10.0, Inactive Loop3)

Qutput Location: | Browse... C:\Wsers\bsoher\midas_output. xml

Comment:

Metabolite and Mixed Metabolites Output List

Metabalite Unique Scale Frequency Range Start Range End
List Abbreviation Shift [ppm] [ppm] [ppm]
choline-truncated = | choline-truncated 1,00000 = 0.000 £ 3.357 £ 0.000 z
creatine ~ | creatine 100000 = 0,000 = 3,357 = 0,000 z
gaba-Hactate ~ | gabaHac 1.00000 = 0.000 2 3.357 ~ 0,000 z
| Select all | | De-Select All | | Add Metabolite | | Remove Selected | | Add Metabolite Mixture ... |
[Ok l | Cancel
i Il
C.6.1 Using the Dialog

Analysis Prior XML format is a simple “flattened” text output of the Experiment results using the
XML format with nodes specific to the Vespa-Analysis program. There is no user-set header data
that is required to be filled into widgets. Results are output into a single file. The Output Location
can be set using the Browse... button. The user is prompted to select a directory and a filename.
As stated in the section at the top, results for selected metabolites in a single set of loop values
in the currently selected tab will be saved.

This XML file contains layout and organization typical to other “export” options in the Vespa
package, because it uses common coding and naming conventions. There is a comment node at
the top that contains information about the Experiment used to generate this file. Following that,
there are “metabolite” nodes that list each resonance line for the result being reported for a given
metabolite.

68

C.6.2 Example Analysis Prior XML Output File

Due to length, this is not shown.

69

Appendix D. Object State in Applications

This section describes important concepts in Vespa that have significant practical issues in how
you make use of all the applications in the package. We have defined a number of terms that
describe certain conditions of the prior information and results that are stored within the Vespa
database. These terms include: ‘private’, ‘public’, ‘in use’ and ‘frozen’. Our definition of these
terms, and their practical implementation within Vespa applications, go a long way towards
providing accurate workflow provenance of how experiments or pulse projects were created. They
also help to keep users from deleting or changing important information. This section will help you
understand what these terms mean and how to use them effectively within Vespa.

D.1 Background and Design Philosophy

Our overall goal when designing Vespa has been to try to help you organize your data and
workflow. Each application has a number of modules that can be combined in different ways as
part of your investigations. For example, in Simulation an experiment contains one pulse
sequence and one or more metabolites. There are a variety of pulse sequences and metabolites
and these can be combined in many ways to create experiments. The design philosophy behind
Vespa has been to enable great flexibility in each application while still providing a complete
description of how each usage ended up with the results it did. This historical record your actions
is called the ‘provenance’.

In the database, each pulse sequence, metabolite and pulse project is stored just once, but may
be referred to by many other objects. For instance, the three sample experiments installed with
Vespa Simulation all refer to the metabolite creatine. A change to the definition of creatine would
be a change in all of the experiments that refer to it. This would damage the provenance that
Vespa wants to protect.

D.2 State Definitions and Usage

To avoid damaging provenance Vespa classifies items into states called ‘private’, ‘public’, ‘in use’
and ‘frozen’. These states determine which database items can be changed/deleted and which
cannot. There are also very simple steps for creating editable copies of uneditable items.
Definitions and advice for each state is given below.

D.2.1 Private and Public
Objects Affected: experiments, metabolites, pulse sequences, pulse projects

All of these objects start life private. That means they're only in your database; no one else has
seen them.

Once exported, objects become public. That means that their definition has been shared with
the world. Public objects are frozen (see below). Furthermore, the objects to which they refer
(directly and indirectly) also become public (and frozen). For instance, if an experiment refers to
a pulse sequence that refers to a pulse project, all three of those objects become public when
the experiment is exported.

Once a private object has become public, it can never become private again. Cloning, however,
will create a new, private object with exactly the same properties (but a different UUID).

70

D.2.2 In Use
Objects Affected: metabolites, pulse sequences, pulse projects

When you select a metabolite or pulse sequence for use in an experiment, that experiment refers
to the object for as long as the experiment exists in your database. Metabolites and pulse
sequences that are referred to by an experiment are in use by that experiment.

Objects that are in use may not be deleted and are frozen (see below).

There's no limit to the number of references an object may have.

Once all of the experiments referring to an object are deleted, the object is no longer in use.
D.2.3 Frozen

Objects Affected: experiments, metabolites, pulse sequences, pulse projects

Frozen objects are mostly un-editable -- only the name and comments can be changed. Objects
are frozen for one of two reasons.

In use objects (metabolites, pulse sequences and pulse projects) are frozen because they're
referred to by an experiment, and changing the underlying objects that the experiment uses would
corrupt the experiment.

Public objects are frozen because once you've shared an object with others (or you've imported
an object that they've shared with you), you need to be able to trust that you're talking about
exactly the same object.

Here's a table summarizing when an object is frozen.

Private? In Use? Frozen?
Yes No No
Yes Yes Yes

No (public) No Yes
No (public) Yes Yes

Note that no objects can refer to experiments, so experiments can never be 'in use'.

Note that frozen only refers to whether or not the fundamental attributes of the object can be
edited. It doesn't affect whether or not it can be deleted.

71

Appendix E. Report on Issue with Binning
Heterogeneous Spin-system Simulations

As of April 2015, we moved the default binning code into Python rather than using the GAMMA
TTablelD::calc_spectra() method. The new Python code replicates the functionality of the
GAMMA call, but has a new scheme for scaling the transition table lines to account now for both
homonuclear AND heteronuclear resonances within the spin_system being simulated.

E.1 Background —the Problem

A big thanks to Dr. Roland Kreis for reporting this issue. He showed that in a very simple
experiment (One-Pulse) that if a tri-methyl metabolite (such as phosphorylethanolamine, that has
a “N spin in its spin_system definition) with a non-spin % isotope attached is simulated, then the
multiplet structure has an incorrect vertical scale. The ratio between the lines in the resonance
pattern are correct, but the overall vertical scale was too large.

This issue only occurs if the non-'H spin was also not spin % like H is. So, for example,
metabolites with 'H and 3P spins within their spin_system (like GPC-gp) had correct
normalization because *!P is also spin Y.

An example of this issue is shown in the figure below. We have simulated a One-Pulse experiment
for two imaginary metabolites CH-CH2-*N and CH-CH2-3'P. One has spin %2 3P attached and
the other has spin 1 *N. In the plot below, you can see that the spectral pattern is the same
except for a scaling difference.

USimuIation - Heterogeneous Binning Issue EI@

Experiment Management VMiew Help

Experiment2
;' Main Plot

Display Mode |1D Plot
£ X-nxis [PPM]
Max 12,804 = Min 3,396

»

4

Cursor Values [PPM]
Max 12,804 ~ Min -3.3%

! Metabolites to Plot Sum Plots

Allcricriznia_1o
MllcH-cH2-p31 0.5

Contour Plot

-

Grayscale Levels: 1 -

Dimensions: |Contour Index 142+

Basis Function Parameters
Set Resolution... | Line Width [Hz]: 3.0 =]
| ASCI Display 2 10 8 6 4 2 0 -2
Visualize Simulate
PPM = 1.20784422481 Hz = 149.047977342 Value = 0.00146435946226 CH-CH2-M14 1.0

72

The text output for the two metabolites is shown before and demonstrate the differences in the
spectral line areas. The next from the last column is the Area value for each spectral line. The
values should be the same, but the CH-CH3-N14 1.0 metabolite areas are 1.5x larger.

F—— Experiment 33ae9823-d9c&-4d80-91cf-8bd7laadfbd4c ———
Name: Heterogeneous Binning Issue

Public: False

Created: 2015-04-13T18:17:53

Comment (akbr.):

BI: bis

b0: 123.400000

Peak Search PPM low/high: 0.000000 / 10.000000

Blend tol. PPM/phase: 0.001500 / 50.000000

Pulse seq.: d428c532-4196-4bf0-9445-0cba5f6767c5 (One-Pulse local bin old scale)
0 U=zer static parameters:

Metakolites: CH-CH2-N14 1.0, CH-CHZ-P31 0.5
Simulations: (not shown)

k3 B

Simmlation Results

CH-CHZ-N14 1.0 O 0 0 0 3.027 1.5 0.0
CH-CH2-N14 1.0 0 0 0 1 3.913 3.0 0.0
CH-CHZ-N14 1.0 O 0 0 2 6.649 1.5 0.0
CH-CHZ-P31 0.5 O 0 0 0 3.027 1.0 0.0
CH-CHZ-P31 0.5 O o] 0 1 3.913 2.0 0.0
CH-CHZ-P31 0.5 O 0 0 2 6.649 1.0 0.0

E.2 Resolution

The temporary workaround we recommended was for users to remove the non-H spin and re-
run the sim.

Subsequently, we dug into the code and found that the issue was happening in the scaling being
performed in the binning code after the simulation is finished but before the results were being
stored in the Vespa database. Our previous binning code was a call made to a GAMMA routine
called TTablelD::calc_spectra(). This method included a step for scaling due to homonuclear
spins equal to normal = 0.5 * pow(2.0,(ns-1)) where ns = number of spins. This still works fine for
metabolites in simulations that only have *H spins or if the non-1H spins are all spin Y.

After a great deal of digging, we developed a new normalization calculation, but this is only based
on empirical evidence, not on physical principles. This factor is now based on the quantum spin
number for each spin and the ratio between these spin numbers and the observe isotope.

We have replaced the binning code in the example pulse sequence for you to examine and use
as a template for new simulations. At this time we have NOT changed any code in the GAMMA
library. See Appendix A for the default Python binning code.

This code change will not affect existing simulations in your database, but you may want to go
back and check to see if any of the metabolites you simulated contained isotopes that are not
spin Y.

73

