| |
- V_dominant_mode(mode_type, m, n, wg, **kwargs)
- mode voltage coupling of dominant mode to itself.
assumed field is
sin(pi*x/a) ; for 0 < x < wg.a, 0 < y < wg.b
takes:
mode_type: type of mode, a string, acceptable values are ['te','tmz']
m: mode index in width dimension
n: mode index in heigth dimension
wg: a RectangularWaveguide type
- V_offset_dimension_change(mode_type, m, n, wg, x0, y0, a, b)
- mode voltage coupling for dominant mode field of a rectangular
aperture of dimension axb, radiating into a larger waveguide of
dimensions wg.a x wg.b.
assumed field is
sin(pi/a*(x-x0)) ; for x0 < x < x0+a, y0 < y < y0+b
takes:
mode_type: type of mode, a string, acceptable values are ['te','tmz']
m: mode index in width dimension
n: mode index in heigth dimension
wg: a RectangularWaveguide type
x0: offset of aperture in width (a) dimension [m]
y0: offset of aperture in height (b) dimension [m]
a: aperture size in width dimension
b: aperture size in height dimension
returns:
normalized coupling value, a scalar.
- converge_junction_admittance(y_tol=0.001, mode_rate=1, M_0=2, N_0=2, min_converged=1, output=True, converge_func=<function junction_admittance>, **kwargs)
- junction_admittance(wg_I, wg_II, V_I, V_II, freq, M, N, normalizing_mode=('te', 1, 0), **kwargs)
- calculates the equivalent network for a discontinuity in a waveguide,
by the aperture-field variational method.
takes:
wg_I: a RectangularWaveguide instance of region I
wg_II: a RectangularWaveguide instance of region II
V_I: mode voltage for region I
V_II: mode voltage for region II
freq:
M:
N:
normalzing mode:
**kwargs:
note:
mode voltages are called like:
V(mode_type,m,n,wg,**kwargs)
so whatever you pass for the mode voltage functions must adhere
to this convention
- junction_admittance_with_termination(wg_I, wg_II, V_I, V_II, freq, M, N, d, Gamma0, normalizing_mode=('te', 1, 0), **kwargs)
- calculates the equivalent network for a discontinuity in a waveguide,
by the aperture-field variational method.
takes:
wg_I: a RectangularWaveguide instance of region I
wg_II: a RectangularWaveguide instance of region II
V_I: mode voltage for region I
V_II: mode voltage for region II
freq:
M:
N:
normalzing mode:
**kwargs:
note:
mode voltages are called like:
V(mode_type,m,n,wg,**kwargs)
so whatever you pass for the mode voltage functions must adhere
to this convention
- junction_impedance(wg_I, wg_II, I_I, I_II, freq, M, N, normalizing_mode=('te', 1, 0), **kwargs)
- plot_mag_phase(out)
- show_coupling(out)
- ## OUTPUT
- step_up(freq, wr_small, wr_big, delta_a=0, delta_b=0, **kwargs)
- translation_offset(wg, freq, delta_a, delta_b, **kwargs)
- calculates the response from a translation offset between two
rectangular waveguides.
takes:
wg: RectangularWaveguide Object.
freq: Frequency Object
delta_a: offset in the width dimension [m]
delta_b: offset in the height dimension [m]
**kwargs: passed to converge_junction_admittance, see its help
for more info
returns:
ntwk: a Network type representing the junction
- translation_offset_with_termination(wg, freq, delta_a, delta_b, d, Gamma0, **kwargs)
- calculates the response from a translation offset between two
rectangular waveguides with a simple termination, possbily in the
near field, in region II
takes:
wg: RectangularWaveguide Object.
freq: Frequency Object
delta_a: offset in the width dimension [m]
delta_b: offset in the height dimension [m]
d: distance to termination [m]
Gamma0: reflection coefficient of termination at the termination
**kwargs: passed to converge_junction_admittance, see its help
for more info
returns:
ntwk: a Network type representing the junction
- zeros(...)
- zeros(shape, dtype=float, order='C')
Return a new array of given shape and type, filled with zeros.
Parameters
----------
shape : {tuple of ints, int}
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
dtype : data-type, optional
The desired data-type for the array, e.g., `numpy.int8`. Default is
`numpy.float64`.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.
Returns
-------
out : ndarray
Array of zeros with the given shape, dtype, and order.
See Also
--------
numpy.zeros_like : Return an array of zeros with shape and type of input.
numpy.ones_like : Return an array of ones with shape and type of input.
numpy.empty_like : Return an empty array with shape and type of input.
numpy.ones : Return a new array setting values to one.
numpy.empty : Return a new uninitialized array.
Examples
--------
>>> np.zeros(5)
array([ 0., 0., 0., 0., 0.])
>>> np.zeros((5,), dtype=numpy.int)
array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1))
array([[ 0.],
[ 0.]])
>>> s = (2,2)
>>> np.zeros(s)
array([[ 0., 0.],
[ 0., 0.]])
>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')])
array([(0, 0), (0, 0)],
dtype=[('x', '<i4'), ('y', '<i4')])
|