
mwavepy Manual

Alex Arsenovic

10/03/2010

Contents

1 About 3

2 Installation 4

2.1 Dependencies . 4
2.2 Platform independent . 4

2.2.1 current version, using svn . 4
2.2.2 Source Package . 5

2.3 Windows executable . 5
2.4 Linux . 5

3 Quick Intro 6

4 Basic Usage 8

4.1 Basic Plotting . 8
4.2 One-port Calibration . 12

5 Advanced Usage 14

6 Architecture 15

6.1 Module Layout and Inheritance . 15
6.2 Individual Class Architectures . 15

6.2.1 Frequency . 16
6.2.2 Network . 17
6.2.3 touchstone . 17
6.2.4 WorkingBand . 18
6.2.5 Calibration . 19

7 Future Work 20

2

1 About

mwavepy is a compilation of functions and class's for microwave/RF engineering written
in python. It is useful for things such as touchstone �le manipulation, calibration, data
analysis, data acquisition, and plotting. mwavepy can be used interactively through the
python interpreter, or in scripts.
mwavepy started when I began to compile all of my personal functions into a single

program. I then realized that creating some abstract entities such as a n-port network,
calibration instance, and virtual instruments, would make a lot of aspects of data analysis
faster. It did.
Because I am not a professional developer, I can only implement what is feasible time-wise,

which translates into 'things I need immediatly'. But, I have tried to structure everything
with scalability in mind, so others can add onto mwavepy.

3

2 Installation

2.1 Dependencies

The requirements are basically a python environment setup to do numerical/scienti�c com-
puting. If you are new to python, you should consider usingpythonxy, which provides
everything you need to get started.
Here is a list of the requirements,

Necessary

� Python >= 2.6

� matplotlib

� numpy

� scipy

Recomended

� ipython (for interactive shell)

Optional

� pyvisa - for instrument control

� pythics- for VI gui interface design

2.2 Platform independent

Python has many choices for module installation, listed here are installation instructions
using setuptools, distutils. All of these assume you have installed the required dependencies.

2.2.1 current version, using svn

svn will get you the most up-to-date version of the mwavepy, docs, and examples, but may
have bugs. Check-out using,

svn checkout http : // mwavepy . googlecode . com/svn/trunk/ mwavepy−read−only

Install mwavepy by cd'ing into the mwavepy directory, and running

python setup . py install

4

http://www.pythonxy.com/
http://www.python.org/
http://matplotlib.sourceforge.net/
http://numpy.scipy.org/
http://www.scipy.org/
http://ipython.scipy.org/moin/
http://pyvisa.sourceforge.net/pyvisa/
http://code.google.com/p/pythics

2 Installation

2.2.2 Source Package

There are also pre-made releases available. These can be installed by using setuptools1 or
distutils.

setuptools Open a terminal and type:

easy_install mwavepy

This should download and install mwavepy.

distutils Download and extract a source package from the mwavepy website. Open up
terminal, cd in mwavepy's directory, and type,

python setup . py install

2.3 Windows executable

Although this may be easier than instaling from svn or a source package, the windows
executable will not provide the documentation or examples. Either, way Install all python
modules listed under Requirements, or install pythonxy. Then you can download and run
the windows installer from the mwavepy website

2.4 Linux

I have yet to make a package for any speci�c distribution, so linux users will have to follow
the platform independent directions. However, installing the requirements in a debian-based
linux system is much easier than with windows,

sudo apt−get install python−numpy python−scipy python−matplotlib ipython python

You will probably have to go fetch pyvisa yourself, or use easy_install.

1http://pypi.python.org/pypi/setuptools

5

http://pypi.python.org/pypi/setuptools

3 Quick Intro

This is a quick intro to get the reader comfortable working with mwavepy. mwavepy, like
all of python, can be used in scripts or through the python interpreter. Fire up a python
terminal (or IPython), and import the mwavepy module

import mwavepy as mv

From here all mwavepy's functions can be accessed through the variable 'mv'. In IPython
you can use the autocomplete feature to inspect a module by typing mv.[hit tab], and all
the classes and functions will be listed. Help for any of the functions can be accessed by
typing,

help mv . function

For our �rst example, lets load up the data from a touchstone �le (default format for
VNA's, ie .s2p). Distributed with mwavepy should be a folder called examples. cd into this
folder, where you will �nd an example touchstone �le containig data for a calibrated horn
antenna. mwavepy has a class which represents a n-port network, called Network. It can
be initialized from the contents of a touchstone �le like so,

horn = mv . Network (' horn . s1p ')

From here you can tab out the contents of the newly created Network by typing horn.[hit
tab]. You can get help on the various functions as described above. Some of the plotting
functions can are illustrated in chapter 4. The base storage format for a Network's data
is in scattering parameters, these can be accessed by the property, 's'. Basic element-
wise arithmetic can also be done on the scattering parameters, through operations on the
Networks themselves. For instance if you want to form the complex division of two Networks
scatering matrices,

horn2 = mv . Network (' horn . s1p ')
horn_diff = horn/horn2

This can also be used to implement averaging

horn_average = (horn+horn2) /2

Other non-elementwise operations are also available, such as cascading and de-embeding
two-port networks. For instance the composit network of two, two-port networks is formed
using the power operator (**),

composit_ntwk = horn ** horn2

6

3 Quick Intro

De-embeding can be accomplished by using the �oor division (//) operator

horn2 = composit_nwtk //horn

When you are done with a network you can save it back to a touchstone,

horn2 . write_to_touchstone (' horn2 ')

7

4 Basic Usage

4.1 Basic Plotting

import mwavepy as mv

import pylab

crea t e a Network type from a touchstone f i l e o f a horn antenna
horn = mv . Network (' horn . s2p ')

p lo t magnitude o f S11
pylab . figure (1)
pylab . title ('Return Loss (Mag) ')
horn . plot_s_db (m=0,n=0) # m, n are S−Matrix i n d e c i e s

Figure 4.1:

plo t phase o f S11
pylab . figure (2)
pylab . title ('Return Loss (Phase) ')
a l l keyword arguments are passed to matp lo t l i b . p l o t command
horn . plot_s_deg (0 , 0 , label= 'Broadband Horn Antenna ' , color= ' r ' , linewidth=2)

8

4 Basic Usage

Figure 4.2:

plo t unwrapped phase o f S11
pylab . figure (3)
pylab . title ('Return Loss (Unwrapped Phase) ')
horn . plot_s_deg_unwrapped (0 , 0)

9

4 Basic Usage

Figure 4.3:

plo t complex S11 on smith chart
pylab . figure (5)
horn . plot_s_smith (0 , 0 , show_legend=False)
pylab . title ('Return Loss , Smith ')

10

4 Basic Usage

Figure 4.4:

plo t complex S11 on smith chart
pylab . figure (5)
horn . plot_s_smith (0 , 0 , show_legend=False)
pylab . title ('Return Loss , Smith ')

11

4 Basic Usage

Figure 4.5:

uncomment to save a l l f i g u r e s ,
#mvy . save_a l l_ f i g s (' . ' , format = [' png ' , ' eps '])

show the p l o t s
pylab . show ()

4.2 One-port Calibration

import mwavepy as mv

dir = ' . '

raw = mv . load_all_touchstones (dir , f_unit = ' ghz ')
myfreq = raw [raw . keys () [0]] . frequency

cal_std = mv . Calibration (\
measured = [\

raw ['Cal3_L1 '] , \
raw ['Cal3_L2 '] , \
raw ['Cal3_L3 '] , \
raw ['Cal3_L4 '] , \
raw ['Cal3_L5 '] , \
] ,

ideals =[\
raw [' shor t '] , \
raw [' de layshor t1 '] , \
raw [' de layshor t2 '] , \
raw [' de layshor t3 '] , \

12

4 Basic Usage

raw [' de layshor t4 '] , \
] , \

name= ' Standard Cal ' ,\
type= ' one port ' ,\
frequency= myfreq , \
is_reciprocal=True , \
)

13

5 Advanced Usage

14

6 Architecture

6.1 Module Layout and Inheritance

mwavepy

transmissionLine

RectangularWaveguide

RectangularWaveguideTE10

FreeSpace

Coax

CoplanarWaveguide

CalibrationNetwork

Frequency

WorkingBand GenericTEM

touchstone

Figure 6.1: Module Layout and inheritance

6.2 Individual Class Architectures

15

6 Architecture

import mwavepy as mv

mv . Network (' I n t e r f a c e 1/ ca l ed / shor t . s1p ') . plot_s_deg

6.2.1 Frequency

The frequency object was created to make storing and manipulating frequency information
easier and more rigid. A major convenience this class provides is the acounting of the
frequency vector's unit. Other objects, such as Network, and Calibration require a frequency
vector to be meaningful. This vector is commonly referenced when a plot is generated,
which one generally doesnt was in units of Hz. If the Frequency object did not exist other
objects which require frequency information would have to implement the unit and multiplier
bagage.

Frequency

start
stop
npoints
f
f_scaled
unit

properties

Figure 6.2: Frequency class architecture

Example:

freq = mv . Frequency (start = 80 , stop=120 , npoints = 201 , unit= ' ghz ')

16

6 Architecture

6.2.2 Network

Network

name
frequency
s
s_db
s_deg

cascade()
de_embed()
plot_s_db()
plot_s_deg()
plot_s_smith()

...

methods

properties
Frequency

start
stop
npoints
f
f_scaled
unit

properties

Figure 6.3: Network class architecture

6.2.3 touchstone

The standard �le format used to store data retrieved from Vector Network Analyzers (VNAs)
is the touchstone �le format. This �le contains all relevent data of a measured network such
as frequency info, network parameters (s, y,z, etc), and port impedance.

17

6 Architecture

6.2.4 WorkingBand

WorkingBand

TransmissionLine

...
propagation_constant()
...

name

tline

frequency

properties

Frequency

start
stop
npoints
f
f_scaled
unit

properties

methods

Figure 6.4: WorkingBand class architecture

18

6 Architecture

6.2.5 Calibration

Calibration

name
type
is_reciprocal
output_from_cal
coefs
kwargs

frequency

error_ntwk

run()
apply_cal()

...

methods

properties
Frequency

start
stop
npoints
f
f_scaled
unit

properties

Network

name
frequency
s
s_db
s_deg

cascade()
de_embed()
plot_s_db()
plot_s_deg()
plot_s_smith()

...

methods

properties

Frequency

start
stop
npoints
f
f_scaled
unit

properties

Figure 6.5: Calibration class architecture

19

7 Future Work

20

	About
	Installation
	Dependencies
	Platform independent
	current version, using svn
	Source Package

	Windows executable
	Linux

	Quick Intro
	Basic Usage
	Basic Plotting
	One-port Calibration

	Advanced Usage
	Architecture
	Module Layout and Inheritance
	Individual Class Architectures
	Frequency
	Network
	touchstone
	WorkingBand
	Calibration

	Future Work

