Contents

Faust Libraries 25
Using the Faust Libraries 26
Organization of This Documentation 27

General Organization 27

Versioning e 28
Examples 28

Standard Functions 28
Analysis Tools 29
Basic Elementso 29
Conversion e e e 29
Effects e 30
Envelope Generators L oo 31
Filters o 31
Oscillators/Sound Generators 32
Synths L 33

Contributing 33
New Functions o 33
New Libraries e 34
Coding Conventions 35

Function Naming 000 o0 35
Variable Argument List 35
Documentation L L oL 36
Library Import 36
“Demo” Functions 37
“Standard” Functions 37
Testing the library oo o 38
Library deployment oo 38

The Faust Project 38

aanl.lib 39
Auxiliary Functions Lo L o 40

(aa.)clip. . . . oo 40
(aa.)Rsqrt 40
(aa.)Rlog. o e 40
(@aa.)Rtan. e 40
(aa.)RAacos i e e 40
(aa.)Rasin e 40
(aa.)Racosh e 40
(aa.)Rcosho 41
(aa.)Rsinh L 41

(aa.)Ratanh 41
(aa.)ADAAL 41
(aa.)ADAA2 41
Main functions 42
Saturators 42
(aa.)hardclip oL 42
(aa.)hardclip2 42
(aa.)cubicl 42
(aa.)parabolic 43
(aa.)parabolic2 43
(aa.)hyperbolic L 43
(aa.)hyperbolic2 43
(aa.)sinarctan 43
(aa.)sinarctan2 44
(aa.)tanhl 44
(aa.)arctan 44
(aa.)arctan2. 44
(aa.)asinhl 45
(aa.)asinh2o 45
Trigonometry Lo 45
(aa.)cosinel 45
(aa.)cosine2. 45
(aa.)arccos 46
(aa.)arccos2. 46
(aa.)acoshl 46
(aa.)acosh2 e 46
(aa.)sine. e 47
(aa.)sine2 47
(aa.)arcsin 47
(aa.)arcsin2. 47
(aa.)tangent 48
(aa.)atanhl 48
(aa.)atanh2 e 48
analyzers.lib 48
Amplitude Tracking 48
(an.)abs_envelope_rect 48
(an.)abs_envelope_tau 49
(an.)abs_envelope_t60, 49
(an.)abs_envelope_t19, 49
(an.)amp_follower 50
(an.)amp_follower_ud 50
(an.)amp_follower_ar 51
(an.)ms_envelope_rect i 51
(an.)ms_envelope_tau o v vt e 51
(an.)ms_envelope_t60 51

(an.)ms_envelope_t19 52

(an.)rms_envelope_rect 52
(an.)rms_envelope_tau 52
(an.)rms_envelope_t60, 52
(an.)rms_envelope_t19 53
(an.)zer . . . oL e 53
Adaptive Frequency Analysis 53
(an.)pitchTracker 53
(an.)spectralCentroid 54
Spectrum-Analyzers o 55
(an.)mth_octave_analyzer 55
Mth-Octave Spectral Level 56
(an.)mth_octave_spectral_level6e 56
(an.) [third|half] _octave_[analyzer|filterbank] 56
Arbritary-Crossover Filter-Banks and Spectrum Analyzers 57
(an.)analyzer o7

Fast Fourier Transform (fft) and its Inverse (ifft) 57
(an.)goertzelOpt 57
(an.)goertzelComp 58
(an.)goertzel o8

(@n.)fft . . e 58
(an)ifft. . . . oo 59
basics.lib 60
Conversion Tools L 60
(ba.)samp2sec 60
(ba.)sec2samp 60
(ba.)db2linear i 60
(ba.)linear2db 61
(ba.)lin2LogGain L. 61
(ba.)log2LlinGain 61
(ba.)tau2pole 62
(ba.)pole2tau 62
(ba.)midikey2hz 62
(ba.)hz2midikey 62
(ba.)semi2ratio 63
(ba.)ratio2semi 63
(ba.)cent2ratio 63
(ba.)ratio2cent 64
(ba.)pianokey2hz 64
(ba.)hz2pianokey 64
Counters and Time/Tempo Tools 64
(ba.)counter. i e 64
(ba.)countdown 65
(ba.dcountup. 65
(ba.)sweep 65

(ba)time 66
(badramp. 66
(ba.)line o o i 66
(ba.dtempo 66
(ba.)period 67
(ba.dpulse 67
(ba.dpulsen 67
(ba.)cycle 68
(ba.)beat 68
(ba.)pulse_countup 68
(ba.)pulse_countdown 68
(ba.)pulse_countup_loop 69
(ba.)pulse_countdown_loop 69
(ba.)resetCtr 69
Array Processing/Pattern Matching 70
(ba.)count 70
(ba)take e 70
(ba.)subseq 70
Function tabulation 0L 71
(ba.)tabulate 71
(ba.)tabulate_chebychev 72
(ba.)tabulateNd 73
Selectors (Conditions) 80
(ba.)if e 80
(ba.)ifNC o e 80
(ba.)ifNcNO o ot 81
(ba.)selector 81
(ba.)select2stereo 81
(ba.)selectn. o . o 82
(ba.)selectmulti 82
(ba.)selectoutn 83
Other e 83
(ba.)latch 83
(ba.)sAndH 83
(ba.)downSample 84
(ba.)peakhold 84
(ba.)peakholder 84
(ba.)kr2ar 85
(ba.)impulsify 85
(ba.)automat 85
(ba.dbpf 85
(ba.)listInterp 86
(ba.dbypassl. 86
(ba.)bypass2. e 87
(ba.)bypassito2 87
(ba.)bypass_fade 87

(ba.dtoggle 88
(ba.)on_and_off 88
(ba.)bitcrusher, 88
Sliding Reduce 89
(ba.)slidingReduce 92
(ba.)slidingSum 92
(ba.)slidingSump 92
(ba.)slidingMax 93
(ba.)slidingMin 93
(ba.)slidingMean 93
(ba.)slidingMeanp 94
(ba.)slidingRMS 94
(ba.)slidingRMSp v v v vt 94
Parallel Operators 95
(ba.)parallel0p v v v v v vt 95
(ba.)parallelMaxo vt 95
(ba.)parallelMin 96
(ba.)parallelMean 96
(ba.)parallelRMSt i i 96
compressors.lib 96
Conversion Tools e 97
(co.)ratio2strength 97
(co.)strength2ratio 97
Functions Reference 98
(co.)peak_compression_gain mono_db 98
(co.)peak_compression_gain _N_chan_db 99
(co.)FFcompressor_N_chan 100
(co.)FBcompressor_N_chan 101
(co.)FBFFcompressor_N_chan 102
(co.)RMS_compression_gain mono_db 103
(co.)RMS_compression_gain_N_chan_db 104
(co.)RMS_FBFFcompressor_N_chan 105
(co.)RMS_FBcompressor_peak_limiter N_chan 106
Linear gain computer section 107
(co.)peak_compression_gain mono 107
(co.)peak_compression_gain N_chan 108
(co.)RMS_compression_gain mono 109
(co.)RMS_compression_gain _N_chan 110
Original versions section oL, 111
(co.)compressor_lad_mono 111
(Co.)compressSor_MONO ¢ v v v v v vt 111
(co.)compressor_stereo 112
(co.)compression_gain_mono 113
(co.)limiter_1176_R4 mono v v v v v v v v e 113
(co.)limiter_1176_R4_stereo 114

Expanders 114

(co.)peak_expansion_gain N_chan_db 114
(co.)expander_N_chan 115
(co.)expanderSC_N_chan 116
Lookahead Limiters 117
(co.)limiter_lad N 117
(co.)limiter_lad_mono i 118
(co.)limiter_lad_stereo 118
(co.)limiter_lad_quad 119
(co)limiter_lad_bw v v i i i 119
delays.lib 119
Basic Delay Functions L. 120
(de.ddelay . . . o o v v 120
(de.dfdelay vt 120
(de.)sdelay 120
Lagrange Interpolation Lo 121
(de.)fdelaylti and (de.)fdelayltv 121
(de.)fdelay[N] 121
Thiran Allpass Interpolation 121
(de.)fdelay[Nla i i 122
demos.lib 122
Analyzers 122
(dm.)mth_octave_spectral_level _demo 123
Filters e 123
(dm.)parametric_eq_demo 123
(dm.)spectral_tilt_demo 123
(dm.)mth_octave_filterbank_demo and (dm.)filterbank_demo 123
Effects 124
(dm.)cubicnl _demo 124
(dm.)gate_demo 124
(dm.)compressor_demo 124
(dm.)moog_vcf _demo 124
(dm.)wah4 _demo e 124
(dm.)crybaby_demo 125
(dm.)flanger_demo 125
(dm.)phaser2_demo 125
Reverbs e 125
(dm.)freeverb_demo 125
(dm.)stereo_reverb_tester 125
(dm.)fdnrevO_demo 126
(dm.)zita_rev_fdn_demo 126
(dm.)zita_light 126
(dm.)zita_revl e 126
(dm.)dattorro_rev_demo 127

(dm.)jprev_demo 127
(dm.)greyhole_demo 127
Generators e e e 127
(dm.)sawtooth_demo 127
(dm.)virtual_analog_oscillator_demo 128
(dm.)oscrs_demo vttt 128
(dm.)velvet_noise demo 128
(dm.)latch_demo v . v v v vt i e 128
(dm.)envelopes_demo 128
(dm.)fft_spectral_level demo 129
(dm.)reverse_echo_demo(nChans) 129
(dm.)pospass_demoo 130
(dm.)exciter. o i i e 130
(dm.)vocoder_demo v vt i 131
(dm.)colored_noise_demo 131
dx7.lib 131
(dx.)dx7_ampf 131
(dx.)dx7_egraterisef 132
(dx.)dx7_egraterisepercf 132
(dx.)dx7_egratedecayf 132
(dx.)dx7_egratedecaypercf 133
(dx.)dx7_eglv2peakf 133
(dx.)dx7_velsensf 133
(dx.)dx7_fdbkscalef 134
(AX)AXT_OP + v v o e e e 134
(dx.)dx7_algo 135
(Ax.)AX7_Uui . . . o e e e 135
envelopes.lib 136
Functions Reference 136
(en.)ar e e 136
(en.)asr e 136
(en.)adsr. o e 137
(en.)adsrf_bias i e 137
(en.)adsr_bias 137
(en.)ahdsrf_bias 138
(en.)ahdsr_bias e 138
(en.)smoothEnvelopeo v 139
(en.)arfe. o e 139
(en.)are e 140
(en.)asre. v i e 140
(en.)adsre v i e e e 140
(en.)ahdsre e 141
(en.)dx7envelope v vt i e 141

fds.lib 141

Model Construction 142
(fd.)modellD 142
(£d.dmodel2D. 143

Interpolation 143
(fd.)stairsInterplD 143
(fd.)stairsInterp2D 144
(fd.)linInterpdD 144
(£d.)1inTInterp2D oo 144
(fd.)stairsInterpiDOut 145
(fd.)stairsInterp2DOut 145
(fd.)1linInterpiDOut 145
(fd.)stairsInterp2DOut 146

Routingo 146
(fd)routelD.o 146
(fd.)route2Do 147

Scheme Operations 147
(fd.)schemePoint 147
(fd.)buildSchemelD 148
(fd.)buildScheme2D 148

Interaction Models L 148
(fd.)hammero 148
(FAd.)DOW . . o o e 149

filters.lib 149

Basic Filters. 150
(fi.dzero. L 150
(fidpole. o o o e 150
(fi.)integrator 151
(fi.)dcblockerat Lo 151
(fi.)dcblocker 151
FLDIPEN . . o oo 152

Comb Filters 152
(fi)ff_comb. 152
(fi)ff_fcomb 152
(fi.)ffcombfilter 153
(Fi.)fb_comb. 153
(fi.)fb_fcomb 153
(Fidrevl. o e 154
(fi.)fbcombfilter and (fi.)ffbcombfilter 154
(fi.)allpass_comb 155
(fi.)allpass_fcomb 155
(Fi)rev2. . . o . o 156
(fi.)allpass_fcombb and (fi.)allpass_fcombla 156

Direct-Form Digital Filter Sections 156
(Fi)ddr ..o 156

(Fi0fir ..o 157

(fi.d)convand (fi.)convN 157
(fitf1, (fidtf2and (Fi)tf3 157
(fidmotchw o 158
Direct-Form Second-Order Biquad Sections 158
(fi.)tf21, (£i.)t£22, (fi.)tf22t and (fi.)tf21t 158
Ladder/Lattice Digital Filters 159
(£1.)av2SV . . . o oo 159
(f1.)bvav2nuvo 160
(fi.)didr_lat2 160
(fi)allpassnt 160
(F1)4ir K1 . . . o 160
(fi.)allpassnklt 161
(fi)ddr_latl 161
(fi.)allpassnimt 161
(Fi)idr_nl 162
(fi.)allpassnnltol 162
Useful Special Cases i 162
(Fi)tf2np 163
(FLIWET . . o 163
(F1i)nlf2. . . oo 163
(Fidapnl oo 164
Ladder/Lattice Allpass Filters 164
(£1.)allpassn v v v v e 164
(fi.)allpassnm ¢ v v vt 165
(fi.)allpassnkl 165
(fi)allpasslm 165
Digital Filter Sections Specified as Analog Filter Sections 166
(fi)tf2s and (£1.)tf2snp 166
(FLiDLFLISOP - o o v o 167
G T B 7= e 167
(Fi)tfls. . . o o e 167
G T i v 7=« 168
(Fi)tflsb o e 168
Simple Resonator Filters 168
(fidresonlp. o o e 168
(fidresonhp. L 169
(fidresonbp. 169
Butterworth Lowpass/Highpass Filters 169
(fi)lowpass o oot 169
(fi)highpass L 170
(fi.)lowpassO_highpassl 170
Special Filter-Bank Delay-Equalizing Allpass Filters 170
(fi.)lowpass_plus|minus_highpass 171
Elliptic (Cauer) Lowpass Filters 171
(fi.)lowpass3et i 171

(fi)lowpassbe i e 171

Elliptic Highpass Filters 172
(fi.)highpass3e 172
(fi.)highpass6e 172

Butterworth Bandpass/Bandstop Filters 172
(fidbandpass oLl e 172
(fidbandstop 173

Elliptic Bandpass Filters 173
(fi.)bandpass6e 173
(fi.)bandpassl2e 174
(fi.)pospass. o oo 174

Parametric Equalizers (Shelf, Peaking) 174
(fi.)low_shelf e 175
(fi.)high_shelf 176
(fidpeak_eq. . « v v v v 176
(fidpeak_eq_cq o o v il 177
(fidpeak_eq rmo 177
(fi.)spectral_tilt 178
(fi.)levelfilter o i i i i it 178
(fi.)levelfilterN 179

Mth-Octave Filter-Banks 179
(fi.)mth_octave_filterbank[n] 180

Arbitrary-Crossover Filter-Banks and Spectrum Analyzers 180
(fi.)filterbank 180
(fi.)filterbanki 181

State Variable Filters. oo, 181
(F1i)svE .« . . o e 181

Linkwitz-Riley 4th-order 2-way, 3-way, and 4-way crossovers 182
(fi.)lowpassLR4 182
(fi)highpassLR4o i 182
(fi.)crossover2LR4 183
(fi.)crossover3LR4 183
(fi.)crossover4dlR4 183
(fi.)crossover8LR4o 184

Standardized Filters oo 184
(fi.)itu_r_bs_1770_4 kfilter 184

Averaging Functions L oL L 184
(fidavg_rect 184
(fidavg_tau. o 185
(fi)avg_t60. 185
(Fidavg_t19. 186

hoa.lib 186

Encoding/decoding Functions 186
(ho.)encoder 186
(ho.)rEncodero 187

(ho.)stereoEncoder 187
(ho.)multiEncoder 187
(ho.)decoder 188
(ho.)decoderStereo 188
(ho.)iBasicDecoder 188
(ho.)circularScaledVBAP 189
(ho.)imlsDecoder 189
(ho.)iDecodero 189
Optimization Functions 190
(ho.)optimBasic 190
(ho.)optimMaxRe 190
(ho.)optimInPhase 191
(hoJoptdm 191
(ho)wider 191
(ho.)mirror 191
(hodmap 192
(ho.)rotate 192
(ho.)scope 192
Spatial Sound Processes 193
(ho.).fxDecorrelation 193
(ho.) .synDecorrelation 194
(ho.) .fxRingMod 194
(ho.).synRingModo 195

3D Functions 195
(ho.)encoder3D 196
(ho.)rEncoder3D 196
(ho.)optimBasic3D 196
(ho.)optimMaxRe3D 197
(ho.)optimInPhase3D 197
(ho)optim3D. 197
Faust Libraries Index 198
aanl . .o oL 198
analyzers 198
basics 198
COIMPTESSOTS .+« « v v v v e v e v e e e e e e e e e e e e e 199
delays 199
demos 199
AX7 . o e 199
envelopes L 200
fds . . e 200
filters e 200
hoa 200
interpolators 201
maths e 201
Mi . e 201

misceffectso 201

oscillators 201
NOISES « v v v v v e e e e e e e e e e e e e e 202
phaflangers oL o 202
physmodelso 202
quantizers Lo 203
reducemaps oo 203
TEVErbS 203
TOULES o o e e e e 203
signalso 204
soundfiles 204
Spats 204
synths 204
vaeffects L 204
VEISION . . v v v v o e e e e e 204
wdmodels 204
webaudio 205
interpolators.lib 205
Two points interpolation functions 207
(it.)interpolate_linear 207
(it.)interpolate_cosine 207

Four points interpolation functions 208
(it.)interpolate_cubic 208

Two points interpolators L L oL 208
(it.)interpolator_two_points 208
(it.)interpolator_linear 209
(it.)interpolator_cosine 209

Four points interpolators oL 209
(it.)interpolator_four_points 209
(it.)interpolator_cubic 210
(it.)interpolator_select 210
Lagrange based interpolators 210
(it.)lagrangeCoeffs(N, xCoordsList) 210
(it.)lagrangeInterpolation(N, xCoordsList) 211
(it.)frdtable(N, S) o 212
(it.)frwtable(N, S) 212
Misc functions 213
(Atdremap 213
maths.lib 214
Functions Reference 214
(ma.)SR e 214

(ma.)T . . .o 214
@a.)BS 214

Ma.)P . . . o 214

12

(ma.)deg2rad. 215
(ma.)rad2deg. 215
ma.)E. e 215
(ma .)EPSILON vttt e e e e 215
Ma.)MIN e e 215
(ma.)MAX . . . e 216
(ma.)FTZ 216
(ma.)copysign 216
(ma.)neg 216
(ma.)not e 217
(ma.)sub(x,y) o o o 217
(ma.)inv 217
(ma.)cbrt 217
(ma.)hypot 217
(ma.)1dexp« . o 218
(ma.)scalb e 218
Ma.)1oglp « v v v 218
(ma.)logb. 218
(ma.)ilogb 218
ma.)log2. 219
(ma.)expml 219
(ma.)acosh e 219
(ma.)asinh 219
(ma.)atanh 219
(ma.)sinh. 220
(ma.)cosh. e 220
(ma.)tanh. e 220
(ma.)erf 220
(ma.)erfc. 220
(ma.)gamma 221
(ma.)lgamma ot e 221
Ma.)JO 221
(ma.)J1 . . . e e 221
(ma.)Jn 221
(ma.)Y0 e 222
(ma.)Y1 . . e 222
(ma.)Yn e 222
(ma.)fabs, (ma.)fmax, (ma.)fmin 222
(ma.)mp2 222
(ma.)frac.o 223
(ma.)modulo 223
(ma.)isnan 223
(ma.)isinf 224
(ma.)chebychev 224
(ma.)chebychevpoly 224
(ma.)diffn 225

(ma.)signum L 225

(ma.)nextpow2 225
(Ma.)zc . . . o 225
mi.lib 226
SOUTCES . . . oo 226
Utility Functions L 227
(mi.)initState 227
Mass Algorithms 227
(midmass. L 227
(mi.)oscilo 228
(mi.)ground 228
(miJposInput 228
Interaction Algorithms 229
(mi.)spring 229
(mi.)damper 229
(mi.)springDamper 229
(mi.)nlSpringDamper2 230
(mi.)nlSpringDamper3 230
(mi.)nlSpringDamperClipped 231
(mi)nlPluck. o e 231

(i dnlBow o e 232
(mi.)collision 232
(mi.)nlCollisionClipped 232
misceffects.lib 233
Dynamic. 233
(ef Jcubicnl oL 233
(ef.)gate_mono 234
(ef.)gate_stereo 234
Fibonacci L 235
(ef.)fibonacci 235
(ef.)fibonacciGeneral 235
(ef.)fibonacciSeq 236
Filtering 236
(ef.)speakerbp 236
(ef.)piano_dispersion_filter 236
(ef.)stereo_width 237
Meshes 238
(ef.)mesh_square 238
Mixing e 239
(ef .)dryWetMixer 239
(ef.)dryWetMixerConstantPower 239
(ef.)mixLinearClamp o v v v v v v v 240
(ef.)mixLinearLoop 240

(ef .)mixPowerClamp 240

14

(ef .)mixPowerLoop Lo 241

Time Based 241
(ef.)echo. 241
(ef.)reverseEchoN(nChans,delay) 242
(ef.)reverseDelayRamped(delay,phase) 242
(ef.)uniformPanToStereo(nChans) 242

Pitch Shifting o 243
(ef.)transpose 243

Saturators L .. e e e 243
(ef.)softclipQuadratic 243
(ef Jwavefold e 243

noises.lib 244

Functions Reference, 244
(no.)noise e 244
(no.)multirandom 244
(no.)multinoise 244
(no.)noises 245
(no.)randomseed 245
(no.)rnoise 245
(no.)rmultirandom 245
(no.)rmultinoise 246
(no.)rnoises 246
(no.)pink_noise 246
(no.)pink_noise_vm 247
(no.)1fnoise, (no.)1fnoise0 and (no.)lfnoiseN 248
(no.)sparse_noise 248
(no.)velvet_noise_vm o i 249
(no.)gnoise 249
(no.)colored_noise i it 249

oscillators.lib 250

Wave-Table-Based Oscillators 250
(os.)sinwaveform 250
(os.)coswaveform 251
(os.)phasor 251
(os.)hs_phasor 251
(os.)hsp_phasor 251
(os.)oscsin L e 252
(os.)hs_oscsin 252
(08.)0SCCOS 252
(0s.)hs_08SCCOSo 253
(0S.)0SCP .« v v v i i 253
(os.)osci e 253
(0S.)0SC . . o o e 253
(os.)m_oscsin e 254

(0S.)M_0SCCOS . . v v v v v et e e e e e 254

Low Frequency Oscillators 254
(os.)1f _dmptrain 254
(0s.)1f_pulsetrainpos 255
(0os.)1f _pulsetrain 255
(0s.)1f_squarewavepos 255
(os.)1f_squarewave 255
(os.)1f_triangleposo 256
(os.)1f _triangle 256

Low Frequency Sawtooths 256
(08)1f_rawsaw v v i e e e 257
(08.)1f _sawpos 257
(0s.)1f_sawpos_phase 257
(os.)1f_sawpos_reset 257
(os.)1f_sawpos_phase_reset 258
(0s)Lf_saw o e 258

Alias-Suppressed Sawtooth 258
(os)sawN o e 258
(os)sawNpo 259
(os.)saw2, (os.)saw3, (os.)sawd 260
(os.)saw2ptr. 260
(os.)saw2dpw. 261
(os.)sawtooth 261
(os.)saw2f2, (os.)saw2fd 261

Alias-Suppressed Pulse, Square, and Impulse Trains 262
(os.)impulse. 262
(os.)pulsetrainN 263
(os.)pulsetrain 263
(os.)squareN. 263
(os.)square L 263
(os.)imptrainN L 264
(os.)imptraino 264
(os.)triangleN L 264
(os.)triangle 265

Filter-Based Oscillators, 265
(os.)oscb. 265
(08.)0SCrq 265
(0S.)0SCIS o L e 266
(0S.)0SCTC o v i e 266
(0S.)0SCS . .« .« o i i e 267
(os.)quadosc. oL 267
(os.)sidebands 267
(os.)sidebands_list o e 268

Waveguide-Resonator-Based Oscillators 269
(0S.)OSCWC . .« . o v i i 269
(0S.)OSCWS . . .« o v v it e 269

(08.)0SCq . .« v v v e 270

(0sS.)oSCW oL 270
Casio CZ Oscillators 271
(08.)CZsaw o e 271
(0s.)CZsawP 271
(0s.)CZsquare e 272
(os.)CZsquareP 272
(0s.)CZpulse. oo 272
(0s.)CZpulseP 273
(0s.)CZsinePulse o 273
(0s.)CZsinePulseP 273
(0s.)CZhalfSine 274
(0s.)CZhalfSineP 274
(0s.)CZresSaw 274
(os.)CZresTriangle 275
(08.)CZresTrap o v v i it 275
PolyBLEP-Based Oscillators 275
(os.)polyblep 275
(os.)polyblep_saw v v v vt 276
(os.)polyblep_square 276
(os.)polyblep_triangle 276
phaflangers.lib 276
Functions Reference 0L 276
(pf.)flanger_mono 277
(pf.)flanger_stereo 277
(pf.)phaser2_mono 277
(pf.)phaser2_stereo 278
physmodels.lib 279
Global Variables o 280
(pm.)speed0fSound 280
(pm.)maxLength 280
Conversion Tools 280
(pm.)E21 . . oL 280
(pm.)12f 280
(pm.)12s . . oL 281
Bidirectional Utilities oL oL 281
(pm.)basicBlock 281
(pm.)chain oL 281
(pm.)inLeftWave 282
(pm.)inRightWave 282
(pm.)in . . oL 282
(pm.)outLeftWave 282
(pm.)outRightWave 283
(pm.)out oL 283

(pm.)terminations 283
(pm.)1Termination 283
(pm.)rTermination 284
(pm.)closeIns v v vt i 284
(pm.)closeOuts 284
(pm.)endChain 284
Basic Elementso Lo 284
(pm.)waveguideN 285
(pm.)waveguide 285
(pm.)bridgeFilter 285
(pm.)modeFilter 286
String Instruments oL oL oL 286
(pm.)stringSegment 286
(pm.)openString 286
(pm.)nylonString 287
(pm.)steelString 287
(pm.)openStringPicko 287
(pm.)openStringPickUp 288
(pm.)openStringPickDownt 288
(pm.)ksReflexionFilter 289
(pm.)rStringRigidTermination 289
(pm.)1StringRigidTermination 289
(pm.)elecGuitarBridge 289
(pm.)elecGuitarNuts 290
(pm.)guitarBridge 290
(pm.)guitarNuts 290
(pm.)idealString 290
(Pm.)RS .o 291
(pm.)ks_ui_MIDI 291
(pm.)elecGuitarModel 291
(pm.)elecGuitar 292
(pm.)elecGuitar_ui MIDI 292
(pm.)guitarBody 292
(pm.)guitarModel 292
(pm.)guitar 293
(pm.)guitar_ui _MIDI 293
(pm.)nylonGuitarModel 293
(pm.)nylonGuitar 294
(pm.)nylonGuitar_ui MIDI 294
(pm.)modeInterpRes it 294
(pm.)modularInterpBody 295
(pm.)modularInterpStringModel 295
(pm.)modularInterpInstr 296
(pm.)modularInterpInstr_ui MIDI 296
Bowed String Instruments L 296
(pm.)bowTable 296

(pm.)violinBowTable 297
(pm.)bowInteraction 297
(pm.)violinBow 297
(pm.)violinBowedString 298
(pm.)violinNuts 298
(pm.)violinBridge 298
(pm.)violinBody 298
(pm.)violinModel 299
(pm.)violin_ui 299
(pm.)violin_ui MIDI oo v i vt 299
Wind Instruments oL oL L 299
(pm.)openTube L 299
(pm.)reedTable 300
(pm.)fluteJetTable 300
(pm.)brassLipsTable 300
(pm.)clarinetReed 301
(pm.)clarinetMouthPiece 301
(pm.)brassLips 301
(pm.)fluteEmbouchure 302
(pm.)wBell 302
(pm.)fluteHead 302
(pm.)fluteFoot 303
(pm.)clarinetModel 303
(pm.)clarinetModel _ui 303
(pm.)clarinet_ui 303
(pm.)clarinet_ui_MIDI 304
(pm.)brassModel 304
(pm.)brassModel_ui 304
(pm.)brass_uio 305
(pm.)brass_ui_MIDIo 305
(pm.)fluteModel 305
(pm.)fluteModel _ui 305
(pm.)flute_ui L 306
(pm.)flute_ui_MIDI 306
Exciters L 306
(pm.)impulseExcitation 306
(pm.)strikeModel 307
(pm.)strike 307
(pm.)pluckString 307
(pm.)blowero 308
(pm.)blower_ui 308
Modal Percussions L o o 308
(pm.)djembeModel 308
(pm.)djembe 309
(pm.)djembe_ui_MIDI 309
(pm.)marimbaBarModel, 309

(pm.)marimbaResTube 310
(pm.)marimbaModel 310
(pm.)marimba.o 310
(pm.)marimba_ui MIDI 311
(pm.)churchBellModel 311
(pm.)churchBell 312
(pm.)churchBell ui 312
(pm.)englishBellModel 313
(pm.)englishBell 313
(pm.)englishBell ui 314
(pm.)frenchBellModel 314
(pm.)frenchBell 314
(pm.)frenchBell ui 315
(pm.)germanBellModel 315
(pm.)germanBell 316
(pm.)germanBell ui 316
(pm.)russianBellModel 317
(pm.)russianBell 317
(pm.)russianBell _ui 318
(pm.)standardBellModel 318
(pm.)standardBell 319
(pm.)standardBell ui 319
Vocal Synthesis 319
(pm.)formantValues 319
(pm.)voiceGender 320
(pm.)skirtWidthMultiplier 320
(pm.)autobendFreq 320
(pm.)vocalEffort 321
(pm.)fof 321
(pm.)fofSH o o 322
(pm.)fofCycle 322
(pm.)fofSmooth 323
(pm.)formantFilterFofCycle 323
(pm.)formantFilterFofSmooth 323
(pm.)formantFilterBP 324
(pm.)formantFilterbank 324
(pm.)formantFilterbankFofCycle 325
(pm.)formantFilterbankFofSmooth 325
(pm.)formantFilterbankBP 326
(pm.)SFFormantModel 326
(pm.)SFFormantModelFofCycle 327
(pm.)SFFormantModelFofSmooth 327
(pm.)SFFormantModelBP 327
(pm.)SFFormantModelFofCycle_ui 328
(pm.)SFFormantModelFofSmooth_ui 328
(pm.)SFFormantModelBP_ui 328

(pm.)SFFormantModelFofCycle_ui MIDI 329

(pm.)SFFormantModelFofSmooth_ui_MIDI 329
(pm.)SFFormantModelBP_ui MIDI 329
Misc Functions L 329
(pm.)allpassNL 329

(pm) .modalModel 330
quantizers.lib 330
Functions Reference 330
(qu.)quantize L 330
(qu.)quantizeSmoothed 331
(qu.dionmian L 331
(qu.ddorian 331
(qu.dphrygian Lo 332
(qu.dlydian 332
(qu.dmixo. oL 332
(qu.)eolian 332
(qu.dlocrian. oL 333
(qu.)pentanat 333
(qu.dkumoi 333
(qu.dnmatural 333
(qu.)dodeca 334
(qu.ddimin 334
(qu.dpenta 334
reducemaps.lib 335
(rm.)parReduce 335
(rm.)topReduce 336
(rm.)botReduce e 336
(rm.)reduce 337
(rm.)reducemap 337
reverbs.lib 337
Schroeder Reverberators 337
(re.)jcrev 338
(re.)satrev e 338
Feedback Delay Network (FDN) Reverberators 338
(re)fdnrevO. e 338
(re.)zita_rev_fdn 339
(re.)zita_revl_stereo 340
(re.)zita_revl_ambi 340
Freeverb e 340
(re.)mono_freeverb 340
(re.)stereo_freeverb 341
Dattorro Reverb 341
(re.)dattorro_rev v i i i 341

21

(re.)dattorro_rev_default

JPverb and Greyhole Reverbs 342
(re.)jpverb 342
(re.)greyhole 343

routes.lib 344

Functions Reference 344
(ro.)cross e 344
(ro.)crossnn. 344
(ro.)crossnl e 345
(ro.)crossin. 345
(ro.)crossNM.o 345
(ro.)interleave 346
(rodbutterfly 346
(ro.)hadamard 346
(ro.)recursivize 346
(ro.)bubbleSort 347

signals.lib 347

Functions Reference 348
(si)buso 348
(si.)block e 348
(si.)interpolate L. 348
(si.)repeat 348
(si.)smoo 349
(si.)polySmooth 349
(si.)smoothAndH 350
(si.)bsmooth. 350
(si.)dot e 350
(si.)smooth e 351
(si.)smoothg. 351
(si.)cbus. 351
(sidemul e 352
(si.dccomj o oo i 352
(si.)onePoleSwitching 352
(si.drev 353
(sidvecOp« o v i 353

soundfiles.lib 355

Functions Reference, 355
(80.0100P . « v v i i e 355
(so.)loop_speed 355
(so.)loop_speed_level 356

spats.lib 356
(sp.dpanner 356

22

(sp.)constantPowerPan 357

(sp.dspat 357
(sp.)stereoize 357
synths.lib 357
(sy.)popFilterDrum 358
(sy.)dubDub 358
(sy.)sawTrombone 358
(sy.)combString 359
(sy.)additiveDrum 359
(sy)fm 359
Drum Synthesis L o 360
(sy dkick. . . o o oo 360
(sy.dclap. o oo i 360
(sy.dhat 361
vaeffects.lib 361
Moog Filters 361
(ve.dmoog_vef L. 362
(ve.dmoog_vcf_2b[n]o 362
(ve.)moogladder 363
(ve.)moogHalfLadder 363
(ve.)diodeladder 364
Korg 35 Filters 364
(ve .)korg3BLPF 364

(ve . Dkorg35HPF 365
Oberheim Filters o 365
(ve.)oberheim 365
(ve.)oberheimBSF 366
(ve.)oberheimBPF 366
(ve.)oberheimHPF 366
(ve.)oberheimlPF 367
Sallen Key Filters oo 367
(ve.)sallenKeyOnePole 367
(ve.)sallenKeyOnePolelLPF 368
(ve.)sallenKeyOnePoleHPF 368
(ve.)sallenKey2ndOrder 369
(ve.)sallenKey2ndOrderLPF 369
(ve.)sallenKey2ndOrderBPF 370
(ve.)sallenKey2ndOrderHPF 370
Effects 370
(vedwahd L 370
(ve.dautowah 371
(ve.dcrybaby 371
(ve.)vocoder 371

23

version.lib 372

(vli)version. e 372
wdmodels.lib 372
Using this Library L oL 373
Quick Start 373

A Simple RC Filter Model 373
Buildinga Model oo 374
Declaring Model Parameters as Inputs 374
Treesin Faust 375

How the Build Functions Work 377
Acknowledgements oo 377
Algebraic One Port Adaptors 377
(wd.)resistoro 377
(wd.)resistor_Vout, 378
(wd.)resistor_Tout, 378
(wd.du_voltage o vt i 379
(wd.)u_current 0 i e e 379
(wd.)resVoltage 380
(wd.)resVoltage_Vout 381
(wd.)u_resVoltage 381
(wd.)resCurrent e 382
(wd.)u_resCurrent 382
(wdJu_switch e 383
Reactive One Port Adaptors 384
(wd.)capacitor 384
(wd.)capacitor_Vout 384
(wd.)inductor e 385
(wd.)inductor_Vout 385
Nonlinear One Port Adaptors 386
(wd.)u_idealDiode 386
(wd.Ju_chua e 386
(wd.)lambert e 387
(wd.)u_diodePair e 387
(wd.)u_diodeSingle 388
(wd.)u_diodeAntiparallel 388

Two Port Adaptors 389
(wd.)u_parallel2Port 389
(wd.)parallel2Port 389
(wd.)u_series2Port e 390
(wd.)series2Port 390
(wd.)parallelCurrent 390
(wd.)seriesVoltage 391
(wd.)u_transformer, 391
(wd.)transformer 392
(wd.)u_transformerActive 393

(wd.)transformerActive 393

Three Port Adaptors 394
(wd.)parallel i 394
(wd.)series 394

R-Type Adaptors 395
(wd.)u_sixportPassive 395

Node Creating Functions 395
(wd.)genericNode 395
(wd.)genericNode Vout 396
(wd.)genericNode_Tout 397
(wd.)u_genericNode 397

Model Building Functions L. 398
(wd.)builddown 398
(WA Dbuildup . . .« . 398
(wd.)getres 398
(wd.dparres 399
(wd.)buildout L L 399
(wd.)buildtree 400

webaudio.lib 400
(wa.)lowpass2 ot it e 400
(wa.)highpass2, 400
(wa.)bandpass2 401
(wa.)nmotch2 e 401
(wa.)allpass2ot 402
(wa.)peaking2 402
(wa.)lowshelf2 403
(wa.)highshelf2 403

Faust Libraries

The Faust libraries implement hundreds of DSP functions for audio process-
ing and synthesis. They are organized by types in a set of .1lib files (e.g.,
envelopes.lib, filters.lib, etc.). Librairies use semantic versioning, so may
evolve in a manner where never versions break compatibility with older ones.
The recommended way to solve this issue is to keep self-contained versions of
the DSP code (that is the DSP program with all needed libraries) as explained
in Goals of the Mathdoc.

This website serves as the main documentation of the Faust libraries. The main
Faust website can be found at the following URL:

https://faust.grame.fr

25

https://semver.org
https://faustdoc.grame.fr/manual/mathdoc/#goals-of-the-mathdoc
https://github.com/grame-cncm/faustlibraries

Using the Faust Libraries

The easiest and most standard way to use the Faust libraries is to import
stdfaust.lib in your Faust code:

import ("stdfaust.lib");

This will give you access to all the Faust libraries through a series of environ-
ments:

e sf: all.lib

e aa: aanl.lib

e an: analyzers.lib

e ba: basics.lib

e co: compressors.lib
e de: delays.lib

e dm: demos.1lib

e dx: dx7.1lib

e en: envelopes.lib

e fd: fds.lib

o fi: filters.lib

e ho: hoa.lib

e it: interpolators.lib
e ma: maths.1lib

e mi: mi.lib

o ef: misceffects.lib
e 0s: oscillators.lib
e no: noises.lib

o pf: phaflangers.lib
e pm: physmodels.lib
e qu: quantizers.lib
e rm: reducemaps.lib
e re: reverbs.lib

e ro: routes.lib

e si: signals.lib

e so: soundfiles.lib
e sp: spats.lib

e sy: synths.lib

e ve: vaeffects.lib

e vl: version.lib

¢ wa: webaudio.lib

e wd: wdmodels.lib

Environments can then be used as follows in your Faust code:

import ("stdfaust.lib");
process = os.osc(440);

In this case, we're calling the osc function from oscillators.lib.

26

You can also access all the functions of all the libraries directly using the sf
environment:

import ("stdfaust.lib");
process = sf.osc(440);

Alternatively, environments can be created by hand:

os = library("oscillators.lib");
process = os.osc(440);

Finally, libraries can be simply imported in the Faust code (not recommended):

import ("oscillators.1ib");
process = osc(440);

Organization of This Documentation

The Overview tab in the upper menu provides additional information about the
general organization of the libraries, licensing/copyright, and guidelines on how
to contribute to the Faust libraries.

The Libraries tab contain the actual documentation of the Faust libraries.

General Organization

Only the libraries that are considered to be “standard” are documented:

e aanl.lib

e analyzers.lib

e basics.lib

e compressors.lib
e delays.lib

e demos.lib

e dx7.1ib

e envelopes.lib

o fds.lib

e filters.lib

e hoa.lib

e interpolators.lib
e maths.lib

e mi.lib

e misceffects.lib
e oscillators.lib
e noises.lib

e phaflangers.lib
e physmodels.lib
e reducemaps.lib
e reverbs.lib

27

e routes.lib

e signals.lib

¢ soundfiles.lib

e spats.lib

e synths.lib

e tonestacks.lib (not documented but example in /examples/misc)
e tubes.lib (not documented but example in /examples/misc)
o vaeffects.lib

e version.lib

¢ wdmodels.lib

e webaudio.lib

Other deprecated libraries such as music.lib, etc. are present but are not
documented to not confuse new users.

The documentation of each library can be found in /documentation/library.html
or in /documentation/library.pdf.

Versioning

A global version number for the standard libraries is defined in version.1lib.
It follows the semantic versioning structure: MAJOR, MINOR, PATCH. The
MAJOR number is increased when we make incompatible changes. The MINOR
number is increased when we add functionality in a backwards compatible man-
ner, and the PATCH number when we make backwards compatible bug fixes.
By looking at the generated code or the diagram of process = vl.version;
one can see the current version of the libraries.

Examples

The Faust distribution /examples directory contains a lot of DSP examples.
They are organized by types in different folders. The /examples/old folder
contains examples that are fully deprecated, probably because they were inte-
grated to the libraries and fully rewritten (see freeverb.dsp for example).

Examples using deprecated libraries were integrated to the general tree, but a
warning comment was added at their beginning to point readers to the right
library and function.

Standard Functions

Dozens of functions are implemented in the Faust libraries and many of them
are very specialized and not useful to beginners or to people who only need
to use Faust for basic applications. This section offers an index organized by
categories of the “standard Faust functions” (basic filters, effects, synthesizers,
etc.). This index only contains functions without a user interface (UI). Faust
functions with a built-in UI can be found in demos.1lib.

28

Analysis Tools

Function Type

Function Name

Description

Amplitude Follower

Octave Analyzers

an.amp_follower

Classic analog audio
envelope follower

an.mth_octave_analyzer [@¢tave analyzers

Basic Elements

Function Type

Function Name

Description

Beats

Block
Break Point Function

Bus

Bypass (Mono)
Bypass (Stereo)
Count Elements
Count Down
Count Up
Delay (Integer)
Delay (Float)
Down Sample
Impulsify

ba.beat

si.block
ba.bpf

si.bus
ba.bypassi
ba.bypass2
ba.count
ba.countdown
ba.countup
de.delay
de.fdelay
ba.downSample
ba.impulsify

Pulses at a specific
tempo

Terminate n signals
Beak Point Function
(BPF)

Bus of n signals
Mono bypass

Stereo bypass

Count elements in a list
Samples count down
Samples count up
Integer delay
Fractional delay
Down sample a signal
Turns a signal into an
impulse

Sample and Hold ba.sAndH Sample and hold
Signal Crossing ro.cross Cross n signals
Smoother (Default) si.smoo Exponential smoothing
Smoother si.smooth Exponential smoothing
with controllable pole
Take Element ba.take Take en element from a
list
Time ba.time A simple timer
Conversion

Function Type

Function Name

Description

dB to Linear

Linear to dB

ba.db2linear

ba.linear2db

29

Converts dB to linear
values
Converts linear values
to dB

Function Type

Function Name

Description

MIDI Key to Hz
Hz to MIDI Key
Pole to T60

T60 to Pole

Samples to Seconds
Seconds to Samples

Semitones to Frequency
ratio

Frequency ratio to
semintones

ba.

ba.

ba.

ba.

ba.

ba.

ba.

ba.

midikey2hz
hz2midikey
pole2tau

tau2pole

samp2sec
sec2samp

semi2ratio

ratio2semi

Converts a MIDI key
number into a frequency
Converts a frequency
into MIDI key number
Converts a pole into a
time constant (t60)
Converts a time
constant (t60) into a
pole

Converts samples to
seconds

Converts seconds to
samples

Converts semitones in a
frequency multiplicative
ratio

Converts a frequency
multiplicative ratio in
semitones

Effects

Function Type

Function Name

Description

Auto Wah
Compressor

Distortion
Crybaby

Echo

Flanger

Gate

Limiter

Phaser

Reverb (FDN)
Reverb (Freeverb)
Reverb (Simple)
Reverb (Zita)

Panner

ve

ef.

ve.
ef.

pf
ef

pf
re

re

re.

re

sp.

.autowah
co.

compressor_mono
cubicnl

crybaby
echo

.flanger_stereo
.gate_mono
co.

Auto-Wah effect
Dynamic range
compressor

Cubic nonlinearity
distortion

Crybaby wah pedal
Simple echo
Flanging effect
Mono signal gate

limiter_1176_R4_mondLimiter

.phaser2_stereo
.fdnrev0

.mono_freeverb

jcrev

.zita_revl_stereo

panner

30

Phaser effect

Feedback delay network
reverberator

Most “famous”
Schroeder reverberator
Simple Schroeder
reverberator

High quality FDN
reverberator

Linear stereo panner

Function Type

Function Name

Description

Pitch Shift
Panner
Speaker Simulator

Stereo Width

ef.transpose
sp.spat
ef . speakerbp

ef .stereo_width

Simple pitch shifter
N outputs spatializer
Simple speaker
simulator

Stereo width effect

Vocoder ve.vocoder Simple vocoder
Wah ve.wah4d Wah effect
Envelope Generators

Function Type Function Name Description

ADSR en.adsr Attack/Decay/Sustain/Release
envelope generator

AR en.ar Attack/Release
envelope generator

ASR en.asr Attack/Sustain/Release
envelope generator

Exponential en.smoothEnvelope Exponential envelope
generator

Filters

Function Type

Function Name

Description

Bandpass (Butterworth)
Bandpass (Resonant)
Bandstop (Butterworth)

Biquad
Comb (Allpass)

Comb (Feedback)
Comb (Feedforward)

DC Blocker

Filterbank

FIR (Arbitrary Order)
High Shelf

Highpass (Butterworth)

fi.bandpass
fi.resonbp
fi.bandstop

fi.tf2
fi.allpass_fcomb

fi.fb_fcomb
fi.ff fcomb

fi.dcblocker
fi.filterbank
fi.fir
fi.high_shelf
fi.highpass

31

Generic butterworth
bandpass

Virtual analog resonant
bandpass

Generic butterworth
bandstop

“Standard” biquad filter
Schroeder allpass comb
filter

Feedback comb filter
Feed-forward comb
filter.

Default dc blocker
Generic filter bank
Nth-order FIR filter
High shelf

Nth-order Butterworth
highpass

Function Type

Function Name

Description

Highpass (Resonant)

ITR (Arbitrary Order)
Level Filter

Low Shelf

Lowpass (Butterworth)

Lowpass (Resonant)

Notch Filter

fi.resonhp
fi.iir
fi.levelfilter
fi.low_shelf
fi.lowpass

fi.resonlp

fi.notchw

Virtual analog resonant
highpass

Nth-order IIR filter
Dynamic level lowpass
Low shelf

Nth-order Butterworth
lowpass

Virtual analog resonant
lowpass

Simple notch filter

Peak Equalizer fi.peak_eq Peaking equalizer
section

Oscillators/Sound Generators

Function Type Function Name Description

Impulse
Impulse Train

Phasor

Pink Noise

Pulse Train
Pulse Train (Low
Frequency)
Sawtooth

Sawtooth (Low
Frequency)

Sine (Filter-Based)

Sine (Table-Based)
Square

Square (Low Frequency)
Triangle

Triangle (Low

Frequency)
White Noise

os.impulse
os.imptrain
os.phasor
no.pink_noise
os.pulsetrain
os.1lf_imptrain
os.sawtooth
os.lf_saw
0S.0SCS

0S8.08C
os.square
os.lf_squarewave
os.triangle

os.lf_triangle

no.noise

Generate an impulse on
start-up

Band-limited impulse
train

Simple phasor

Pink noise generator
Band-limited pulse train
Low-frequency pulse
train

Band-limited sawtooth
wave

Low-frequency sawtooth
wave

Sine oscillator
(filter-based)

Sine oscillator
(table-based)
Band-limited square
wave

Low-frequency square
wave

Band-limited triangle
wave

Low-frequency triangle
wave

White noise generator

32

Synths

Function Type Function Name Description

Additive Drum sy.additiveDrum Additive synthesis drum

Bandpassed Sawtooth sy .dubDub Sawtooth through
resonant bandpass

Comb String sy.combString String model based on a
comb filter

FM sy.fm Frequency modulation
synthesizer

Lowpassed Sawtooth sy.sawTrombone “Trombone” based on a
filtered sawtooth

Popping Filter sy.popFilterPerc Popping filter

percussion instrument

Contributing

In general, libraries are organised in a stacked manner: the base ones define
functions or constants without any dependancies, and additional ones are grad-
ually built on top of simpler ones, layer by layer. Dependency loops must
be avoided as much as possible. The resources folder contains tools to build
and visualise the libraries dependencies graphs.

If you wish to add a function to any of these libraries or if you plan to add a
new library, make sure that you observe the following conventions:

New Functions

e All functions must be preceded by a markdown documentation header
respecting the following format (open the source code of any of the libraries
for an example):

// Description
//

// ####t Usage

//

/]

// Usage Example
/)T

//

// Where:

//

// * argumentl: argument 1 description

Every time a new function is added, the documentation should be updated
simply by running make doclib.

The environment system (e.g. os.osc) should be used when calling a func-
tion declared in another library (see the section on Library Import).

Try to reuse existing functions as much as possible.

The Usage line must show the input/output shape (the number of in-
puts and outputs) of the function, like gen: _ for a mono generator, _
: filter : _ for a mono effect, etc.

Some functions use parameters that are constant numerical expressions.
The convention is to label them in capital letters and document them
preferably to be constant numerical expressions (or known at compile time
in existing libraries).

Functions with several parameters should better be written by putting the
more constant parameters (like control, setup...) at the beginning of the
parameter list, and audio signals to be processed at the end. This allows
to do partial-application. So prefer the following clip(low, high, x)
= min(max(x, low), high); form where clip(-1, 1) partially applied
version can be used later on in different contexts, better than clip(x,
low, high) = min(max(x, low), high); version.

New Libraries

Any new “standard” library should be declared in stdfaust.lib with its
own environment (2 letters - see stdfaust.lib).

Any new “standard” library must be added to generateDoc.

Functions must be organized by sections.

Any new library should at least declare a name and a version.

Any new library has to use a prefix declared in the header section with
the following kind of syntax: Its official prefix is 'qu' (look at an
existing library to follow the exact syntax).

Be sure to add the appropriate kind of ma = library("maths.lib");
import library line, for each external library function used in the new
library (for instance ma.foo that would be used somewhre in the code).
The comment based markdown documentation of each library must re-
spect the following format (open the source code of any of the libraries for
an example):

[/ # Y 1ibraryName ############
Description

//
//
//
//
//
//
//
//

* Section Name 1
* Section Name 2

It should be used using the “[...] environment:

34

https://faustdoc.grame.fr/manual/syntax/#constant-numerical-expressions

/]

// [...] = library("libraryName");
// process = [...].functionCall;
/]

//

// Another option is to import “stdfaust.lib” which already contains the

// environment:

//

/"

// import("stdfaust.lib");

// process = [...].functionCall;

/T

[[HHH B R R R

// Section Name
// Description

//

Coding Conventions

In order to have a uniformized library system, we established the following con-
ventions (that hopefully will be followed by others when making modifications
to them).

Function Naming
[WIP]

JOS proposal: using terms used in the field of digital signal processing, as
follows:

e impulse: ..,0,1,0,..

e pulse: ..,0,1,1,0,.. or longer

e impulse_train

e pulse_train

e gate = pulse controlled externally (e.g., by NoteOn,NoteOff)

e trigger = impulse controlled externally (gate - gate’ > 0) == gate rising
edge

[/WIP]

Variable Argument List

Strictly speaking, there are no lists in Faust. But list operations can be simu-
lated (in part) using the parallel binary composition operation , and pattern
matching.

35

L.

https://faustdoc.grame.fr/manual/faq/#pattern-matching-and-lists
https://faustdoc.grame.fr/manual/faq/#pattern-matching-and-lists

Thus functions expecting a variable number of arguments can use this mecha-
nism, like a foo function that would be used this way: foo((a,b,c,d)). See
fi.iir and fi.fir examples.

Documentation

All the functions that we want to be “public” are documented.

We used the faust2md “standards” for each library: //### for main title
(library name - equivalent to # in markdown), //=== for section declara-
tions (equivalent to ## in markdown) and //--- for function declarations
(equivalent to #### in markdown - see basics.1lib for an example).
Sections in function documentation should be declared as #### markdown
title.

Each function documentation provides a “Usage” section (see
basics.lib).

The full documentation can be generated using the doc/Makefile script.
Use make help to see all possible commands. If you plan to create a pull-
request, do not commit the full generated code but only the modified .lib
files.

Each function can have declare author "name";, declare copyright
"XXX"; and declare licence "YYY"; declarations.

Each library has a declare version "xx.yy.zz"; semantic version num-
ber to be raised each time a modification is done. The global version
number in version.lib also has to be adapted according to the change.

Library Import

To prevent cross-references between libraries, we generalized the use of the
library("") system for function calls in all the libraries. This means that
everytime a function declared in another library is called, the environment cor-
responding to this library needs to be called too. To make things easier, a
stdfaust.lib library was created and is imported by all the libraries:

aa
sf
an
ba
co
de
dm
dx
en
fd
fi
ho
it
ma

library("aanl.lib");
library("all.lib");
library("analyzers.lib");
library("basics.lib");
library("compressors.lib");
library("delays.lib");
library("demos.1lib");
library("dx7.1lib");
library("envelopes.lib");
library("fds.lib");
library("filters.lib");
library("hoa.lib");
library("interpolators.lib");
library("maths.lib");

36

https://faustlibraries.grame.fr/libs/filters/#fiiir
https://faustlibraries.grame.fr/libs/filters/#fifir
https://semver.org

mi = library("mi.lib");

ef = library("misceffects.lib");
os = library("oscillators.lib");
no = library("noises.lib");

pf = library("phaflangers.lib");
pm = library("physmodels.1lib");
qu = library("quantizers.lib");
rm = library("reducemaps.lib");
re = library("reverbs.1lib");

ro = library("routes.lib");

si = library("signals.lib");

so = library("soundfiles.lib");
sp = library("spats.lib");

sy = library("synths.1ib");

ve = library("vaeffects.lib");
vl = library("version.lib");

wa = library("webaudio.lib");

wd = library("wdmodels.lib");

For example, if we wanted to use the smooth function which is now declared in
signals.1lib, we would do the following:

import ("stdfaust.lib");

process = si.smooth(0.999);

This standard is only used within the libraries: nothing prevents coders to
still import signals.1ib directly and call smooth without ro., etc. It means
symbols and function names defined within a library have to be unique to
not collide with symbols of any other libraries.

“Demo” Functions

“Demo” functions are placed in demos.lib and have a built-in user interface
(UI). Their name ends with the _demo suffix. Each of these function have a
.dsp file associated to them in the /examples folder.

Any function containing UI elements should be placed in this library and respect
these standards.

“Standard” Functions

“Standard” functions are here to simplify the life of new (or not so new) Faust
coders. They are declared in /libraries/doc/standardFunctions.md and
allow to point programmers to preferred functions to carry out a specific task.
For example, there are many different types of lowpass filters declared in
filters.1lib and only one of them is considered to be standard, etc.

37

Testing the library
Before preparing a pull-request, the new library must be carefully tested:

o all functions defined in the library must be tested by preparing a DSP test
program

e the compatibilty library all.1lib imports all libraries in a same namespace,
so check functions names collisions using the following test program:

import("all.lib");
process = _;

Library deployment
For GRAME maintainers:

o regenerate the PDF documentation using make pdf target in the doc
folder

« update the library submodule in faust, recompile and deploy WebAssembly
libfaust in fausteditor, faustplayground and faustide

e update the library submodule in faustlive

e update the library list in this fausteditor page as well as the snippets
(using the faust2atomsnippets tool).

o update the library list in this faustide page and those files

o update the library list in the faustgen~ code

o update the Faust Syntax Highlighting Files

« make an update PR for vscode-faust project

The Faust Project

The Faust Project has started in 2002. It is actively developed by the GRAME-
CNCM Research Department.

Many persons are contributing to the Faust project, by providing code for the
compiler, architecture files, libraries, examples, documentation, scripts, bug re-
ports, ideas, etc. We would like in particular to thank:

Fons Adriaensen, Karim Barkati, Jérome Barthélemy, Tim Blechmann,
Tiziano Bole, Alain Bonardi, Thomas Charbonnel, Raffaele Ciavarella,
Julien Colafrancesco, Damien Cramet, Sarah Denoux, Etienne Gaudrin,
Olivier Guillerminet, Pierre Guillot, Albert Gréaf, Pierre Jouvelot, Stefan Ker-
sten, Victor Lazzarini, Matthieu Leberre, Mathieu Leroi, Fernando Lopez-
Lezcano, Kjetil Matheussen, Hermann Meyer, Rémy Muller, Raphael Panis,
Eliott Paris, Reza Payami, Laurent Pottier, Sampo Savolainen, Nico-
las Scaringella, Anne Sedes, Priyanka Shekar, Stephen Sinclair, Travis Skare,
Julius Smith, Mike Solomon, Michael Wilson, Bart Brouns, Dirk Roosenburg,
Riccardo Russo.

as well as our colleagues at GRAME:

38

https://github.com/grame-cncm/faust
https://github.com/grame-cncm/fausteditor
https://github.com/grame-cncm/faustplayground
https://github.com/grame-cncm/faustide
https://github.com/grame-cncm/faustlive
https://github.com/grame-cncm/fausteditor/blob/master/scripts/faustlive.js
https://github.com/grame-cncm/fausteditor/blob/master/codemirror/mode/faust/faustsnippets.js
https://github.com/grame-cncm/faustide/blob/master/src/documentation.ts
https://github.com/grame-cncm/faustide/tree/master/docs/examples/LIBRARIES
https://github.com/grame-cncm/faust/blob/master-dev/embedded/faustgen/src/faustgen%7E.cpp
https://github.com/grame-cncm/faust/tree/master-dev/syntax-highlighting
https://github.com/hellbent/vscode-faust
https://www.grame.fr/recherche
https://www.grame.fr/recherche
http://grame.fr

e Dominique Fober

e Christophe Lebreton
e Stéphane Letz

e Romain Michon

¢ Yann Orlarey

We would like also to thank for their financial support:

o the French Ministry of Culture,

e the Auvergne-Rhone-Alpes Region,

o the City of Lyon,

o the French National Research Agency (ANR).

aanl.lib

A library for antialiased nonlinearities. Its official prefix is aa.

This library provides aliasing-suppressed nonlinearities through first-order and
second-order approximations of continuous-time signals, functions, and convo-
lution based on antiderivatives. This technique is particularly effective if com-
bined with low-factor oversampling, for example, operating at 96 kHz or 192
kHz sample-rate.

The library contains trigonometric functions as well as other nonlinear functions
such as bounded and unbounded saturators.

Due to their limited domains or ranges, some of these functions may not suitable
for audio nonlinear processing or waveshaping, although they have been included
for completeness. Some other functions, for example, tan() and tanh(), are only
available with first-order antialiasing due to the complexity of the antiderivative
of the x * f(x) term, particularly because of the necessity of the dilogarithm
function, which requires special implementation.

Future improvements to this library may include an adaptive mechanism to set
the ill-conditioned cases threshold to improve performance in varying cases.

Note that the antialiasing functions introduce a delay in the path, respectively
half and one-sample delay for first and second-order functions.

Also note that due to division by differences, it is vital to use double-precision
or more to reduce errors.

The environment identifier for this library is aa. After importing the standard
libraries in Faust, the functions below can be called as aa.function_name.

References

e https://github.com/grame-cncm/faustlibraries /blob /master /aanl.lib

39

http://www.culture.gouv.fr/
https://www.auvergnerhonealpes.fr/
https://www.lyon.fr/
http://www.agence-nationale-recherche.fr/
https://github.com/grame-cncm/faustlibraries/blob/master/aanl.lib

e Reducing the Aliasing in Nonlinear Waveshaping Using Continuous-time
Convolution, Julian Parker, Vadim Zavalishin, Eflam Le Bivic, DAFX,
2016

o http://dafx16.vutbr.cz/dafxpapers/20-DAFx-16_ paper 41-PN.pdf

Auxiliary Functions

(aa.)clip
Clipping function.

(aa.)Rsqrt
Real-valued sqrt().

(aa.)Rlog
Real-valued log().

(aa.)Rtan

Real-valued tan().

(aa.)Racos

Real-valued acos().

(aa.)Rasin

Real-valued asin().

(aa.)Racosh

Real-valued acosh()

40

http://dafx16.vutbr.cz/dafxpapers/20-DAFx-16_paper_41-PN.pdf

(aa.)Rcosh
Real-valued cosh().

(aa.)Rsinh
Real-valued sinh().

(aa.)Ratanh

Real-valued atanh().

(aa.)ADAA1L
Generalised first-order ADAA function.

Usage
_ : ADAA1(EPS, f, F1)
Where:

e EPS: a threshold to handle ill-conditioned cases
e f: a function that we want to process with ADAA
o F1: f’s first antiderivative

(aa.)ADAA2

Generalised second-order ADAA function.

Usage
_ : ADAA2(EPS, f, F1, F2)
Where:

e EPS: a threshold to handle ill-conditioned cases

e f: a function that we want to process with ADAA
e F1: f’s first antiderivative

e F2: f’s second antiderivative

41

Main functions

Saturators

These antialiased saturators perform best with high-amplitude input signals.
If the input is only slightly saturated, hence producing negligible aliasing, the
trivial saturator may result in a better overall output, as noise can be introduced
by first and second ADAA at low amplitudes.

Once determining the lowest saturation level for which the antialiased functions
perform adequately, it might be sensible to cross-fade between the trivial and
the antialiased saturators according to the amplitude profile of the input signal.

(aa.)hardclip
First-order ADAA hard-clip.

The domain of this function is ; its theoretical range is [-1.0; 1.0].

Usage

_ : aa.hardclip : _

(aa.)hardclip2
Second-order ADAA hard-clip.

The domain of this function is ; its theoretical range is [-1.0; 1.0].

Usage
_ : aa.hardclip2 : _

(aa.)cubicl
First-order ADAA cubic saturator.
The domain of this function is ; its theoretical range is [-2.0/3.0; 2.0/3.0].

Usage

_ : aa.cubicl

42

(aa.)parabolic
First-order ADAA parabolic saturator.

The domain of this function is ; its theoretical range is [-1.0; 1.0].

Usage

_ : aa.parabolic : _

(aa.)parabolic2
Second-order ADAA parabolic saturator.

The domain of this function is ; its theoretical range is [-1.0; 1.0].

Usage

_ : aa.parabolic : _

(aa.)hyperbolic
First-order ADAA hyperbolic saturator.

The domain of this function is ; its theoretical range is |-1.0; 1.0[.

Usage
_ : aa.hyperbolic : _

(aa.)hyperbolic2
Second-order ADAA hyperbolic saturator.

The domain of this function is ; its theoretical range is |-1.0; 1.0[.

Usage
_ : aa.hyperbolic2 : _

(aa.)sinarctan
First-order ADAA sin(atan()) saturator.

The domain of this function is ; its theoretical range is |-1.0; 1.0].

43

Usage

: aa.sinatan : _

(aa.)sinarctan2
Second-order ADAA sin(atan()) saturator.

The domain of this function is ; its theoretical range is |-1.0; 1.0[.

Usage

_ : aa.sinarctan2 : _

(aa.)tanhl
First-order ADAA tanh() saturator.

The domain of this function is ; its theoretical range is |-1.0; 1.0[.

Usage

_ : aa.tanhl : _

(aa.)arctan

First-order ADAA atan().

The domain of this function is ; its theoretical range is |- /2.0; /2.0[.

Usage

_ ! aa.arctan : _

(aa.)arctan?2

Second-order ADAA atan().

The domain of this function is ; its theoretical range is |- /2.0; /2.0].

Usage

_ : aa.arctan2 : _

44

(aa.)asinhil
First-order ADAA asinh() saturator (unbounded).

The domain of this function is ; its theoretical range is .

Usage

_ : aa.asinhl : _

(aa.)asinh2
Second-order ADAA asinh() saturator (unbounded).

The domain of this function is ; its theoretical range is .

Usage

_ : aa.asinh2 : _

Trigonometry
These functions are reliable if input signals are within their domains.

(aa.)cosinel

First-order ADAA cos().

The domain of this function is ; its theoretical range is [-1.0; 1.0].

Usage

_ : aa.cosinel

(aa.)cosine2

Second-order ADAA cos().

The domain of this function is ; its theoretical range is [-1.0; 1.0].

Usage

_ : aa.cosine2 : _

45

(aa.)arccos
First-order ADAA acos().
The domain of this function is [-1.0; 1.0]; its theoretical range is [; 0.0].

Usage

_ : aa.arccos : _

(aa.)arccos2
Second-order ADAA acos().
The domain of this function is [-1.0; 1.0]; its theoretical range is [; 0.0].

Note that this function is not accurate for low-amplitude or low-frequency input
signals. In that case, the first-order ADAA arccos() can be used.

Usage

_ : aa.arccos2 : _

(aa.)acoshi
First-order ADAA acosh().

The domain of this function is >= 1.0; its theoretical range is >= 0.0.

Usage

_ : aa.acoshl : _

(aa.)acosh2
Second-order ADAA acosh().
The domain of this function is >= 1.0; its theoretical range is >= 0.0.

Note that this function is not accurate for low-frequency input signals. In that
case, the first-order ADAA acosh() can be used.

Usage

_ : aa.acosh2 : _

46

(aa.)sine
First-order ADAA sin().

The domain of this function is ; its theoretical range is .

Usage

_ : aa.sine : _

(aa.)sine2
Second-order ADAA sin().

The domain of this function is ; its theoretical range is .

Usage

: aa.sine2 : _

(aa.)arcsin
First-order ADAA asin().
The domain of this function is [-1.0, 1.0]; its theoretical range is [- /2.0; /2.0].

Usage

_ ! aa.arcsin : _

(aa.)arcsin2
Second-order ADAA asin().
The domain of this function is [-1.0, 1.0]; its theoretical range is [- /2.0; /2.0].

Note that this function is not accurate for low-frequency input signals. In that
case, the first-order ADAA asin() can be used.

Usage

_ : aa.arcsin2 : _

47

(aa.)tangent

First-order ADAA tan().

The domain of this function is [- /2.0; /2.0]; its theoretical range is .

Usage

_ @ aa.tangent : _

(aa.)atanhl
First-order ADAA atanh().

The domain of this function is]-1.0; 1.0[; its theoretical range is .

Usage

_ : aa.atanhl : _

(aa.)atanh2
Second-order ADAA atanh().

The domain of this function is]-1.0; 1.0[; its theoretical range is .

Usage

_ : aa.atanh?2 : _

analyzers.lib

Analyzers library. Its official prefix is an.

References

« https://github.com/grame-cncm /faustlibraries/blob/master/analyzers.li

b

Amplitude Tracking

(an.)abs_envelope_rect

Absolute value average with moving-average algorithm.

48

https://github.com/grame-cncm/faustlibraries/blob/master/analyzers.lib
https://github.com/grame-cncm/faustlibraries/blob/master/analyzers.lib

Usage
_ : abs_envelope_rect(period)
Where:

e period: sets the averaging frame in seconds

(an.)abs_envelope_tau

Absolute value average with one-pole lowpass and tau response. (See filters.lib.)

Usage
_ : abs_envelope_tau(period)
Where:

e period: (time to decay by 1/e) sets the averaging frame in secs

(an.)abs_envelope_t60

Absolute value average with one-pole lowpass and t60 response. (See filters.lib.)

Usage
_ : abs_envelope_t60(period)
Where:

e period: (time to decay by 60 dB) sets the averaging frame in secs

(an.)abs_envelope_t19

Absolute value average with one-pole lowpass and t19 response. (See filters.lib.)

Usage
_ : abs_envelope_t19(period)
Where:

e period: (time to decay by 1/e72.2) sets the averaging frame in secs

49

(an.)amp_follower

Classic analog audio envelope follower with infinitely fast rise and exponential
decay. The amplitude envelope instantaneously follows the absolute value going
up, but then floats down exponentially.

amp_follower is a standard Faust function.

Usage
_ : amp_follower(rel)
Where:

o rel: release time = amplitude-envelope time-constant (sec) going down

References

e Musical Engineer’s Handbook, Bernie Hutchins, Ithaca NY
e 1975 Electronotes Newsletter, Bernie Hutchins

(an.)amp_follower_ud

Envelope follower with different up and down time-constants (also called a “peak
detector”).

Usage
_ : amp_follower_ud(att,rel)
Where:

o att: attack time = amplitude-envelope time constant (sec) going up
e rel: release time = amplitude-envelope time constant (sec) going down

Note We assume rel » att. Otherwise, consider rel ~ max(rel,att). For
audio, att is normally faster (smaller) than rel (e.g., 0.001 and 0.01). Use
amp_follower_ar below to remove this restriction.

Reference

e “Digital Dynamic Range Compressor Design — A Tutorial and Analysis”,
by Dimitrios Giannoulis, Michael Massberg, and Joshua D. Reiss

e https://www.eecs.qmul.ac.uk/~josh/documents/2012/GiannoulisMassb
ergReiss-dynamicrangecompression-JAES2012.pdf

50

https://www.eecs.qmul.ac.uk/~josh/documents/2012/GiannoulisMassbergReiss-dynamicrangecompression-JAES2012.pdf
https://www.eecs.qmul.ac.uk/~josh/documents/2012/GiannoulisMassbergReiss-dynamicrangecompression-JAES2012.pdf

(an.)amp_follower_ar

Envelope follower with independent attack and release times. The release can
be shorter than the attack (unlike in amp_follower_ud above).

Usage

_ : amp_follower_ar(att,rel)

Where:

e att: attack time = amplitude-envelope time constant (sec) going up
o rel: release time = amplitude-envelope time constant (sec) going down

(an.)ms_envelope_rect

Mean square with moving-average algorithm.

Usage
_ : ms_envelope_rect(period)

Where:

e period: sets the averaging frame in secs

(an.)ms_envelope_tau

Mean square average with one-pole lowpass and tau response. (see

filters.lib)

Usage
_ : ms_envelope_tau(period)

Where:
o period: (time to decay by 1/e) sets the averaging frame in secs

(an.)ms_envelope_t60

Mean square with one-pole lowpass and t60 response. (see filters.lib)

o1

Usage
_ : ms_envelope_t60(period)

Where:
e period: (time to decay by 60 dB) sets the averaging frame in secs

(an.)ms_envelope_t19

Mean square with one-pole lowpass and t19 response. (see filters.lib)

Usage
_ : ms_envelope_t19(period)

Where:
o period: (time to decay by 1/€72.2) sets the averaging frame in secs

(an.)rms_envelope_rect

Root mean square with moving-average algorithm.

Usage
_ : rms_envelope_rect(period)

Where:

e period: sets the averaging frame in secs

(an.)rms_envelope_tau

Root mean square with one-pole lowpass and tau response. (see filters.lib)

Usage
_ : rms_envelope_tau(period)

Where:

e period: (time to decay by 1/e) sets the averaging frame in secs

(an.)rms_envelope_t60

Root mean square with one-pole lowpass and t60 response. (see filters.lib)

92

Usage
_ : rms_envelope_t60(period)
Where:

e period: (time to decay by 60 dB) sets the averaging frame in secs

(an.)rms_envelope_t19

Root mean square with one-pole lowpass and t19 response. (see filters.lib)

Usage
_ : rms_envelope_t19(period)
Where:

e period: (time to decay by 1/e72.2) sets the averaging frame in secs

(an.)zcr

Zero-crossing rate (ZCR) with one-pole lowpass averaging based on the tau
constant. It outputs an index between 0 and 1 at a desired analysis frame.
The ZCR of a signal correlates with the noisiness [Gouyon et al. 2000] and the
spectral centroid [Herrera-Boyer et al. 2006] of a signal. For sinusoidal signals,
the ZCR can be multiplied by ma.SR/2 and used as a frequency detector. For
example, it can be deployed as a computationally efficient adaptive mechanism
for automatic Larsen suppression.

Usage
_ : zcr(tau)
Where:

o taw: (time to decay by € -1) sets the averaging frame in seconds.

Adaptive Frequency Analysis

(an.)pitchTracker

This function implements a pitch-tracking algorithm by means of zero-crossing
rate analysis and adaptive low-pass filtering. The design is based on the algo-
rithm described in this tutorial (section 2.2).

93

https://pdfslide.net/documents/faust-tutorial2.html

Usage
_ : pitchTracker (N, tau)
Where:

e N: a constant numerical expression, sets the order of the low-pass filter,
which determines the sensitivity of the algorithm for signals where partials
are stronger than the fundamental frequency.

e tau: response time in seconds based on exponentially-weighted averaging
with tau time-constant. See https://ccrma.stanford.edu/~jos/st/Expon
entials.html.

(an.)spectralCentroid

This function implements a time-domain spectral centroid by means of RMS
measurements and adaptive crossover filtering. The weight difference of the
upper and lower spectral powers are used to recursively adjust the crossover
cutoff so that the system (minimally) oscillates around a balancing point.

Unlike block processing techniques such as FFT, this algorithm provides con-
tinuous measurements and fast response times. Furthermore, when providing
input signals that are spectrally sparse, the algorithm will output a logarithmic
measure of the centroid, which is perceptually desirable for musical applications.
For example, if the input signal is the combination of three tones at 1000, 2000,
and 4000 Hz, the centroid will be the middle octave.

Usage
_ : spectralCentroid(nonlinearity, tau)

Where:

e nonlinearity: a boolean to activate or deactivate nonlinear integration.
The nonlinear function is useful to improve stability with very short re-
sponse times such as .001 <= tau <= .005 , otherwise, the nonlinearity
may reduce precision.

e tau: response time in seconds based on exponentially-weighted averaging
with tau time-constant. See https://ccrma.stanford.edu/~jos/st/Expon
entials.html.

Reference: Sanfilippo, D. (2021). Time-Domain Adaptive Algorithms for
Low- and High-Level Audio Information Processing. Computer Music Journal,
45(1), 24-38.

Example: process = os.0sc(500) + o0s.0sc(1000) + os.osc(2000) +
0s.0sc(4000) + o0s.0sc(8000) : an.spectralCentroid(l, .001);

o4

https://ccrma.stanford.edu/~jos/st/Exponentials.html
https://ccrma.stanford.edu/~jos/st/Exponentials.html
https://ccrma.stanford.edu/~jos/st/Exponentials.html
https://ccrma.stanford.edu/~jos/st/Exponentials.html

Spectrum-Analyzers

Spectrum-analyzers split the input signal into a bank of parallel signals, one
for each spectral band. They are related to the Mth-Octave Filter-Banks in
filters.lib. The documentation of this library contains more details about
the implementation. The parameters are:

e M: number of band-slices per octave (>1)
e N: total number of bands (>2)
e ftop = upper bandlimit of the Mth-octave bands (<SR/2)

In addition to the Mth-octave output signals, there is a highpass signal contain-
ing frequencies from ftop to SR/2, and a “dc band” lowpass signal containing
frequencies from 0 (dc) up to the start of the Mth-octave bands. Thus, the N
output signals are:

highpass(ftop), MthOctaveBands(M,N-2,ftop), dcBand(ftop*2~ (-M*(N-1)))

A Spectrum-Analyzer is defined here as any band-split whose bands span the
relevant spectrum, but whose band-signals do not necessarily sum to the original
signal, either exactly or to within an allpass filtering. Spectrum analyzer outputs
are normally at least nearly “power complementary”, i.e., the power spectra
of the individual bands sum to the original power spectrum (to within some
negligible tolerance).

Increasing Channel Isolation Go to higher filter orders - see Regalia et
al. or Vaidyanathan (cited below) regarding the construction of more aggressive
recursive filter-banks using elliptic or Chebyshev prototype filters.

References

o “Tree-structured complementary filter banks using all-pass sections”,
Regalia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484,
Dec. 1987

e “Multirate Systems and Filter Banks”, P. Vaidyanathan, Prentice-Hall,
1993

o Elementary filter theory: https://ccrma.stanford.edu/~jos/filters/

(an.)mth_octave_analyzer

Octave analyzer. mth_octave_analyzer [N] are standard Faust functions.

Usage

_ : mth_octave_analyzer(0,M,ftop,N) : par(i,N,_) // Oth-order Butterworth
_ : mth_octave_analyzer6e(M,ftop,N) : par(i,N,_) // 6th-order elliptic

Also for convenience:

99

https://ccrma.stanford.edu/~jos/filters/

_ : mth_octave_analyzer3(M,ftop,N) : par(i,N,_) // 3d-order Butterworth
_ : mth_octave_analyzer5(M,ftop,N) : par(i,N,_) // 5th-order Butterworth
mth_octave_analyzer_default = mth_octave_analyzer6e;

Where:

e 0: order of filter used to split each frequency band into two
e M: number of band-slices per octave

e ftop: highest band-split crossover frequency (e.g., 20 kHz)
e N: total number of bands (including dc¢ and Nyquist)

Mth-Octave Spectral Level

Spectral Level: display (in bargraphs) the average signal level in each spectral
band.

(an.)mth_octave_spectral_level6e

Spectral level display.

Usage:
_ : mth_octave_spectral_level6e(M,ftop,NBands,tau,dB_offset)
Where:

e M: bands per octave

o ftop: lower edge frequency of top band

e NBands: number of passbands (including highpass and dc bands),
o tau: spectral display averaging-time (time constant) in seconds,
e« dB_offset: constant dB offset in all band level meters.

Also for convenience:

mth_octave_spectral_level_default = mth_octave_spectral_level6be;
spectral_level = mth_octave_spectral_level(2,10000,20);

(an.) [third|half] _octave_[analyzer|filterbank]

A bunch of special cases based on the different analyzer functions described
above:

third_octave_analyzer(N) = mth_octave_analyzer_default(3,10000,N);
third_octave_filterbank(N) = mth_octave_filterbank_default(3,10000,N);
half_octave_analyzer(N) = mth_octave_analyzer_default(2,10000,N) ;
half_octave_filterbank(N) = mth_octave_filterbank_default(2,10000,N);
octave_filterbank(N) = mth_octave_filterbank_default(1,10000,N);

96

octave_analyzer (N) = mth_octave_analyzer_default(1,10000,N);

Usage See mth_octave_spectral_level_demo in demos.lib.

Arbritary-Crossover Filter-Banks and Spectrum Analyzers

These are similar to the Mth-octave analyzers above, except that the band-split
frequencies are passed explicitly as arguments.

(an.)analyzer

Analyzer.

Usage
_ : analyzer(0,freqs) : par(i,N,_) // No delay equalizer
Where:

o 0: band-split filter order (ODD integer required for filterbank|i])
o fregs: (fcl,fc2,..,fcNs) [in numerically ascending order|, where Ns=N-1 is
the number of octave band-splits (total number of bands N=Ns+1).

If frequencies are listed explicitly as arguments, enclose them in parens:

_ @ analyzer(3,(fcl,fc2)) : _,_,

Fast Fourier Transform (fft) and its Inverse (ifft)
Sliding FFTs that compute a rectangularly windowed FFT each sample.

(an.)goertzelOpt
Optimized Goertzel filter.

Usage
_ @ goertzelOpt(freq,n)
Where:

e freq: frequency to be analyzed
¢ n: the Goertzel block size

o7

Reference

o https://en.wikipedia.org/wiki/Goertzel_algorithm

(an.)goertzelComp

Complex Goertzel filter.

Usage
_ : goertzelComp(freq,n)
Where:

e freq: frequency to be analyzed
e n: the Goertzel block size

Reference

o https://en.wikipedia.org/wiki/Goertzel _algorithm

(an.)goertzel

Same as goertzelOpt.

Usage
_ : goertzel(freq,n)
Where:

e freq: frequency to be analyzed
e n: the Goertzel block size

Reference

« https://en.wikipedia.org/wiki/Goertzel _algorithm

(an.)fft
Fast Fourier Transform (FFT).

98

https://en.wikipedia.org/wiki/Goertzel_algorithm
https://en.wikipedia.org/wiki/Goertzel_algorithm
https://en.wikipedia.org/wiki/Goertzel_algorithm

Usage
si.cbus(N) : fft(N) : si.cbus(N)
Where:

e si.cbus(N) is a bus of N complex signals, each specified by real and
imaginary parts: (r0,i0), (rl,il1), (r2,i2), ..

o N is the FFT size (must be a power of 2: 2,4,8,16,.. known at compile
time)

o fft(N) performs a length N FFT for complex signals (radix 2)

e The output is a bank of N complex signals containing the complex spec-
trum over time: (RO, 10), (R1,I1), ..

— The dc component is (R0,I0), where I0=0 for real input signals.

FFTs of Real Signals:
e To perform a sliding FFT over a real input signal, you can say
process = signal : an.rtocv(N) : an.fft(N);

where an.rtocv converts a real (scalar) signal to a complex vector signal having
a zero imaginary part.

e See an.rfft_analyzer_c (in analyzers.lib) and related functions for
more detailed usage examples.

e Use an.rfft_spectral_level(N,tau,dB_offset) to display the power
spectrum of a real signal.

e Seedm.fft_spectral_level_demo(N) in demos.lib for an example GUI
driving an.rfft_spectral_level().

Reference

o Decimation-in-time (DIT) Radix-2 FFT

(an.)ifft

Inverse Fast Fourier Transform (IFFT).

Usage
si.cbus(N) : ifft(N) : si.cbus(N)
Where:

e N is the IFFT size (power of 2)
¢ Input is a complex spectrum represented as interleaved real and imaginary
parts: (RO, 1I0), (R1,I1), (R2,I12), ...

99

https://cnx.org/contents/zmcmahhR@7/Decimation-in-time-DIT-Radix-2

e Output is a bank of N complex signals giving the complex signal in the
time domain: (r0, i0), (r1,il), (r2,i2), ..

basics.lib
A library of basic elements. Its official prefix is ba.

References

 https://github.com/grame-cncm/faustlibraries/blob/master /basics.lib

Conversion Tools

(ba.)samp2sec

Converts a number of samples to a duration in seconds at the current sampling
rate (see ma.SR). samp2sec is a standard Faust function.

Usage
samp2sec(n)

Where:

e n: number of samples

(ba.)sec2samp

Converts a duration in seconds to a number of samples at the current sampling
rate (see ma.SR). samp2sec is a standard Faust function.

Usage
sec2samp(d)
Where:

e d: duration in seconds

(ba.)db2linear

dB-to-linear value converter. It can be used to convert an amplitude in dB to a
linear gain |0-N]. db2linear is a standard Faust function.

60

https://github.com/grame-cncm/faustlibraries/blob/master/basics.lib

Usage
db2linear(1l)
Where:
e 1: amplitude in dB

(ba.)linear2db

linea-to-dB value converter. It can be used to convert a linear gain |0-N] to an
amplitude in dB. linear2db is a standard Faust function.

Usage
linear2db(g)

Where:

e g: a linear gain

(ba.)lin2LogGain

Converts a linear gain (0-1) to a log gain (0-1).

Usage
lin2LogGain(n)
Where:

o n: the linear gain

(ba.)log2LinGain

Converts a log gain (0-1) to a linear gain (0-1).

Usage
log2LinGain(n)
Where:

e n: the log gain

61

(ba.)tau2pole

Returns a real pole giving exponential decay. Note that t60 (time to decay 60
dB) is ~6.91 time constants. tau2pole is a standard Faust function.

Usage
_ : smooth(tau2pole(tau))

Where:

e tau: time-constant in seconds

(ba.)pole2tau

Returns the time-constant, in seconds, corresponding to the given real, positive
pole in (0-1). pole2tau is a standard Faust function.

Usage
pole2tau(pole)

Where:
e pole: the pole

(ba.)midikey2hz

Converts a MIDI key number to a frequency in Hz (MIDI key 69 = A440).
midikey2hz is a standard Faust function.

Usage
midikey2hz (mk)
Where:
e mk: the MIDI key number

(ba.)hz2midikey

Converts a frequency in Hz to a MIDI key number (MIDI key 69 = A440).
hz2midikey is a standard Faust function.

62

Usage
hz2midikey (freq)
Where:

e freq: frequency in Hz

(ba.)semi2ratio

Converts semitones in a frequency multiplicative ratio. semi2ratio is a stan-
dard Faust function.

Usage
semi2ratio(semi)

Where:

e semi: number of semitone

(ba.)ratio2semi

Converts a frequency multiplicative ratio in semitones. ratio2semi is a stan-
dard Faust function.

Usage
ratio2semi(ratio)

Where:

e ratio: frequency multiplicative ratio

(ba.)cent2ratio

Converts cents in a frequency multiplicative ratio.

Usage
cent2ratio(cent)
Where:

e cent: number of cents

63

(ba.)ratio2cent

Converts a frequency multiplicative ratio in cents.

Usage
ratio2cent(ratio)
Where:

e ratio: frequency multiplicative ratio

(ba.)pianokey2hz

Converts a piano key number to a frequency in Hz (piano key 49 = A440).

Usage
pianokey2hz(pk)
Where:
o pk: the piano key number

(ba.)hz2pianokey

Converts a frequency in Hz to a piano key number (piano key 49 = A440).

Usage
hz2pianokey (freq)
Where:

e freq: frequency in Hz

Counters and Time/Tempo Tools

(ba.)counter

Starts counting 0, 1, 2, 3..., and raise the current integer value at each upfront
of the trigger.

64

Usage
counter (trig)
Where:

e trig: the trigger signal, each upfront will move the counter to the next
integer

(ba.)countdown

Starts counting down from n included to 0. While trig is 1 the output is n.
The countdown starts with the transition of trig from 1 to 0. At the end of the
countdown the output value will remain at 0 until the next trig. countdown is
a standard Faust function.

Usage
countdown (n,trig)
Where:

e n: the starting point of the countdown
e trig: the trigger signal (1: start at n; 0: decrease until 0)

(ba.)countup

Starts counting up from 0 to n included. While trig is 1 the output is 0. The
countup starts with the transition of trig from 1 to 0. At the end of the countup
the output value will remain at n until the next trig. countup is a standard
Faust function.

Usage
countup(n,trig)
Where:

e n: the maximum count value
e trig: the trigger signal (1: start at 0; 0: increase until n)

(ba.)sweep

Counts from 0 to period-1 repeatedly, generating a sawtooth waveform, like
os.lf_rawsaw, starting at 1 when run transitions from 0 to 1. Outputs zero
while run is 0.

65

Usage

sweep (period,run)

(ba.)time

A simple timer that counts every samples from the beginning of the process.
time is a standard Faust function.

Usage

time : _

(ba.)ramp

A linear ramp with a slope of ‘(+/-)1/n’ samples to reach the next target value.

Usage
_ & ramp(n)

Where:

o n: number of samples to increment/decrement the value by one

(ba.)line
A ramp interpolator that generates a linear transition to reach a target value:

¢ the interpolation process restarts each time a new and distinct input value
is received

o it utilizes ‘n’ samples to achieve the transition to the target value

o after reaching the target value, the output value is maintained.

Usage
_ : line(n)

Where:

e n: number of samples to reach the new target received at its input

(ba.)tempo

Converts a tempo in BPM into a number of samples.

66

Usage
tempo (t)
Where:
e t: tempo in BPM

(ba.)period

Basic sawtooth wave of period p.

Usage
period(p) : _
Where:

e p: period as a number of samples

(ba.)pulse
Pulses (like 10000) generated at period p.

Usage
pulse(p)
Where:

e p: period as a number of samples

(ba.)pulsen
Pulses (like 11110000) of length n generated at period p.

Usage
pulsen(n,p)
Where:

o n: pulse length as a number of samples
e p: period as a number of samples

67

(ba.)cycle

Split nonzero input values into n cycles.

Usage
cycle(n) : si.bus(n)
Where:

o n: the number of cycles/output signals

(ba.)beat

Pulses at tempo t. beat is a standard Faust function.

Usage
beat (t)
Where:
e t: tempo in BPM

(ba.)pulse_countup
Starts counting up pulses. While trig is 1 the output is counting up, while trig
is 0 the counter is reset to 0.
Usage
_ : pulse_countup(trig)
Where:
e trig: the trigger signal (1: start at next pulse; 0: reset to 0)

(ba.)pulse_countdown

Starts counting down pulses. While trig is 1 the output is counting down, while
trig is 0 the counter is reset to 0.

68

Usage
_ : pulse_countdown(trig)
Where:
o trig: the trigger signal (1: start at next pulse; 0: reset to 0)

(ba.)pulse_countup_loop

Starts counting up pulses from 0 to n included. While trig is 1 the output is
counting up, while trig is 0 the counter is reset to 0. At the end of the countup
(n) the output value will be reset to 0.

Usage
_ : pulse_countup_loop(n,trig)
Where:

o n: the highest number of the countup (included) before reset to 0
o trig: the trigger signal (1: start at next pulse; 0: reset to 0)

(ba.)pulse_countdown_loop

Starts counting down pulses from 0 to n included. While trig is 1 the output
is counting down, while trig is 0 the counter is reset to 0. At the end of the
countdown (n) the output value will be reset to 0.

Usage
_ : pulse_countdown_loop(n,trig)
Where:

o n: the highest number of the countup (included) before reset to 0
o trig: the trigger signal (1: start at next pulse; 0: reset to 0)

(ba.)resetCtr

Function that lets through the mth impulse out of each consecutive group of n
impulses.

69

Usage
_ : resetCtr(n,m)
Where:

e n: the total number of impulses being split
e m: index of impulse to allow to be output

Array Processing/Pattern Matching

(ba.)count

Count the number of elements of list 1. count is a standard Faust function.

Usage

count (1)
count ((10,20,30,40)) -> 4

Where:

e 1: list of elements

(ba.)take

Take an element from a list. take is a standard Faust function.

Usage

take (P,1)
take(3,(10,20,30,40)) -> 30

Where:

e P: position (int, known at compile time, P > 0)
e 1: list of elements

(ba.)subseq

Extract a part of a list.

70

Usage

subseq(l, P, N)
subseq((10,20,30,40,50,60), 1, 3) -> (20,30,40)
subseq((10,20,30,40,50,60), 4, 1) -> 50

Where:

o 1: list
e P: start point (int, known at compile time, 0: begin of list)
e N: number of elements (int, known at compile time)

Note: Faust doesn’t have proper lists. Lists are simulated with parallel com-
positions and there is no empty list.

Function tabulation

The purpose of function tabulation is to speed up the computation of heavy
functions over an interval, so that the computation at runtime can be faster
than directly using the function. Two techniques are implemented:

e tabulate computes the function in a table and read the points using
interpolation. tabulateNd is the N dimensions version of tabulate

e tabulate_chebychev uses Chebyshev polynomial approximation

Comparison program example

process = 1ine(50000, r0, rl) <: FX-tb,FX-ch : par(i, 2, maxerr)
with {

C = 0;

FX = sin;
NX = 50;

CD = 3;

r0 = 0;

rl = ma.PI;

tb(x) = ba.tabulate(C, FX, NX*(CD+1), r0, rl, x).cub;
ch(x) ba.tabulate_chebychev(C, FX, NX, CD, rO, ril, x);
maxerr = abs : max ~ _;

line(n, x0, x1) = x0 + (ba.time¥%n)/n * (x1-x0);

(ba.)tabulate

Tabulate a 1D function over the range [r0, r1] for access via nearest-value, linear,
cubic interpolation. In other words, the uniformly tabulated function can be
evaluated using interpolation of order 0 (none), 1 (linear), or 3 (cubic).

71

Usage
tabulate(C, FX, S, r0, rl, x).(valllin]|cub)

e C: whether to dynamically force the x value to the range [r0, r1]: 1 forces
the check, 0 deactivates it (constant numerical expression)

e FX: unary function Y=F(X) with one output (scalar function of one vari-
able)

o S: size of the table in samples (constant numerical expression)

e r0: minimum value of argument x

e rl1: maximum value of argument x

tabulate(C, FX, S, r0, rl, x).val uses the value in the table closest to x
tabulate(C, FX, S, r0, rl, x).lin evaluates at x using linear interpolation between the clos

tabulate(C, FX, S, rO, rl, x).cub evaluates at x using cubic interpolation between the clos

Example test program

midikey2hz(mk) = ba.tabulate(l, ba.midikey2hz, 512, 0, 127, mk).lin;
process = midikey2hz(ba.time), ba.midikey2hz(ba.time) ;

(ba.)tabulate_chebychev

Tabulate a 1D function over the range [r0, rl] for access via Chebyshev poly-
nomial approximation. In contrast to (ba.)tabulate, which interpolates only
between tabulated samples, (ba.)tabulate_chebychev stores coefficients of
Chebyshev polynomials that are evaluated to provide better approximations in
many cases. Two new arguments controlling this are NX, the number of seg-
ments into which [r0, r1] is divided, and CD, the maximum Chebyshev polyno-
mial degree to use for each segment. A rdtable of size NX*(CD+1) is internally
used.

Note that processing r1 the last point in the interval is not safe. So either be
sure the input stays in [r0, r1[or use C = 1.

Usage
_ : tabulate_chebychev(C, FX, NX, CD, rO, ril)

o C: whether to dynamically force the value to the range [r0, r1]: 1 forces
the check, 0 deactivates it (constant numerical expression)

e FX: unary function Y=F(X) with one output (scalar function of one vari-
able)

o NX: number of segments for uniformly partitioning [r0, r1] (constant nu-
merical expression)

e CD: maximum polynomial degree for each Chebyshev polynomial (constant
numerical expression)

72

e r0: minimum value of argument x
e rl: maximum value of argument x

Example test program

midikey2hz_chebychev(mk) = ba.tabulate_chebychev(l, ba.midikey2hz, 100, 4, 0, 127, mk);
process = midikey2hz_chebychev(ba.time), ba.midikey2hz(ba.time);

(ba.)tabulateNd

Tabulate an nD function for access via nearest-value or linear or cubic interpola-
tion. In other words, the tabulated function can be evaluated using interpolation
of order 0 (none), 1 (linear), or 3 (cubic).

The table size and parameter range of each dimension can and must be sepa-
rately specified. You can use it anywhere you have an expensive function with
multiple parameters with known ranges. You could use it to build a wavetable
synth, for example.

The number of dimensions is deduced from the number of parameters you give,
see below.

Note that processing the last point in each interval is not safe. So either be sure
the inputs stay in their respective ranges, or use C = 1. Similarly for the first
point when doing cubic interpolation.

Usage
tabulateNd(C, function, (parameters)).(vall|lin|cub)

e C: whether to dynamically force the parameter values for each dimension
to the ranges specified in parameters: 1 forces the check, 0 deactivates it
(constant numerical expression)

e function: the function we want to tabulate. Can have any number of
inputs, but needs to have just one output.

o (parameters): sizes, ranges and read values. Note: these need to be in
brackets, to make them one entity.

If N is the number of dimensions, we need:

— N times S: number of values to store for this dimension (constant
numerical expression)

— N times r0: minimum value of this dimension

— N times r1: maximum value of this dimension

— N times x: read value of this dimension

By providing these parameters, you indirectly specify the number of dimensions;
it’s the number of parameters divided by 4.

73

The user facing functions are:
tabulateNd(C, function, S, parameters).val
o Uses the value in the table closest to x.
tabulateNd(C, function, S, parameters).lin
o Evaluates at x using linear interpolation between the closest stored values.
tabulateNd(C, function, S, parameters).cub

o Evaluates at x using cubic interpolation between the closest stored values.

Example test program

powSin(x,y) = sin(pow(x,y)); // The function we want to tabulate
powSinTable(x,y) = ba.tabulateNd(1l, powSin, (sizeX,sizeY, rxO,ry0, rxl,ryl, x,y)).lin;
sizeX = 512; // table size of the first parameter

sizeY = 512; // table size of the second parameter

rx0 = 2; // start of the range of the first parameter

ry0 = 2; // start of the range of the second parameter

rxl = 10; // end of the range of the first parameter

ryl = 10; // end of the range of the second parameter

x = hslider("x", rx0, rx0, rxl, 0.001):si.smoo;

y = hslider("y", ryO, ry0O, ryl, 0.001):si.smoo;

process = powSinTable(x,y), powSin(x,y);

Working principle The .val function just outputs the closest stored value.
The .1lin and .cub functions interpolate in N dimensions.

Multi dimensional interpolation To understand what it means to inter-
polate in N dimensions, here’s a quick reminder on the general principle of 2D
linear interpolation:

o We have a grid of values, and we want to find the value at a point (x, y)
within this grid.

e We first find the four closest points (A, B, C, D) in the grid surrounding
the point (x, y).

Then, we perform linear interpolation in the x-direction between points A and
B, and between points C and D. This gives us two new points E and F. Finally,
we perform linear interpolation in the y-direction between points E and F to
get our value.

To implement this in Faust, we need N sequential groups of interpolators, where
N is the number of dimensions.
Each group feeds into the next, with the last “group” being a single interpolator,

74

and the group before it containing one interpolator for each input of the group
it’s feeding.

Some examples:

e Our 2D linear example has two interpolators feeding into one.

e A 3D linear interpolator has four interpolators feeding into two, feeding
into one.

e A 2D cubic interpolater has four interpolators feeding into one.

¢ A 3D cubic interpolator has sixteen interpolators feeding into four, feeding
into one.

To understand which values we need to look up, let’s consider the 2D linear
example again. The four values going into the first group represent the four
closest points (A, B, C, D) mentioned above.

1) The first interpolator gets:

o The closest value that is stored (A)
o The next value in the x dimension, keeping y fixed (B)

2) The second interpolator gets:

e One step over in the y dimension, keeping x fixed (C)
o One step over in both the x dimension and the y dimension (D)

The outputs of these two interpolators are points E and F. In other words: the
interpolated x values and, respectively, the following y values:

e The closest stored value of the y dimension
¢ One step forward in the y dimension

The last interpolator takes these two values and interpolates them in the y
dimension.

To generalize for N dimensions and linear interpolation:

o The first group has 27 (n-1) parallel interpolators interpolating in the first
dimension.

o The second group has 27(n-2) parallel interpolators interpolating in the
second dimension.

e The process continues until the n-th group, which has a single interpolator
interpolating in the n-th dimension.

The same principle applies to the cubic interpolation in nD. The only difference
is that there would be 47 (n-1) parallel interpolators in the first group, compared
to 27(n-1) for linear interpolation.

This is what the mixers function does.

Besides the values, each interpolator also needs to know the weight of each value
in it’s output.
Let’s call this d, like in ba.interpolate. It is the same for each group of

7

interpolators, since it correlates to a dimension.
It’s value is calculated the similarly to ba.interpolate:

o First we prepare a “float table read-index” for that dimension (id in
ba.tabulate)

o If the table only had that dimension and it could read a float index, what
would it be.

e Then we int the float index to get the value we have stored that is closest
to, but lower than the input value; the actual index for that dimension.
Our d is the difference between the float index and the actual index.

The ids function calculates the id for each dimension and inside the mixer
function they get turned into ds.

Storage method The elephant in the room is: how do we get these indexes?
For that we need to know how the values are stored. We use one big table to
store everything.

To understand the concept, let’s look at the 2D example again, and then we’ll
extend it to 3d and the general nD case.

Let’s say we have a 2D table with dimensions A and B where: A has 3 values be-
tween 0 and 5 and B has 4 values between 0 and 1. The 1D array representation
of this 2D table will have a size of 3 * 4 = 12.

The values are stored in the following way:

o First 3 values: A is 0, then 3, then 5 while B is at 0.
o Next 3 values: A changes from 0 to 5 while B is at 1/3.
o Next 3 values: A changes from 0 to 5 while B is at 2/3.
e Last 3 values: A changes from 0 to 5 while B is at 1.

For the 3D example, let’s extend the 2D example with an additional dimension
C having 2 values between 0 and 2. The total size will be 3 * 4 * 2 = 24,

The values are stored like so:

e First 3 values: A changes from 0 to 5, B is at 0, and C is at 0.
o Next 3 values: A changes from 0 to 5, B is at 1/3, and C is at 0.
o Next 3 values: A changes from 0 to 5, B is at 2/3, and C is at 0.
e Next 3 values: A changes from 0 to 5, B is at 1, and C is at 0.

The last 12 values are the same as the first 12, but with C at 2.

For the general n-dimensional case, we iterate through all dimensions, changing
the values of the innermost dimension first, then moving towards the outer
dimensions.

Read indexes To get the float read index (id) corresponding to a particular
dimension, we scale the function input value to be between 0 and 1, and multiply
it by the size of that dimension minus one.

76

To understand how we get the readIndexfor .val, let’s work trough how we’d
do it in our 2D linear example.

For simplicity’s sake, the ranges of the inputs to our function are both 0 to 1.
Say we wanted to read the value closest to x=0.5 and y=0, so the id of x is 1
(the second value) and the id of y is 0 (first value). In this case, the read index
is just the id of x, rounded to the nearest integer, just like in ba.tabulate.

If we want to read the value belonging to x=0.5 and y=2/3, things get more
complicated. The id for y is now 2, the third value. For each step in the y
direction, we need to increase the index by 3, the number of values that are
stored for x. So the influence of the y is: the size of x times the rounded id of
y. The final read index is the rounded id of x plus the influence of y.

For the general nD case, we need to do the same operation N times, each feeding
into the next. This operation is the riN function. We take four parameters: the
size of the dimension before it prevSize, the index of the previous dimension
prevIX, the current size sizeX and the current id idX. rilN has 2 outputs, the
size, for feeding into the next dimension’s prevSize, and the read index feeding
into the next dimension’s prevIX.

The size is the sizeX times prevSize. The read index is the rounded idX times
prevSize added to the prevIX. Our final readIndex is the read index output
of the last dimension.

To get the read values for the interpolators need a pattern of offsets in each
dimension, since we are looking for the read indexes surrounding the point of
interest. These offsets are best explained by looking at the code of tabulate2d,
the hardcoded 2D version:

tabulate2d(C,function, sizeX,sizeY, rxO,ry0, rxl,ryl, x,y) =
environment {

size = sizeX*sizeV;
// Maximum X index to access
midX = sizeX-1;
// Maximum Y index to access
midY = sizeY-1;
// Maximum total index to access
mid = size-1;
// Create the table
wf = function(wfX,wfY);
// Prepare the 'float' table read index for X
idX = (x-rx0)/(rx1-rx0)*midX;
// Prepare the 'float' table read index for Y
idY = ((y-ry0)/(ryl-ry0))*midY;
// table creation X:
wiX =

rx0+float (ba.timelsizeX) * (rx1-rx0)

/float (midX) ;
// table creation Y:

7

wfY =
ry0+
((float(ba.time-(ba.time%sizeX))
/float (sizeX))
*(ryl-ry0))
/float (midY);

// Limit the table read index in [0, mid] if C = 1
rid(x,mid, 0) = x;
rid(x,mid, 1) = max(0, min(x, mid));

// Tabulate a binary 'FX' function on a range [rx0O, rx1] [ry0, ryi]
val(x,y) =
rdtable(size, wf, readIndex);
readIndex =
rid(
rid(int (idX+0.5) ,midX, C)
+y0ffset
, mid, C);
yOffset = sizeX*rid(int(idY),midY,C);

// Tabulate a binary 'FX' function over the range [rx0, rxl1] [ry0O, ryl] with linear inte
lin =
it.interpolate_linear(
dy
, it.interpolate_linear(dx,v0,v1)
, it.interpolate_linear(dx,v2,v3))

with {
i0 = rid(int(idX), midX, C)+yOffset;
il = i0+1;

i2 = iO+sizeX;

i3 = il+sizeX;

dx = idX-int(idX);

dy = idY-int(idY);

v0 = rdtable(size, wf, rid(i0, mid, C));
vl = rdtable(size, wf, rid(il, mid, C));
v2 = rdtable(size, wf, rid(i2, mid, C));
v3 = rdtable(size, wf, rid(i3, mid, C));

}s;

// Tabulate a binary 'FX' function over the range [rxO, rx1] [ryO, ryl] with cubic inte:
cub =
it.interpolate_cubic(
dy
, it.interpolate_cubic(dx,v0,v1,v2,v3)
, it.interpolate_cubic(dx,v4,v5,v6,v7)

8

, it.interpolate_cubic(dx,v8,v9,v10,v11)
, it.interpolate_cubic(dx,v12,v13,v14,v15)

)
with {
i0
i1
i2
i3

i4
i5
i6
i7
i8
i9
i10
i1l

i12

i13 =
i14 =

i15

dx
dy
v0
vl
v2
v3
v
vb
v6
v7
v3
v9
v10
vil
vi2

v13 =
vi4d =

v1b
};
};

i4-sizeX;
i5-sizeX;
i6-sizeX;
i7-sizeX;

i5-1;

rid(int(idX), midX, C)+yOffset;

ib+1;
i6+1;

id+sizeX;
ib+sizeX;
i6+sizeX;
i7+sizeX;

i4+(2*sizeX);
i5+(2*sizeX);
i6+(2%sizeX);
i7+(2*sizeX);

idX-int (idX);
idY-int (idY);
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,
rdtable(size,

rid(io ,
rid(il ,
rid(i2 ,
rid(i3 ,
rid(i4 ,
rid(i5 ,
rid(i6 ,
rid(i7 ,
rid(i8 ,
rid(i9 ,
rid(ii1o0,
rid(il1,
rid(i12,
rid(i13,
rid(ii4,
rid(ii15,

mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,
mid,

C));
C));
C));
C));
C));
C));
Cc));
C));
C));
C));
C));
C));
C));
C));
C));
C));

In the interest of brevity, we’ll stop explaining here. If you have any more

79

questions, feel free to open an issue on faustlibraries and tag @magnetophon.

Selectors (Conditions)

(ba.)if

if-then-else implemented with a select2. WARNING: since select?2 is strict
(always evaluating both branches), the resulting if does not have the usual “lazy”
semantic of the C if form, and thus cannot be used to protect against forbidden
computations like division-by-zero for instance.

Usage
e if(cond, then, else)
Where:

e cond: condition
o then: signal selected while cond is true
o else: signal selected while cond is false

(ba.)ifNc

if-then-elseif-then-...elsif-then-else implemented on top of ba.if.

Usage

ifNc((condl,thenl, cond2,then2, ... condN,thenN, else))
or

ifNc(Nc, condl,thenl, cond2,then2, ... condN,thenN, else)
or

condl,thenl, cond2,then2, ... condN,thenN, else : ifNc(Nc)
Where:

e Nc : number of branches/conditions (constant numerical expression)
e condX: condition

o thenX: signal selected if condX is the 1st true condition

e else: signal selected if all the cond1-condN conditions are false

Example test program

process(x,y) = ifNc((x<y,-1, x>y,+1, 0));
or

process(x,y) = ifNc(2, x<y,-1, x>y,+1, 0);
or

80

https://github.com/grame-cncm/faustlibraries

process(x,y) = x<y,-1, x>y,+1, 0 : ifNc(2);

outputs -1 if x<y, +1 if x>y, 0 otherwise.

(ba.)ifNcNo

ifNcNo(Nc,No) is similar to ifNc(Nc) above but then/else branches have No
outputs.

Usage
ifNcNo(Nc,No, condl,thenl, cond2,then2, ... condN,thenN, else) : sig.bus(No)
Where:

e Nc : number of branches/conditions (constant numerical expression)

e No : number of outputs (constant numerical expression)

o condX: condition

¢ thenX: list of No signals selected if condX is the 1st true condition

e else: list of No signals selected if all the cond1-condN conditions are false

Example test program
process(x) = ifNcNo(2,3, x<0, -1,-1,-1, x>0, 1,1,1, 0,0,0);
outputs -1,-1,-1 if x<0, 1,1,1 if x>0, 0,0,0 otherwise.

(ba.)selector

Selects the ith input among n at compile time.

Usage

selector(I,N)

_s_s_»,_ @ selector(2,4) : _ // selects the 3rd input among 4
Where:

o I:input to select (int, numbered from 0, known at compile time)
o N: number of inputs (int, known at compile time, N > I)

There is also cselector for selecting among complex input signals of the form
(real,imag).

(ba.)select2stereo

Select between 2 stereo signals.

81

Usage
_s_s_s_ @ select2stereo(bpc) : _,_
Where:

e Dbpc: the selector switch (0/1)

(ba.)selectn

Selects the ith input among N at run time.

Usage

selectn(N,i)

_s_s_s_ : selectn(4,2) : _ // selects the 3rd input among 4
Where:

e N: number of inputs (int, known at compile time, N > 0)
o i: input to select (int, numbered from 0)

Example test program

N = 64;
process = par(n, N, (par(i,N,i) : selectn(N,n)));

(ba.)selectmulti

Selects the ith circuit among N at run time (all should have the same number
of inputs and outputs) with a crossfade.

Usage
selectmulti(n,lgen,id)
Where:

e n: crossfade in samples
e lgen: list of circuits
e id: circuit to select (int, numbered from 0)

Example test program

process = selectmulti(ma.SR/10, ((3,9),(2,8),(5,7)), nentry("choice", 0, 0, 2, 1));

process = selectmulti(ma.SR/10, ((_*3,_%9),(_*2,_x8),(_*5,_%7)), nentry("choice", 0, 0, 2,

82

(ba.)selectoutn

Route input to the output among N at run time.

Usage
_ : selectoutn(N, i) : si.bus(N)
Where:

o N: number of outputs (int, known at compile time, N > 0)
e i: output number to route to (int, numbered from 0) (i.e. slider)

Example test program

process = 1 : selectoutn(3, sel) : par(i, 3, vbargraph("v.bargraph %i", 0, 1));
sel = hslider("volume", 0, 0, 2, 1) : int;

Other

(ba.)latch

Latch input on positive-going transition of trig:“records” the input when trig
switches from 0 to 1, outputs a frozen values everytime else.

Usage
_ : latch(trig)

Where:
e trig: hold trigger (0 for hold, 1 for bypass)

(ba.)sAndH

Sample And Hold: “records” the input when trig is 1, outputs a frozen value
when trig is 0. sAndH is a standard Faust function.

Usage
_ : sAndH(trig)

Where:
o trig: hold trigger (0 for hold, 1 for bypass)

83

(ba.)downSample

Down sample a signal. WARNING: this function doesn’t change the rate of a
signal, it just holds samples... downSample is a standard Faust function.
Usage

_ @ downSample(freq)

Where:

o freq: new rate in Hz

(ba.)peakhold

Outputs current max value above zero.

Usage
_ : peakhold(mode)
Where:

mode means: 0 - Pass through. A single sample 0 trigger will work as a reset. 1
- Track and hold max value.

(ba.)peakholder

While peak-holder functions are scarcely discussed in the literature (please do
send me an email if you know otherwise), common sense tells that the expected
behaviour should be as follows: the absolute value of the input signal is com-
pared with the output of the peak-holder; if the input is greater or equal to the
output, a new peak is detected and sent to the output; otherwise, a timer starts
and the current peak is held for N samples; once the timer is out and no new
peaks have been detected, the absolute value of the current input becomes the
new peak.

Usage
_ : peakholder(holdTime)

Where:

e holdTime: hold time in samples

84

(ba.)kr2ar

Force a control rate signal to be used as an audio rate signal.

Usage
hslider("freq", 200, 200, 2000, 0.1) : kr2ar;

(ba.)impulsify

Turns a signal into an impulse with the value of the current sample (0.3,0.2,0.1
becomes 0.3,0.0,0.0). This function is typically used with a button to turn its
output into an impulse. impulsify is a standard Faust function.

Usage

button("gate") : impulsify;

(ba.)automat

Record and replay in a loop the successives values of the input signal.

Usage
hslider(...) : automat(t, size, init)
Where:

e t: tempo in BPM
e size: number of items in the loop
e init: init value in the loop

(ba.)bpf

bpf is an environment (a group of related definitions) that can be used to create
break-point functions. It contains three functions:

e start(x,y) to start a break-point function
e end(x,y) to end a break-point function
e point(x,y) to add intermediate points to a break-point function

A minimal break-point function must contain at least a start and an end point:
f = bpf.start(x0,y0) : bpf.end(xl,yl);

A more involved break-point function can contains any number of intermediate
points:

85

f = bpf.start(x0,y0) : bpf.point(xl,yl) : bpf.point(x2,y2) : bpf.end(x3,y3);

In any case the x_{i} must be in increasing order (for all i, x_{i} < x_{i+1}).
For example the following definition:

f = bpf.start(x0,y0) : ... : bpf.point(xi,yi) : ... : bpf.end(xn,yn);
implements a break-point function f such that:

e £(x) = y_{0} when x < x_{0}

e f(x) = y_{n} when x > x_{n}

o £(x) = y_{i} + (y_{i+1}-y_{iB)*x-x_{i})/(x_{i+1}-x_{i}) when
x_{i} <= xand x < x_{i+1}

bpf is a standard Faust function.

(ba.)listInterp

Linearly interpolates between the elements of a list.

Usage

index = 1.69; // range is 0-4
process = listInterp((800,400,350,450,325),index);

Where:

o index: the index (float) to interpolate between the different values. The
range of index depends on the size of the list.

(ba.)bypassi

Takes a mono input signal, route it to e and bypass it if bpc = 1. When
bypassed, e is feed with zeros so that its state is cleanup up. bypassl is a
standard Faust function.

Usage
_ : bypassi(bpc,e)
Where:

e bpc: bypass switch (0/1)
e e: a mono effect

86

(ba.)bypass2

Takes a stereo input signal, route it to e and bypass it if bpc = 1. When
bypassed, e is feed with zeros so that its state is cleanup up. bypass2 is a
standard Faust function.

Usage
, : bypass2(bpc,e) : _,_
Where:

e bpc: bypass switch (0/1)
e e: a stereo effect

(ba.)bypassito2

Bypass switch for effect e having mono input signal and stereo output. Effect
e is bypassed if bpc = 1.When bypassed, e is feed with zeros so that its state
is cleanup up. bypassito2 is a standard Faust function.

Usage
_ @ bypassito2(bpc,e) : _,_

Where:

e Dbpc: bypass switch (0/1)
e e: a mono-to-stereo effect

(ba.)bypass_fade

Bypass an arbitrary (N x N) circuit with ‘n’ samples crossfade. Inputs and
outputs signals are faded out when ‘e’ is bypassed, so that ‘e’ state is cleanup
up. Once bypassed the effect is replaced by par(i,N,_). Bypassed circuits can
be chained.

Usage
: bypass_fade(n,b,e)

or
: bypass_fade(n,b,e) : _,_

>

e n: number of samples for the crossfade
o b: bypass switch (0/1)
e e: N x N circuit

87

Example test program

process = bypass_fade(ma.SR/10, checkbox("bypass echo"), echo);
process = bypass_fade(ma.SR/10, checkbox("bypass reverb"), freeverb);

(ba.)toggle
Triggered by the change of 0 to 1, it toggles the output value between 0 and 1.

Usage
_ : toggle : _

Example test program

button("toggle") : toggle : vbargraph("output", 0, 1)
(an.amp_follower(0.1) > 0.01) : toggle : vbargraph("output", 0, 1) // takes audio input

(ba.)on_and_off

The first channel set the output to 1, the second channel to 0.

Usage

, : on_and_off

Example test program

button("on"), button("off") : on_and_off : vbargraph("output", 0, 1)

(ba.)bitcrusher

Produce distortion by reduction of the signal resolution.

Usage
_ : bitcrusher(nbits)
Where:

e nbits: the number of bits of the wanted resolution

88

Sliding Reduce

Provides various operations on the last n samples using a high order
slidingReduce (op,n,maxN,disabledVal,x) fold-like function:

e slidingSum(n): the sliding sum of the last n input samples, CPU-light

e slidingSump(n,maxN): the sliding sum of the last n input samples, nu-
merically stable “forever”

e slidingMax(n,maxN): the sliding max of the last n input samples

e slidingMin(n,maxN): the sliding min of the last n input samples

e slidingMean(n): the sliding mean of the last n input samples, CPU-light

e slidingMeanp(n,maxN): the sliding mean of the last n input samples,
numerically stable “forever”

e slidingRMS(n): the sliding RMS of the last n input samples, CPU-light

e slidingRMSp(n,maxN): the sliding RMS of the last n input samples, nu-
merically stable “forever”

Working Principle If we want the maximum of the last 8 values, we can do
that as:

simpleMax(x) =
(
(
max (x@0,x0@1),
max (x02,x03)
) :max

max (x@4,x@05) ,
max (x@6,xQ7)
) :max
)

:max;

max (x@2,x@3) is the same as max (x@0,x01)@2 but the latter re-uses a value we
already computed,so is more efficient. Using the same trick for values 4 trough
7, we can write:

efficientMax(x)=
(
(
max (x@0,x@1),
max (x@0,x@1) @2
) :max

),

89

max (x@0,x01),
max (x@0,x01)@2
) :max@4
)

:max;

We can rewrite it recursively, so it becomes possible to get the maximum at
have any number of values, as long as it’s a power of 2.

recursiveMax =
case {
(1,x) => x;

(N,x) => max(recursiveMax(N/2,x), recursiveMax(N/2,x)@(N/2));
};

What if we want to look at a number of values that’s not a power of 2?7 For
each value, we will have to decide whether to use it or not. If n is bigger than
the index of the value, we use it, otherwise we replace it with (0-(ma.MAX)):

variableMax(n,x) =
max (
max (
(
(x@0 : useVal(0)),
(x@1 : useVal(1))
) :max,
(
(x02 : useVal(2)),
(x@3 : useVal(3))
) :max
),
max (
(
(x04 : useVal(4)),
(x@5 : useVal(5))
) :max,
(
(x@6 : useVal(6)),
(xQ@7 : useVal(7))
) :max
)
)
with {
useVal(i) = select2((n>=i) , (0-(ma.MAX)),_);
};

Now it becomes impossible to re-use any values. To fix that let’s first look at
how we’d implement it using recursiveMax, but with a fixed n that is not a

90

power of 2. For example, this is how you’d do it with n=3:

binaryMaxThree(x) =
(
recursiveMax(1,x)@0, // the first x
recursiveMax(2,x)@1 // the second and third x
) :max;

n=6

binaryMaxSix(x) =
(
recursiveMax(2,x)@0, // first two
recursiveMax(4,x)0@2 // third trough sixth
) :max;

Note that recursiveMax(2,x) is used at a different delay then in
binaryMaxThree, since it represents 1 and 2, not 2 and 3. Each block is
delayed the combined size of the previous blocks.

n=7
binaryMaxSeven(x) =
(
(
recursiveMax(1,x)@0, // first x
recursiveMax(2,x)@1 // second and third
) :max,
(
recursiveMax(4,x)@3 // fourth trough seventh
)
) :max;

To make a variable version, we need to know which powers of two are used, and
at which delay time.

Then it becomes a matter of:

e lining up all the different block sizes in parallel: sequentialOperatorParQOut ()
¢ delaying each the appropriate amount: sumOfPrevBlockSizes()

e turning it on or off: usevVal()

e getting the maximum of all of them: parallelOp()

In Faust, we can only do that for a fixed maximum number of values: maxN,
known at compile time.

91

(ba.)slidingReduce

Fold-like high order function. Apply a commutative binary operation
op to the last n consecutive samples of a signal x. For example
slidingReduce (max,128,128,0-(ma.MAX)) will compute the maximum
of the last 128 samples. The output is updated each sample, unlike reduce,
where the output is constant for the duration of a block.

Usage
_ : slidingReduce(op,n,maxN,disabledVal)
Where:

e n: the number of values to process

o maxN: the maximum number of values to process (int, known at compile
time, maxN > 0)

e op: the operator. Needs to be a commutative one.

e disabledVal: the value to use when we want to ignore a value.

In other words, op(x,disabledVal) should equal to x. For example, +(x,0)
equals x and min(x,ma.MAX) equals x. So if we want to calculate the sum, we
need to give 0 as disabledVal, and if we want the minimum, we need to give
ma.MAX as disabledVal.

(ba.)slidingSum

The sliding sum of the last n input samples.

It will eventually run into numerical trouble when there is a persistent dc
component. If that matters in your application, use the more CPU-intensive
ba.slidingSump.

Usage

_ : slidingSum(n)

Where:

e n: the number of values to process

(ba.)slidingSump
The sliding sum of the last n input samples.

It uses a lot more CPU than ba.slidingSum, but is numerically stable “forever”
in return.

92

Usage
_ : slidingSump(n,maxN)
Where:

e n: the number of values to process
o maxN: the maximum number of values to process (int, known at compile

time, maxN > 0)

(ba.)slidingMax

The sliding maximum of the last n input samples.

Usage
_ : slidingMax(n,maxN)
Where:

e n: the number of values to process
o maxN: the maximum number of values to process (int, known at compile

time, maxN > 0)

(ba.)slidingMin

The sliding minimum of the last n input samples.

Usage
_ ¢ slidingMin(n,maxN)
Where:

e n: the number of values to process
o maxN: the maximum number of values to process (int, known at compile

time, maxN > 0)

(ba.)slidingMean
The sliding mean of the last n input samples.

It will eventually run into numerical trouble when there is a persistent dc
component. If that matters in your application, use the more CPU-intensive

ba.slidingMeanp.

93

Usage
_ : slidingMean(n)
Where:

e n: the number of values to process

(ba.)slidingMeanp
The sliding mean of the last n input samples.

It uses a lot more CPU than ba.slidingMean, but is numerically stable “forever”
in return.

Usage
_ : slidingMeanp(n,maxN)
Where:

e n: the number of values to process
o maxN: the maximum number of values to process (int, known at compile
time, maxN > 0)

(ba.)slidingRMS

The root mean square of the last n input samples.

It will eventually run into numerical trouble when there is a persistent dc
component. If that matters in your application, use the more CPU-intensive
ba.slidingRMSp.

Usage

_ ¢ slidingRMS(n)

Where:

e n: the number of values to process

(ba.)slidingRMSp
The root mean square of the last n input samples.

It uses a lot more CPU than ba.slidingRMS, but is numerically stable “forever”

in return.

94

Usage
_ : slidingRMSp(n,maxN)
Where:

e n: the number of values to process
o maxN: the maximum number of values to process (int, known at compile
time, maxN > 0)

Parallel Operators

Provides various operations on N parallel inputs using a high order
parallelOp(op,N,x) function:

e parallelMax(N): the max of n parallel inputs

e parallelMin(N): the min of n parallel inputs

e parallelMean(N): the mean of n parallel inputs
e parallelRMS(N): the RMS of n parallel inputs

(ba.)parallelOp

Apply a commutative binary operation op to N parallel inputs.

usage
si.bus(N) : parallelOp(op,N)
where:

e N: the number of parallel inputs known at compile time
o op: the operator which needs to be commutative

(ba.)parallelMax

The maximum of N parallel inputs.

Usage
si.bus(N) : parallelMax(N)
Where:

e N: the number of parallel inputs known at compile time

95

(ba.)parallelMin

The minimum of N parallel inputs.

Usage
si.bus(N) : parallelMin(N)
Where:

e N: the number of parallel inputs known at compile time

(ba.)parallelMean

The mean of N parallel inputs.

Usage
si.bus(N) : parallelMean(N)
Where:

e N: the number of parallel inputs known at compile time

(ba.)parallelRMS
The RMS of N parallel inputs.

Usage
si.bus(N) : parallelRMS(N)
Where:

e N: the number of parallel inputs known at compile time

compressors.lib

A library of compressor effects. Its official prefix is co.

References

o https://github.com/grame-cncm/faustlibraries/blob/master/compressor
s.lib

96

https://github.com/grame-cncm/faustlibraries/blob/master/compressors.lib
https://github.com/grame-cncm/faustlibraries/blob/master/compressors.lib

Conversion Tools

Useful conversion tools for compressors.

(co.)ratio2strength

Most compressors have a ratio parameter to define the amount of compression.
A ratio of 1 means no compression, a ratio of 2 means that for every dB the
input goes above the threshold, the output gets turned down half a dB. To use
a compressor as a brick wall limiter, the ratio needs to be infinity. This is hard
to express in a faust Ul element, and overcompression can not be expressed at
all, therefore most compressors in this library use a strength parameter instead,
where 0 means no compression, 1 means hard limiting and bigger than 1 means
over-compression.

This utility converts a ratio to a strength.

Usage
ratio2strength(ratio)
Where:

e ratio: compression ratio, between 1 and infinity (1=no compression, in-
finity means hard limiting)

(co.)strength2ratio

Most compressors have a ratio parameter to define the amount of compression.
A ratio of 1 means no compression, a ratio of 2 means that for every dB the
input goes above the threshold, the output gets turned down half a dB. To use
a compressor as a brick wall limiter, the ratio needs to be infinity. This is hard
to express in a faust Ul element, and overcompression can not be expressed at
all, therefore most compressors in this library use a strength parameter instead,
where 0 means no compression, 1 means hard limiting and bigger than 1 means
over-compression.

This utility converts a strength to a ratio.

Usage
strength2ratio(strength)
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

97

Functions Reference

(co.)peak_compression_gain_mono_db

Mono dynamic range compressor gain computer with dB output. peak_compression_gain_mono_db
is a standard Faust function.

Usage
_ : peak_compression_gain_mono_db (strength ,thresh,att,rel,knee, prePost)
Where:

o strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

e att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

o http://en.wikipedia.org/wiki/Dynamic_ range_compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

98

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

(co.)peak_compression_gain_N_chan_db

N channels dynamic range compressor gain computer with dB output.
peak_compression_gain_N_chan_db is a standard Faust function.

Usage
si.bus(N) : peak_compression_gain_N_chan_db(strength,thresh,att,rel,knee,prePost,link,N)
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

e rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e N: the number of channels of the compressor, known at compile time

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

 http://en.wikipedia.org/wiki/Dynamic_range compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

99

PO

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

(co.)FFcompressor_N_chan

Feed forward N channels dynamic range compressor. FFcompressor_N_chan is
a standard Faust function.

Usage
si.bus(N) : FFcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,meter,N)
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

e rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e meter: a gain reduction meter. It can be implemented like so: meter =
<:(, (ba.linear2db:max(maxGR) :meter_group((hbargraph("[1] [unit:dB] [tooltip:
gain reduction in dB]", maxGR, 0))))):attach;

e N: the number of channels of the compressor, known at compile time

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

e http://en.wikipedia.org/wiki/Dynamic_ range compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss

@eecs.qmul.ac.uk)

100

: si.bus!

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

(co.)FBcompressor_N_chan

Feed back N channels dynamic range compressor. FBcompressor_N_chan is a
standard Faust function.

Usage
si.bus(N) : FBcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,meter,N)
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

e rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

e link: the amount of linkage between the channels. 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e meter: a gain reduction meter. It can be implemented with: meter = _
<: (_,(ba.linear2db:max(maxGR) :meter_group((hbargraph(" [1] [unit:dB] [tooltip:
gain reduction in dB]", maxGR, 0))))):attach; or it can be omit-
ted by defining meter = _;.

e N: the number of channels of the compressor, known at compile time

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

o http://en.wikipedia.org/wiki/Dynamic_ range_compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

101

: si.bus!

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

(co.)FBFFcompressor_N_chan

Feed forward / feed back N channels dynamic range compressor. The
feedback part has a much higher strength, so they end up sounding similar.
FBFFcompressor_N_chan is a standard Faust function.

Usage
si.bus(N) : FBFFcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,FBFF,meter,N)
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

o knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

o FBFF: fade between feed forward (0) and feed back (1) compression

e meter: a gain reduction meter. It can be implemented like so: meter =
<:(, (max (maxGR) :meter_group((hbargraph("[1] [unit:dB] [tooltip:
gain reduction in dB]", maxGR, 0))))):attach;

e N: the number of channels of the compressor, known at compile time

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you'd need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

 http://en.wikipedia.org/wiki/Dynamic_range compression
o Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael

102

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk

MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
Q@eecs.qmul.ac.uk)

(co.)RMS_compression_gain_mono_db

Mono RMS dynamic range compressor gain computer with dB output.
RMS_compression_gain_mono_db is a standard Faust function.

Usage
_ ¢ RMS_compression_gain_mono_db(strength,thresh,att,rel,knee,prePost)
Where:

¢ strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

e att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

 http://en.wikipedia.org/wiki/Dynamic_range compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

103

mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk
http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

(co.)RMS_compression_gain_N_chan_db

RMS N channels dynamic range compressor gain computer with dB output.
RMS_compression_gain_N_chan_db is a standard Faust function.

Usage

si.bus(N) : RMS_compression_gain_N_chan_db(strength,thresh,att,rel,knee,prePost,link,N)

Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

e rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e N: the number of channels of the compressor

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

 http://en.wikipedia.org/wiki/Dynamic_range compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

104

. 8:

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

(co.)RMS_FBFFcompressor_N_chan

RMS feed forward / feed back N channels dynamic range compressor. The
feedback part has a much higher strength, so they end up sounding similar.
RMS_FBFFcompressor_N_chan is a standard Faust function.

Usage
si.bus(N) : RMS_FBFFcompressor_N_chan(strength,thresh,att,rel,knee,prePost,link,FBFF,meter,!
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

e rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e FBFF: fade between feed forward (0) and feed back (1) compression.

e meter: a gain reduction meter. It can be implemented with: meter =
<:(, (max(maxGR) :meter_group ((hbargraph(" [1] [unit:dB] [tooltip:
gain reduction in dB]", maxGR, 0))))):attach;

e N: the number of channels of the compressor, known at compile time

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

To save CPU we cheat a bit, in a similar way as in the original libs: instead of
crosfading between two sets of gain calculators as above, we take the abs of the
audio from both the FF and FB, and crossfade between those, and feed that
into one set of gain calculators again the strength is much higher when in FB
mode, but implemented differently.

References

105

 http://en.wikipedia.org/wiki/Dynamic_range compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

(co.)RMS_FBcompressor_peak_limiter_N_chan

N channel RMS feed back compressor into peak limiter feeding back into
the FB compressor. By combining them this way, they complement each
other optimally: the RMS compressor doesn’t have to deal with the peaks,
and the peak limiter get’s spared from the steady state signal. The feed-
back part has a much higher strength, so they end up sounding similar.
RMS_FBcompressor_peak_limiter_N_chan is a standard Faust function.

Usage
si.bus(N) : RMS_FBcompressor_peak_limiter_ N_chan(strength,thresh,threshlLim,att,rel,knee,linl
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

e threshLim: dB level threshold above which the brickwall limiter kicks in

o att: attack time = time constant (sec) when level & compression going
up this is also used as the release time of the limiter

e rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction the limiter uses a knee half this size

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e meter: compressor gain reduction meter. It can be implemented with:
meter = _<:(_, (max(maxGR) :meter_group((hbargraph("[1] [unit:dB] [tooltip:
gain reduction in dB]", maxGR, 0))))):attach;

e meterLim: brickwall limiter gain reduction meter. It can be implemented
with: meterLim = _<:(_, (max(maxGR) :meter_group ((hbargraph (" [1] [unit:dB] [tooltip:
gain reduction in dB]", maxGR, 0))))):attach;

e N: the number of channels of the compressor, known at compile time

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

106

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

o http://en.wikipedia.org/wiki/Dynamic_ range_compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

Linear gain computer section

The gain computer functions in this section have been replaced by a version that
outputs dBs, but we retain the linear output version for backward compatibility.

(co.)peak_compression_gain_mono

Mono dynamic range compressor gain computer with linear output.
peak_compression_gain_mono is a standard Faust function.

Usage
_ @ peak_compression_gain_mono(strength,thresh,att,rel,knee,prePost)
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

o prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

107

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

o http://en.wikipedia.org/wiki/Dynamic_ range_compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

(co.)peak_compression_gain_N_chan

N channels dynamic range compressor gain computer with linear output.
peak_compression_gain_N_chan is a standard Faust function.

Usage
si.bus(N) : peak_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,N) : si.l
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

e att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e N: the number of channels of the compressor, known at compile time

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,

108

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

o http://en.wikipedia.org/wiki/Dynamic_range compression
¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael

MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

(co.)RMS_compression_gain_mono

Mono RMS dynamic range compressor gain computer with linear output.
RMS_compression_gain_mono is a standard Faust function.

Usage
_ : RMS_compression_gain_mono (strength ,thresh,att,rel,knee,prePost)
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

o knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you’d need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

109

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk

 http://en.wikipedia.org/wiki/Dynamic_range compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

(co.)RMS_compression_gain_N_chan

RMS N channels dynamic range compressor gain computer with linear output.
RMS_compression_gain_N_chan is a standard Faust function.

Usage
si.bus(N) : RMS_compression_gain_N_chan(strength,thresh,att,rel,knee,prePost,link,N) : si.b
Where:

e strength: strength of the compression (0 = no compression, 1 means hard
limiting, >1 means over-compression)

e thresh: dB level threshold above which compression kicks in

o att: attack time = time constant (sec) when level & compression going
up

e rel: release time = time constant (sec) coming out of compression

e knee: a gradual increase in gain reduction around the threshold: below
thresh-(knee/2) there is no gain reduction, above thresh+(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-threshold detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e N: the number of channels of the compressor, known at compile time

It uses a strength parameter instead of the traditional ratio, in order to be able
to function as a hard limiter. For that you'd need a ratio of infinity:1, and you
cannot express that in Faust.

Sometimes even bigger ratios are useful: for example a group recording where
one instrument is recorded with both a close microphone and a room microphone,
and the instrument is loud enough in the room mic when playing loud, but you
want to boost it when it is playing soft.

References

 http://en.wikipedia.org/wiki/Dynamic_range compression

110

http://en.wikipedia.org/wiki/Dynamic_range_compression
mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk
http://en.wikipedia.org/wiki/Dynamic_range_compression

¢ Digital Dynamic Range Compressor Design, A Tutorial and Analysis, Dim-
itrios GIANNOULIS (Dimitrios.Giannoulis@eecs.qmul.ac.uk), Michael
MASSBERG (michael@massberg.org), and Josuah D.REISS (josh.reiss
@eecs.qmul.ac.uk)

Original versions section

The functions in this section are largely superseded by the limiters above, but
we retain them for backward compatibility and for situations in which a more
permissive, MIT-style license is required.

(co.)compressor_lad_mono

Mono dynamic range compressor with lookahead delay. compressor_lad_mono
is a standard Faust function.

Usage
compressor_lad_mono(lad,ratio,thresh,att,rel)
Where:

e lad: lookahead delay in seconds (nonnegative) - gets rounded to nearest
sample. The effective attack time is a good setting

e ratio: compression ratio (1 = no compression, >1 means compression)
Ratios: 4 is moderate compression, 8 is strong compression, 12 is mild
limiting, and 20 is pretty hard limiting at the threshold

o thresh: dB level threshold above which compression kicks in (0 dB =
max level)

o att: attack time = time constant (sec) when level & compression are
going up

e rel: release time = time constant (sec) coming out of compression

References

o http://en.wikipedia.org/wiki/Dynamic_ range_compression

 https://cerma.stanford.edu/~jos/filters/Nonlinear_Filter_ Example D
ynamic.html

o Albert Graef’s “faust2pd”/examples/synth/compressor__.dsp

e More features: https://github.com/magnetophon/faustCompressors

(co.)compressor_mono

Mono dynamic range compressors. compressor_mono is a standard Faust func-
tion.

111

mailto:Dimitrios.Giannoulis@eecs.qmul.ac.uk
mailto:michael@massberg.org
mailto:josh.reiss@eecs.qmul.ac.uk
mailto:josh.reiss@eecs.qmul.ac.uk
http://en.wikipedia.org/wiki/Dynamic_range_compression
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://github.com/magnetophon/faustCompressors

Usage
compressor_mono(ratio,thresh,att,rel)
Where:

e ratio: compression ratio (1 = no compression, >1 means compression)
Ratios: 4 is moderate compression, 8 is strong compression, 12 is mild
limiting, and 20 is pretty hard limiting at the threshold

o thresh: dB level threshold above which compression kicks in (0 dB =
max level)

o att: attack time = time constant (sec) when level & compression are
going up

o rel: release time = time constant (sec) coming out of compression

References

 http://en.wikipedia.org/wiki/Dynamic_range compression

o https://ccrma.stanford.edu/~jos/filters/Nonlinear_ Filter_ Example_D
ynamic.html

o Albert Graef’s “faust2pd”/examples/synth/compressor__.dsp

o More features: https://github.com/magnetophon/faustCompressors

(co.)compressor_stereo

Stereo dynamic range compressors.

Usage

, : compressor_stereo(ratio,thresh,att,rel) : _,

Where:

e ratio: compression ratio (1 = no compression, >1 means compression)

o thresh: dB level threshold above which compression kicks in (0 dB =
max level)

o att: attack time = time constant (sec) when level & compression going
up

e rel: release time = time constant (sec) coming out of compression

References

o http://en.wikipedia.org/wiki/Dynamic_range_compression

e https://ccrma.stanford.edu/~jos/filters/Nonlinear Filter Example D
ynamic.html

o Albert Graef’s “faust2pd”/examples/synth/compressor_.dsp

o More features: https://github.com/magnetophon/faustCompressors

112

http://en.wikipedia.org/wiki/Dynamic_range_compression
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://github.com/magnetophon/faustCompressors
http://en.wikipedia.org/wiki/Dynamic_range_compression
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://github.com/magnetophon/faustCompressors

(co.)compression_gain_mono

Compression-gain calculation for dynamic range compressors.

Usage
compression_gain_mono(ratio,thresh,att,rel)

Where:

e ratio: compression ratio (1 = no compression, >1 means compression)

o thresh: dB level threshold above which compression kicks in (0 dB =
max level)

e att: attack time = time constant (sec) when level & compression going
up

o rel: release time = time constant (sec) coming out of compression

References

o http://en.wikipedia.org/wiki/Dynamic_range compression

e https://ccrma.stanford.edu/~jos/filters/Nonlinear Filter_ Example D
ynamic.html

o Albert Graef’s “faust2pd”/examples/synth/compressor__.dsp

o More features: https://github.com/magnetophon/faustCompressors

(co.)limiter_1176_R4_mono

A limiter guards against hard-clipping. It can be implemented as a compressor
having a high threshold (near the clipping level), fast attack, and high ratio.
Since the compression ratio is so high, some knee smoothing is desirable (for
softer limiting). This example is intended to get you started using compressors
as limiters, so all parameters are hardwired here to nominal values.

ratio: 4 (moderate compression). See compressor_mono comments for a guide
to other choices. Mike Shipley likes this (lowest) setting on the 1176. (Grammy
award-winning mixer for Queen, Tom Petty, etc.).

thresh: -6 dB, meaning 4:1 compression begins at amplitude 1/2.

att: 800 MICROseconds (Note: scaled by ratio in the 1176) The 1176 range is
said to be 20-800 microseconds. Faster attack gives “more bite” (e.g. on vocals),
and makes hard-clipping less likely on fast overloads.

rel: 0.5 s (Note: scaled by ratio in the 1176) The 1176 range is said to be
50-1100 ms.

The 1176 also has a “bright, clear eq effect” (use filters.lib if desired).
limiter_1176_R4_mono is a standard Faust function.

113

http://en.wikipedia.org/wiki/Dynamic_range_compression
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html
https://github.com/magnetophon/faustCompressors

Usage

_ ¢ limiter_1176_R4_mono : _

Reference:

o http://en.wikipedia.org/wiki/1176_ Peak Limiter

(co.)limiter_1176_R4_stereo

A limiter guards against hard-clipping. It can be implemented as a compressor
having a high threshold (near the clipping level), fast attack and release, and
high ratio. Since the ratio is so high, some knee smoothing is desirable (“soft
limiting”). This example is intended to get you started using compressor_x as
a limiter, so all parameters are hardwired to nominal values here.

ratio: 4 (moderate compression), 8 (severe compression), 12 (mild limiting),
or 20 to 1 (hard limiting).

att: 20-800 MICROseconds (Note: scaled by ratio in the 1176).
rel: 50-1100 ms (Note: scaled by ratio in the 1176).

Mike Shipley likes 4:1 (Grammy-winning mixer for Queen, Tom Petty, etc.)
Faster attack gives “more bite” (e.g. on vocals). He hears a bright, clear eq
effect as well (not implemented here).

Usage

, : limiter_1176_R4_stereo : _,_

Reference:

o http://en.wikipedia.org/wiki/1176_ Peak_Limiter

Expanders

(co.)peak_expansion_gain_N_chan_db

N channels dynamic range expander gain computer. peak_expansion_gain_N_chan_db

is a standard Faust function.

Usage

si.bus(N) : peak_expansion_gain_N_chan_db (strength ,thresh,range,att,hold,rel,knee,prePost,1:
Where:

114

http://en.wikipedia.org/wiki/1176_Peak_Limiter
http://en.wikipedia.org/wiki/1176_Peak_Limiter

o strength: strength of the expansion (0 = no expansion, 100 means gating,
<1 means upward compression)

e thresh: dB level threshold below which expansion kicks in

e range: maximum amount of expansion in dB

e att: attack time = time constant (sec) coming out of expansion

e hold : hold time (sec)

o rel: release time = time constant (sec) going into expansion

e knee: a gradual increase in gain reduction around the threshold: above
thresh+(knee/2) there is no gain reduction, below thresh-(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-range detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e maxHold: the maximum hold time in samples, known at compile time

e N: the number of channels of the gain computer, known at compile time

(co.)expander_N_chan

Feed forward N channels dynamic range expander. expander _N_chan is a stan-
dard Faust function.

Usage
si.bus(N) : expander_N_chan (strength ,thresh,range,att,hold,rel,knee,prePost,link,meter,maxHc
Where:

o strength: strength of the expansion (0 = no expansion, 100 means gating,
<1 means upward compression)

e thresh: dB level threshold below which expansion kicks in

e range: maximum amount of expansion in dB

e att: attack time = time constant (sec) coming out of expansion

e hold : hold time

o rel: release time = time constant (sec) going into expansion

e knee: a gradual increase in gain reduction around the threshold: above
thresh+(knee/2) there is no gain reduction, below thresh-(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-range detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

115

e meter: a gain reduction meter. It can be implemented like so: meter =
<:(, (ba.linear2db:max(maxGR) :meter_group((hbargraph("[1] [unit:dB] [tooltip:
gain reduction in dB]", maxGR, 0))))):attach;

e maxHold: the maximum hold time in samples, known at compile time

e N: the number of channels of the expander, known at compile time

(co.)expanderSC_N_chan

Feed forward N channels dynamic range expander with sidechain. expanderSC_N_chan
is a standard Faust function.

Usage
si.bus(N) : expanderSC_N_chan(strength,thresh,range,att,hold,rel,knee,prePost,link,meter,ma:
Where:

e strength: strength of the expansion (0 = no expansion, 100 means gating,
<1 means upward compression)

e thresh: dB level threshold below which expansion kicks in

e range: maximum amount of expansion in dB

e att: attack time = time constant (sec) coming out of expansion

e hold : hold time

o rel: release time = time constant (sec) going into expansion

e knee: a gradual increase in gain reduction around the threshold: above
thresh+(knee/2) there is no gain reduction, below thresh-(knee/2) there
is the same gain reduction as without a knee, and in between there is a
gradual increase in gain reduction

e prePost: places the level detector either at the input or after the gain
computer; this turns it from a linear return-to-zero detector into a log
domain return-to-range detector

e link: the amount of linkage between the channels: 0 = each channel is
independent, 1 = all channels have the same amount of gain reduction

e meter: a gain reduction meter. It can be implemented like so: meter =
<:(, (ba.linear2db:max(maxGR) :meter_group((hbargraph("[1] [unit:dB] [tooltip:
gain reduction in dB]", maxGR, 0))))):attach;

e maxHold: the maximum hold time in samples, known at compile time

e N: the number of channels of the expander, known at compile time

e SCfunction : a function that get’s placed before the level-detector, needs
to have a single input and output

e SCswitch : use either the regular audio input or the SCsignal as the input
for the level detector

e SCsignal : an audio signal, to be used as the input for the level detector
when SCswitch is 1

116

Lookahead Limiters

(co.)limiter_lad_N

N-channels lookahead limiter inspired by IOhannes Zmdolnig’s post, which is in
turn based on the thesis by Peter Falkner “Entwicklung eines digitalen Stereo-
Limiters mit Hilfe des Signalprozessors DSP56001”. This version of the limiter
uses a peak-holder with smoothed attack and release based on tau time constant
filters.

It is also possible to use a time constant that is 2PI*tau by dividing the attack
and release times by 2PI. This time constant allows for the amplitude profile
to reach 1 - e~ (-2PI) of the final peak after the attack time. The input path
can be delayed by the same amount as the attack time to synchronise input and
amplitude profile, realising a system that is particularly effective as a colourless
(ideally) brickwall limiter.

Note that the effectiveness of the ceiling settings are dependent on the other
parameters, especially the time constant used for the smoothing filters and the
lookahead delay.

Similarly, the colourless characteristics are also dependent on attack, hold, and
release times. Since fluctuations above ~15 Hz are perceived as timbral effects,
[Vassilakis and Kendall 2010] it is reasonable to set the attack time to 1/15
seconds for a smooth amplitude modulation. On the other hand, the hold time
can be set to the peak-to-peak period of the expected lowest frequency in the
signal, which allows for minimal distortion of the low frequencies. The release
time can then provide a perceptually linear and gradual gain increase determined
by the user for any specific application.

The scaling factor for all the channels is determined by the loudest peak between
them all, so that amplitude ratios between the signals are kept.

Usage
si.bus(N) : limiter_lad_N(N, LD, ceiling, attack, hold, release) : si.bus(N)
Where:

e N: is the number of channels, known at compile-time

e LD: is the lookahead delay in seconds, known at compile-time
e ceiling: is the linear amplitude output limit

e attack: is the attack time in seconds

e hold: is the hold time in seconds

e release: is the release time in seconds

Example for a stereo limiter: 1imiter_lad_N(2, .01, 1, .01, .1, 1);

117

Reference:

o http://iem.at/~zmoelnig/publications/limiter

(co.)limiter_lad_mono

Specialised case of limiter_lad_N mono limiter.

Usage
limiter_lad_mono(LD, ceiling, attack, hold, release)
Where:

e LD: is the lookahead delay in seconds, known at compile-time
e ceiling: is the linear amplitude output limit

e attack: is the attack time in seconds

e hold: is the hold time in seconds

e release: is the release time in seconds

Reference:

 http://iem.at/~zmoelnig/publications/limiter

(co.)limiter_lad_stereo

Specialised case of limiter_lad_N stereo limiter.

Usage
,_ : limiter_lad_stereo(LD, ceiling, attack, hold, release) : _,

Where:

e LD: is the lookahead delay in seconds, known at compile-time
e ceiling: is the linear amplitude output limit

e attack: is the attack time in seconds

e hold: is the hold time in seconds

e release: is the release time in seconds

Reference:

o http://iem.at/~zmoelnig/publications/limiter

118

http://iem.at/~zmoelnig/publications/limiter
http://iem.at/~zmoelnig/publications/limiter
http://iem.at/~zmoelnig/publications/limiter

(co.)limiter_lad_quad

Specialised case of limiter_lad_N quadraphonic limiter.

Usage
si.bus(4) : limiter_lad_quad(LD, ceiling, attack, hold, release) : si.bus(4)
Where:

e LD: is the lookahead delay in seconds, known at compile-time
e ceiling: is the linear amplitude output limit

e attack: is the attack time in seconds

e hold: is the hold time in seconds

e release: is the release time in seconds

Reference:

o http://iem.at/~zmoelnig/publications/limiter

(co.)limiter_lad_bw

Specialised case of 1limiter_lad_N and ready-to-use unit-amplitude mono lim-
iting function. This implementation, in particular, uses 2PI*tau time constant
filters for attack and release smoothing with synchronised input and gain signals.

This function’s best application is to be used as a brickwall limiter with the
least colouring artefacts while keeping a not-so-slow release curve. Tests have
shown that, given a pop song with 60 dB of amplification and a 0-dB-ceiling,
the loudest peak recorded was ~0.38 dB.

Usage

_ ¢ limiter_lad_bw : _

Reference:

o http://iem.at/~zmoelnig/publications/limiter

delays.lib

This library contains a collection of delay functions. Its official prefix is de.

References

o https://github.com/grame-cncm/faustlibraries/blob/master/delays.lib

119

http://iem.at/~zmoelnig/publications/limiter
http://iem.at/~zmoelnig/publications/limiter
https://github.com/grame-cncm/faustlibraries/blob/master/delays.lib

Basic Delay Functions

(de.)delay

Simple d samples delay where n is the maximum delay length as a number
of samples. Unlike the @ delay operator, here the delay signal 4 is explicitly
bounded to the interval [0..n]. The consequence is that delay will compile even
if the interval of d can’t be computed by the compiler. delay is a standard
Faust function.

Usage
_ : delay(n,d)
Where:

e n: the max delay length in samples
e d: the delay length in samples (integer)

(de.)fdelay

Simple d samples fractional delay based on 2 interpolated delay lines where n is
the maximum delay length as a number of samples. fdelay is a standard Faust
function.

Usage
_ : fdelay(n,d)
Where:

e n: the max delay length in samples
o d: the delay length in samples (float)

(de.)sdelay

s(mooth)delay: a mono delay that doesn’t click and doesn’t transpose when the
delay time is changed.

Usage

_ @ sdelay(n,it,d)

Where :

e n: the max delay length in samples

120

o it: interpolation time (in samples), for example 1024
o d: the delay length in samples (float)

Lagrange Interpolation

(de.)fdelaylti and (de.)fdelayltv

Fractional delay line using Lagrange interpolation.

Usage
_ ¢ fdelaylt[ilv]I(N, n, d)
Where:

e N=1,2,3,... is the order of the Lagrange interpolation polynomial (con-
stant numerical expression)

e n: the max delay length in samples

e d: the delay length in samples

fdelaylti is most efficient, but designed for constant/slowly-varying delay.
fdelayltv is more expensive and more robust when the delay varies rapidly.

Note: the requested delay should not be less than (N-1)/2.

References

o https://cerma.stanford.edu/~jos/pasp/Lagrange_ Interpolation.html
— fixed-delay case
— variable-delay case
e Timo I. Laakso et al., “Splitting the Unit Delay - Tools for Fractional
Delay Filter Design”, IEEE Signal Processing Magazine, vol. 13, no. 1,
pp. 30-60, Jan 1996.
o Philippe Depalle and Stephan Tassart, “Fractional Delay Lines using La-
grange Interpolators”, ICMC Proceedings, pp. 341-343, 1996.

(de.)fdelay[N]

For convenience, fdelayl, fdelay2, fdelay3, fdelay4, fdelayb are also avail-
able where N is the order of the interpolation, built using fdelayltv.

Thiran Allpass Interpolation
Thiran Allpass Interpolation.

121

https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html
https://ccrma.stanford.edu/~jos/Interpolation/Efficient_Time_Invariant_Lagrange_Interpolation.html
https://ccrma.stanford.edu/~jos/Interpolation/Time_Varying_Lagrange_Interpolation.html

Reference

o https://ccrma.stanford.edu/~jos/pasp/Thiran__Allpass_ Interpolators.h
tml

(de.)fdelay[N]a

Delay lines interpolated using Thiran allpass interpolation.

Usage

_ : fdelay[N]la(n, d)
(exactly like fdelay)
Where:

e N=1,2,3, or 4 is the order of the Thiran interpolation filter (constant
numerical expression), and the delay argument is at least N-1/2. First-
order: d at least 0.5, second-order: d at least 1.5, third-order: d at least
2.5, fourth-order: d at least 3.5.

e n: the max delay length in samples

e d: the delay length in samples

Note The interpolated delay should not be less than N-1/2. (The allpass delay
ranges from N-1/2 to N+1/2). This constraint can be alleviated by altering the
code, but be aware that allpass filters approach zero delay by means of pole-zero
cancellations.

Delay arguments too small will produce an UNSTABLE allpass!

Because allpass interpolation is recursive, it is not as robust as Lagrange inter-
polation under time-varying conditions (you may hear clicks when changing the
delay rapidly).

demos.lib

This library contains a set of demo functions based on examples located in the
/examples folder. Its official prefix is dm.

References

« https://github.com/grame-cncm/faustlibraries/blob/master /demos.lib

Analyzers

122

https://ccrma.stanford.edu/~jos/pasp/Thiran_Allpass_Interpolators.html
https://ccrma.stanford.edu/~jos/pasp/Thiran_Allpass_Interpolators.html
https://github.com/grame-cncm/faustlibraries/blob/master/demos.lib

(dm.)mth_octave_spectral_level_demo

Demonstrate mth_octave spectral level in a standalone GUI.

Usage

_ : mth_octave_spectral_level_demo(BandsPerQOctave)
_ : spectral_level_demo : _ // 2/3 octave

Filters

(dm.)parametric_eq_demo

A parametric equalizer application.

Usage:

_ : parametric_eq_demo : _

(dm.)spectral_tilt_demo

A spectral tilt application.

Usage
_ : spectral_tilt_demo(N)
Where:

o N: filter order (integer)

All other parameters interactive

(dm.)mth_octave_filterbank_demo and (dm.)filterbank_demo

Graphic Equalizer: each filter-bank output signal routes through a fader.

Usage

_ : mth_octave_filterbank_demo (M)
_ : filterbank_demo : _

Where:

e M: number of bands per octave

123

Effects

(dm.)cubicnl_demo

Distortion demo application.

Usage:

cubicnl_demo : _

(dm.)gate_demo

Gate demo application.

Usage

, : gate_demo : _,_

(dm.) compressor_demo

Compressor demo application.

Usage

, : compressor_demo : _,_

(dm.)moog_vcf_demo

Ilustrate and compare all three Moog VCF implementations above.

Usage

_ : moog_vcf_demo : _

(dm.)wah4_demo

Wah pedal application.

124

Usage

_ : wah4_demo : _

(dm.) crybaby_demo

Crybaby effect application.

Usage
crybaby_demo : _

(dm.)flanger_demo

Flanger effect application.

Usage

, : flanger_demo : _,_

(dm.) phaser2_demo

Phaser effect demo application.

Usage

, : phaser2_demo : _,_

Reverbs

(dm.)freeverb_demo

Freeverb demo application.

Usage

, : freeverb_demo : _,_

(dm.)stereo_reverb_tester

Handy test inputs for reverberator demos below.

125

Usage

_ : stereo_reverb_tester : _

(dm.)fdnrev0O_demo

A reverb application using fdnrevO.

Usage
.,_,_ : fdnrevO_demo(N,NB,BBSO) : _,_
Where:

o N: feedback Delay Network (FDN) order / number of delay lines used =
order of feedback matrix / 2, 4, 8, or 16 [extend primes array below for
32, 64, ..]

e NB: number of frequency bands / Number of (nearly) independent T60
controls / Integer 3 or greater

e BBSO : butterworth band-split order / order of lowpass/highpass bandsplit
used at each crossover freq / odd positive integer

(dm.)zita_rev_£fdn_demo

Reverb demo application based on zita_rev_fdn.

Usage

si.bus(8) : zita_rev_fdn_demo : si.bus(8)

(dm.)zita_light

Light version of dm.zita_revl with only 2 UI elements.

Usage

, : zita_light : _,_

(dm.)zita_revil

Example GUI for zita_revl_stereo (mostly following the Linux zita-revl

GUI).

126

Only the dry/wet and output level parameters are “dezippered” here. If param-
eters are to be varied in real time, use smooth(0.999) or the like in the same
way.

Usage

, : zita_revl : _,_

Reference

o http://www.kokkinizita.net/linuxaudio/zita-revl-doc/quickguide.html

(dm.)dattorro_rev_demo

Example GUI for dattorro_rev with all parameters exposed. With additional
dry/wet and output gain control.

Usage

, : dattorro_rev_demo : _,_

(dm.) jprev_demo

Example GUI for jprev with all parameters exposed.

Usage

, : Jjprev_demo : _,_

(dm.)greyhole_demo

Example GUI for greyhole with all parameters exposed.

Usage

, : greyhole_demo : _,_

Generators

(dm.)sawtooth_demo

An application demonstrating the different sawtooth oscillators of Faust.

127

http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html

Usage

sawtooth_demo

(dm.)virtual_analog_oscillator_demo

Virtual analog oscillator demo application.

Usage

virtual_analog_oscillator_demo :

(dm.) oscrs_demo

Simple application demoing filter based oscillators.

Usage

oscrs_demo : _

(dm.)velvet_noise_demo

Listen to velvet_noise!

Usage

velvet_noise_demo

(dm.)latch_demo

Mlustrate latch operation.

Usage

echo 'import("stdfaust.lib");' > latch_demo.dsp
echo 'process = dm.latch_demo;' >> latch_demo.dsp
faust2octave latch_demo.dsp

Octave:1> plot(faustout);

(dm.)envelopes_demo

Tllustrate various envelopes overlaid, including their gate * 1.1.

128

Usage

echo 'import("stdfaust.lib");' > envelopes_demo.dsp

echo 'process = dm.envelopes_demo;' >> envelopes_demo.dsp
faust2octave envelopes_demo.dsp

Octave:1> plot(faustout);

(dm.)fft_spectral_level_demo

Make a real-time spectrum analyzer using FFT from analyzers.lib.

Usage

echo 'import("stdfaust.lib");' > fft_spectral_level_demo.dsp
echo 'process = dm.fft_spectral_level_demo;' >> fft_spectral_level_demo.dsp
Mac:
faust2caqt fft_spectral_level_demo.dsp
open fft_spectral_level_demo.app
Linux GTK:
faust2jack fft_spectral_level_demo.dsp
./fft_spectral_level_demo
Linux QT:
faust2jaqt fft_spectral_level_demo.dsp
./fft_spectral_level_demo

(dm.)reverse_echo_demo (nChans)

Multichannel echo effect with reverse delays.

Usage

echo 'import("stdfaust.lib");' > reverse_echo_demo.dsp
echo 'nChans = 3; // Any integer > 1 should work here' >> reverse_echo_demo.dsp
echo 'process = dm.reverse_echo_demo(nChans);' >> reverse_echo_demo.dsp
Mac:
faust2caqt reverse_echo_demo.dsp
open reverse_echo_demo.app
Linux GTK:
faust2jack reverse_echo_demo.dsp
./reverse_echo_demo
Linux QT:
faust2jaqt reverse_echo_demo.dsp
./reverse_echo_demo
Etc.

129

(dm.) pospass_demo

Use Positive-Pass Filter pospass() to frequency-shift a sine tone. First, a real
sinusoid is converted to its analytic-signal form using pospass() to filter out its
negative frequency component. Next, it is multiplied by a modulating complex
sinusoid at the shifting frequency to create the frequency-shifted result. The
real and imaginary parts are output to channels 1 & 2. For a more interesting
frequency-shifting example, check the “Use Mic” checkbox to replace the input
sinusoid by mic input. Note that frequency shifting is not the same as frequency
scaling. A frequency-shifted harmonic signal is usually not harmonic. Very small
frequency shifts give interesting chirp effects when there is feedback around the
frequency shifter.

Usage

echo 'import("stdfaust.lib");' > pospass_demo.dsp
echo 'process = dm.pospass_demo;' >> pospass_demo.dsp
Mac:

faust2caqt pospass_demo.dsp

open pospass_demo.app
Linux GTK:

faust2jack pospass_demo.dsp

./pospass_demo
Linux QT:

faust2jaqt pospass_demo.dsp

./pospass_demo
Etc.

(dm.)exciter

Psychoacoustic harmonic exciter, with GUI.

Usage

_ @ exciter : _

References

o https://secure.aes.org/forum/pubs/ebriefs/?elib=16939
o https://www.researchgate.net/publication/258333577 Modeling the H
armonic_Exciter

130

https://secure.aes.org/forum/pubs/ebriefs/?elib=16939
https://www.researchgate.net/publication/258333577_Modeling_the_Harmonic_Exciter
https://www.researchgate.net/publication/258333577_Modeling_the_Harmonic_Exciter

(dm.)vocoder_demo

Use example of the vocoder function where an impulse train is used as excitation.

Usage

_ : vocoder_demo : _

(dm.)colored_noise_demo

A coloured noise signal generator.

Usage

colored_noise_demo : _
dx7.lib
Yamaha DX7 emulation library. Its official prefix is dx.

References

o https://github.com/grame-cncm/faustlibraries/blob/master/dx7.1ib

(dx.)dx7_ampf
DX7 amplitude conversion function. 3 versions of this function are available:

o dx7_amp_bpf: BPF version (same as in the CSOUND toolkit)
e dx7_amp_func: estimated mathematical equivalent of dx7_amp_bpf
e dx7_ampf: default (sugar for dx7_amp_func)

Usage:
dx7AmpPreset : dx7_ampf_bpf : _
Where:
o dx7AmpPreset: DX7 amplitude value (0-99)

131

https://github.com/grame-cncm/faustlibraries/blob/master/dx7.lib

(dx.)dx7_egraterisef

DXT7 envelope generator rise conversion function. 3 versions of this function are
available:

o dx7_egraterise_bpf: BPF version (same as in the CSOUND toolkit)
e dx7_egraterise_func: estimated mathematical equivalent of dx7_egraterise_bpf
o dx7_egraterisef: default (sugar for dx7_egraterise_func)

Usage:
dx7envelopeRise : dx7_egraterisef

Where:

o dx7envelopeRise: DX7 envelope rise value (0-99)

(dx.)dx7_egraterisepercf

DXT7 envelope generator percussive rise conversion function. 3 versions of this
function are available:

o dx7_egrateriseperc_bpf: BPF version (same as in the CSOUND
toolkit)

e dx7_egrateriseperc_func: estimated mathematical equivalent of
dx7_egrateriseperc_bpf

e dx7_egraterisepercf: default (sugar for dx7_egrateriseperc_func)

Usage:
dx7envelopePercRise : dx7_egraterisepercft

Where:

¢ dx7envelopePercRise: DXT7 envelope percussive rise value (0-99)

(dx.)dx7_egratedecayf

DXT7 envelope generator decay conversion function. 3 versions of this function
are available:

¢ dx7_egratedecay_bpf: BPF version (same as in the CSOUND toolkit)

o dx7_egratedecay_func: estimated mathematical equivalent of
dx7_egratedecay_bpf

e dx7_egratedecayf: default (sugar for dx7_egratedecay_func)

132

Usage:
dx7envelopeDecay : dx7_egratedecayf
Where:
¢ dx7envelopeDecay: DXT7 envelope decay value (0-99)

(dx.)dx7_egratedecayperct

DXT7 envelope generator percussive decay conversion function. 3 versions of this
function are available:

e dx7_egratedecayperc_bpf: BPF version (same as in the CSOUND
toolkit)

e dx7_egratedecayperc_func: estimated mathematical equivalent of
dx7_egratedecayperc_bpf

e dx7_egratedecayperct: default (sugar for dx7_egratedecayperc_func)

Usage:
dx7envelopePercDecay : dx7_egratedecaypercf

Where:
e dx7envelopePercDecay: DX7 envelope decay value (0-99)

(dx.)dx7_eglv2peakf

DXT7 envelope level to peak conversion function. 3 versions of this function are
available:

e dx7_eglv2peak_bpf: BPF version (same as in the CSOUND toolkit)
e dx7_eglv2peak_func: estimated mathematical equivalent of dx7_eglv2peak_bpf
o dx7_eglv2peakf: default (sugar for dx7_eglv2peak_func)

Usage:
dx7Level : dx7_eglv2peakf : _

Where:
o dx7Level: DXT7 level value (0-99)

(dx.)dx7_velsensf

DXT7 velocity sensitivity conversion function.

133

Usage:
dx7Velocity : dx7_velsensf : _
Where:

e dx7Velocity: DX7 level value (0-8)

(dx.)dx7_fdbkscalef

DXT7 feedback scaling conversion function.

Usage:
dx7Feedback : dx7_fdbkscalef : _
Where:

e dx7Feedback: DX7 feedback value

(dx.)dx7_op

DX7 Operator. Implements a phase-modulable sine wave oscillator connected
to a DXT7 envelope generator.

Usage:
dx7_op(freq,phaseMod,outlev,R1,R2,R3,R4,L1,1.2,1.3,L4,keyVel,rateScale,type,gain,gate)
Where:

o freq: frequency of the oscillator

e phaseMod: phase deviation (-1 - 1)

e outLev: preset output level (0-99)

e R1: preset envelope rate 1 (0-99)

e R2: preset envelope rate 2 (0-99)

o R3: preset envelope rate 3 (0-99)

o R4: preset envelope rate 4 (0-99)

e L1: preset envelope level 1 (0-99)

e L2: preset envelope level 2 (0-99)

e L3: preset envelope level 3 (0-99)

e L4: preset envelope level 4 (0-99)

o keyVel: preset key velocity sensitivity (0-99)
e rateScale: preset envelope rate scale
e type: preset operator type

e gain: general gain

o gate: trigger signal

134

(dx.)dx7_algo

DX7 algorithms. Implements the 32 DX7 algorithms (a quick Google search
should give your more details on this). Each algorithm uses 6 operators.

Usage:
dx7_algo(algN,egRl,egR2,egR3,egR4,egll,egl2,egl3,egld,outlevel ,keyVelSens,ampModSens, opMode.
Where:

o algN: algorithm number (0-31, should be an int...)

o egR1: preset envelope rates 1 (a list of 6 values between 0-99)
o egR2: preset envelope rates 2 (a list of 6 values between 0-99)
o egR3: preset envelope rates 3 (a list of 6 values between 0-99)
o egR4: preset envelope rates 4 (a list of 6 values between 0-99)
e egll: preset envelope levels 1 (a list of 6 values between 0-99
e egl2: preset envelope levels 2 (a list of 6 values between 0-99
o egl3: preset envelope levels 3 (a list of 6 values between 0-99
o egld4: preset envelope levels 4 (a list of 6 values between 0-99
o outLev: preset output levels (a list of 6 values between 0-99)
e keyVel: preset key velocity sensitivities (a list of 6 values between 0-99)

o ampModSens: preset amplitude sensitivities (a list of 6 values between 0-99)
o opMode: preset operator mode (a list of 6 values between 0-1)

o opFreq: preset operator frequencies (a list of 6 values between 0-99)

o opDetune: preset operator detuning (a list of 6 values between 0-99)

o opRateScale: preset operator rate scale (a list of 6 values between 0-99)
o feedback: preset operator feedback (a list of 6 values between 0-99)

e 1foDelay: preset LFO delay (a list of 6 values between 0-99)

e 1foDepth: preset LFO depth (a list of 6 values between 0-99)

o 1foSpeed: preset LFO speed (a list of 6 values between 0-99)

o freq: fundamental frequency

e gain: general gain

e gate: trigger signal

)
)
)
)

(dx.)dx7_ui

Generic DX7 function where all parameters are controllable using UI elements.
The master-with-mute branch must be used for this function to work... This
function is MIDI-compatible.

Usage

dx7_ui : _

135

envelopes.lib

This library contains a collection of envelope generators. Its official prefix is en.

References

 https://github.com/grame-cncm/faustlibraries/blob/master/envelopes.li
b

Functions Reference

(en.)ar

AR (Attack, Release) envelope generator (useful to create percussion envelopes).
ar is a standard Faust function.

Usage
ar(at,rt,t)
Where:

o at: attack (sec)

e rt: release (sec)

e t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)asr

ASR (Attack, Sustain, Release) envelope generator. asr is a standard Faust
function.

Usage
asr(at,sl,rt,t)
Where:

o at: attack (sec)

o sl: sustain level (between 0..1)

e rt: release (sec)

o t: trigger signal (attack is triggered when t>0, release is triggered when

t=0)

136

https://github.com/grame-cncm/faustlibraries/blob/master/envelopes.lib
https://github.com/grame-cncm/faustlibraries/blob/master/envelopes.lib

(en.)adsr

ADSR (Attack, Decay, Sustain, Release) envelope generator. adsr is a standard
Faust function.

Usage
adsr(at,dt,sl,rt,t)
Where:

e at: attack time (sec)

e dt: decay time (sec)

o sl: sustain level (between 0..1)

o rt: release time (sec)

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)adsrf_bias

ADSR (Attack, Decay, Sustain, Release, Final) envelope generator with control
over bias on each segment, and toggle for legato.

Usage
adsrf_bias(at,dt,sl,rt,final,b_att,b_dec,b_rel,legato,t)
Where:

o at: attack time (sec)

o dt: decay time (sec)

o sl: sustain level (between 0..1)

e rt: release time (sec)

o final: final level (between 0..1) but less than or equal to s1

e b_att: bias during attack (between 0..1) where 0.5 is no bias.

e b_dec: bias during decay (between 0..1) where 0.5 is no bias.

e b_rel: bias during release (between 0..1) where 0.5 is no bias.

e legato: toggle for legato. If disabled, envelopes “re-trigger” from zero.

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)adsr_bias

ADSR (Attack, Decay, Sustain, Release) envelope generator with control over
bias on each segment, and toggle for legato.

137

Usage
adsr_bias(at,dt,sl,rt,b_att,b_dec,b_rel,legato,t)
Where:

o at: attack time (sec)

e dt: decay time (sec)

« sl: sustain level (between 0..1)

o rt: release time (sec)

e Db_att: bias during attack (between 0..1) where 0.5 is no bias.

e Db_dec: bias during decay (between 0..1) where 0.5 is no bias.

o b_rel: bias during release (between 0..1) where 0.5 is no bias.

e legato: toggle for legato. If disabled, envelopes “re-trigger” from zero.

e t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)ahdsrf_bias

AHDSR (Attack, Hold, Decay, Sustain, Release, Final) envelope generator with
control over bias on each segment, and toggle for legato.

Usage
ahdsrf_bias(at,ht,dt,sl,rt,final,b_att,b_dec,b_rel,legato,t)
Where:

o at: attack time (sec)

e ht: hold time (sec)

e dt: decay time (sec)

o sl: sustain level (between 0..1)

o rt: release time (sec)

o final: final level (between 0..1) but less than or equal to s1

e b_att: bias during attack (between 0..1) where 0.5 is no bias.

e Db_dec: bias during decay (between 0..1) where 0.5 is no bias.

e Db_rel: bias during release (between 0..1) where 0.5 is no bias.

e legato: toggle for legato. If disabled, envelopes “re-trigger” from zero.

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)ahdsr_bias

AHDSR (Attack, Hold, Decay, Sustain, Release) envelope generator with control
over bias on each segment, and toggle for legato.

138

Usage
ahdsr_bias(at,ht,dt,sl,rt,final,b_att,b_dec,b_rel,legato,t)
Where:

o at: attack time (sec)

e ht: hold time (sec)

o dt: decay time (sec)

o sl: sustain level (between 0..1)

e rt: release time (sec)

o final: final level (between 0..1) but less than or equal to s1

e Db_att: bias during attack (between 0..1) where 0.5 is no bias.

e b_dec: bias during decay (between 0..1) where 0.5 is no bias.

e b_rel: bias during release (between 0..1) where 0.5 is no bias.

e legato: toggle for legato. If disabled, envelopes “re-trigger” from zero.

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)smoothEnvelope

An envelope with an exponential attack and release. smoothEnvelope is a stan-
dard Faust function.

Usage
smoothEnvelope(ar,t)

e ar: attack and release duration (sec)
o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)arfe

ARFE (Attack and Release-to-Final-value Exponentially) envelope generator.
Approximately equal to smoothEnvelope (Attack/6.91) when Attack == Re-
lease.

Usage
arfe(at,rt,fl,t)
Where:

o at: attack (sec)
e rt: release (sec)
o f1: final level to approach upon release (such as 0)

139

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)are

ARE (Attack, Release) envelope generator with Exponential segments. Approx-
imately equal to smoothEnvelope (Attack/6.91) when Attack == Release.

Usage
are(at,rt,t)
Where:

o at: attack (sec)
e rt: release (sec)
o t: trigger signal (attack is triggered when t>0, release is triggered when

t=0)

(en.)asre

ASRE (Attack, Sustain, Release) envelope generator with Exponential
segments.

Usage
asre(at,sl,rt,t)
Where:

o at: attack (sec)

e sl: sustain level (between 0..1)

e rt: release (sec)

o t: trigger signal (attack is triggered when t>0, release is triggered when

t=0)

(en.)adsre

ADSRE (Attack, Decay, Sustain, Release) envelope generator with Exponential
segments.

Usage
adsre(at,dt,sl,rt,t)

Where:

140

o at: attack (sec)

o dt: decay (sec)

e sl: sustain level (between 0..1)

e rt: release (sec)

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)ahdsre

AHDSRE (Attack, Hold, Decay, Sustain, Release) envelope generator with Ex-
ponential segments.

Usage
ahdsre(at,ht,dt,sl,rt,t)
Where:

o at: attack (sec)

e ht: hold (sec)

e dt: decay (sec)

o sl: sustain level (between 0..1)

e rt: release (sec)

o t: trigger signal (attack is triggered when t>0, release is triggered when
t=0)

(en.)dx7envelope

DX7 operator envelope generator with 4 independent rates and levels. It is
essentially a 4 points BPF.

Usage
dx7_envelope(R1,R2,R3,R4,L1,1L2,L3,L4,t)
Where:

e RN: rates in seconds
o LN: levels (0-1)
e t: trigger signal

fds.lib

This library allows to build linear, explicit finite difference schemes physical
models in 1 or 2 dimensions using an approach based on the cellular automata
formalism. Its official prefix is £d.

141

In order to use the library, one needs to discretize the linear partial differential
equation of the desired system both at boundaries and in-between them, thus
obtaining a set of explicit recursion relations. Each one of these will provide,
for each spatial point the scalar coefficients to be multiplied by the states of the
current and past neighbour points.

Coefficients need to be stacked in parallel in order to form a coefficients matrix
for each point in the mesh. It is necessary to provide one matrix for coefficients
matrices are defined, they need to be placed in parallel and ordered following
the desired mesh structure (i.e., coefficients for the top left boundaries will
come first, while bottom right boundaries will come last), to form a coefficients
scheme, which can be used with the library functions. ## Sources Here are
listed some works on finite difference schemes and cellular automata thet were
the basis for the implementation of this library

¢ S. Bilbao, Numerical Sound Synthesis.Chichester, UK: John Wiley Sons,
Ltd, 2009

e P. Narbel, “Qualitative and quantitative cellular automata from differen-
tial equations,” Lecture Notes in Computer Science, vol. 4173, pp. 112-121,
10 2006

e X.-S. Yang and Y. Young, Cellular Automata, PDEs, and Pattern Forma-
tion. Chapman & Hall/CRC, 092005, ch. 18, pp. 271-282.

References

o https://github.com/grame-cncm/faustlibraries/blob/master /fds.lib

Model Construction

Once the coefficients scheme is defined, the user can simply call one of these
functions to obtain a fully working physical model. They expect to receive
a force input signal for each mesh point and output the state of each point.
Interpolation operators can be used to drive external forces to the desired points,
and to get the signal only from a certain area of the mesh.

(fd.)modellD

This function can be used to obtain a physical model in 1 dimension. Takes a
force input signal for each point and outputs the state of each point.

Usage

si.bus(points) : modellD(points,R,T,scheme) : si.bus(points)
Where:

e points: size of the mesh in points

142

https://github.com/grame-cncm/faustlibraries/blob/master/fds.lib

¢ R: neighbourhood radius, indicates how many side points are needed (i.e.
if R=1 the mesh depends on one point on the left and one on the right)

o T: time coefficient, indicates how much steps back in time are needed (i.
e. if T=1 the maximum delay needed for a neighbour state is 1 sample)

e scheme: coefficients scheme

(£d.)model2D

This function can be used to obtain a physical model in 2 dimension. Takes a
force input signal for each point and outputs the state of each point. IMPOR-
TANT: 2D models with more than 30x20 points might crash the c4++ compiler.
2D models need to be compiled with the command line compiler, the online one
presents some issues.

Usage

si.bus(pointsX*pointsY) : model2D(pointsX,pointsY,R,T,scheme)
si.bus(pointsX*pointsY)

Where:

e pointsX: horizontal size of the mesh in points

e pointsY: vertical size of the mesh in points

e R: neighbourhood radius, indicates how many side points are needed (i.e.
if R=1 the mesh depends on one point on the left and one on the right)

o T: time coefficient, indicates how much steps back in time are needed (i.
e. if T=1 the maximum delay needed for a neighbour state is 1 sample)

e scheme: coefficients scheme

Interpolation

Interpolation functions can be used to drive the input signals to the correct mesh
points, or to get the output signal from the desired points. All the interpolation
functions allow to change the input/output points at run time. In general, all
these functions get in input a number of connections, and output the same
number of connections, where each signal is multiplied by zero except the ones
specified by the arguments.

(fd.)stairsInterplD

Stairs interpolator in 1 dimension. Takes a number of signals and outputs the
same number of signals, where each one is multiplied by zero except the one
specified by the argument. This can vary at run time (i.e. a slider), but must
be an integer.

143

Usage
si.bus(points) : stairsInterplD(points,point) : si.bus(points)
Where:

e points: total number of points in the mesh
e point: number of the desired nonzero signal

(fd.)stairsInterp2D

Stairs interpolator in 2 dimensions. Similar to the 1-D version.

Usage

si.bus(pointsX*pointsY) : stairsInterp2D(pointsX,pointsY,pointX,pointY)
si.bus(pointsX*pointsY)

Where:

¢ pointsX: total number of points in the X direction
e pointsY: total number of points in the Y direction
e pointX: horizontal index of the desired nonzero signal
e pointY: vertical index of the desired nonzero signal

(fd.)linInterplD

Linear interpolator in 1 dimension. Takes a number of signals and outputs the
same number of signals, where each one is multiplied by zero except two signals
around a floating point index. This is essentially a Faust implementation of
the J(z;) operator, not scaled by the spatial step. (see Stefan Bilbao’s book,
Numerical Sound Synthesis). The index can vary at run time.

Usage
si.bus(points) : linInterpliD(points,point) : si.bus(points)
Where:

e points: total number of points in the mesh
¢ point: floating point index

(fd.)linInterp2D

Linear interpolator in 2 dimensions. Similar to the 1 D version.

144

Usage

si.bus(pointsX*pointsY)
si.bus(pointsX*pointsY)

Where:

: linInterp2D(pointsX,pointsY,pointX,pointY)

e pointsX: total number of points in the X direction
e pointsY: total number of points in the Y direction
e pointX: horizontal float index

e pointY: vertical float index

(fd.)stairsInterpiDOut

Stairs interpolator in 1 dimension. Similar to stairsInterpiD, except it out-

puts only the desired signal.

Usage

si.bus(points) : stairsInterplDOut(points,point)

Where:

e points: total number of

points in the mesh

e point: number of the desired nonzero signal

(fd.)stairsInterp2D0ut

Stairs interpolator in 2 dimensions which outputs only one signal.

Usage
si.bus(pointsX*pointsY)

Where:

: stairsInterp2DOut (pointsX,pointsY,pointX,pointY)

e pointsX: total number of points in the X direction
e pointsY: total number of points in the Y direction
e pointX: horizontal index of the desired nonzero signal
e pointY: vertical index of the desired nonzero signal

(fd.)linInterpiDOut

Linear interpolator in 1 dimension. Similar to stairsInterplD, except it sums
each output signal and provides only one output value.

145

Usage
si.bus(points) : linInterpiDOut(points,point)
Where:

e points: total number of points in the mesh
e point: floating point index

(fd.)stairsInterp2DOut

Linear interpolator in 2 dimensions which outputs only one signal.

Usage
si.bus(pointsX*pointsY) : linInterp2DOut(pointsX,pointsY,pointX,pointY)
Where:

e pointsX: total number of points in the X direction
e pointsY: total number of points in the Y direction
e pointX: horizontal float index

e pointY: vertical float index

Routing

The routing functions are used internally by the model building functions, but
can also be taken separately. These functions route the forces, the coefficients
scheme and the neighbours’ signals into the correct scheme points and take as
input, in this order: the coefficients block, the feedback signals and the forces.
In output they provide, in order, for each scheme point: the force signal, the
coefficient matrices and the neighbours’ signals. These functions are based on
the Faust route primitive.

(fd.)routelD

Routing function for 1 dimensional schemes.

Usage

si.bus((2%R+1)*(T+1) *points) ,si.bus(points*2) : routelD(points, R, T)
si.bus((1 + ((2*%R+1)*(T+1)) + (2xR+1))*points)

Where:

e points: total number of points in the mesh
¢ R: neighbourhood radius

146

e T: time coefficient

(fd.)route2D

Routing function for 2 dimensional schemes.

Usage

si.bus ((2%R+1) "2x(T+1) *pointsX*pointsY),si.bus(pointsX*pointsY*2)
route2D(pointsX, pointsY, R, T)
si.bus((1 + ((2#R+1)72%(T+1)) + (2xR+1)~2)*pointsX*pointsY)

Where:

e pointsX: total number of points in the X direction
e pointsY: total number of points in the Y direction
¢ R: neighbourhood radius

o T: time coefficient

Scheme Operations

The scheme operation functions are used internally by the model building func-
tions but can also be taken separately. The schemePoint function is where the
update equation is actually calculated. The buildScheme functions are used
to stack in parallel several schemePoint blocks, according to the choosed mesh
size.

(fd.)schemePoint

This function calculates the next state for each mesh point, in order to form
a scheme, several of these blocks need to be stacked in parallel. This function
takes in input, in order, the force, the coefficient matrices and the neighbours’
signals and outputs the next point state.

Usage
_,8i.bus((2*R+1) "D*(T+1)),si.bus((2*%R+1)°D) : schemePoint(R,T,D)
Where:

¢ R: neighbourhood radius
o T: time coefficient
 D: scheme spatial dimensions (i.e. 1 if 1-D, 2 if 2-D)

147

(fd.)buildSchemelD

This function is used to stack in parallel several schemePoint functions in 1
dimension, according to the number of points.

Usage

si.bus((1 + ((2¥R+1)*(T+1)) + (2#R+1))*points) : buildSchemelD(points,R,T)
si.bus(points)

Where:

e points: total number of points in the mesh
¢ R: neighbourhood radius
e T: time coefficient

(£d.)buildScheme2D

This function is used to stack in parallel several schemePoint functions in 2
dimensions, according to the number of points in the X and Y directions.

Usage

si.bus((1 + ((2*%R+1)72%(T+1)) + (2*R+1)~2)*pointsX*pointsY)
buildScheme2D(pointsX,pointsY,R,T) : si.bus(pointsX*pointsY)

Where:

e pointsX: total number of points in the X direction
e pointsY: total number of points in the Y direction
¢ R: neighbourhood radius

e T: time coefficient

Interaction Models

Here are defined two physically based interaction algorithms: a hammer and a
bow. These functions need to be coupled to the mesh pde, in the point where
the interaction happens: to do so, the mesh output signals can be fed back and
driven into the force block using the interpolation operators. The latters can be
also used to drive the single force output signal to the correct scheme points.

(fd.)hammer

Implementation of a nonlinear collision model. The hammer is essentially a
finite difference scheme of a linear damped oscillator, which is coupled with the
mesh through the collision model (see Stefan Bilbao’s book, Numerical Sound
Synthesis).

148

Usage
_ :hammer (coeff,omegalOSqr,sigmal,kH,alpha,k,offset,fIn)
Where:

e coeff: output force scaling coefficient

e omegalSqr: squared angular frequency of the hammer oscillator

e sigma0O: damping coefficient of the hammer oscillator

e kH: hammer stiffness coefficient

e alpha: nonlinearity parameter

¢ k: time sampling step (the same as for the mesh)

e offset: distance between the string and the hammer at rest in meters
o fIn: hammer excitation signal (i.e. a button)

(fd.)bow

Implementation of a nonlinear friction based interaction model that induces
Helmholtz motion. (see Stefan Bilbao’s book, Numerical Sound Synthesis).

Usage
_ :bow(coeff,alpha,k,vb)
Where:

e coeff: output force scaling coeflicient

o alpha: nonlinearity parameter

o k: time sampling step (the same as for the mesh)
o vb: bow velocity [m/s]

filters.lib

Filters library. Its official prefix is fi.
The Filters library is organized into 22 sections:

o Basic Filters

e Comb Filters

¢ Direct-Form Digital Filter Sections

e Direct-Form Second-Order Biquad Sections

o Ladder/Lattice Digital Filters

o Useful Special Cases

o Ladder/Lattice Allpass Filters

o Digital Filter Sections Specified as Analog Filter Sections
¢ Simple Resonator Filters

o Butterworth Lowpass/Highpass Filters

¢ Special Filter-Bank Delay-Equalizing Allpass Filters

149

« Elliptic (Cauer) Lowpass Filters

o Elliptic Highpass Filters

o Butterworth Bandpass/Bandstop Filters

o Elliptic Bandpass Filters

o Parametric Equalizers (Shelf, Peaking)

e Mth-Octave Filter-Banks

e Arbitrary-Crossover Filter-Banks and Spectrum Analyzers
o State Variable Filters (SVF)

o Linkwitz-Riley 4th-order 2-way, 3-way, and 4-way crossovers
o Standardized Filters

o Averaging Functions

References

o https://github.com/grame-cncm/faustlibraries/blob/master /filters.lib

Basic Filters

(fi.)zero

One zero filter. Difference equation: (y(n) = x(n) - zx(n-1)).

Usage
_ : zero(z)
Where:

o z: location of zero along real axis in z-plane

Reference

o https://ccrma.stanford.edu/~jos/filters/One_ Zero.html

(fi.)pole

One pole filter. Could also be called a “leaky integrator”. Difference equation:
(y(n) = x(n) + py(n-1)).

Usage

_ @ pole(p)

Where:

e p: pole location = feedback coefficient

150

https://github.com/grame-cncm/faustlibraries/blob/master/filters.lib
https://ccrma.stanford.edu/~jos/filters/One_Zero.html

Reference

o https://cerma.stanford.edu/~jos/filters/One_ Pole.html

(fi.)integrator

Same as pole(1) [implemented separately for block-diagram clarity].

(fi.)dcblockerat

DC blocker with configurable break frequency. The amplitude response is sub-
stantially flat above (fb), and sloped at about +6 dB/octave below (fb). Derived
from the analog transfer function:

H(s) =

5
(s + 27 fb)

(which can be seen as a lst-order Butterworth highpass filter) by the low-
frequency-matching bilinear transform method (i.e., the standard frequency-
scaling constant 2*SR).

Usage
_ : dcblockerat (fb)

Where:
e fb: “break frequency” in Hz, i.e., -3 dB gain frequency.

Reference

o https://ccrma.stanford.edu/~jos/pasp/Bilinear_ Transformation.html

(fi.)dcblocker

DC blocker. Default dec blocker has -3dB point near 35 Hz (at 44.1 kHz) and
high-frequency gain near 1.0025 (due to no scaling). dcblocker is as standard
Faust function.

Usage
_ : dcblocker : _

151

https://ccrma.stanford.edu/~jos/filters/One_Pole.html
https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html

(£i.)1ptN

One-pole lowpass filter with arbitrary dis/charging factors set in dB and times
set in seconds.

Usage
_ ¢ 1ptN(N, tN)
Where:

e N: is the attenuation factor in dB
e tN: is the filter period in seconds, that is, the time for the impulse response
to decay by N dB

Reference

o https://cerma.stanford.edu/~jos/mdft /Exponentials.html

Comb Filters

(fi.)ff_comb

Feed-Forward Comb Filter. Note that £f_comb requires integer delays (uses
delay internally). £f_comb is a standard Faust function.

Usage
_ : ff_comb(maxdel,intdel,b0,bM)
Where:

e maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input

e bM: gain applied to delay-line output and then summed with input

Reference

o https://ccrma.stanford.edu/~jos/pasp/Feedforward Comb_ Filters.html

(fi.)ff_fcomb

Feed-Forward Comb Filter. Note that ff_fcomb takes floating-point delays
(uses fdelay internally). £f_fcomb is a standard Faust function.

152

https://ccrma.stanford.edu/~jos/mdft/Exponentials.html
https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html

Usage
_ : ff_fcomb(maxdel,del,bO,bM)
Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e b0O: gain applied to delay-line input

e bM: gain applied to delay-line output and then summed with input

Reference

o https://ccrma.stanford.edu/~jos/pasp/Feedforward_ Comb_ Filters.html

(fi.)ffcombfilter

Typical special case of £f_comb() where: b0 = 1.

(fi.)fb_comb
Feed-Back Comb Filter (integer delay).

Usage
_ : fb_comb(maxdel,intdel,b0,aN)
Where:

o maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel

o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input and forwarded to output

e al: minus the gain applied to delay-line output before summing with the
input and feeding to the delay line

Reference

o https://ccrma.stanford.edu/~jos/pasp/Feedback__Comb_ Filters.html

(fi.)fb_fcomb
Feed-Back Comb Filter (floating point delay).

153

https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html

Usage
_ : fb_fcomb(maxdel,del,b0,aN)
Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel

o del: current (float) comb-filter delay between 0 and maxdel

e b0: gain applied to delay-line input and forwarded to output

e al: minus the gain applied to delay-line output before summing with the
input and feeding to the delay line

Reference

o https://cerma.stanford.edu/~jos/pasp/Feedback__Comb_ Filters.html

(fi.)revl

Special case of fb_comb (revl(maxdel,N,g)). The “revl section” dates back
to the 1960s in computer-music reverberation. See the jcrev and brassrev in
reverbs.1ib for usage examples.

(fi.)fbcombfilter and (fi.)ffbcombfilter

Other special cases of Feed-Back Comb Filter.

Usage

_ ¢ fbcombfilter (maxdel,intdel,g)
_ : ffbcombfilter (maxdel,del,g)

Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

o g: feedback gain

Reference

o https://ccrma.stanford.edu/~jos/pasp/Feedback Comb_ Filters.html

154

https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html

(fi.)allpass_comb
Schroeder Allpass Comb Filter. Note that:
allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);

which is a direct-form-1 implementation, requiring two delay lines. The imple-
mentation here is direct-form-2 requiring only one delay line.

Usage
_ : allpass_comb(maxdel,intdel,aN)
Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (integer) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e al: minus the feedback gain

References

o https://ccrma.stanford.edu/~jos/pasp/Allpass Two_ Combs.html
 https://cerma.stanford.edu/~jos/pasp/Schroeder_ Allpass_ Sections.html
o https://cerma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

(fi.)allpass_fcomb
Schroeder Allpass Comb Filter. Note that:
allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);

which is a direct-form-1 implementation, requiring two delay lines. The imple-
mentation here is direct-form-2 requiring only one delay line.

allpass_fcomb is a standard Faust library.

Usage

o allpass_comb(maxdel,intdel,aN)
_ : allpass_fcomb(maxdel,del,al)

Where:

¢ maxdel: maximum delay (a power of 2)

o intdel: current (float) comb-filter delay between 0 and maxdel
o del: current (float) comb-filter delay between 0 and maxdel

e al: minus the feedback gain

155

https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html
https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html
https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html

References

o https://ccrma.stanford.edu/~jos/pasp/Allpass_ Two_ Combs.html
 https://ccrma.stanford.edu/~jos/pasp/Schroeder_ Allpass_ Sections.html
« https://ccrma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

(fi.)rev2

Special case of allpass_comb (rev2(maxlen,len,g)). The “rev2 section” dates
back to the 1960s in computer-music reverberation. See the jcrev and brassrev
in reverbs.1lib for usage examples.

(fi.)allpass_fcomb5 and (fi.)allpass_fcombla

Same as allpass_fcomb but use fdelay5 and fdelayla internally (Interpola-
tion helps - look at an fft of faust2octave on

"1-1' <: allpass_fcomb(1024,10.5,0.95), allpass_fcomb5(1024,10.5,0.95);7).

Direct-Form Digital Filter Sections

(fi.)iir
Nth-order Infinite-Impulse-Response (IIR) digital filter, implemented in terms
of the Transfer-Function (TF) coefficients. Such filter structures are termed

“direct form”.

iir is a standard Faust function.

Usage
iir(bcoeffs,acoeffs)

Where:

e bcoeffs: (b0,bl,..,b_order) = TF numerator coefficients
o acoeffs: (al,..,a_order) = TF denominator coeffs (a0=1)

Reference
o https://ccrma.stanford.edu/~jos/filters/Four_Direct_ Forms.html

156

https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html
https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html
https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html
https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html

(fi.)fir

FIR filter (convolution of FIR filter coefficients with a signal). fir is standard
Faust function.

Usage
_: fir(bv)
Where:

e bv = b0,bl,..;bn is a parallel bank of coefficient signals.

Note bv is processed using pattern-matching at compile time, so it must have
this normal form (parallel signals).

Example test program Smoothing white noise with a five-point moving
average:

bv = .2,.2,.2,.2,.2;
process = noise : fir(bv);

Equivalent (note double parens):

process = noise : fir((.2,.2,.2,.2,.2));

(fi.)conv and (fi.)convN

Convolution of input signal with given coefficients.

Usage
conv((k1,k2,k3,...,kN)) : _ // Argument = one signal bank
convN(N, (k1,k2,k3,...)) : _ // Useful when N < count((ki,...))

(fi.)tf1, (£i.)tf2 and (£fi.)t£f3
tfN = N’th-order direct-form digital filter.

Usage

_ : tf1(b0,bl1,al) _
_ : tf2(b0,b1,b2,al1,a2) _
_: tf3(b0,b1,b2,b3,a1,a2,a3)

Where:

e a: the poles

157

e b: the zeros

Reference

o https://cerma.stanford.edu/~jos/fp/Direct_ Form_ I.html

(fi.)notchw

Simple notch filter based on a biquad (t£2). notchw is a standard Faust func-
tion.

Usage:
_ : notchw(width,freq)
Where:
e width: “notch width” in Hz (approximate)
o freq: “notch frequency” in Hz
Reference

o https://ccrma.stanford.edu/~jos/pasp/Phasing _2nd_ Order_ Allpass_F
ilters.html

Direct-Form Second-Order Biquad Sections

Direct-Form Second-Order Biquad Sections

Reference

o https://cerma.stanford.edu/~jos/filters/Four_ Direct_ Forms.html

(£i.)t£21, (fi.)t£22, (fi.)tf22t and (fi.)tf21t
tfN = N’th-order direct-form digital filter where:

e tf21 is tf2, direct-form 1
o tf22 is tf2, direct-form 2
e tf22t is tf2, direct-form 2 transposed
o tf21t is tf2, direct-form 1 transposed

158

https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html
https://ccrma.stanford.edu/~jos/pasp/Phasing_2nd_Order_Allpass_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Phasing_2nd_Order_Allpass_Filters.html
https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html

Usage

: t£21(b0,b1,b2,al1,a2)
: t£22(b0,b1,b2,al1,a2)
: t£22t(b0,bl1,b2,al,a2)
: t£21t(b0,bl1,b2,al,a2)

Where:

e a: the poles
e b: the zeros

Reference

 https://cerma.stanford.edu/~jos/fp/Direct_ Form_ I.html

Ladder/Lattice Digital Filters

Ladder and lattice digital filters generally have superior numerical properties
relative to direct-form digital filters. They can be derived from digital waveg-
uide filters, which gives them a physical interpretation. ###+# Reference *
F. Ttakura and S. Saito: “Digital Filtering Techniques for Speech Analysis and
Synthesis”, 7th Int. Cong. Acoustics, Budapest, 25 C 1, 1971. * J. D. Markel
and A. H. Gray: Linear Prediction of Speech, New York: Springer Verlag, 1976.
* https://ccrma.stanford.edu/~jos/pasp/Conventional _Ladder_ Filters.html

(fi.)av2sv

Compute reflection coefficients sv from transfer-function denominator av.

Usage
sv = av2sv(av)
Where:

e av: parallel signal bank al,...,aN
e sv: parallel signal bank s1,...,sN

where ro = ith reflection coefficient, and ai = coefficient of z~(-1i) in the filter
transfer-function denominator A(z).

Reference

o https://ccrma.stanford.edu/~jos/filters/Step_ Down_ Procedure.html
(where reflection coefficients are denoted by k rather than s).

159

https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html
https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html
https://ccrma.stanford.edu/~jos/filters/Step_Down_Procedure.html

(fi.)bvav2nuv

Compute lattice tap coefficients from transfer-function coefficients.

Usage
nuv = bvav2nuv(bv,av)
Where:

e av: parallel signal bank al,...,aN
e Dbv: parallel signal bank b0,b1,...,aN
e nuv: parallel signal bank nul,...,nuN

where nui is the i’th tap coefficient, bi is the coefficient of z~(-1i) in the filter
numerator, ai is the coefficient of z~(-i) in the filter denominator

(fi.)iir_lat2

Two-multiply latice IIR filter of arbitrary order.

Usage
_ : dir_lat2(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

(fi.)allpassnt

Two-multiply lattice allpass (nested order-1 direct-form-ii allpasses).

Usage
_ : allpassnt(n,sv)
Where:

o n: the order of the filter
o sv: the reflection coefficients (-1 1)

(fi.)iir_kl
Kelly-Lochbaum ladder IIR filter of arbitrary order.

160

Usage
_ ¢ iir_kl(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

(fi.)allpassnklt
Kelly-Lochbaum ladder allpass.

Usage:
_ ¢ allpassnklt(n,sv)

Where:

o n: the order of the filter
o sv: the reflection coefficients (-1 1)

(fi.)iir_latil
One-multiply latice IIR filter of arbitrary order.

Usage
_ ¢ iir_lati(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

(fi.)allpassnimt
One-multiply lattice allpass with tap lines.

Usage
_ : allpassnimt(N,sv)

Where:

o N: the order of the filter (fixed at compile time)
o sv: the reflection coefficients (-1 1)

161

(fi.)iir_nl

Normalized ladder filter of arbitrary order.

Usage
_ : iir_nl(bv,av)
Where:

e bv: zeros as a bank of parallel signals
e av: poles as a bank of parallel signals

References

e J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York:
Springer Verlag, 1976.

o https://cerma.stanford.edu/~jos/pasp/Normalized_Scattering_ Junctio
ns.html

(fi.)allpassnnlt

Normalized ladder allpass filter of arbitrary order.

Usage:
_ : allpassnnlt(N,sv)
Where:

o N: the order of the filter (fixed at compile time)
o sv: the reflection coefficients (-1,1)

References

e J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York:
Springer Verlag, 1976.

o https://ccrma.stanford.edu/~jos/pasp/Normalized Scattering Junctio
ns.html

Useful Special Cases

162

https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html

(fi.)tf2np

Biquad based on a stable second-order Normalized Ladder Filter (more robust
to modulation than t£2 and protected against instability).

Usage
_ @ tf2np(b0,bl,b2,al,a2)
Where:

e a: the poles
e b: the zeros

(fi.)wgr

Second-order transformer-normalized digital waveguide resonator.

Usage
_ : wgr(f,r)
Where:

o f: resonance frequency (Hz)
 1: loss factor for exponential decay (set to 1 to make a numerically stable

oscillator)

References

o https://ccrma.stanford.edu/~jos/pasp/Power_Normalized Waveguide

_ Filters.html
 https://ccrma.stanford.edu/~jos/pasp/Digital _Waveguide_ Oscillator.ht

ml

(fi.)nlf2

Second order normalized digital waveguide resonator.

Usage
_ : nlf2(f,r)
Where:

o f: resonance frequency (Hz)
o 1: loss factor for exponential decay (set to 1 to make a sinusoidal oscillator)

163

https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html

Reference

o https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_ Waveguide
_ Filters.html

(fi.)apnl

Passive Nonlinear Allpass based on Pierce switching springs idea. Switch be-
tween allpass coeflicient al and a2 at signal zero crossings.

Usage
_ : apnl(al,a2)
Where:

e al and a2: allpass coefficients

Reference

e “A Passive Nonlinear Digital Filter Design ...” by John R. Pierce and Scott
A. Van Duyne, JASA, vol. 101, no. 2, pp. 1120-1126, 1997

Ladder/Lattice Allpass Filters

An allpass filter has gain 1 at every frequency, but variable phase. Ladder/lattice
allpass filters are specified by reflection coefficients. They are defined here as
nested allpass filters, hence the names allpassn™.

References

e https://ccrma.stanford.edu/~jos/pasp/Conventional TLadder_Filters.h
tml

o https://ccrma.stanford.edu/~jos/pasp/Nested_Allpass Filters.html

e Linear Prediction of Speech, Markel and Gray, Springer Verlag, 1976

(fi.)allpassn

Two-multiply lattice - each section is two multiply-adds.

Usage:

_ : allpassn(n,sv)

164

https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html
https://ccrma.stanford.edu/~jos/pasp/Nested_Allpass_Filters.html

Where:

o n: the order of the filter
o sv: the reflection coefficients (-1 1)

References
¢ J. O. Smith and R. Michon, “Nonlinear Allpass Ladder Filters in FAUST”,
in Proceedings of the 14th International Conference on Digital Audio Ef-
fects (DAFx-11), Paris, France, September 19-23, 2011.

(fi.)allpassnn

Normalized form - four multiplies and two adds per section, but coefficients can
be time varying and nonlinear without “parametric amplification” (modulation

of signal energy).

Usage:
_ : allpassnn(n,tv)
Where:

e n: the order of the filter
o tv: the reflection coefficients (-PI PI)

(fi.)allpassnkl

Kelly-Lochbaum form - four multiplies and two adds per section, but all signals
have an immediate physical interpretation as traveling pressure waves, etc.

Usage:
_ : allpassnkl(n,sv)
Where:

e n: the order of the filter
o sv: the reflection coefficients (-1 1)

(fi.)allpassim
One-multiply form - one multiply and three adds per section. Normally the
most efficient in special-purpose hardware.

165

Usage:
_ : allpassnim(n,sv)
Where:

o n: the order of the filter
o sv: the reflection coefficients (-1 1)

Digital Filter Sections Specified as Analog Filter Sections

(fi.)tf2s and (fi.)tf2snp

Second-order direct-form digital filter, specified by ANALOG transfer-function
polynomials B(s)/A(s), and a frequency-scaling parameter. Digitization via the
bilinear transform is built in.

Usage
_ : tf2s(b2,b1,b0,al,al0,wl)
Where:

b2 s72 + bl s + b0
H(s) = ——=————————————

872 + al s + a0
and wl is the desired digital frequency (in radians/second) corresponding to

analog frequency 1 rad/sec (i.e.,, s = j).

Example test program A second-order ANALOG Butterworth lowpass fil-
ter, normalized to have cutoff frequency at 1 rad/sec, has transfer function:

s2 +al s + 1

where al = sqrt(2). Therefore, a DIGITAL Butterworth lowpass cutting off
at SR/4 is specified as t£2s(0,0,1,sqrt(2),1,PI*SR/2) ;

Method Bilinear transform scaled for exact mapping of wl.

Reference

o https://cerma.stanford.edu/~jos/pasp/Bilinear_ Transformation.html

166

https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html

(fi.)tfisnp

First-order special case of tf2snp above.

Usage
_ & tfisnp(bl,b0,a0)

(fi.)t£3slf

Analogous to tf2s above, but third order, and using the typical low-frequency-
matching bilinear-transform constant 2/T (“If” series) instead of the specific-
frequency-matching value used in tf2s and tfls. Note the lack of a “wl”
argument.

Usage
_ : tf3s1f(b3,b2,b1,b0,a3,a2,al,al)

(fi.)tfls

First-order direct-form digital filter, specified by ANALOG transfer-function
polynomials B(s)/A(s), and a frequency-scaling parameter.

Usage
_ : tfi1s(b1,b0,a0,wl)
Where:
bl s + b0
H(s) = s+ a0

and wl is the desired digital frequency (in radians/second) corresponding to
analog frequency 1 rad/sec (i.e.,, s = j).

Example test program A first-order ANALOG Butterworth lowpass filter,
normalized to have cutoff frequency at 1 rad/sec, has transfer function:

1
H(s) = ——s+1

so b0 = a0 = 1 and bl = 0. Therefore, a DIGITAL first-order Butterworth
lowpass with gain -3dB at SR/4 is specified as

tf1s(0,1,1,PI*SR/2); // digital half-band order 1 Butterworth

167

Method Bilinear transform scaled for exact mapping of wl.

Reference

o https://cerma.stanford.edu/~jos/pasp/Bilinear_ Transformation.html

(fi.)tf2sb

Bandpass mapping of tf2s: In addition to a frequency-scaling parameter wi
(set to HALF the desired passband width in rad/sec), there is a desired center-
frequency parameter we (also in rad/s). Thus, t£2sb implements a fourth-order
digital bandpass filter section specified by the coefficients of a second-order
analog lowpass prototype section. Such sections can be combined in series for
higher orders. The order of mappings is (1) frequency scaling (to set lowpass
cutoff wl), (2) bandpass mapping to wc, then (3) the bilinear transform, with
the usual scale parameter 2xSR. Algebra carried out in maxima and pasted here.

Usage
_ : tf2sb(b2,b1,b0,al,al0,wl,wc)

(fi.)tfisdb

First-to-second-order lowpass-to-bandpass section mapping, analogous to tf2sb
above.

Usage
_ : tfisb(b1l,b0,a0,wl,wc)

Simple Resonator Filters

(fi.)resonlp

Simple resonant lowpass filter based on tf2s (virtual analog). resonlp is a
standard Faust function.

Usage

: resonlp(fc,Q,gain)
: resonhp(fc,Q,gain)
: resonbp(fc,Q,gain)

Where:

168

https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html

o fc: center frequency (Hz)
* Q:q
e gain: gain (0-1)

(fi.)resonhp

Simple resonant highpass filters based on tf2s (virtual analog). resonhp is a
standard Faust function.

Usage

: resonlp(fc,Q,gain)
: resonhp(fc,Q,gain)
: resonbp(fc,Q,gain)

Where:

o fc: center frequency (Hz)
e Qiq
e gain: gain (0-1)

(fi.)resonbp

Simple resonant bandpass filters based on tf2s (virtual analog). resonbp is a
standard Faust function.

Usage

: resonlp(fc,Q,gain)
: resonhp(fc,Q,gain)
: resonbp(fc,Q,gain)

Where:

o fc: center frequency (Hz)
e Q:q
e gain: gain (0-1)

Butterworth Lowpass/Highpass Filters

(fi.)lowpass

Nth-order Butterworth lowpass filter. lowpass is a standard Faust function.

169

Usage
_ : lowpass(N,fc)
Where:

o N: filter order (number of poles), nonnegative constant numerical expres-
sion
o fc: desired cut-off frequency (-3dB frequency) in Hz

References

e https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_ Design.

html
¢ butter function in Octave (" [z,p,g] = butter(N,1,'s');")

(fi.)highpass
Nth-order Butterworth highpass filters. highpass is a standard Faust function.

Usage
_ : highpass(N,fc)
Where:

e N: filter order (number of poles), nonnegative constant numerical expres-
sion
o fc: desired cut-off frequency (-3dB frequency) in Hz

References

o https://ccrma.stanford.edu/~jos/filters/Butterworth_ Lowpass_ Design.

html
e butter function in Octave (" [z,p,g] = butter(N,1,'s');")

(fi.)lowpassO_highpass1
Special Filter-Bank Delay-Equalizing Allpass Filters

These special allpass filters are needed by filterbank et al. below. They are
equivalent to (lowpass(N,fc) +|- highpass (N, fc))/2, but with canceling pole-
zero pairs removed (which occurs for odd N).

170

https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html
https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html
https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html
https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html

(fi.)lowpass_plus|minus_highpass

Catch-all definitions for generality - even order is done: Catch-all definitions for
generality - even order is done: FIXME: Rewrite the following, as for orders 3
and 5 above, to eliminate pole-zero cancellations: FIXME: Rewrite the following,
as for orders 3 and 5 above, to eliminate pole-zero cancellations:

Elliptic (Cauer) Lowpass Filters
Elliptic (Cauer) Lowpass Filters

References

o http://en.wikipedia.org/wiki/Elliptic_filter
o functions ncauer and ellip in Octave.

(fi.)lowpass3e
Third-order Elliptic (Cauer) lowpass filter.

Usage
_ : lowpass3e(fc)
Where:
e fc: -3dB frequency in Hz

Design For spectral band-slice level display (see octave_analyzer3e):

[z,p,g] = ncauver(Rp,Rs,3); 7 analog zeros, poles, and gain, where
Rp = 60 Y dB ripple in stopband
Rs = 0.2 % dB ripple in passband

(fi.)lowpass6e
Sixth-order Elliptic/Cauer lowpass filter.

Usage
_ @ lowpass6e(fc)
Where:
e fc: -3dB frequency in Hz

171

http://en.wikipedia.org/wiki/Elliptic_filter

Design For spectral band-slice level display (see octave__analyzerGe):

[z,p,g] = ncauver(Rp,Rs,6); 7 analog zeros, poles, and gain, where
Rp = 80 % dB ripple in stopband
Rs = 0.2 % dB ripple in passband

Elliptic Highpass Filters

(fi.)highpass3e
Third-order Elliptic (Cauer) highpass filter. Inversion of lowpass3e wrt unit
circle in s plane (s <- 1/s).
Usage
_ : highpass3e(fc)
Where:
e fc: -3dB frequency in Hz

(fi.)highpass6e
Sixth-order Elliptic/Cauer highpass filter. Inversion of lowpass3e wrt unit
circle in s plane (s <- 1/s).
Usage
_ : highpass6e(fc)
Where:
e fc: -3dB frequency in Hz

Butterworth Bandpass/Bandstop Filters

(fi.)bandpass

Order 2*Nh Butterworth bandpass filter made using the transformation s <- s
+ wc~2/s on lowpass(Nh), where wc is the desired bandpass center frequency.
The lowpass(Nh) cutoff wl is half the desired bandpass width. bandpass is a
standard Faust function.

172

Usage
_ : bandpass(Nh,fl,fu)
Where:

e Nh: HALF the desired bandpass order (which is therefore even)

e f1: lower -3dB frequency in Hz

e fu: upper -3dB frequency in Hz Thus, the passband width is fu-f1, and
its center frequency is (f1+fu)/2.

Reference

o http://cnx.org/content/m16913/latest/

(fi.)bandstop

Order 2*Nh Butterworth bandstop filter made using the transformation s <- s
+ wc~2/s on highpass(Nh), where wc is the desired bandpass center frequency.
The highpass(Nh) cutoff wl is half the desired bandpass width. bandstop is a
standard Faust function.

Usage
_ : bandstop(Nh,fl,fu)
Where:

e Nh: HALF the desired bandstop order (which is therefore even)

e f1: lower -3dB frequency in Hz

o fu: upper -3dB frequency in Hz Thus, the passband (stopband) width is
fu-f1, and its center frequency is (£1+fu)/2.

Reference

o http://cnx.org/content/m16913/latest/

Elliptic Bandpass Filters

(fi.)bandpass6e
Order 12 elliptic bandpass filter analogous to bandpass (6).

173

http://cnx.org/content/m16913/latest/
http://cnx.org/content/m16913/latest/

(fi.)bandpassi2e

Order 24 elliptic bandpass filter analogous to bandpass (6).

(fi.)pospass
Positive-Pass Filter (single-side-band filter).

Usage
_ : pospass(N,fc) : _,_
where

o N: filter order (Butterworth bandpass for positive frequencies).
e fc: lower bandpass cutoff frequency in Hz.
— Highpass cutoff frequency at ma.SR/2 - fc Hz.

Example test program

e See dm.pospass_demo
e Look at frequency response

Method A filter passing only positive frequencies can be made from a half-
band lowpass by modulating it up to the positive-frequency range. Equivalently,
down-modulate the input signal using a complex sinusoid at -SR/4 Hz, lowpass
it with a half-band filter, and modulate back up by SR/4 Hz. In Faust/math
notation:

pospass(N) = *(e72™) : lowpass(N,SR/4) : (ef2™)

An approximation to the Hilbert transform is given by the imaginary output
signal:

hilbert(N) = pospass(N) : !,*(2);

References

o https://ccrma.stanford.edu/~jos/mdft/Analytic Signals Hilbert_ Trans
form.html

o https://cecrma.stanford.edu/~jos/sasp/Comparison_ Optimal__Chebysh
ev_FIR_I.html

« https://ccrma.stanford.edu/~jos/sasp/Hilbert_ Transform.html

Parametric Equalizers (Shelf, Peaking)
Parametric Equalizers (Shelf, Peaking).

174

https://ccrma.stanford.edu/~jos/mdft/Analytic_Signals_Hilbert_Transform.html
https://ccrma.stanford.edu/~jos/mdft/Analytic_Signals_Hilbert_Transform.html
https://ccrma.stanford.edu/~jos/sasp/Comparison_Optimal_Chebyshev_FIR_I.html
https://ccrma.stanford.edu/~jos/sasp/Comparison_Optimal_Chebyshev_FIR_I.html
https://ccrma.stanford.edu/~jos/sasp/Hilbert_Transform.html

References

o http://en.wikipedia.org/wiki/Equalization

« https://webaudio.github.io/ Audio-EQ-Cookbook / Audio-EQ-Cookbook.t
xt

¢ Digital Audio Signal Processing, Udo Zolzer, Wiley, 1999, p. 124

o https://ccrma.stanford.edu/~jos/filters/Low_High_Shelving_ Filters.h
tml

e https://cerma.stanford.edu/~jos/filters/Peaking Equalizers.html

e maxmsp.lib in the Faust distribution

e bandfilter.dsp in the faust2pd distribution

(fi.)low_shelf

First-order “low shelf” filter (gain boost|cut between dc and some frequency)
low_shelf is a standard Faust function.

Usage

_ : lowshelf (N,LO,fx)
_ : low_shelf(LO,fx) : _ // default case (order 3)
_ : lowshelf_other_freq(N,LO,fx)

Where: * N: filter order 1, 3, 5, ... (odd only, default should be 3, a constant
numerical expression) * LO: desired level (dB) between dc and fx (boost L0O>0
or cut L0<0) * £x: -3dB frequency of lowpass band (L0>0) or upper band (L0<0)
(see “SHELF SHAPE” below).

The gain at SR/2 is constrained to be 1. The generalization to arbitrary odd
orders is based on the well known fact that odd-order Butterworth band-splits
are allpass-complementary (see filterbank documentation below for references).

Shelf Shape The magnitude frequency response is approximately piecewise-
linear on a log-log plot (“BODE PLOT”). The Bode “stick diagram” approxi-
mation L(If) is easy to state in dB versus dB-frequency If = dB(f):

o LO>O:
— L(If) = L0, f between 0 and fx = 1st corner frequencys;
— L(If) = LO - N * (If - Ifx), f between fx and {2 = 2nd corner frequency;
— L(If) = 0, If > 12,
— 1f2 = Ifx + LO/N = dB-frequency at which level gets back to 0 dB.
o LO<O:
— L(If) = L0, f between 0 and fl1 = 1st corner frequency;
— L(If) = - N * (Ifx - If), f between {1 and lfx = 2nd corner frequency;
— L(If) = 0, If > 1fx.
— Ifl = Ifx + LO/N = dB-frequency at which level goes up from LO.

175

http://en.wikipedia.org/wiki/Equalization
https://webaudio.github.io/Audio-EQ-Cookbook/Audio-EQ-Cookbook.txt
https://webaudio.github.io/Audio-EQ-Cookbook/Audio-EQ-Cookbook.txt
https://ccrma.stanford.edu/~jos/filters/Low_High_Shelving_Filters.html
https://ccrma.stanford.edu/~jos/filters/Low_High_Shelving_Filters.html
https://ccrma.stanford.edu/~jos/filters/Peaking_Equalizers.html

See lowshelf other_freq.

References See “Parametric Equalizers” above for references regarding
low_shelf, high_shelf, and peak_eq.

(fi.)high_shelf

First-order “high shelf” filter (gain boost|cut above some frequency).
high_shelf is a standard Faust function.

Usage

_ ¢ highshelf(N,Lpi,fx) _

_ ¢ high shelf(LO,fx) : _ // default case (order 3)
_ : highshelf_other_freq(N,Lpi,fx)

Where:

e N: filter order 1, 3, 5, .. (odd only, a constant numerical expression).

o Lpi: desired level (dB) between fx and SR/2 (boost Lpi>0 or cut Lpi<0)

o fx: -3dB frequency of highpass band (L0>0) or lower band (L0<0) (Use
highshelf other_ freq() below to find the other one.)

The gain at dc is constrained to be 1. See lowshelf documentation above for

more details on shelf shape.

References See “Parametric Equalizers” above for references regarding
low_shelf, high_shelf, and peak_eq.

(fi.)peak_eq

Second order “peaking equalizer” section (gain boost or cut near some frequency)
Also called a “parametric equalizer” section. peak_eq is a standard Faust func-
tion.

Usage
_ @ peak_eq(Lfx,fx,B)
Where:

o Lfx: level (dB) at fx (boost Lfx>0 or cut Lfx<0)
o fx: peak frequency (Hz)
¢ B: bandwidth (B) of peak in Hz

176

References See “Parametric Equalizers” above for references regarding
low_shelf, high_shelf, and peak_eq.

(fi.)peak_eq_cq

Constant-Q second order peaking equalizer section.

Usage
_ @ peak_eq_cq(Lfx,fx,Q)
Where:

o Lfx: level (dB) at fx
o fx: boost or cut frequency (Hz)
o Q: “Quality factor” = fx/B where B = bandwidth of peak in Hz

References See “Parametric Equalizers” above for references regarding
low_shelf, high_shelf, and peak_eq.

(fi.)peak_eq_rm

Regalia-Mitra second order peaking equalizer section.

Usage
_ : peak_eq _rm(Lfx,fx,tanPiBT)
Where:

o Lfx: level (dB) at fx

o fx: boost or cut frequency (Hz)

o tanPiBT: tan(PI*B/SR), where B = -3dB bandwidth (Hz) when
107(Lfx/20) = 0 ~ PI*B/SR for narrow bandwidths B

Reference P.A. Regalia, S.K. Mitra, and P.P. Vaidyanathan, “The Digital All-
Pass Filter: A Versatile Signal Processing Building Block” Proceedings of the
IEEE, 76(1):19-37, Jan. 1988. (See pp. 29-30.) See also “Parametric Equalizers”
above for references on shelf and peaking equalizers in general.

177

(fi.)spectral_tilt

Spectral tilt filter, providing an arbitrary spectral rolloff factor alpha in (-1,1),
where -1 corresponds to one pole (-6 dB per octave), and +1 corresponds to one
zero (+6 dB per octave). In other words, alpha is the slope of the In magnitude
versus In frequency. For a “pinking filter” (e.g., to generate 1/f noise from white
noise), set alpha to -1/2.

Usage
_ : spectral_tilt(N,f0,bw,alpha)
Where:

o N: desired integer filter order (fixed at compile time)

e £0: lower frequency limit for desired roll-off band > 0

e bw: bandwidth of desired roll-off band

« alpha: slope of roll-off desired in nepers per neper, between -1 and 1 (In
mag / In radian freq)

Example test program See dm.spectral_tilt_demo and the documenta-
tion for no.pink_noise.

Reference J.O. Smith and H.F. Smith, “Closed Form Fractional Integration
and Differentiation via Real Exponentially Spaced Pole-Zero Pairs”, arXiv.org
publication arXiv:1606.06154 [cs.CE], June 7, 2016, * http://arxiv.org/abs/16
06.06154

(fi.)levelfilter

Dynamic level lowpass filter. levelfilter is a standard Faust function.

Usage
_ & levelfilter(L,freq)
Where:

o L: desired level (in dB) at Nyquist limit (SR/2), e.g., -60
o freq: corner frequency (-3dB point) usually set to fundamental freq
o N: Number of filters in series where L = L/N

Reference

o https://ccrma.stanford.edu/realsimple/faust_ strings/Dynamic_ Level L
owpass_ Filter.html

178

http://arxiv.org/abs/1606.06154
http://arxiv.org/abs/1606.06154
https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html
https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html

(fi.)levelfilterN

Dynamic level lowpass filter.

Usage
_ & levelfilterN(N,freq,L)
Where:

o N: Number of filters in series where L = L/N, a constant numerical expres-
sion

e freq: corner frequency (-3dB point) usually set to fundamental freq

o L: desired level (in dB) at Nyquist limit (SR/2), e.g., -60

Reference

o https://cerma.stanford.edu/realsimple/faust_ strings/Dynamic_ Level L
owpass_ Filter.html

Mth-Octave Filter-Banks

Mth-octave filter-banks split the input signal into a bank of parallel signals,
one for each spectral band. They are related to the Mth-Octave Spectrum-
Analyzers in analysis.lib. The documentation of this library contains more
details about the implementation. The parameters are:

o M: number of band-slices per octave (>1), a constant numerical expression
e N: total number of bands (>2), a constant numerical expression
o ftop: upper bandlimit of the Mth-octave bands (<SR/2)

In addition to the Mth-octave output signals, there is a highpass signal contain-
ing frequencies from ftop to SR/2, and a “dc band” lowpass signal containing
frequencies from 0 (dc) up to the start of the Mth-octave bands. Thus, the N
output signals are

highpass(ftop), MthOctaveBands(M,N-2,ftop), dcBand(ftop*2~ (-M*(N-1)))

A Filter-Bank is defined here as a signal bandsplitter having the property that
summing its output signals gives an allpass-filtered version of the filter-bank
input signal. A more conventional term for this is an “allpass-complementary
filter bank”. If the allpass filter is a pure delay (and possible scaling), the filter
bank is said to be a “perfect-reconstruction filter bank” (see Vaidyanathan-1993
cited below for details). A “graphic equalizer”, in which band signals are scaled
by gains and summed, should be based on a filter bank.

The filter-banks below are implemented as Butterworth or Elliptic spectrum-
analyzers followed by delay equalizers that make them allpass-complementary.

179

https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html
https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html

Increasing Channel Isolation Go to higher filter orders - see Regalia et
al. or Vaidyanathan (cited below) regarding the construction of more aggressive
recursive filter-banks using elliptic or Chebyshev prototype filters.

References

o “Tree-structured complementary filter banks using all-pass sections”,
Regalia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484,
Dec. 1987

e “Multirate Systems and Filter Banks”, P. Vaidyanathan, Prentice-Hall,

1993
o Elementary filter theory: https://ccrma.stanford.edu/~jos/filters/

(fi.)mth_octave_filterbank[n]

Allpass-complementary filter banks based on Butterworth band-splitting. For
Butterworth band-splits, the needed delay equalizer is easily found.

Usage

_ : mth_octave_filterbank(0,M,ftop,N) : par(i,N,_) // Oth-order
_ : mth_octave_filterbank_alt(0,M,ftop,N) : par(i,N,_) // dc-inverted version

Also for convenience:

_ : mth_octave_filterbank3(M,ftop,N) : par(i,N,_) // 3rd-order Butterworth
_ : mth_octave_filterbank5(M,ftop,N) : par(i,N,_) // 5th-order Butterworth
mth_octave_filterbank_default = mth_octave_filterbank5;

Where:

e 0: order of filter used to split each frequency band into two, a constant
numerical expression

e M: number of band-slices per octave, a constant numerical expression

o ftop: highest band-split crossover frequency (e.g., 20 kHz)

o N: total number of bands (including dc and Nyquist), a constant numerical
expression

Arbitrary-Crossover Filter-Banks and Spectrum Analyzers

These are similar to the Mth-octave analyzers above, except that the band-split
frequencies are passed explicitly as arguments.

(fi.)filterbank

Filter bank. filterbank is a standard Faust function.

180

https://ccrma.stanford.edu/~jos/filters/

Usage
_ : filterbank (0,freqs) : par(i,N,_) // Butterworth band-splits
Where:

« 0: band-split filter order (odd integer required for filterbank[i], a constant
numerical expression)

o fregs: (fcl,fc2,..,fcNs) [in numerically ascending order|, where Ns=N-1 is
the number of octave band-splits (total number of bands N=Ns+1).

If frequencies are listed explicitly as arguments, enclose them in parens:

_ @ filterbank(3, (fcl,fc2)) : _,_,_

(fi.)filterbanki

Inverted-dc filter bank.

Usage
_ @ filterbanki(0,freqs) : par(i,N,_) // Inverted-dc version
Where:

e 0: band-split filter order (odd integer required for filterbank[i], a con-
stant numerical expression)

o fregs: (fcl,fc2,..,fcNs) [in numerically ascending order|, where Ns=N-1 is
the number of octave band-splits (total number of bands N=Ns+1).

If frequencies are listed explicitly as arguments, enclose them in parens:

_ @ filterbanki(3, (fc1,fc2)) : _,_,_

State Variable Filters

References Solving the continuous SVF equations using trapezoidal integra-
tion

o https://cytomic.com/files/dsp/SviLinearTrapOptimised2.pdf

(fi.)svf

An environment with 1p, bp, hp, notch, peak, ap, bell, 1s, hs SVF based
filters. All filters have freq and Q parameters, the bell, 1s, hs ones also have
a gain third parameter.

181

https://cytomic.com/files/dsp/SvfLinearTrapOptimised2.pdf

Usage
_ : svf.xx(freq, Q, [gain])
Where:

e freq: cut frequency
e Q: quality factor
e [gain]: gain in dB

Linkwitz-Riley 4th-order 2-way, 3-way, and 4-way
crossovers

The Linkwitz-Riley (LR) crossovers are designed to produce a fully-flat magni-
tude response when their outputs are combined. The 4th-order LR filters (LR4)
have a 24dB/octave slope and they are rather popular audio crossovers used in
multi-band processing.

The LR4 can be constructed by cascading two second-order Butterworth filters.
For the second-order Butterworth filters, we will use the SVF filter implemented
above by setting the Q-factor to 1.0 / sqrt(2.0). These will be cascaded in pairs
to build the LR4 highpass and lowpass. For the phase correction, we will use
the 2nd-order Butterworth allpass.

Reference Zavalishin, Vadim. “The art of VA filter design.” Native Instru-
ments, Berlin, Germany (2012).

(fi.)lowpassLR4

4th-order Linkwitz-Riley lowpass.

Usage
_ ¢ lowpassLR4(cf)
Where:

e cf is the lowpass cutoff in Hz

(fi.)highpassLR4
4th-order Linkwitz-Riley highpass.

182

Usage
_ : highpassLR4(cf)
Where:
e cf is the highpass cutoff in Hz

(fi.)crossover2LR4

Two-way 4th-order Linkwitz-Riley crossover.

Usage
crossover2LR4 (cf) : si.bus(2)
Where:

e cf is the crossover split cutoff in Hz

(fi.)crossover3LR4

Three-way 4th-order Linkwitz-Riley crossover.

Usage
crossover3LR4(cf1l, cf2) : si.bus(3)
Where:

e cf1 is the crossover lower split cutoff in Hz
e cf2 is the crossover upper split cutoff in Hz

(fi.)crossover4LR4

Four-way 4th-order Linkwitz-Riley crossover.

Usage
crossover4lLR4(cfl, cf2, cf3) : si.bus(4)
Where:

e cf1l is the crossover lower split cutoff in Hz
e cf2 is the crossover mid split cutoff in Hz
e cf3 is the crossover upper split cutoff in Hz

183

(fi.)crossover8LR4

Eight-way 4th-order Linkwitz-Riley crossover.

Usage
_ : crossover8LR4(cf1l, cf2, cf3, cf4, cf5, cf6, cf7) : si.bus(8)
Where:

e cf1-cf7 are the crossover cutoff frequencies in Hz

Standardized Filters

(fi.)itu_r_bs_1770_4_kfilter

The prefilter from Recommendation ITU-R BS.1770-4 for loudness measure-
ment. Also known as “K-filter”. The recommendation defines biquad filter
coefficients for a fixed sample rate of 48kHz (page 4-5). Here, we construct
biquads for arbitrary samplerates. The resulting filter is normalized, such that
the magnitude at 997Hz is unity gain 1.0.

Please note, the ITU-recommendation handles the normalization in equation (2)
by subtracting 0.691dB, which is not needed with itu_r_bs_1770_4_kfilter.

One option for future improvement might be, to round those filter coefficients,
that are almost equal to one. Second, the maximum magnitude difference
at 48kHz between the ITU-defined filter and itu_r_bs_1770_4_kfilter is
0.001dB, which obviously could be less.

Usage
_ : itu_r_bs_1770_4_kfilter : _

Reference

o https://www.itu.int/rec/R-REC-BS.1770
o https://gist.github.com/jkbd/07521a98{7873a2dc3dbe16417930791

Averaging Functions

(fi.)avg_rect

Moving average.

184

https://www.itu.int/rec/R-REC-BS.1770
https://gist.github.com/jkbd/07521a98f7873a2dc3dbe16417930791

Usage
_ : avg_rect(period)
Where:

e period is the averaging frame in seconds

(fi.)avg_tau

Averaging function based on a one-pole filter and the tau response time. Tau
represents the effective length of the one-pole impulse response, that is, tau is
the integral of the filter’s impulse response. This response is slower to reach the
final value but has less ripples in non-steady signals.

Usage
_ : avg_tau(period)
Where:
e period is the time, in seconds, for the system to decay by 1/e, or to reach
1-1/e of its final value.
Reference

e https://ccrma.stanford.edu/~jos/mdft /Exponentials.html

(fi.)avg_t60

Averaging function based on a one-pole filter and the t60 response time. This
response is particularly useful when the system is required to reach the final
value after about period seconds.

Usage
_ @ avg_t60(period)
Where:
e period is the time, in seconds, for the system to decay by 1/1000, or to
reach 1-1/1000 of its final value.

Reference

o https://ccrma.stanford.edu/~jos/mdft/Audio_ Decay_Time T60.html

185

https://ccrma.stanford.edu/~jos/mdft/Exponentials.html
https://ccrma.stanford.edu/~jos/mdft/Audio_Decay_Time_T60.html

(fi.)avg_t19

Averaging function based on a one-pole filter and the t19 response time. This
response is close to the moving-average algorithm as it roughly reaches the final
value after period seconds and shows about the same oscillations for non-steady
signals.
Usage
_ : avg_t19(period)
Where:

e period is the time, in seconds, for the system to decay by 1/e72.2, or to

reach 1-1/€72.2 of its final value.

Reference Zolzer, U. (2008). Digital audio signal processing (Vol. 9). New
York: Wiley.

hoa.lib

Faust library for high order ambisonic. Its official prefix is ho.

References

 https://github.com/grame-cncm/faustlibraries/blob/master/hoa.lib

Encoding/decoding Functions

(ho.)encoder
Ambisonic encoder. Encodes a signal in the circular harmonics domain depend-
ing on an order of decomposition and an angle.

Usage
encoder (N, x, a)

Where:

e N: the ambisonic order (constant numerical expression)
e x: the signal
o a: the angle

186

https://github.com/grame-cncm/faustlibraries/blob/master/hoa.lib

(ho.)rEncoder

Ambisonic encoder in 2D including source rotation. A mono signal is encoded
at a certain ambisonic order with two possible modes: either rotation with an
angular speed, or static with a fixed angle (when speed is zero).

Usage
_ : rEncoder(N, sp, a, it) : _,_,
Where:
e N: the ambisonic order (constant numerical expression)

o sp: the azimuth speed expressed as angular speed (2PI/sec), positive or
negative

o a: the fixed azimuth when the rotation stops (sp = 0) in radians

e it : interpolation time (in milliseconds) between the rotation and the

fixed modes

(ho.)stereoEncoder

Encoding of a stereo pair of channels with symetric angles (a/2, -a/2).

Usage

, : stereoEncoder(N, a) : _,_,

Where:

o N: the ambisonic order (constant numerical expression)
o a: opening angle in radians, left channel at a/2 angle, right channel at

-a/2 angle

(ho.)multiEncoder

Encoding of a set of P signals distributed on the unit circle according to a list
of P speeds and P angles.

Usage
: multiEncoder (N, lspeed, langle, it) : _,_,

N)

Where:

o N: the ambisonic order (constant numerical expression)
e lspeed : a list of P speeds in turns by second (one speed per input signal,
positive or negative)

187

e langle : a list of P angles in radians on the unit circle to localize the
sources (one angle per input signal)

e it : interpolation time (in milliseconds) between the rotation and the
fixed modes.

(ho.)decoder

Decodes an ambisonics sound field for a circular array of loudspeakers.

Usage
_ : decoder(N, P)
Where:

o N: the ambisonic order (constant numerical expression)
e P: the number of speakers (constant numerical expression)

Note The number of loudspeakers must be greater or equal to 2n+1. It’s
preferable to use 2n+2 loudspeakers.

(ho.)decoderStereo

Decodes an ambisonic sound field for stereophonic configuration. An “home
made” ambisonic decoder for stereophonic restitution (30° - 330°): Sound field
lose energy around 180°. You should use inPhase optimization with ponctual

sources. #### Usage

_ : decoderStereo(N)
Where:

e N: the ambisonic order (constant numerical expression)

(ho.)iBasicDecoder

The irregular basic decoder is a simple decoder that projects the incoming am-
bisonic situation to the loudspeaker situation (P loudspeakers) whatever it is,
without compensation. When there is a strong irregularity, there can be some
discontinuity in the sound field.

Usage
,, ... : iBasicDecoder(N,la, direct, shift) : _,_,

Where:

188

o N: the ambisonic order (there are 2*N+1 inputs to this function)

o la: the list of P angles in degrees, for instance (0, 85, 182, 263) for four
loudspeakers

e direct: 1 for direct mode, -1 for the indirect mode (changes the rotation
direction)

e shift : angular shift in degrees to easily adjust angles

(ho.)circularScaledVBAP

The function provides a circular scaled VBAP with all loudspeakers and the
virtual source on the unit-circle.

Usage
circularScaledVBAP(1, t) : _,_,
Where:

e 1: the list of angles of the loudspeakers in degrees, for instance (0, 85,
182, 263) for four loudspeakers
e t : the current angle of the virtual source in degrees

(ho.)imlsDecoder

Irregular decoder in 2D for an irregular configuration of P loudspeakers using
2D VBAP for compensation.

Usage

: imlsDecoder(N,la, direct, shift) : _, ,

Where:

e N: the ambisonic order (constant numerical expression)

e la: the list of P angles in degrees, for instance (0, 85, 182, 263) for four
loudspeakers

e direct: 1 for direct mode, -1 for the indirect mode (changes the rotation
direction)

e shift : angular shift in degrees to easily adjust angles

(ho.)iDecoder

General decoder in 2D enabling an irregular multi-loudspeaker configuration
and to switch between multi-channel and stereo.

189

Usage

R)

: iDecoder (N, la, direct, st, g) : _,_,

Where:

N: the ambisonic order (constant numerical expression)

la: the list of angles in degrees

direct: 1 for direct mode, -1 for the indirect mode (changes the rotation
direction)

shift : angular shift in degrees to easily adjust angles

st: 1 for stereo, 0 for multi-loudspeaker configuration. When 1, stereo
sounds goes through the first two channels

g : gain between 0 and 1

Optimization Functions

Functions to weight the circular harmonics signals depending to the ambisonics
optimization. It can be basic for no optimization, maxRe or inPhase.

(ho.)optimBasic

The basic optimization has no effect and should be used for a perfect circle of
loudspeakers with one listener at the perfect center loudspeakers array.

Usage

_ : optimBasic(N)
Where:

N: the ambisonic order (constant numerical expression)

(ho.)optimMaxRe

The maxRe optimization optimizes energy vector. It should be used for an
auditory confined in the center of the loudspeakers array.

Usage

_ : optimMaxRe (N)
Where:

N: the ambisonic order (constant numerical expression)

190

(ho.)optimInPhase

The inPhase optimization optimizes energy vector and put all loudspeakers sig-
nals in phase. It should be used for an auditory.

Usage
_ : optimInPhase(N)
Where:

e N: the ambisonic order (constant numerical expression)

(ho.)optim

Ambisonic optimizer including the three elementary optimizers: (ho) .optimBasic,
(ho) .optimMaxRe and (ho.)optimInPhase.

Usage
: optim(N, ot) : _,_,

R)

Where:

o N: the ambisonic order (constant numerical expression)
e ot : optimization type (0 for optimBasic, 1 for optimMaxRe, 2 for

optimInPhase)

(ho.)wider

Can be used to wide the diffusion of a localized sound. The order depending
signals are weighted and appear in a logarithmic way to have linear changes.

Usage
_ : wider(N,w)
Where:

o N: the ambisonic order (constant numerical expression)
o w: the width value between 0 - 1

(ho.)mirror

Mirroring effect on the sound field.

191

Usage
_s_s ... : mirror(N, fa) : _,_,
Where:

e N: the ambisonic order (constant numerical expression)
o fa: mirroring type (1 = original sound field, 0 = original+mirrored sound
field, -1 = mirrored sound field)

(ho.)map

It simulates the distance of the source by applying a gain on the signal and a
wider processing on the soundfield.

Usage
map(N, x, r, a)
Where:

¢ N: the ambisonic order (constant numerical expression)
x: the signal

o 1: the radius
a: the angle in radian

(ho.)rotate

Rotates the sound field.

Usage
_ : rotate(N, a)

Where:

o N: the ambisonic order (constant numerical expression)
e a: the angle in radian

(ho.)scope

Produces an XY pair of signals representing the ambisonic sound field.

192

Usage
_s_s ... : scope(N, rt)
Where:

e N: the ambisonic order (constant numerical expression)
e rt: refreshment time in milliseconds

Spatial Sound Processes

We propose implementations of processes intricated to the ambisonic model.
The process is implemented using as many instances as the number of harmonics
at at certain order. The key control parameters of these instances are computed
thanks to distribution functions (th functions below) and to a global driving
factor.

(ho.) .fxDecorrelation
Spatial ambisonic decorrelation in fx mode.

fxDecorrelation applies decorrelations to spatial components already created.
The decorrelation is defined for each #i spatial component among P=2*N+1
at the ambisonic order N as a delay of 0 if factor fa is under a certain value 1-
(i+1)/P and d*F((i+1)/p) in the contrary case, where d is the maximum delay
applied (in samples) and F is a distribution function for durations. The user can
choose this delay time distribution among 22 different ones. The delay increases
according to the index of ambisonic components. But it increases at each step
and it is modulated by a threshold. Therefore, delays are progressively revealed
when the factor increases:

e when the factor is close to 0, only upper components are delayed;
e when the factor increases, more and more components are delayed.

Usage
_,_s ... : fxDecorrelation(N, d, wf, fa, fd, tf) : _,_,
Where:

e N: the ambisonic order (constant numerical expression)

e d: the maximum delay applied (in samples)

o wf: window frequency (in Hz) for the overlapped delay

o fa: decorrelation factor (between 0 and 1)

o f£d: feedback / level of reinjection (between 0 and 1)

o tf: type of function of delay distribution (integer, between 0 and 21)

193

(ho.) .synDecorrelation
Spatial ambisonic decorrelation in syn mode.

synDecorrelation generates spatial decorrelated components in ambisonics
from one mono signal. The decorrelation is defined for each #i spatial com-
ponent among P=2*N-+1 at the ambisonic order N as a delay of 0 if factor fa is
under a certain value 1-(i4+1)/P and d*F((i+1)/p) in the contrary case, where d
is the maximum delay applied (in samples) and F is a distribution function for
durations. The user can choose this delay time distribution among 22 different
ones. The delay increases according to the index of ambisonic components. But
it increases at each step and it is modulated by a threshold. Therefore, delays
are progressively revealed when the factor increases:

e when the factor is close to 0, only upper components are delayed;
e when the factor increases, more and more components are delayed.

When the factor is between [0; 1/P], upper harmonics are progressively faded
and the level of the HO component is compensated to avoid source localization
and to produce a large mono.

Usage
_s_s ... : synDecorrelation(N, 4, wf, fa, fd, tf) : _,_,
Where:

o N: the ambisonic order (constant numerical expression)

e d: the maximum delay applied (in samples)

o wf: window frequency (in Hz) for the overlapped delay

o fa: decorrelation factor (between 0 and 1)

o fd: feedback / level of reinjection (between 0 and 1)

o tf: type of function of delay distribution (integer, between 0 and 21)

(ho.) .fxRingMod
Spatial ring modulation in syn mode.

fxRingMod applies ring modulation to spatial components already created. The
ring modulation is defined for each spatial component among P=2*n+1 at the
ambisonic order N. For each spatial component #i, the result is either the original
signal or a ring modulated signal according to a threshold that is i/P.

The general process is drive by a factor fa between 0 and 1 and a modulation
frequency £0. If fa is greater than theshold (P-i-1)/P, the ith ring modulator is
on with carrier frequency of f0*(i+1)/P. On the contrary, it provides the original
signal.

Therefore ring modulators are progressively revealed when fa increases.

194

Usage
_s_s ... : fxRingMod(N, fO, fa, tf) : _,_,
Where:

e N: the ambisonic order (constant numerical expression)

e £0: the maximum delay applied (in samples)

o fa: decorrelation factor (between 0 and 1)

e tf: type of function of delay distribution (integer, between 0 and 21)

(ho.) .synRingMod
Spatial ring modulation in syn mode.

synRingMod generates spatial components in ambisonics from one mono signal
thanks to ring modulation. The ring modulation is defined for each spatial com-
ponent among P=2*n+1 at the ambisonic order N. For each spatial component
#i, the result is either the original signal or a ring modulated signal according
to a threshold that is i/P.

The general process is drive by a factor fa between 0 and 1 and a modulation
frequency £0. If fa is greater than theshold (P-i-1)/P, the ith ring modulator is
on with carrier frequency of f0*(i+1)/P. On the contrary, it provides the original
signal.

Therefore ring modulators are progressively revealed when fa increases. When
the factor is between [0; 1/P], upper harmonics are progressively faded and the
level of the HO component is compensated to avoid source localization and to
produce a large mono.

Usage
s» -.. : synRingMod(N, fO, fa, tf) : _,_,
Where:

e N: the ambisonic order (constant numerical expression)

e £0: the maximum delay applied (in samples)

o fa: decorrelation factor (between 0 and 1)

o tf: type of function of delay distribution (integer, between 0 and 21)

3D Functions

195

(ho.)encoder3D

Ambisonic encoder. Encodes a signal in the circular harmonics domain depend-
ing on an order of decomposition, an angle and an elevation.

Usage

encoder3D(N, x, a, e)

Where:

e N: the ambisonic order (constant numerical expression)
e x: the signal
e a: the angle

e: the elevation

(ho.)rEncoder3D

Ambisonic encoder in 3D including source rotation. A mono signal is encoded
at at certain ambisonic order with two possible modes: either rotation with 2
angular speeds (azimuth and elevation), or static with a fixed pair of angles.

rEncoder3D is a standard Faust function.

Usage
_ : rEncoder3D(N, azsp, elsp, az, el, it)
Where:

o N: the ambisonic order (constant numerical expression)

e azsp: the azimuth speed expressed as angular speed (2PI/sec), positive
or negative

e elsp: the elevation speed expressed as angular speed (2PI/sec), positive
or negative

o az: the fixed azimuth when the azimuth rotation stops (azsp = 0) in
radians

e el: the fixed elevation when the elevation rotation stops (elsp = 0) in
radians

e it : interpolation time (in milliseconds) between the rotation and the
fixed modes

(ho.)optimBasic3D

The basic optimization has no effect and should be used for a perfect sphere of
loudspeakers with one listener at the perfect center loudspeakers array.

196

Usage
_ : optimBasic3D(N)
Where:

e N: the ambisonic order (constant numerical expression)

(ho.)optimMaxRe3D

The maxRe optimization optimize energy vector. It should be used for an
auditory confined in the center of the loudspeakers array.

Usage
_ : optimMaxRe3D(N)

Where:

o N: the ambisonic order (constant numerical expression)

(ho.)optimInPhase3D

The inPhase Optimization optimizes energy vector and put all loudspeakers
signals in phase. It should be used for an auditory.

Usage

_ : optimInPhase3D(N)

Where:

o N: the ambisonic order (constant numerical expression)

(ho.)optim3D

Ambisonic optimizer including the three elementary optimizers: (ho) .optimBasic3D,
(ho) .optimMaxRe3D and (ho.)optimInPhase3D.

Usage
, ... : optim3D(N, ot) : _,

- —

Where:

o N: the ambisonic order (constant numerical expression)
e ot : optimization type (0 for optimBasic, 1 for optimMaxRe, 2 for optim-
InPhase)

197

Faust Libraries Index

aanl

(aa.)clip (aa.)Rsqrt (aa.)Rlog (aa.)Rtan (aa.)Racos (aa.)Rasin
(aa.)Racosh (aa.)Rcosh (aa.)Rsinh (aa.)Ratanh (aa.)ADAA1
(aa.)ADAA2 (aa.)hardclip (aa.)hardclip2 (aa.)cubicl (aa.)parabolic
(aa.)parabolic2 (aa.)hyperbolic (aa.)hyperbolic2 (aa.)sinarctan
(aa.)sinarctan2 (aa.)tanhl (aa.)arctan (aa.)arctan2 (aa.)asinhl
(aa.)asinh2 (aa.)cosinel (aa.)cosine2 (aa.)arccos (aa.)arccos2
(aa.)acoshl (aa.)acosh2 (aa.)sine (aa.)sine2 (aa.)arcsin (aa.)arcsin2
(aa.)tangent (aa.)atanhl (aa.)atanh2

analyzers

(an.)abs_envelope_rect (an.)abs_envelope_tau (an.)abs_envelope_ t60
(an.)abs_envelope t19 (an.)amp_ follower (an.)amp_ follower_ud
(an.)amp_ follower ar (an.)ms_ envelope_ rect (an.)ms_ envelope_tau
(an.)ms__envelope_ t60 (an.)ms__envelope_ t19 (an.)rms__envelope_rect
(an.)rms__envelope__tau (an.)rms__envelope_ t60 (an.)rms__envelope_ t19
(an.)zcr (an.)pitchTracker (an.)spectralCentroid (an.)mth_octave analyzer
(an.)mth_octave_spectral level6e (an.)[third|half]octave[analyzer|filterbank]
(an.)analyzer (an.)goertzelOpt (an.)goertzelComp (an.)goertzel (an.)fft
(an.)ifft

basics

ba)samp2sec (ba.)sec2samp (ba.)db2linear (ba.)linear2db
ba.)lin2LogGain (ba.)log2LinGain (ba.)tau2pole (ba.)pole2tau
.)midikey2hz (ba.)hz2midikey (ba.)semi2ratio (ba.)ratio2semi
.)cent2ratio (ba.)ratio2cent (ba.)pianokey2hz (ba.)hz2pianokey
.)counter (ba.)countdown (ba.)countup (ba.)sweep (ba.)time
Jramp (ba.)line (ba.)tempo (ba.)period (ba.)pulse (ba.)pulsen
.eycle (ba.)beat (ba.)pulse__countup (ba.)pulse__countdown
.)pulse__countup_ loop (ba.)pulse_countdown__loop (ba.)resetCtr
Jcount (ba.)take (ba.)subseq (ba.)tabulate (ba.)tabulate chebychev
.)tabulateNd (ba.)if (ba.)ifNc (ba.)ifNcNo (ba.)selector
.)select2stereo (ba.)selectn (ba.)selectmulti (ba.)selectoutn
Jlatch (ba.)sAndH (ba.)downSample (ba.)peakhold (ba.)peakholder
.kr2ar (ba.)impulsify (ba.)automat (ba.)bpf (ba.)listInterp
.)bypassl (ba.)bypass2 (ba.)bypasslto2 (ba.)bypass_ fade
.)toggle (ba.)on_and_ off (ba.)bitcrusher (ba.)slidingReduce
JslidingSum (ba.)slidingSump (ba.)slidingMax (ba.)slidingMin
JslidingMean (ba.)slidingMeanp (ba.)slidingRMS (ba.)slidingRMSp

198

(ba.)parallelOp (ba.)parallelMax (ba.)parallelMin (ba.)parallelMean
(ba.)parallelRMS

compressors

co.)ratio2strength (co.)strength2ratio (co.)peak__compression_gain_mono_ db
.)peak__compression_gain_ N_ chan_ db (co.)FFcompressor_ N_ chan

.)JFBcompressor_ N_chan (co.)FBFFcompressor N_chan (co.)RMS_ compression_gain_mono_ db
JRMS_ compression_ gain_ N_chan _db (co.)RMS_FBFFcompressor N_ chan

)RMS_ FBcompressor__peak_limiter_ N_ chan (co.)peak__compression_gain_ mono
.)peak__compression_gain_ N_chan (co.)RMS_ compression__gain_ mono

J)RMS__compression_ gain_ N_ chan (co.)compressor_lad__mono

.Jcompressor_mono (co.)compressor_stereo (co.)compression__gain__mono

Jlimiter 1176_R4 mono (co.)limiter 1176_R4 stereo (co.)peak_expansion_ gain N_ chan_db
.Jexpander N _ chan (co.)expanderSC__N_ chan (co.)limiter_lad_N

limiter_lad__mono (co.)limiter_lad_ stereo (co.)limiter_lad__quad

limiter lad_ bw

(
(
(
(
(
(
(
(
(
(
(
(

delays

(de.)delay (de.)fdelay (de.)sdelay (de.)fdelaylti and (de.)fdelayltv
(de.)fdelay[N] (de.)fdelay[N]a

demos

(dm.)mth_octave spectral level demo (dm.)parametric_eq_demo
(dm.)spectral_tilt_ demo (dm.)mth_ octave_ filterbank demo and
(dm.)filterbank_ demo (dm.)cubicnl__demo (dm.)gate__demo
(dm.)compressor__demo (dm.)moog_ vef__demo (dm.)wah4 demo
(dm.)crybaby__demo (dm.)flanger__demo (dm.)phaser2__demo
(dm.)freeverb_ demo (dm.)stereo_ reverb_ tester (dm.)fdnrev0_ demo
(dm.)zita_rev_fdn demo (dm.)zita light (dm.)zita revl (dm.)dattorro rev_demo
(dm.)jprev__demo (dm.)greyhole_ demo (dm.)sawtooth__demo
(dm.)virtual__analog_ oscillator_demo (dm.)oscrs_demo (dm.)velvet_noise_demo
(dm.)latch__demo (dm.)envelopes_demo (dm.)fft_spectral_level _demo
(dm.)reverse_echo_demo(nChans) (dm.)pospass__demo (dm.)exciter
(dm.)vocoder_demo (dm.)colored_noise_demo

dx7

(dx.)dx7_ampf (dx.)dx7_egraterisef (dx.)dx7_egrateriseperct
(dx.)dx7_egratedecayf (dx.)dx7_egratedecaypercf (dx.)dx7_eglv2peakf
(dx.)dx7__velsensf (dx.)dx7_fdbkscalef (dx.)dx7_op (dx.)dx7_algo
(dx.)dx7__ui

199

envelopes

(en.)ar (en.)asr (en.)adsr (en.)adsrf_Dbias (en.)adsr__bias
(en.)ahdsrf bias (en.)ahdsr_ bias (en.)smoothEnvelope (en.)arfe
(en.)are (en.)asre (en.)adsre (en.)ahdsre (en.)dx7envelope

fds

(fd.)model1D (fd.)model2D (fd.)stairsInterp1D (fd.)stairsInterp2D
(fd)linInterplD (fd.)linInterp2D (fd.)stairsInterplDOut (fd.)stairsInterp2DOut
(fd.)linInterplDOut (fd.)stairsInterp2DOut (fd.)routelD (fd.)route2D
(fd.)schemePoint (fd.)buildSchemelD (fd.)buildScheme2D (fd.)hammer
(fd.)bow

filters

(fi.)zero (fi.)pole (fi.)integrator (fi.)dcblockerat (fi.)dcblocker (fi.)lptN
(i)ff_comb (fi.)ff_fcomb (fi.)ffcombfilter (fi.)fb_comb (fi.)fb_fcomb
(fi.)revl (fi.)fbcombfilter and (fi.)ffbcombfilter (fi.)allpass__comb
(fi.)allpass_fcomb (fi.)rev2 (fi.)allpass_fcomb5 and (fi.)allpass_fcombla
(fi.)iir (fi)fir (fi.)conv and (fi.)convN (fi.)tfl, (fi.)tf2 and (fi.)tf3
(fi.)n (f)t£21, (f.)tf22, (fi.)tf22t and (fi.)tf21t (fi.)av2sv
(fi.)bvav2nuv (fi.)iir_lat2 (fi.)allpassnt (fi.)iir_kl (fi.)allpassnklt
(fi.)iir_latl (fi.)allpassnlmt (fi.)iir_nl (fi.)allpassnnlt (fi.)tf2np
(fi.ywgr (fi.nlf2 (fi.)apnl (fi.)allpassn (fi.)allpassnn (fi.)allpassnkl
(fi.)allpasslm (fi.)tf2s and (fi.)tf2snp (fi.)tflsnp (fi)ef3slf (fi.)tfls
(fi.)tf2sb (fi.)tflsb (fi.)resonlp (fi.)resonhp (fi.)resonbp (fi.)lowpass
(fi.)highpass (fi.)lowpassO__highpassl (fi.)lowpass_ plus/minus_ highpass
(fi.)lowpass3e (fi.)lowpass6e (fi.)highpass3e (fi.)highpass6e
(fi.)bandpass (fi.)bandstop (fi.)bandpass6e (fi.)bandpass12e
(fi.)pospass (fi.)low_shelf (fi.)high_shelf (fi.)peak_eq (fi.)peak eq cq
(fi.)peak_eq rm (fi.)spectral _tilt (fi.)levelfilter (fi.)levelfilterN
(fi.)mth__octave_filterbank|n] (fi.)filterbank (fi.)filterbanki (fi.)svf
(fi.)lowpassLR4 (fi.)highpassLR4 (fi.)crossover2LR4 (fi.)crossover3LR4
(fi.)crossover4LR4 (fi.)crossover8LR4 (fi.)itu_r_bs_1770_4_ kfilter
(fi.)avg_rect (fi.)avg_tau (fi.)avg t60 (fi.)avg t19

hoa

(ho.)encoder (ho.)rEncoder (ho.)stereoEncoder (ho.)multiEncoder
(ho.)decoder (ho.)decoderStereo (ho.)iBasicDecoder (ho.)circularScaledVBAP
(ho.)imlsDecoder (ho.)iDecoder (ho.)optimBasic (ho.)optimMaxRe
(ho.)optimInPhase (ho.)optim (ho.)wider (ho.)mirror (ho.)map
(ho.)rotate (ho.)scope (ho.).fxDecorrelation (ho.).synDecorrelation
(ho.).fxRingMod (ho.).synRingMod (ho.)encoder3D (ho.)rEncoder3D
(ho.)optimBasic3D (ho.)optimMaxRe3D (ho.)optimInPhase3D
(ho.)optim3D

200

interpolators

(it.)interpolate_ linear (it.)interpolate__cosine (it.)interpolate__cubic
(it.)interpolator_two_ points (it.)interpolator_ linear (it.)interpolator_ cosine
(it.)interpolator_four points (it.)interpolator_cubic (it.)interpolator_ select
(it.)lagrangeCoefls(N, xCoordsList) (it.)lagrangeInterpolation(N, xCoord-

sList) (it.)frdtable(N, S) (it.)frwtable(N, S) (it.)remap

maths

(ma.)SR (ma.)T (ma.)BS (ma.)PI (ma.)deg2rad (ma.)rad2deg
(ma.)E (ma.)EPSILON (ma.)MIN (ma.)MAX (ma.)FTZ
(ma.)copysign (ma.)neg (ma.)not (ma.)sub(x,y) (ma.)inv
(ma.)cbrt (ma.)hypot (ma.)ldexp (ma.)scalb (ma.)loglp (ma.)logb
(ma.)ilogb (ma.)log2 (ma.)expml (ma.)acosh (ma.)asinh (ma.)atanh
(ma.)sinh (ma.)cosh (ma.)tanh (ma.)erf (ma.)erfc (ma.)gamma
(ma.)lgamma (ma.)J0 (ma.)J1 (ma.)Jn (ma.)YO0 (ma.)Y1l (ma.)Yn
(ma.)fabs, (ma.)fmax, (ma.)fmin (ma.)np2 (ma.)frac (ma.)modulo
(ma.)isnan (ma.)isinf (ma.)chebychev (ma.)chebychevpoly (ma.)diffn
(ma.)signum (ma.)nextpow2 (ma.)zc

mi

(mi.)initState (mi.)mass (mi.)oscil (mi.)ground (mi.)posInput
(mi.)spring (mi.)damper (mi.)springDamper (mi.)nlSpringDamper2
(mi.)nlSpringDamper3 (mi.)nlSpringDamperClipped (mi.)nlPluck
(mi.)nlBow (mi.)collision (mi.)nlCollisionClipped

misceffects

(ef.)cubicnl (ef.)gate__mono (ef.)gate_ stereo (ef.)fibonacci
(ef.)fibonacciGeneral (ef.)fibonacciSeq (ef.)speakerbp (ef.)piano_ dispersion_filter
(ef.)stereowidth (ef.)mesh square (ef.)dryWetMixer (ef.)dryWetMixerConstantPower
(ef.)mixLinearClamp (ef.)mixLinearLoop (ef.)mixPowerClamp
(ef.)mixPowerLoop (ef.)echo (ef.)reverseEchoN(nChans,delay)
(ef.)reverseDelayRamped(delay,phase) (ef.)uniformPanToStereo(nChans)
(ef.)transpose (ef.)softclipQuadratic (ef.)wavefold

oscillators

os.)sinwaveform (0s.)coswaveform (0s.)phasor (0s.)hs__phasor
os.)hsp_phasor (0s.)oscsin (0s.)hs_oscsin (0s.)osccos (0s.)hs_osccos
.)Joscp (0s.)osci (0s.)osc (0s.)m__oscsin (0s.)m__osccos

If _squarewave (o0s.)lf_trianglepos (os.)lf_triangle (os.)lf_rawsaw

os.)If_sawpos (0s.)lf _sawpos_phase (o0s.)lf sawpos_reset (os.)lf_sawpos_phase_reset

(

(0s.)

(0s.)

(0s)lf_imptrain (os.)lf pulsetrainpos (o0s.)lf pulsetrain (o0s.)lf squarewavepos
(0s.)

(0s.)

(0s.)

sl _saw (0s.)sawN (0s.)sawNp (0s.)saw?2, (o0s.)saw3, (os.)sawd

201

.)saw2ptr (0s.)saw2dpw (0s.)sawtooth (0s.)saw2f2, (os.)saw2f4
. impulse (0s.)pulsetrainN (0s.)pulsetrain (0s.)squareN
Jsquare (os.)imptrainN (os.)imptrain (os.)triangleN (os.)triangle
Joscb (os.)oscrq (os.)oscrs (o0s.)oscrc (o0s.)oscs (os.)quadosc
.)sidebands (os.)sidebands_ list (0s.)oscwe (0s.)oscws (o0s.)oscq
oscw (0s.)CZsaw (0s.)CZsawP (0s.)CZsquare (os.)CZsquareP
CZpulse (0s.)CZpulseP (0s.)CZsinePulse (0s.)CZsinePulseP
.)CZhalfSine (0s.)CZhalfSineP (0s.)CZresSaw (0s.)CZresTriangle
.)CZresTrap (os.)polyblep (os.)polyblep_saw (os.)polyblep_square
.)polyblep__triangle

NN NI NN NI NI N N N

noises

(no.)noise (no.)multirandom (no.)multinoise (no.)noises
(no.)randomseed (no.)rnoise (no.)rmultirandom (no.)rmultinoise
(no.)rnoises (no.)pink__noise (no.)pink_ noise_ v (no.)lfnoise,
(no.)lfnoise0 and (no.)lfnoiseN (no.)sparse_noise (no.)velvet_ noise_ v
(no.)gnoise (no.)colored_ noise

phaflangers
(pf.)flanger mono (pf.)flanger stereo (pf.)phaser2 mono (pf.)phaser2 stereo

physmodels

(pm.)speedOfSound (pm.)maxLength (pm.)f21 (pm.)12f
(pm.)12s (pm.)basicBlock (pm.)chain (pm.)inLeftWave
(pm.)inRightWave (pm.)in (pm.)outLeftWave (pm.)outRight Wave
(pm.)out (pm.)terminations (pm.)1Termination (pm.)rTermination
(pm.)closelns (pm.)closeOuts (pm.)endChain (pm.)waveguideN
(pm.)waveguide (pm.)bridgeFilter (pm.)modeFilter (pm.)stringSegment
(pm.)openString (pm.)nylonString (pm.)steelString (pm.)openStringPick
(pm.)openStringPickUp (pm.)openStringPickDown (pm.)ksReflexionFilter
(pm.)rStringRigidTermination (pm.)IStringRigid Termination (pm.)elecGuitarBridge
(pm.)elecGuitarNuts (pm.)guitarBridge (pm.)guitarNuts (pm.)idealString

(pm.)ks (pm.)ks_ui_MIDI (pm.)elecGuitarModel (pm.)elecGuitar
(pm.)elecGuitar _ui_ MIDI (pm.)guitarBody (pm.)guitarModel
(pm.)guitar (pm.)guitar_ui_ MIDI (pm.)nylonGuitarModel
(pm.)nylonGuitar (pm.)nylonGuitar__ui_ MIDI (pm.)modeInterpRes
(pm.)modularInterpBody (pm.)modularInterpStringModel (pm.)modularInterpInstr
(pm.)modularInterpInstr_ui_ MIDI (pm.)bowTable (pm.)violinBowTable
(pm.)bowInteraction (pm.)violinBow (pm.)violinBowedString
(pm.)violinNuts (pm.)violinBridge (pm.)violinBody (pm.)violinModel
(pm.)violin_ui (pm.)violin_ui_ MIDI (pm.)openTube (pm.)reedTable
(pm.)fluteJetTable (pm.)brassLipsTable (pm.)clarinetReed (pm.)clarinetMouthPiece

202

(pm.)brassLips (pm.)fluteEmbouchure (pm.)wBell (pm.)fluteHead
(pm.)fluteFoot (pm.)clarinetModel (pm.)clarinetModel_ui (pm.)clarinet_ ui
(pm.)clarinet__ui_ MIDI (pm.)brassModel (pm.)brassModel__ui
(pm.)brass ui (pm.)brass ui_ MIDI (pm.)fluteModel (pm.)fluteModel ui
(pm.)flute_ui (pm.)flute_ui_ MIDI (pm.)impulseExcitation
(pm.)strikeModel (pm.)strike (pm.)pluckString (pm.)blower
(pm.)blower ui (pm.)djembeModel (pm.)djembe (pm.)djembe ui MIDI
(pm.)marimbaBarModel (pm.)marimbaResTube (pm.)marimbaModel
(pm.)marimba (pm.)marimba_ ui_ MIDI (pm.)churchBellModel
(pm.)churchBell (pm.)churchBell ui (pm.)englishBellModel
(pm.)englishBell (pm.)englishBell ui (pm.)frenchBellModel
(pm.)frenchBell (pm.)frenchBell__ui (pm.)germanBellModel
(pm.)germanBell (pm.)germanBell__ui (pm.)russianBellModel
(pm.)russianBell (pm.)russianBell__ui (pm.)standardBellModel
(pm.)standardBell (pm.)standardBell_ui (pm.)formantValues
(pm.)voiceGender (pm.)skirtWidthMultiplier (pm.)autobendFreq
(pm.)vocalEffort (pm.)fof (pm.)fofSH (pm.)fofCycle (pm.)fofSmooth
(pm.)formantFilterFofCycle (pm.)formantFilterFofSmooth (pm.)formantFilterBP
(pm.)formantFilterbank (pm.)formantFilterbankFofCycle (pm.)formantFilterbankFofSmooth
(pm.)formantFilterbankBP (pm.)SFFormantModel (pm.)SFFormantModelFofCycle
(pm.)SFFormantModelFofSmooth (pm.)SFFormantModelBP (pm.)SFFormantModelFofCycle ui
(pm.)SFFormantModelFofSmooth_ ui (pm.)SFFormantModelBP_ ui
(pm.)SFFormantModelFofCycle_ui_ MIDI (pm.)SFFormantModelFofSmooth_ ui_ MIDI
(pm.)SFFormantModelBP_ui_ MIDI (pm.)allpassNL (pm).modalModel
quantizers

(qu.)quantize (qu.)quantizeSmoothed (qu.)ionian (qu.)dorian
(qu.)phrygian (qu.)lydian (qu.)mixo (qu.)eolian (qu.)locrian
(qu.)pentanat (qu.)kumoi (qu.)natural (qu.)dodeca (qu.)dimin
(qu.)penta

reducemaps

(rm.)parReduce (rm.)topReduce (rm.)botReduce (rm.)reduce

(rm.)reducemap

reverbs

(re.)jcrev (re.)satrev (re.)fdnrev0 (re.)zita_rev_fdn (re.)zita_revl_stereo
(re.)zita_revl__ambi (re.)mono__freeverb (re.)stereo_ freeverb
(re.)dattorro_rev (re.)dattorro_rev_ default (re.)jpverb (re.)greyhole

routes

(ro.)cross (ro.)crossnn (ro.)crossnl (ro.)crossln (ro.)crossNM

203

(ro.)interleave (ro.)butterfly (ro.)hadamard (ro.)recursivize
(ro.)bubbleSort

signals

(si.)bus (si.)block (si.)interpolate (si.)repeat (si.)smoo
(si.)polySmooth (si.)smoothAndH (si.)bsmooth (si.)dot (si.)smooth
(si.)smoothq (si.)cbus (si.)cmul (si.)cconj (si.)onePoleSwitching
(si.)rev (si.)vecOp

soundfiles

(so.)loop (so.)loop_speed (so.)loop_speed_level

spats

(sp.)panner (sp.)constantPowerPan (sp.)spat (sp.)stereoize

synths

(sy.)popFilterDrum (sy.)dubDub (sy.)sawTrombone (sy.)combString
(sy.)additiveDrum (sy.)fm (sy.)kick (sy.)clap (sy.)hat

vaeffects

(ve.)moog_vef (ve.)moog_vef_ 2b[n] (ve.)moogLadder (ve.)moogHalfLadder
(ve.)diodeLadder (ve.)korg35LPF (ve.)korg35HPF (ve.)oberheim
(ve.)oberheimBSF (ve.)oberheimBPF (ve.)oberheimHPF (ve.)oberheimLPF
(ve.)sallenKeyOnePole (ve.)sallenKeyOnePoleLPF (ve.)sallenKeyOnePoleHPF
(ve.)sallenKey2ndOrder (ve.)sallenKey2ndOrderLPF (ve.)sallenKey2ndOrderBPF
(ve.)sallenKey2ndOrderHPF (ve.)wah4 (ve.)autowah (ve.)crybaby
(ve.)vocoder

version

(vl.)version

wdmodels

(wd.)resistor (wd.)resistor_ Vout (wd.)resistor_Tout (wd.)u_voltage
(wd.)u_current (wd.)resVoltage (wd.)resVoltage_ Vout (wd.)u_resVoltage
(wd.)resCurrent (wd.)u_resCurrent (wd.)u_switch (wd.)capacitor
(wd.)capacitor_ Vout (wd.)inductor (wd.)inductor_Vout (wd.)u_idealDiode
(wd.)u__chua (wd.)lambert (wd.)u_ diodePair (wd.)u_ diodeSingle
(wd.)u_diodeAntiparallel (wd.)u__parallel2Port (wd.)parallel2Port
(wd.)u_series2Port (wd.)series2Port (wd.)parallelCurrent (wd.)seriesVoltage
(wd.)

u__transformer (wd.)transformer (wd.)u__transformerActive

é

W

204

(wd.)transformerActive (wd.)parallel (wd.)series (wd.)u_sixportPassive
(wd.)genericNode (wd.)genericNode_ Vout (wd.)genericNode_ Tout
(wd.)u__genericNode (wd.)builddown (wd.)buildup (wd.)getres
(wd.)parres (wd.)buildout (wd.)buildtree

webaudio

(wa.)lowpass2 (wa.)highpass2 (wa.)bandpass2 (wa.)notch2

(wa.)allpass2 (wa.)peaking2 (wa.)lowshelf2 (wa.)highshelf2

interpolators.lib

A library to handle interpolation. Its official prefix is it.

This library provides several basic interpolation functions, as well as interpo-
lators taking a gen circuit of N outputs producing values to be interpolated,
triggered by a idv read index signal. Two points and four points interpolations
are implemented.

The idv parameter is to be used as a read index. In -single (= singleprecision)
mode, a technique based on 2 signals with the pure integer index and a frac-
tional part in the [0,1] range is used to avoid accumulating errors. In -double
(= doubleprecision) or -quad (= quadprecision) modes, a standard implemen-
tation with a single fractional index signal is used. Three functions int_part,
frac_part and mak_idv are available to manipulate the read index signal.

Here is a use-case with waveform. Here the signal given to interpolator_XXX
uses the idv model.

waveform_interpolator(wf, step, interp) = interp(gen, idv)

with {
gen(idx) = wf, (idx:max(0):min(size-1)) : rdtable with { size = wf:(_,!); }; /* wavefo:
index = (+(step)~_)-step; /* starting from 0 */
idv = it.make_idv(index); /* build the signal for interpolation in a generic way */

};

waveform_linear(wf, step) = waveform_interpolator(wf, step, it.interpolator_linear);
waveform_cosine(wf, step) = waveform_interpolator(wf, step, it.interpolator_cosine);
waveform_cubic(wf, step) = waveform_interpolator(wf, step, it.interpolator_cubic);

waveform_interp(wf, step, selector) = waveform_interpolator(wf, step, interp_select(selecto:
with {

/* adapts the argument order */

interp_select(sel, gen, idv) = it.interpolator_select(gen, idv, sel);

};

waveform and index

205

waveform_interpolatorl(wf, idv, interp) = interp(gen, idv)
with {
gen(idx) = wf, (idx:max(0):min(size-1)) : rdtable with { size = wf:(_,!); }; /* wavefo:

};

waveform_linearl(wf, idv) = waveform_interpolatorl(wf, idv, it.interpolator_linear);
waveform_cosinel(wf, idv) = waveform_interpolatorl(wf, idv, it.interpolator_cosine);
waveform_cubicl(wf, idv) = waveform_interpolatorl(wf, idv, it.interpolator_cubic);

waveform_interpl(wf, idv, selector) = waveform_interpolatorl(wf, idv, interp_select(selecto:
with {

/* adapts the argument order */

interp_select(sel, gen, idv) = it.interpolator_select(gen, idv, sel);

};
Some tests here:

wf = waveform {0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 50.0, 40.0, 30.0, 20.0, 10.0, 0.0};
process = waveform_linear(wf, step), waveform_cosine(wf, step), waveform_cubic(wf, step) wi
process = waveform_interp(wf, 0.25, nentry("algo", 0, 0, 3, 1));

process = waveform_interpl(wf, idv, nentry("algo", 0, 0, 3, 1))
with {
step = 0.1;
idv_aux = (+(step)~_)-step; /* starting from 0 */
idv = it.make_idv(idv_aux); /* build the signal for interpolation in a generic way */

};

/* Test linear interpolation between 2 samples with a ~(idx,dv)” signal built using a wavef«
linear_test = (idx,dv), it.interpolator_linear(gen, (idx,dv))
with {
/* signal to interpolate (only 2 points here) */
gen(id) = waveform {3.0, -1.0}, (id:max(0)) : rdtable;
dv = waveform {0.0, 0.25, 0.50, 0.75, 1.0}, index : rdtable;
idx = 0;
/* test index signal */
index = (+(1)~_)-1; /* starting from O */
};

/* Test cosine interpolation between 2 samples with a ~(idx,dv)” signal built using a wavef«
cosine_test = (idx,dv), it.interpolator_cosine(gen, (idx,dv))
with {

/* signal to interpolate (only 2 points here) */

gen(id) = waveform {3.0, -1.0}, (id:max(0)) : rdtable;

dv = waveform {0.0, 0.25, 0.50, 0.75, 1.0}, index : rdtable;

206

idx = 0;

/* test index signal */

index = (+(1)~_)-1; /* starting from 0 */
};

/* Test cubic interpolation between 4 samples with a ~(idx,dv)” signal built using a wavefo:
cubic_test = (idx,dv), it.interpolator_cubic(gen, (idx,dv))
with {
/* signal to interpolate (only 4 points here) */
gen(id) = waveform {-1.0, 2.0, 1.0, 4.0}, (id:max(0)) : rdtable;
dv = waveform {0.0, 0.25, 0.50, 0.75, 1.0}, index : rdtable;
idx = 0;
/* test index signal */
index = (+(1)~_)-1; /* starting from 0 */
3

References

« https://github.com/grame-cncm/faustlibraries/blob/master/interpolator
s.lib

Two points interpolation functions

(it.)interpolate_linear

Linear interpolation between 2 values.

Usage
interpolate_linear(dv,v0,v1l)
Where:

e dv: in the fractional value in [0..1] range
o vO0: is the first value
e v1: is the second value

Reference:

o https://github.com/jamoma/JamomaCore/blob/master /Foundation/li
brary/includes/TTInterpolate.h

(it.)interpolate_cosine

Cosine interpolation between 2 values.

207

https://github.com/grame-cncm/faustlibraries/blob/master/interpolators.lib
https://github.com/grame-cncm/faustlibraries/blob/master/interpolators.lib
https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h
https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h

Usage
interpolate_cosine(dv,v0,v1)
Where:

o dv: in the fractional value in [0..1] range
e vO0: is the first value
e v1: is the second value

Reference:

o https://github.com/jamoma/JamomaCore/blob/master/Foundation/li
brary/includes/TTInterpolate.h

Four points interpolation functions

(it.)interpolate_cubic

Cubic interpolation between 4 values.

Usage
interpolate_cubic(dv,v0,vl,v2,v3)
Where:

o dv: in the fractional value in [0..1] range
e vO0: is the first value

e v1: is the second value

e v2: is the third value

e v3: is the fourth value

Reference:

« https://www.paulinternet.nl/?page=bicubic

Two points interpolators

(it.)interpolator_two_points

Generic interpolator on two points (current and next index), assuming an in-
creasing index.

208

https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h
https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h
https://www.paulinternet.nl/?page=bicubic

Usage
interpolator_two_points(gen, idv, interpolate_two_points) : si.bus(outputs(gen))
Where:

e gen: a circuit with an ‘idv’ reader input that produces N outputs
o idv: a fractional read index expressed as a float value, or a (int,frac) pair
e interpolate_two_points: a two points interpolation function

(it.)interpolator_linear

Linear interpolator for a ‘gen’ circuit triggered by an ‘idv’ input to generate
values.

Usage
interpolator_linear(gen, idv) : si.bus(outputs(gen))
Where:

e gen: a circuit with an ‘idv’ reader input that produces N outputs
o idv: a fractional read index expressed as a float value, or a (int,frac) pair

(it.)interpolator_cosine

Cosine interpolator for a ‘gen’ circuit triggered by an ‘idv’ input to generate
values.

Usage
interpolator_cosine(gen, idv) : si.bus(outputs(gen))

Where:

e gen: a circuit with an ‘idv’ reader input that produces N outputs
o idv: a fractional read index expressed as a float value, or a (int,frac) pair

Four points interpolators

(it.)interpolator_four_points

Generic interpolator on interpolator_four points points (previous, current and
two next indexes), assuming an increasing index.

209

Usage
interpolator_four_points(gen, idv, interpolate_four_points) : si.bus(outputs(gen))
Where:

e gen: a circuit with an ‘idv’ reader input that produces N outputs
o idv: a fractional read index expressed as a float value, or a (int,frac) pair
e interpolate_four_points: a four points interpolation function

(it.)interpolator_cubic

Cubic interpolator for a ‘gen’ circuit triggered by an ‘idv’ input to generate
values

Usage
interpolator_cubic(gen, idv) : si.bus(outputs(gen))
Where:

e gen: a circuit with an ‘idv’ reader input that produces N outputs
o idv: a fractional read index expressed as a float value, or a (int,frac) pair

(it.)interpolator_select

Generic configurable interpolator (with selector between in [0..3]). The value 3
is used for no interpolation.

Usage
interpolator_select(gen, idv, sel) : _,_... (equal to N = outputs(gen))
Where:

e gen: a circuit with an ‘idv’ reader input that produces N outputs

o idv: a fractional read index expressed as a float value, or a (int,frac) pair

o sel: an interpolation algorithm selector in [0..3] (0 = linear, 1 = cosine,
2 = cubic, 3 = nointerp)

Lagrange based interpolators

(it.)lagrangeCoeffs(N, xCoordsList)

This is a function to generate N + 1 coeflicients for an Nth-order Lagrange basis
polynomial with arbitrary spacing of the points.

210

Usage
lagrangeCoeffs(N, xCoordsList, x) : si.bus(N + 1)
Where:

e N: order of the interpolation filter, known at compile-time

e xCoordsList: a list of N + 1 elements determining the x-axis coordinates
of N + 1 values, known at compile-time

e x: a fractional position on the x-axis to obtain the interpolated y-value

Reference

« https://ccrma.stanford.edu/~jos/pasp/Lagrange Interpolation.html
« https://en.wikipedia.org/wiki/Lagrange_ polynomial

(it.)lagrangeInterpolation(N, xCoordsList)

Nth-order Lagrange interpolator to interpolate between a set of arbitrarily
spaced N + 1 points.

Usage
x , yCoords : lagrangeInterpolation(N, xCoordsList)
Where:

e N: order of the interpolator, known at compile-time

e xCoordsList: a list of N + 1 elements determining the x-axis spacing of
the points, known at compile-time

e X: an x-axis position to interpolate between the y-values

e yCoords: N + 1 elements determining the values of the interpolation
points

Example: find the centre position of a four-point set using an order-3 Lagrange
function fitting the equally-spaced points [2, 5, -1, 3]:

N = 3;
xCoordsList = (0, 1, 2, 3);
x=N/ 2.0;

yCoords = 2, 5, -1, 3;
process = x, yCoords : lagrangeInterpolation(N, xCoordsList);

which outputs ~1.938.

Example: output the dashed curve showed on the Wikipedia page (top figure,
https://en.wikipedia.org/wiki/Lagrange polynomial):

N = 3;
xCoordsList = (-9, -4, -1, 7);

211

https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html
https://en.wikipedia.org/wiki/Lagrange_polynomial

x = os.phasor(16, 1) - 9;
yCoords 5, 2, -2, 9;
process = x, yCoords : lagrangeInterpolation(N, xCoordsList);

Reference

o https://ccrma.stanford.edu/~jos/pasp/Lagrange Interpolation.html San-
filippo and Parker 2021, “Combining zeroth and first-order analysis with
Lagrange polynomials to reduce artefacts in live concatenative granular
processing.” Proceedings of the DAFx conference 2021, Vienna, Austria.

o https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper 3
8.pdf

(it.)frdtable(N, S)

Look-up circular table with Nth-order Lagrange interpolation for fractional in-
dexes. The index is wrapped-around and the table is cycles for an index span
of size S, which is the table size in samples.

Usage
frdtable(N, S, init, idx)
Where:

e N: Lagrange interpolation order, known at compile-time
e S: table size in samples, known at compile-time

e init: signal for table initialisation

e idx: fractional index wrapped-around 0 and S

Example test program Test the effectiveness of the 5th-order interpolation
scheme by creating a table look-up oscillator using only 16 points of a sinewave;
compare the result with a non-interpolated version:

N = 5;

S = 16;

index = os.phasor(S, 1000);

process = rdtable(S, os.sinwaveform(S), int(index)) ,
it.frdtable(N, S, os.sinwaveform(S), index);

(it.)frwtable(N, S)

Look-up updatable circular table with Nth-order Lagrange interpolation for
fractional indexes. The index is wrapped-around and the table is circular indexes
ranging from 0 to S, which is the table size in samples.

212

https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper_38.pdf
https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper_38.pdf

Usage
frwtable(N, S, init, w_idx, x, r_idx)
Where:

e N: Lagrange interpolation order, known at compile-time

e S: table size in samples, known at compile-time

e init: constant for table initialisation, known at compile-time
e w_idx: it should be an INT between 0 and S - 1

e x: input signal written on the w_ idx positions

e r_idx: fractional index wrapped-around 0 and S

Example test program Test the effectiveness of the 5th-order interpolation
scheme by creating a table look-up oscillator using only 16 points of a sinewave;
compare the result with a non-interpolated version:

N = 5;

S = 16;

rIdx = os.phasor(S, 300);

wIdx = ba.period(S);

process = rwtable(S, os.sinwaveform(S), wIdx, os.sinwaveform(S), int(rIdx)) ,
frutable(N, S, os.sinwaveform(S), wIdx, os.sinwaveform(S), rIdx);

Misc functions

(it.)remap

Linearly map from an input domain to an output range.

Usage
_ : remap(froml, from2, tol, to2)
Where:

e froml: the domain’s lower bound.
e from2: the domain’s upper bound.
e tol: the range’s lower bound.
e to2: the range’s upper bound.

Note that having froml == from2 in the mapping will cause a division by zero
that has to be taken in account.

Example: An oscillator remapped from [-1., 1.] to [100., 1000.]
os.osc(440) : it.remap(-1., 1., 100., 1000.)

213

maths.lib

Mathematic library for Faust. Its official prefix is ma.

References

o https://github.com/grame-cncm/faustlibraries/blob/master /maths.lib

Functions Reference

(ma.)SR

Current sampling rate given at init time. Constant during program execution.

Usage
SR :

(ma.)T

Current sample duration in seconds computed from the sampling rate given at
init time. Constant during program execution.

Usage

T :

(ma.)BS

Current block-size. Can change during the execution at each block.

Usage
BS :

(ma.)PI

Constant PI in double precision.

214

https://github.com/grame-cncm/faustlibraries/blob/master/maths.lib

Usage
PI :

(ma.)deg2rad

Convert degrees to radians.

Usage
45. : deg2rad

(ma.)rad2deg

Convert radians to degrees.

Usage
ma.PI : rad2deg

(ma.)E

Constant e in double precision.

Usage
E :

(ma.)EPSILON

Constant EPSILON available in simple/double/quad precision, as defined in the
floating-point standard and machine epsilon, that is smallest positive number
such that 1.0 + EPSILON != 1.0.

Usage
EPSILON : _

(ma.)MIN

Constant MIN available in simple/double/quad precision (minimal positive
value).

215

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Machine_epsilon

Usage
MIN :

(ma.)MAX

Constant MAX available in simple/double/quad precision (maximal positive
value).

Usage

MAX :

(ma.)FTZ

Flush to zero: force samples under the “maximum subnormal number” to be
zero. Usually not needed in C++ because the architecture file take care of this,
but can be useful in JavaScript for instance.

Usage
: FTZ

Reference

o http://docs.oracle.com/cd/E19957-01/806-3568 /ncg math.html

(ma.)copysign

Changes the sign of x (first input) to that of y (second input).

Usage

, : copysign : _

(ma.)neg

Invert the sign (-x) of a signal.

Usage

_ : neg : _

216

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html

(ma.)not

Bitwise not implemented with xor as not(x) = x xor -1;. So working regard-
less of the size of the integer, assuming negative numbers in two’s complement.

Usage

. not :

(ma.)sub(x,y)

Subtract x and y.

Usage

,_ . sub :

(ma.)inv

Compute the inverse (1/x) of the input signal.

Usage

inv :

(ma.)cbrt

Computes the cube root of of the input signal.

Usage

cbrt : _

(ma.)hypot

Computes the euclidian distance of the two input signals sqrt(xz+yy) without
undue overflow or underflow.

Usage

> : hypot : _

217

https://faustdoc.grame.fr/manual/syntax/#xor-primitive

(ma.)1ldexp

Takes two input signals: x and n, and multiplies x by 2 to the power n.

Usage
, : ldexp : _

(ma.)scalb

Takes two input signals: x and n, and multiplies x by 2 to the power n.

Usage

, : scalb : _

(ma.)loglp

Computes log(1 4+ x) without undue loss of accuracy when x is nearly zero.

Usage
_ : loglp : _

(ma.)logb

Return exponent of the input signal as a floating-point number.

Usage
_ : logb : _

(ma.)ilogb

Return exponent of the input signal as an integer number.

Usage
ilogb : _

218

(ma.)log2

Returns the base 2 logarithm of x.

Usage
_ : log2 : _

(ma.)expml

Return exponent of the input signal minus 1 with better precision.

Usage

_ : expml

(ma.)acosh

Computes the principle value of the inverse hyperbolic cosine of the input signal.

Usage

_ : acosh : _

(ma.)asinh

Computes the inverse hyperbolic sine of the input signal.

Usage

_ : asinh : _

(ma.)atanh

Computes the inverse hyperbolic tangent of the input signal.

Usage

_ : atanh : _

219

(ma.)sinh

Computes the hyperbolic sine of the input signal.

Usage

_ ¢ sinh : _

(ma.)cosh

Computes the hyperbolic cosine of the input signal.

Usage

cosh : _

(ma.)tanh

Computes the hyperbolic tangent of the input signal.

Usage

_ ¢ tanh : _

(ma.)erf

Computes the error function of the input signal.

Usage

: erf

(ma.)erfc

Computes the complementary error function of the input signal.

Usage

_ : erfc : _

220

(ma.)gamma

Computes the gamma function of the input signal.

Usage

: gamma : _

(ma.)lgamma

Calculates the natural logorithm of the absolute value of the gamma function
of the input signal.

Usage

_ : lgamma : _

(ma.)JO

Computes the Bessel function of the first kind of order 0 of the input signal.

Usage
¢ JO

(ma.)J1

Computes the Bessel function of the first kind of order 1 of the input signal.

Usage
: J1

(ma.)Jn

Computes the Bessel function of the first kind of order n (first input signal) of
the second input signal.

Usage
: Jn

- -

221

(ma.)YO
Computes the linearly independent Bessel function of the second kind of order
0 of the input signal.
Usage
: YO :

(ma.)Y1
Computes the linearly independent Bessel function of the second kind of order
1 of the input signal.
Usage
: YO

(ma.)Yn

Computes the linearly independent Bessel function of the second kind of order
n (first input signal) of the second input signal.

Usage
: Yn :

- p—

(ma.)fabs, (ma.)fmax, (ma.)fmin

Just for compatibility...

fabs = abs
fmax = max
fmin = min
(ma.)np2

Gives the next power of 2 of x.

222

Usage
np2(n)
Where:

e n: an integer

(ma.)frac

Gives the fractional part of n.

Usage
frac(n)
Where:

e n: a decimal number

(ma.)modulo

Modulus operation.

Usage
modulo(x,y)
Where:

e x: the numerator
e y: the denominator

(ma.)isnan

Return non-zero if x is a NaN.

Usage

isnan(x)
isnan : _

Where:

e x: signal to analyse

223

(ma.)isinf

Return non-zero if x is a positive or negative infinity.

Usage

isinf (x)
_ ¢ isinf : _

Where:

e x: signal to analyse

(ma.)chebychev

Chebychev transformation of order N.

Usage
_ : chebychev(N)
Where:

e N: the order of the polynomial, a constant numerical expression

Semantics

TOl(x) = 1,
T[] (x) = x,
T[n] (x) = 2x*T[n-1] (x) - T[n-2] (x)

Reference

 http://en.wikipedia.org/wiki/Chebyshev_ polynomial

(ma.)chebychevpoly

Linear combination of the first Chebyshev polynomials.

Usage
_ @ chebychevpoly((cO,cl,...,cn))
Where:

o cn: the different Chebychevs polynomials such that: chebychevpoly((c0,cl,...,cn))
= Sum of chebychev(i)*ci

224

http://en.wikipedia.org/wiki/Chebyshev_polynomial

Reference

o http://www.csounds.com/manual/html/chebyshevpoly.html

(ma.)diffn

Negated first-order difference.

Usage
_ ¢ diffn : _

(ma.)signum

The signum function signum(x) is defined as -1 for x<0, 0 for x==0, and 1 for
x>0.

Usage

_ : signum : _

(ma.)nextpow?2

The nextpow2(x) returns the lowest integer m such that 2"m >= x.

Usage
2 nextpow2(n)
Useful for allocating delay lines, e.g.,

delay (2 nextpow2(maxDelayNeeded), currentDelay);

(ma.)zc

Indicator function for zero-crossing: it returns 1 if a zero-crossing occurs, 0
otherwise.

Usage

. ZC ¢

225

http://www.csounds.com/manual/html/chebyshevpoly.html

mi.lib

This ongoing work is the fruit of a collaboration between GRAME-CNCM and
the ANIS (Arts Numériques et Immersions Sensorielles) research group from
GIPSA-Lab (Université Grenoble Alpes).

This library implements basic 1-DoF mass-interaction physics algorithms, al-
lowing to declare and connect physical elements (masses, springs, non linear
interactions, etc.) together to form topological networks. Models can be assem-
bled by hand, however in more complex scenarios it is recommended to use a
scripting tool (such as MIMS) to generate the FAUST signal routing for a given
physical network. Its official prefix is mi.

« https://github.com/rmichon/mi_ faust
o http://mi-creative.eu/tool_miFaust.html
o http://mi-creative.eu/paper_lac19.html

Sources

The core mass-interaction algorithms implemented in this library are in the
public domain and are disclosed in the following scientific publications:

¢ Claude Cadoz, Annie Luciani, Jean-Loup Florens, Curtis Roads and
Francoise Chabade. Responsive Input Devices and Sound Synthesis by
Stimulation of Instrumental Mechanisms: The Cordis System. Computer
Music Journal, Vol 8. No. 3, 1984.

¢ Claude Cadoz, Annie Luciani and Jean Loup Florens. CORDIS-ANIMA:
A Modeling and Simulation System for Sound and Image Synthesis: The
General Formalism. Computer Music Journal. Vol. 17, No. 1, 1993.

o Alexandros Kontogeorgakopoulos and Claude Cadoz. Cordis Anima
Physical Modeling and Simulation System Analysis. In Proceedings of
the Sound and Music Computing Conference (SMC-07), Lefkada, Greece,
2007.

¢ Nicolas Castagne, Claude Cadoz, Ali Allaoui and Olivier Tache. G3: Gen-
esis Software Environment Update. In Proceedings of the International
Computer Music Conference (ICMC-09), Montreal, Canada, 2009.

e Nicolas Castagné and Claude Cadoz. Genesis 3: Plate-forme pour la créa-
tion musicale a I’aide des modeles physiques Cordis-Anima. In Proceedings
of the Journée de I'Informatique Musicale, Grenoble, France, 2009.

e Edgar Berdahl and Julius O. Smith. An Introduction to the Synth-A-
Modeler Compiler: Modular and Open-Source Sound Synthesis using
Physical Models. In Proceedings of the Linux Audio Conference (LAC-12),
Stanford, USA, 2012.

e James Leonard and Claude Cadoz. Physical Modelling Concepts for a
Collection of Multisensory Virtual Musical Instruments. In Proceedings of
the New Interfaces for Musical Expression (NIME-15) Conference, Baton
Rouge, USA, 2015.

226

https://github.com/rmichon/mi_faust
http://mi-creative.eu/tool_miFaust.html
http://mi-creative.eu/paper_lac19.html

References

o https://github.com/grame-cncm/faustlibraries/blob/master /mi.lib

Utility Functions

These utility functions are used to help certain operations (e.g. define initial
positions and velocities for physical elements).

(mi.)initState

Used to set initial delayed position values that must be initialised at step 0 of
the physics simulation.

If you develop any of your own modules, you will need to use this (see mass and
springDamper algorithm codes for examples).

Usage
X : initState(x0)
Where:

e X: position value signal
e x0: initial value for position

Mass Algorithms

All mass-type physical element functions are declared here. They all expect to
receive a force input signal and produce a position signal. All physical parame-
ters are expressed in sample-rate dependant values.

(mi.)mass
Implementation of a punctual mass element. Takes an input force and produces
output position.

Usage

mass(m, grav, x0, xr0),_ :

Where:

e m: mass value

e grav: gravity force value

e x0: initial position

e xr0: initial delayed position (inferred from initial velocity)

227

https://github.com/grame-cncm/faustlibraries/blob/master/mi.lib

(mi.)oscil
Implementation of a simple linear harmonic oscillator. Takes an input force and
produces output position.

Usage

oscil(m, k, z, grav, x0, xr0),_ :

Where:

e m: mass value

e k: stiffness value

e z: damping value

e grav: gravity force value

e x0: initial position

e xr0: initial delayed position (inferred from initial velocity)

(mi.)ground

Implementation of a fixed point element. The position output produced by
this module never changes, however it still expects a force input signal (for
compliance with connection rules).

Usage
ground(x0),_ : _

Where:

e x0: initial position

(mi.)posInput

Implementation of a position input module (driven by an outside signal). Takes
two signal inputs: incoming force (which doesn’t affect position) and the driving
position signal.

Usage

posInput (x0),_,_

Where:

e x0: initial position

228

Interaction Algorithms

All interaction-type physical element functions are declared here. They each
expect to receive two position signals (coming from the two mass-elements that
they connect) and produce two equal and opposite force signals that must be
routed back to the mass elements’ inputs. All physical parameters are expressed
in sample-rate dependant values.

(mi.)spring

Implementation of a linear elastic spring interaction.

Usage
spring(k, xlr, x2r),_,_ :
Where:

o k: stiffness value
e x1r: initial delayed position of mass 1 (unused here)
o x2r: initial delayed position of mass 2 (unused here)

(mi.)damper

Implementation of a linear damper interaction. Beware: in 32bit precision mode,
damping forces can become truncated if position values are not centered around
zero!

Usage
damper(z, xlr, x2r),_,_ :
Where:

e z: damping value
e x1r: initial delayed position of mass 1
e x2r: initial delayed position of mass 2

(mi.)springDamper

Implementation of a linear viscoelastic spring-damper interaction (a combina-
tion of the spring and damper modules).

229

Usage
springDamper(k, z, xlr, x2r),_,_ :

Where:

- =

¢ k: stiffness value
e z: damping value
e x1r: initial delayed position of mass 1
e x2r: initial delayed position of mass 2

(mi.)nlSpringDamper2

Implementation of a non-linear viscoelastic spring-damper interaction contain-
ing a quadratic term (function of squared distance). Beware: at high dis-
placements, this interaction will break numerical stability conditions ! The
nlSpringDamperClipped is a safer option.

Usage
nlSpringDamper2(k, q, z, xlr, x2r),_,_
Where:

o k: linear stiffness value

e q: quadratic stiffness value

e z: damping value

e x1r: initial delayed position of mass 1
e x2r: initial delayed position of mass 2

(mi.)nlSpringDamper3

Implementation of a non-linear viscoelastic spring-damper interaction
containing a cubic term (function of distance™3). Beware: at high dis-
placements, this interaction will break numerical stability conditions ! The
nlSpringDamperClipped is a safer option.

Usage

nlSpringDamper3(k, q, z, xlr, x2r),_,_
Where:

e k: linear stiffness value

e q: cubic stiffness value

e z: damping value

e x1r: initial delayed position of mass 1

230

e x2r: initial delayed position of mass 2

(mi.)nlSpringDamperClipped

Implementation of a non-linear viscoelastic spring-damper interaction contain-
ing a cubic term (function of distance™3), bound by an upper linear stiffness
(hard-clipping).

This bounding means that when faced with strong displacements, the interaction
profile will “clip” at a given point and never produce forces higher than the
bounding equivalent linear spring, stopping models from becoming unstable.

So far the interaction clips “hard” (with no soft-knee spline interpolation, etc.)

Usage
nlSpringDamperClipped(s, c, k, z, xlr, x2r),_,_ :
Where:

e s: linear stiffness value

e c: cubic stiffness value

e k: upper-bound linear stiffness value

: (linear) damping value

e x1r: initial delayed position of mass 1
e x2r: initial delayed position of mass 2

.
N

(mi.)nlPluck

Implementation of a piecewise linear plucking interaction. The symmetric func-
tion provides a repulsive viscoelastic interaction upon contact, until a tipping
point is reached (when the plucking occurs). The tipping point depends both
on the stiffness and the distance scaling of the interaction.

Usage
nlPluck(knl, scale, z, xir, x2r),_,_ :

Where:

R

o knl: stiffness scaling parameter (vertical stretch of the NL function)

o scale: distance scaling parameter (horizontal stretch of the NL function)
o z: (linear) damping value

e x1r: initial delayed position of mass 1

e x2r: initial delayed position of mass 2

231

(mi.)nlBow

Implementation of a non-linear friction based interaction that allows for stick-
slip bowing behaviour. Two versions are proposed : a piecewise linear function
(very similar to the nlPluck) or a mathematical approximation (see Stefan
Bilbao’s book, Numerical Sound Synthesis).

Usage
nlBow(znl, scale, type, xlr, x2r),_,_ :

Where:

- =

o znl: friction scaling parameter (vertical stretch of the NL function)

o scale: velocity scaling parameter (horizontal stretch of the NL function)
o type: interaction profile (0 = piecewise linear, 1 = smooth function)

e x1r: initial delayed position of mass 1

e x2r: initial delayed position of mass 2

(mi.)collision

Implementation of a collision interaction, producing linear visco-elastic repulsion
forces when two mass elements are interpenetrating.

Usage
collision(k, z, thres, xlr, x2r),_,_
Where:

e k: collision stiffness parameter

e z: collision damping parameter

e thres: threshold distance for the contact between elements
e x1r: initial delayed position of mass 1

e x2r: initial delayed position of mass 2

(mi.)nlCollisionClipped

Implementation of a collision interaction, producing non-linear visco-elastic re-
pulsion forces when two mass elements are interpenetrating. Bound by an upper
stiffness value to maintain stability. This interaction is particularly useful for
more realistic contact dynamics (greater difference in velocity provides sharper
contacts, and reciprocally).

232

Usage
nlCollisionClipped(s, ¢, k, z, thres, xir, x2r),_,_ :
Where:

R

: collision linear stiffness parameter

: collision cubic stiffness parameter

: collision upper-bounding stiffness parameter

: collision damping parameter

e thres: threshold distance for the contact between elements
e x1r: initial delayed position of mass 1

e x2r: initial delayed position of mass 2

.
N = o n

misceffects.lib

Collection of audio effects library. Its official prefix is ef.
The library is organized into 7 sections:

e Dynamic

e Fibonacci

o Filtering

e Meshes

e Mixing

e Time Based
o Pitch Shifting
e Saturators

References

o https://github.com/grame-cncm/faustlibraries/blob/master/misceffects.
lib

Dynamic

(ef.)cubicnl

Cubic nonlinearity distortion. cubicnl is a standard Faust function.

Usage:

cubicnl(drive,offset)
cubicnl_nodc(drive,offset)

Where:

e drive: distortion amount, between 0 and 1

233

https://github.com/grame-cncm/faustlibraries/blob/master/misceffects.lib
https://github.com/grame-cncm/faustlibraries/blob/master/misceffects.lib

e offset: constant added before nonlinearity to give even harmonics. Note:
offset can introduce a nonzero mean - feed cubicnl output to decblocker to
remove this.

References:

o https://ccrma.stanford.edu/~jos/pasp/Cubic_ Soft_ Clipper.html
¢ https://ccrma.stanford.edu/~jos/pasp/Nonlinear_ Distortion.html

(ef.)gate_mono

Mono signal gate. gate_mono is a standard Faust function.

Usage
_ : gate_mono(thresh,att,hold,rel)
Where:

e thresh: dB level threshold above which gate opens (e.g., -60 dB)

o att: attack time = time constant (sec) for gate to open (e.g., 0.0001 s =
0.1 ms)

e hold: hold time = time (sec) gate stays open after signal level < thresh
(e.g., 0.1 s)

e rel: release time = time constant (sec) for gate to close (e.g., 0.020 s =
20 ms)

References

o http://en.wikipedia.org/wiki/Noise_gate
o http://www.soundonsound.com/sos/apr01/articles/advanced.asp
o http://en.wikipedia.org/wiki/Gating_ (sound_ engineering)

(ef.)gate_stereo

Stereo signal gates. gate_stereo is a standard Faust function.

Usage
L, gate_stereo(thresh,att,hold,rel) N

Where:

o thresh: dB level threshold above which gate opens (e.g., -60 dB)
o att: attack time = time constant (sec) for gate to open (e.g., 0.0001 s =
0.1 ms)

234

https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html
https://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html
http://en.wikipedia.org/wiki/Noise_gate
http://www.soundonsound.com/sos/apr01/articles/advanced.asp
http://en.wikipedia.org/wiki/Gating_(sound_engineering)

e hold: hold time = time (sec) gate stays open after signal level < thresh
(e.g., 0.1s)

e rel: release time = time constant (sec) for gate to close (e.g., 0.020 s =
20 ms)

References

o http://en.wikipedia.org/wiki/Noise_gate
o http://www.soundonsound.com/sos/apr01/articles/advanced.asp
o http://en.wikipedia.org/wiki/Gating_ (sound_ engineering)

Fibonacci

(ef.)fibonacci

Fibonacci system where the current output is the current input plus the sum of
the previous N outputs.

Usage
_ : fibonacci(N)

Where:

e N: the Fibonacci system’s order, where 2 is standard

Example Generate the famous series: [1, 1, 2, 3, 5, 8, 13, ..]
1. : ba.impulsify : fibonacci(2)

(ef.)fibonacciGeneral

Fibonacci system with customizable coefficients. The order of the system is
inferred from the number of coefficients.

Usage

_ : fibonacciGeneral (wave)

Where:

e wave: a waveform such as waveform{1, 1}

235

http://en.wikipedia.org/wiki/Noise_gate
http://www.soundonsound.com/sos/apr01/articles/advanced.asp
http://en.wikipedia.org/wiki/Gating_(sound_engineering)

Example: Use the update equation y = 2*y' + 3*y'' + 4xy''!'

1. : ba.impulsify : fibonacciGeneral(waveform{2, 3, 4})

(ef.)fibonacciSeq

First N numbers of the Fibonacci sequence [1, 1, 2, 3, 5, 8, ..] as parallel
channels.

Usage

fibonacciSeq(N) : si.bus(N)

Where:

e N: The number of Fibonacci numbers to generate as channels.

Filtering

(ef.)speakerbp

Dirt-simple speaker simulator (overall bandpass eq with observed roll-offs above
and below the passband). speakerbp is a standard Faust function.

Low-frequency speaker model = +12 dB/octave slope breaking to flat near f1.
Implemented using two dc blockers in series.

High-frequency model = -24 dB/octave slope implemented using a fourth-order
Butterworth lowpass.

Usage

_ @ speakerbp(f1,£f2)

Example Based on measured Celestion G12 (12” speaker):

speakerbp (130,5000)

(ef.)piano_dispersion_filter

Piano dispersion allpass filter in closed form.

236

Usage

piano_dispersion_filter(M,B,f0)
_ : piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay)

Where:

o M: number of first-order allpass sections (compile-time only) Keep below
20. 8 is typical for medium-sized piano strings.

e B: string inharmonicity coefficient (0.0001 is typical)

e f0: fundamental frequency in Hz

Outputs

e MINUS the estimated delay at £0 of allpass chain in samples, provided in
negative form to facilitate subtraction from delay-line length.
e Output signal from allpass chain

Reference

o “Dispersion Modeling in Waveguide Piano Synthesis Using Tunable All-
pass Filters”, by Jukka Rauhala and Vesa Valimaki, DAFX-2006, pp. 71-76

o http://lib.tkk.fi/Diss/2007/isbn9789512290666 /article2.pdf An erratum
in Eq. (7) is corrected in Dr. Rauhala’s encompassing dissertation (and
below).

o http://www.acoustics.hut.fi/research/asp/piano/

(ef.)stereo_width

Stereo Width effect using the Blumlein Shuffler technique. stereo_width is a
standard Faust function.

Usage
, : stereo_width(w) : _,_
Where:

e w: stereo width between 0 and 1

At w=0, the output signal is mono ((left+right)/2 in both channels). At w=1,
there is no effect (original stereo image). Thus, w between 0 and 1 varies stereo
width from 0 to “original”.

Reference

i

o “Applications of Blumlein Shuffling to Stereo Microphone Techniques’
Michael A. Gerzon, JAES vol. 42, no. 6, June 1994

237

http://lib.tkk.fi/Diss/2007/isbn9789512290666/article2.pdf
http://www.acoustics.hut.fi/research/asp/piano/

Meshes

(ef.)mesh_square

Square Rectangular Digital Waveguide Mesh.

Usage
bus(4%N) : mesh_square(N) : bus(4x*N)
Where:

e N: number of nodes along each edge - a power of two (1,2,4,8,...)

Reference

 https://cerma.stanford.edu/~jos/pasp/Digital_ Waveguide_Mesh.html

Signal Order In and Out The mesh is constructed recursively using 2x2
embeddings. Thus, the top level of mesh_square (M) is a block 2x2 mesh, where
each block is a mesh (M/2). Let these blocks be numbered 1,2,3,4 in the geometry
NW,NE,SW SE, i.e., as:

12
34

Each block has four vector inputs and four vector outputs, where the length of
each vector is M/2. Label the input vectors as Ni,Ei,Wi,Si, i.e., as the inputs
from the North, East South, and West, and similarly for the outputs. Then, for
example, the upper left input block of M/2 signals is labeled 1Ni. Most of the
connections are internal, such as 1Eo -> 2Wi. The 8% (M/2) input signals are
grouped in the order:

1Ni 2Ni
35i 4Si
1wi 3Wi
2Ei 4Ei

and the output signals are:

1No 1Wo
2No 2Eo
3So 3Wo
4So0 4Eo

or:

In: 1No 1Wo 2No 2Eo 3So 3Wo 4So 4Eo
Out: 1Ni 2Ni 3Si 4Si 1Wi 3Wi 2Ei 4Ei

238

https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Mesh.html

Thus, the inputs are grouped by direction N,S;W E, while the outputs are
grouped by block number 1,2,3,4, which can also be interpreted as directions
NW, NE, SW, SE. A simple program illustrating these orderings is process =
mesh_square(2) ;.

Example Reflectively terminated mesh impulsed at one corner:

mesh_square_test(N,x) = mesh_square(N)~(busi(4#N,x)) // input to corner
with {

busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,_), +(x);
I

process = 1-1' : mesh_square_test(4); // all modes excited forever
In this simple example, the mesh edges are connected as follows:

1No -> 1Ni, 1Wo -> 2Ni, 2No -> 3Si, 2Eo -> 4Si,
3So -> 1Wi, 3Wo -> 3Wi, 4So -> 2Ei, 4Eo -> 4Ei

A routing matrix can be used to obtain other connection geometries.

Mixing

(ef.)dryWetMixer

Linear dry-wet mixer for a N inputs and N outputs effect.

Usage
si.bus(inputs(FX)) : dryWetMixer(wetAmount, FX) : si.bus(inputs(FX))
Where:

o wetAmount: the wet amount (0-1). 0 produces only the dry signal and 1
produces only the wet signal
e FX: an arbitrary effect (N inputs and N outputs) to apply to the input bus

(ef.)dryWetMixerConstantPower

Constant-power dry-wet mixer for a N inputs and N outputs effect.

Usage
si.bus(inputs(FX)) : dryWetMixerConstantPower(wetAmount, FX) :si.bus(inputs(FX))
Where:

239

o wetAmount: the wet amount (0-1). 0 produces only the dry signal and 1
produces only the wet signal
e FX: an arbitrary effect (N inputs and N outputs) to apply to the input bus

(ef.)mixLinearClamp

Linear mixer for N buses, each with C channels. The output will be a sum
of 2 buses determined by the mixing index mix. 0 produces the first bus, 1
produces the second, and so on. mix is clamped automatically. For example,
mixLinearClamp(4, 1, 1) will weight its 4 inputs by (0, 1, 0, 0). Similarly,
mixLinearClamp(4, 1, 1.1) will weight its 4 inputs by (0,.9,.1,0).

Usage
si.bus(N*C) : mixLinearClamp(N, C, mix) : si.bus(C)
Where:

e N: the number of input buses
¢ C: the number of channels in each bus
e mix: the mixing index, continuous in [0;N-1].

(ef.)mixLinearLoop

Linear mixer for N buses, each with C channels. Refer to mixLinearClamp. mix
will loop for multiples of N. For example, mixLinearLoop(4, 1, 0) has the
same effect as mixLinearLoop(4, 1, -4) and mixLinearLoop(4, 1, 4).

Usage
si.bus(N*C) : mixLinearLoop(N, C, mix) : si.bus(C)
Where:

e N: the number of input buses

e C: the number of channels in each bus

o mix: the mixing index (N-1) selects the last bus, and 0 or N selects the
Oth bus.

(ef .)mixPowerClamp

Constant-power mixer for N buses, each with C channels. The output will
be a sum of 2 buses determined by the mixing index mix. 0 produces the
first bus, 1 produces the second, and so on. mix is clamped automatically.

240

mixPowerClamp(4, 1, 1) will weight its 4 inputs by (0, 1./sqrt(2), 0, 0).
Similarly, mixPowerClamp (4, 1, 1.5) will weight its 4 inputs by (0, .5,.5,0).
Usage

si.bus(N*C) : mixPowerClamp(N, C, mix) : si.bus(C)

Where:

e N: the number of input buses
e C: the number of channels in each bus
o mix: the mixing index, continuous in [0;N-1].

(ef .)mixPowerLoop

Constant-power mixer for N buses, each with C channels. Refer to
mixPowerClamp. mix will loop for multiples of N. For example, mixPowerLoop (4,
1, 0) has the same effect as mixPowerLoop(4, 1, -4) and mixPowerLoop (4,
1, 4).

Usage
si.bus(N*C) : mixPowerLoop(N, C, mix) : si.bus(C)

Where:

e N: the number of input buses

¢ C: the number of channels in each bus

e mix: the mixing index (N-1) selects the last bus, and 0 or N selects the
Oth bus.

Time Based

(ef.)echo

A simple echo effect. echo is a standard Faust function.

Usage
_ : echo(maxDuration,duration,feedback)
Where:

e« maxDuration: the max echo duration in seconds
e duration: the echo duration in seconds
e feedback: the feedback coefficient

241

(ef.)reverseEchoN(nChans,delay)

Reverse echo effect.

Usage
_ : ef.reverseEchoN(N,delay) : si.bus(N)
Where:

o N: Number of output channels desired (1 or more), a constant numerical
expression
e delay: echo delay (integer power of 2)

Demo

_ : dm.reverseEchoN(N) : _,_

Description The effect uses N instances of reverseDelayRamped at different
phases.

(ef.)reverseDelayRamped(delay,phase)

Reverse delay with amplitude ramp.

Usage
_ @ ef.reverseDelayRamped(delay,phase)
Where:
e delay: echo delay (integer power of 2)
e phase: float between 0 and 1 giving ramp delay phase*delay
Demo

_ : ef.reverseDelayRamped(32,0.6) : _,_

(ef.)uniformPanToStereo (nChans)

Pan nChans channels to the stereo field, spread uniformly left to right.

Usage
si.bus(N) : ef.uniformPanToStereo(N) : _,_

Where:

242

e N: Number of input channels to pan down to stereo, a constant numerical
expression
Demo

,_,_ : ef.uniformPanToStereo(3) : _,_

Pitch Shifting

(ef.)transpose
A simple pitch shifter based on 2 delay lines. transpose is a standard Faust
function.

Usage

_ @ transpose(w, x, s)

Where:

e w: the window length (samples)
o x: crossfade duration duration (samples)
« s: shift (semitones)

Saturators

(ef.)softclipQuadratic

Quadratic softclip nonlinearity.

Usage

_ @ softclipQuadratic : _;

(ef.)wavefold

Wavefolding nonlinearity.

Usage
_ : wavefold(width) : _;
Where:
o width: The width of the folded section [0..1] (float).

243

noises.lib

Faust Noise Generator Library. Its official prefix is no.

References

o https://github.com/grame-cncm/faustlibraries/blob/master /noises.lib

Functions Reference

(no.)noise

White noise generator (outputs random number between -1 and 1). noise is a
standard Faust function.

Usage

noise : _

(no.)multirandom

Generates multiple decorrelated random numbers in parallel.

Usage
multirandom(N) : si.bus(N)
Where:

e N: the number of decorrelated random numbers in parallel, a constant
numerical expression

(no.)multinoise

Generates multiple decorrelated noises in parallel.

Usage
multinoise(N) : si.bus(N)
Where:

e N: the number of decorrelated random numbers in parallel, a constant
numerical expression

244

https://github.com/grame-cncm/faustlibraries/blob/master/noises.lib

(no.)noises

A convenient wrapper around multinoise.

Usage
noises(N,i)
Where:

e N: the number of decorrelated random numbers in parallel, a constant
numerical expression
o i: the selected random number (i in [0..N])

(no.)randomseed

A random seed based on the foreign function arc4random (see man arc4random).
Used in rnoise, rmultirandom, etc. to avoid having the same pseudo random
sequence at each run.

WARNING: using the foreign function arc4random, so only available in C/C++
and LLVM backends.
Usage

randomseed : _

(no.)rnoise

A randomized white noise generator (outputs random number between -1 and
1).

WARNING: using the foreign function arc4random, so only available in C/C++
and LLVM backends.
Usage

rnoise : _

(no.)rmultirandom
Generates multiple decorrelated random numbers in parallel.

WARNING: using the foreign function arc4random, so only available in C/C++
and LLVM backends.

245

Usage
rmultirandom(N)
Where:

e N: the number of decorrelated random numbers in parallel, a constant
numerical expression

(no.)rmultinoise
Generates multiple decorrelated noises in parallel.

WARNING: using the foreign function arc4random, so only available in C/C++
and LLVM backends.

Usage
rmultinoise(N)
Where:

e N: the number of decorrelated random numbers in parallel, a constant
numerical expression

(no.)rnoises

A convenient wrapper around rmultinoise.

WARNING: using the foreign function arc4random, so only available in C/C++
and LLVM backends.

Usage

rnoises(N,i)

Where:

e N: the number of decorrelated random numbers in parallel
o 1i: the selected random number (i in [0..N])

(no.)pink_noise

Pink noise (1/f noise) generator (third-order approximation covering the audio
band well). pink_noise is a standard Faust function.

246

Usage

pink_noise : _

Reference

o https://ccrma.stanford.edu/~jos/sasp/Example Synthesis 1 _F_Noise
.html

Alternatives Higher-order approximations covering any frequency band can
be obtained using

no.noise : fi.spectral_tilt (order,lowerBandLimit,Bandwidth, p)

where p=-0.5 means filter rolloff £~(-1/2) which gives 1/f rolloff in the power
spectral density, and can be changed to other real values.

Example // pink_noise_compare.dsp - compare three pinking filters

process = pink_noises with {

f0 = 35; // Lower bandlimit in Hz

bw3 = 0.7 * ma.SR/2.0 - £f0; // Bandwidth in Hz, 3rd order case

bw9 = 0.8 * ma.SR/2.0 - f0; // Bandwidth in Hz, 9th order case

pink_tilt_3 = fi.spectral_tilt(3,f0,bw3,-0.5);

pink_tilt_9 = fi.spectral_tilt(9,f0,bw9,-0.5);

pink_noises = 1-1' <:
no.pink_filter, // original designed by invfreqz in Octave
pink_tilt_3, // newer method using the same filter order
pink_tilt_9; // newer method using a higher filter order

};

Output of Example

faust2octave pink_noise_compare.dsp
Octave:1> semilogx (20*1logl0(abs(fft(faustout,8192))(1:4096,:)));

(no.)pink_noise_vm

Multi pink noise generator.

Usage
pink_noise_vm(N)

Where:

247

https://ccrma.stanford.edu/~jos/sasp/Example_Synthesis_1_F_Noise.html
https://ccrma.stanford.edu/~jos/sasp/Example_Synthesis_1_F_Noise.html

 N: number of latched white-noise processes to sum, not to exceed sizeof(int)
in C++ (typically 32).
References

o http://www.dsprelated.com/showarticle/908.php
o http://www firstpr.com.au/dsp/pink-noise/#Voss-McCartney

(no.)1lfnoise, (no.)1lfnoise0 and (no.)lfnoiseN

Low-frequency mnoise generators (Butterworth-filtered downsampled white

noise).

Usage

1lfnoiseO(rate) : _ // new random number every int(SR/rate) samples or so
1lfnoiseN(N,rate) : _ // same as "lfnoiseO(rate) : lowpass(N,rate)" [see filters.lib]
lfnoise(rate) : _ // same as "lfnoiseO(rate) : seq(i,5,lowpass(N,rate))" (no overshoot)

Example (view waveforms in faust2octave):

rate = SR/100.0; // new random value every 100 samples (SR from music.lib)

process = lfnoiseO(rate), // sampled/held noise (piecewise constant)
1lfnoiseN(3,rate), // lfnoise0 smoothed by 3rd order Butterworth LPF
lfnoise(rate); // 1lfnoise0 smoothed with no overshoot

(no.)sparse_noise

Sparse noise generator.

Usage
sparse_noise(£0)
Where:
e f0: average frequency of noise impulses per second

Random impulses in the amplitude range -1 to 1 are generated at an average
rate of f0 impulses per second.

Reference

e See velvet_ noise

248

http://www.dsprelated.com/showarticle/908.php
http://www.firstpr.com.au/dsp/pink-noise/#Voss-McCartney

(no.)velvet_noise_vm

Velvet noise generator.

Usage
velvet_noise(amp, £0)
Where:

o amp: amplitude of noise impulses (positive and negative)
e fO0: average frequency of noise impulses per second

Reference

o Matti Karjalainen and Hanna Jarvelainen, “Reverberation Modeling Us-
ing Velvet Noise”, in Proc. 30th Int. Conf. Intelligent Audio Environ-
ments (AES07), March 2007.

(no.)gnoise

Approximate zero-mean, unit-variance Gaussian white noise generator.

Usage
gnoise(N)
Where:

e N: number of uniform random numbers added to approximate Gaussian
white noise

Reference

e See Central Limit Theorem

(no.)colored_noise

Generates a colored noise signal with an arbitrary spectral roll-off factor (alpha)
over the entire audible frequency range (20-20000 Hz). The output is normalized
so that an equal RMS level is maintained for different values of alpha.

Usage
colored_noise(N,alpha)

Where:

249

o N: desired integer filter order (constant numerical expression)

o alpha: slope of roll-off, between -1 and 1. -1 corresponds to brown/red
noise, -1/2 pink noise, 0 white noise, 1/2 blue noise, and 1 violet/azure
noise.

Examples See dm.colored_noise_demo.

oscillators.lib

This library contains a collection of sound generators. Its official prefix is os.
The oscillators library is organized into 9 sections:

¢ Wave-Table-Based Oscillators

e Low Frequency Oscillators

o Low Frequency Sawtooths

o Alias-Suppressed Sawtooth

e Alias-Suppressed Pulse, Square, and Impulse Trains
o Filter-Based Oscillators

o Waveguide-Resonator-Based Oscillators

e Casio CZ Oscillators

o PolyBLEP-Based Oscillators

References

 https://github.com/grame-cncm/faustlibraries/blob /master/oscillators.li
b

Wave-Table-Based Oscillators

Oscillators based on mathematical functions.

(os.)sinwaveform

Sine waveform ready to use with a rdtable.

Usage
sinwaveform(tablesize)
Where:

e tablesize: the table size

250

https://github.com/grame-cncm/faustlibraries/blob/master/oscillators.lib
https://github.com/grame-cncm/faustlibraries/blob/master/oscillators.lib

(os.)coswaveform

Cosine waveform ready to use with a rdtable.

Usage
coswaveform(tablesize)
Where:

e tablesize: the table size

(os.)phasor

A simple phasor to be used with a rdtable. phasor is a standard Faust function.

Usage
phasor(tablesize,freq)
Where:

e tablesize: the table size
e freq: the frequency in Hz

(os.)hs_phasor

Hardsyncing phasor to be used with a rdtable.

Usage
hs_phasor(tablesize,freq,reset)
Where:

e tablesize: the table size
e freq: the frequency in Hz
e reset: a reset signal, reset phase to 0 when equal to 1

(os.)hsp_phasor
Hardsyncing phasor with selectable phase to be used with a rdtable.

251

Usage
hsp_phasor(tablesize,freq,reset,phase)

Where:

e tablesize: the table size
e freq: the frequency in Hz
e reset: reset the oscillator to phase when equal to 1

e phase: phase between 0 and 1

(os.)oscsin

Sine wave oscillator. oscsin is a standard Faust function.

Usage
oscsin(freq)
Where:
e freq: the frequency in Hz

(os.)hs_oscsin

Sin lookup table with hardsyncing phase.

Usage
hs_oscsin(freq,reset)
Where:

o freq: the frequency in Hz
e reset: reset the oscillator to 0 when equal to 1

(os.)osccos

Cosine wave oscillator.

Usage
osccos(freq)

Where:
o freq: the frequency in Hz

252

(os.)hs_osccos

Cos lookup table with hardsyncing phase.

Usage
hs_osccos(freq,reset)
Where:

o freq: the frequency in Hz
e reset: reset the oscillator to 0 when equal to 1

(os.)oscp

A sine wave generator with controllable phase.

Usage
oscp(freq,phase)
Where:

e freq: the frequency in Hz
o phase: the phase in radian

(os.)osci

Interpolated phase sine wave oscillator.

Usage
osci(freq)
Where:
e freq: the frequency in Hz

(os.)osc

Default sine wave oscillator (same as oscsin). osc is a standard Faust function.

253

Usage
osc(freq)
Where:
e freq: the frequency in Hz

(os.)m_oscsin

Sine wave oscillator based on the sin mathematical function.

Usage
m_oscsin(freq)
Where:
e freq: the frequency in Hz

(os.)m_osccos

Sine wave oscillator based on the sin mathematical function.

Usage
m_osccos (freq)
Where:
o freq: the frequency in Hz

Low Frequency Oscillators

Low Frequency Oscillators (LFOs) have prefix 1f_ (no aliasing suppression,
since it is inaudible at LF). Use sawN and its derivatives for audio oscillators
with suppressed aliasing.

(os.)1f_imptrain

Unit-amplitude low-frequency impulse train. 1f_imptrain is a standard Faust

function. #### Usage
1f_imptrain(freq)

Where:

e freq: frequency in Hz

254

(os.)1f_pulsetrainpos

Unit-amplitude nonnegative LF pulse train, duty cycle between 0 and 1.

Usage
1f_pulsetrainpos(freq, duty)
Where:

o freq: frequency in Hz
e duty: duty cycle between 0 and 1

(os.)1f_pulsetrain

Unit-amplitude zero-mean LF pulse train, duty cycle between 0 and 1.

Usage
1f_pulsetrain(freq,duty)
Where:

e freq: frequency in Hz
e duty: duty cycle between 0 and 1

(0s.)1f_squarewavepos

Positive LF square wave in [0,1]

Usage
1f_squarewavepos (freq)
Where:

e freq: frequency in Hz

(os.)1f_squarewave
Zero-mean unit-amplitude LF square wave. 1f_squarewave is a standard Faust

function.

255

Usage
1f_squarewave(freq)
Where:

e freq: frequency in Hz

(os.)1f_trianglepos

Positive unit-amplitude LF positive triangle wave.

Usage
1f_trianglepos(freq)
Where:

e freq: frequency in Hz

(os.)1f_triangle

Positive unit-amplitude LF triangle wave. 1f_triangle is a standard Faust
function.

Usage
1f_triangle(freq)
Where:

o freq: frequency in Hz

Low Frequency Sawtooths

Sawtooth waveform oscillators for virtual analog synthesis et al. The ‘simple’
versions (1f_rawsaw, 1f_sawpos and sawl), are mere samplings of the ideal
continuous-time (“analog”) waveforms. While simple, the aliasing due to sam-
pling is quite audible. The differentiated polynomial waveform family (saw2,
sawlN, and derived functions) do some extra processing to suppress aliasing (not
audible for very low fundamental frequencies). According to Lehtonen et al.
(JASA 2012), the aliasing of saw2 should be inaudible at fundamental frequen-
cies below 2 kHz or so, for a 44.1 kHz sampling rate and 60 dB SPL presentation
level; fundamentals 415 and below required no aliasing suppression (i.e., sawl
is ok).

256

(0s.)1f_rawsaw

Simple sawtooth waveform oscillator between 0 and period in samples.

Usage
1f _rawsaw(periodsamps)

Where:

e periodsamps: number of periods per samples

(os.)1f_sawpos

Simple sawtooth waveform oscillator between 0 and 1.

Usage
1f_sawpos (freq)
Where:

e freq: frequency in Hz

(os.)1f_sawpos_phase

Simple sawtooth waveform oscillator between 0 and 1 with phase control.

Usage
1f_sawpos_phase(freq, phase)
Where:

e freq: frequency in Hz
e phase: phase between 0 and 1

(os.)1f_sawpos_reset

Simple sawtooth waveform oscillator between 0 and 1 with reset.

Usage

1f_sawpos_reset(freq,reset)

Where:

e freq: frequency in Hz

257

e reset: reset the oscillator to 0 when equal to 1

(os.)1f_sawpos_phase_reset

Simple sawtooth waveform oscillator between 0 and 1 with phase control and
reset.

Usage
1f_sawpos_phase_reset(freq,phase,reset)
Where:

e freq: frequency in Hz
e phase: phase between 0 and 1
e reset: reset the oscillator to phase when equal to 1

(0s.)1f_saw

Simple sawtooth waveform oscillator between -1 and 1. 1f_saw is a standard
Faust function.

Usage

1f_saw(freq)

Where:

e freq: frequency in Hz

Alias-Suppressed Sawtooth

(os.)sawN

Alias-Suppressed Sawtooth Audio-Frequency Oscillator using Nth-order polyno-
mial transitions to reduce aliasing.

sawN(N,freq), sawNp (N, freq,phase), saw2dpw (freq), saw2(freq),
saw3(freq), saw4(freq), sawtooth(freq), saw2f2(freq), saw2f4(freq)

Usage

sawN(N,freq) : _ // Nth-order aliasing-suppressed sawtooth using DPW method (see bel
sawNp(N,freq,phase) : _ // sawN with phase offset feature

saw2dpw(freq) : _ // saw2 using DPW

258

saw2ptr(freq) : _ // saw2 using the faster, stateless PTR method

saw2(freq) : _ // DPW method, but subject to change if a better method emerges
saw3(freq) : _ // sawN(3)

sawéd(freq) : _ // sawN(4)

sawtooth(freq) : _ // saw2

saw2f2(freq) : _ // saw2dpw with 2nd-order droop-correction filtering
saw2f4(freq) : _ // saw2dpw with 4th-order droop-correction filtering

Where:

e N: polynomial order, a constant numerical expression between 1 and 4
e freq: frequency in Hz
o phase: phase between 0 and 1

Method Differentiated Polynomial Wave (DPW).

Reference “Alias-Suppressed Oscillators based on Differentiated Polynomial
Waveforms”, Vesa Valimaki, Juhan Nam, Julius Smith, and Jonathan Abel,
IEEE Tr. Audio, Speech, and Language Processing (IEEE-ASLP), Vol. 18, no.
5, pp 786-798, May 2010. 10.1109/TASL.2009.2026507.

Notes The polynomial order N is limited to 4 because noise has been observed
at very low freq values. (LFO sawtooths should of course be generated using
1f_sawpos instead.)

(os.)sawlNp

Same as (os.)sawN but with a controllable waveform phase.

Usage
sawNp (N, freq,phase)
where

e N: waveform interpolation polynomial order 1 to 4 (constant integer ex-
pression)

e freq: frequency in Hz

o phase: waveform phase as a fraction of one period (rounded to nearest
sample)

Implementation Notes The phase offset is implemented by delaying
sawN(N,freq) by round(phase*ma.SR/freq) samples, for up to 8191 samples.
The minimum sawtooth frequency that can be delayed a whole period is
therefore ma.SR/8191, which is well below audibility for normal audio sampling
rates.

259

(os.)saw2, (os.)saw3, (os.)sawd

Alias-Suppressed Sawtooth Audio-Frequency Oscillators of order 2, 3, 4.

Usage

saw2(freq)
saw3(freq)
saw4 (freq)

where

e freq: frequency in Hz
References See sawN above.

Implementation Notes Presently, only saw2 uses the PTR method, while
saw3 and saw4 use DPW. This is because PTR has been implemented and tested
for the 2nd-order case only.

(os.)saw2ptr

Alias-Suppressed Sawtooth Audio-Frequency Oscillator using Polynomial Tran-
sition Regions (PTR) for order 2.

Usage
saw2ptr (freq)
where
e freq: frequency in Hz

Implementation Polynomial Transition Regions (PTR) method for aliasing
suppression.

References

¢ Kleimola, J.; Valimaki, V., “Reducing Aliasing from Synthetic Audio Sig-
nals Using Polynomial Transition Regions,” in Signal Processing Letters,
IEEE , vol.19, no.2, pp.67-70, Feb. 2012

o https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747 /publication6
.pdf?sequence=9

o http://research.spa.aalto.fi/publications/papers/spl-ptr/

260

https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747/publication6.pdf?sequence=9
https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747/publication6.pdf?sequence=9
http://research.spa.aalto.fi/publications/papers/spl-ptr/

Notes Method PTR may be preferred because it requires less computation
and is stateless which means that the frequency freq can be modulated arbi-
trarily fast over time without filtering artifacts. For this reason, saw2 is presently
defined as saw2ptr.

(os.)saw2dpw

Alias-Suppressed Sawtooth Audio-Frequency Oscillator using the Differentiated
Polynomial Waveform (DWP) method.

Usage
saw2dpw (freq)
where
e freq: frequency in Hz

This is the original Faust saw2 function using the DPW method. Since saw2 is
now defined as saw2ptr, the DPW version is now available as saw2dwp.

(os.)sawtooth

Alias-suppressed aliasing-suppressed sawtooth oscillator, presently defined as
saw2. sawtooth is a standard Faust function.

Usage

sawtooth(freq)

with

o freq: frequency in Hz

(o0s.)saw2f2, (os.)saw2f4

Alias-Suppressed Sawtooth Audio-Frequency Oscillator with Order 2 or 4 Droop
Correction Filtering.

Usage

saw2f2(freq)
saw2f4 (freq)

with

e freq: frequency in Hz

261

In return for aliasing suppression, there is some attenuation near half the sam-
pling rate. This can be considered as beneficial, or it can be compensated with
a high-frequency boost. The boost filter is second-order for saw2f2 and fourth-
order for saw2f4, and both are designed for the DWP case and therefore use
saw2dpw. See Figure 4(b) in the DPW reference for a plot of the slight droop
in the DPW case.

Alias-Suppressed Pulse, Square, and Impulse Trains
Alias-Suppressed Pulse, Square and Impulse Trains.

pulsetrainN, pulsetrain, squareN, square, imptrainN, imptrain,
triangleN, triangle

All are zero-mean and meant to oscillate in the audio frequency range. Use
simpler sample-rounded 1f_* versions above for LFOs.

Usage
pulsetrainN(N,freq,duty)
pulsetrain(freq, duty) : _ // = pulsetrainN(2)

squareN(N,freq)
square : _ // = squareN(2)

imptrainN(N,freq)
imptrain : _ // = imptrainN(2)

triangleN(N,freq)
triangle : _ // = triangleN(2)
Where:

e N: polynomial order, a constant numerical expression
e freq: frequency in Hz

(os.)impulse

One-time impulse generated when the Faust process is started. impulse is a
standard Faust function.

Usage

impulse : _

262

(os.)pulsetrainN

Alias-suppressed pulse train oscillator.

Usage
pulsetrainN(N,freq,duty)
Where:

e N: order, as a constant numerical expression
o freq: frequency in Hz
e duty: duty cycle between 0 and 1

(os.)pulsetrain

Alias-suppressed pulse train oscillator. Based on pulsetrainN(2). pulsetrain
is a standard Faust function.

Usage
pulsetrain(freq,duty)
Where:

e freq: frequency in Hz
e duty: duty cycle between 0 and 1

(os.)squareN

Alias-suppressed square wave oscillator.

Usage
squareN(N,freq)
Where:

e N: order, as a constant numerical expression
e freq: frequency in Hz

(os.)square

Alias-suppressed square wave oscillator. Based on squareN(2). square is a
standard Faust function.

263

Usage
square(freq)
Where:

e freq: frequency in Hz

(os.)imptrainN

Alias-suppressed impulse train generator.

Usage
imptrainN(N,freq)
Where:

e N: order, as a constant numerical expression
e freq: frequency in Hz

(os.)imptrain

Alias-suppressed impulse train generator. Based on imptrainN(2).

is a standard Faust function.

Usage
imptrain(freq)
Where:

e freq: frequency in Hz

(os.)triangleN

Alias-suppressed triangle wave oscillator.

Usage
triangleN(N,freq)
Where:

e N: order, as a constant numerical expression
e freq: frequency in Hz

264

imptrain

(os.)triangle

Alias-suppressed triangle wave oscillator. Based on triangleN(2).

is a standard Faust function.

Usage
triangle(freq)
Where:

o freq: frequency in Hz

Filter-Based Oscillators

Filter-Based Oscillators.

Usage

osclblrqlrslrcls] (freq), where freq = frequency in Hz.

References

o http://lac.linuxaudio.org/2012/download /lac12-slides-jos.pdf
o https://cerma.stanford.edu/~jos/pdf/lacl2-paper-jos.pdf

(os.)oscb

Sinusoidal oscillator based on the biquad.

Usage
oscb(freq)
Where:

e freq: frequency in Hz

(os.)oscrq

triangle

Sinusoidal (sine and cosine) oscillator based on 2D vector rotation, = undamped
“coupled-form” resonator = lossless 2nd-order normalized ladder filter.

265

http://lac.linuxaudio.org/2012/download/lac12-slides-jos.pdf
https://ccrma.stanford.edu/~jos/pdf/lac12-paper-jos.pdf

Usage
oscrq(freq) : _,_
Where:

e freq: frequency in Hz

Reference

o https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctio
ns.html

(os.)oscrs

Sinusoidal (sine) oscillator based on 2D vector rotation, = undamped “coupled-
form” resonator = lossless 2nd-order normalized ladder filter.

Usage
oscrs(freq)
Where:

e freq: frequency in Hz

Reference

e https://ccrma.stanford.edu/~jos/pasp/Normalized Scattering Junctio
ns.html

(os.)oscrc

Sinusoidal (cosine) oscillator based on 2D vector rotation, = undamped
“coupled-form” resonator = lossless 2nd-order normalized ladder filter.

Usage

oscrc(freq)

Where:

e freq: frequency in Hz

266

https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html

Reference

o https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctio
ns.html

(os.)oscs

Sinusoidal oscillator based on the state variable filter = undamped “modified-
coupled-form” resonator = “magic circle” algorithm used in graphics.

Usage

oscs(freq)

Where:

o freq: frequency in Hz

(os.)quadosc

Quadrature (cosine and sine) oscillator based on QuadOsc by Martin Vicanek.

Usage
quadosc(freq) : _,_
where

e freq: frequency in Hz

Reference

o https://vicanek.de/articles/QuadOsc.pdf

(os.)sidebands

Adds harmonics to quad oscillator.

Usage
cos(x),sin(x) : sidebands(vs) : _,_
Where:

e vs : list of amplitudes

267

https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html
https://vicanek.de/articles/QuadOsc.pdf

Example test program
cos(x),sin(x) : sidebands((10,20,30))
outputs:

10*cos(x) + 20*cos(2*x) + 30*cos(3*x),
10*sin(x) + 20*sin(2*x) + 30*sin(3*x);

The following:
process = os.quadosc(F) : sidebands((10,20,30))
is (modulo floating point issues) the same as:

¢ = os.quadosc : _,!;

s = os.quadosc : !,_;

process =
10*xc(F) + 20*c(2*F) + 30*c(F),
10*s(F) + 20*s(2%F) + 30*s(F);

but much more efficient.

Implementation Notes This is based on the trivial trigonometric identities:

cos((n + 1) x) = 2 cos(x) cos(n x) - cos((n - 1) x)
sin((n + 1) x) 2 cos(x) sin(n x) - sin((n - 1) x)

Note that the calculation of the cosine/sine parts do not depend on each other,
so if you only need the sine part you can do:

process = os.quadosc(F) : sidebands(vs) : !,_;

and the compiler will discard the half of the calculations.

(os.)sidebands_list
Creates the list of complex harmonics from quad oscillator.
Similar to sidebands but doesn’t sum the harmonics, so it is more generic but
less convenient for immediate usage.
Usage
cos(x),sin(x) : sidebands_list(N) : si.bus(2*N)
Where:

e N : number of harmonics, compile time constant > 1

268

Example test program
cos(x),sin(x) : sidebands_list(3)
outputs:
cos(x),sin(x), cos(2*x),sin(2*x), cos(3*x),sin(3*x);
The following:
process = os.quadosc(F) : sidebands_list(3)
is (modulo floating point issues) the same as:
process = os.quadosc(F), os.quadosc(2xF), os.quadosc(3*F);

but much more efficient.

Waveguide-Resonator-Based Oscillators

Sinusoidal oscillator based on the waveguide resonator wgr.

(os.)oscwc

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine oscillator.

Usage
oscwc(freq)
Where:

e freq: frequency in Hz

Reference

 https://ccrma.stanford.edu/~jos/pasp/Digital_ Waveguide Oscillator.ht
ml

(os.)oscws

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude sine
oscillator.

269

https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html

Usage
oscws(freq)
Where:

e freq: frequency in Hz

Reference

 https://cerma.stanford.edu/~jos/pasp/Digital _Waveguide_ Oscillator.ht
ml

(os.)oscq

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine and sine (quadrature) oscillator.

Usage
oscq(freq) : _,_
Where:

e freq: frequency in Hz

Reference

 https://ccrma.stanford.edu/~jos/pasp/Digital_ Waveguide Oscillator.ht
ml

(os.)oscw

Sinusoidal oscillator based on the waveguide resonator wgr. Unit-amplitude
cosine oscillator (default).

Usage
oscw(freq)

Where:

e freq: frequency in Hz

Reference

« https://ccrma.stanford.edu/~jos/pasp/Digital _ Waveguide Oscillator.ht
ml

270

https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html
https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html

Casio CZ Oscillators
Oscillators that mimic some of the Casio CZ oscillators.
There are two sets:

e a set with an index parameter

e a set with a res parameter

The “index oscillators” outputs a sine wave at index=0 and gets brighter with
a higher index. There are two versions of the “index oscillators”:

o with P appended to the name: is phase aligned with fund:sin

o without P appended to the name: has the phase of the original CZ oscil-
lators

The “res oscillators” have a resonant frequency. “res” is the frequency of reso-
nance as a factor of the fundamental pitch.

(os.)CZsaw

Oscillator that mimics the Casio CZ saw oscillator. CZsaw is a standard Faust
function.

Usage
CZsaw(fund, index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = saw-wave

(os.)CZsawP

Oscillator that mimics the Casio CZ saw oscillator, with it’s phase aligned to
fund:sin. CZsawP is a standard Faust function.

Usage
CZsawP (fund, index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = saw-wave

271

(os.)CZsquare

Oscillator that mimics the Casio CZ square oscillator CZsquare is a standard
Faust function.

Usage
CZsquare (fund, index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = square-
wave

(os.)CZsquareP

Oscillator that mimics the Casio CZ square oscillator, with it’s phase aligned
to fund:sin. CZsquareP is a standard Faust function.

Usage
CZsquareP (fund, index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = square-
wave

(os.)CZpulse

Oscillator that mimics the Casio CZ pulse oscillator. CZpulse is a standard
Faust function.

Usage
CZpulse(fund, index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 gives a sine-wave, 1 is closer to
a pulse

272

(o0s.)CZpulseP

Oscillator that mimics the Casio CZ pulse oscillator, with it’s phase aligned to
fund:sin. CZpulseP is a standard Faust function.

Usage
CZpulseP(fund, index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
o index: the brightness of the oscillator, 0 gives a sine-wave, 1 is closer to
a pulse

(0s.)CZsinePulse

Oscillator that mimics the Casio CZ sine/pulse oscillator. CZsinePulse is a
standard Faust function.

Usage
CZsinePulse (fund,index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 gives a sine-wave, 1 is a sine
minus a pulse

(0s.)CZsinePulseP

Oscillator that mimics the Casio CZ sine/pulse oscillator, with it’s phase aligned
to fund:sin. CZsinePulseP is a standard Faust function.

Usage
CZsinePulseP (fund, index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 gives a sine-wave, 1 is a sine
minus a pulse

273

(0s.)CZhalfSine

Oscillator that mimics the Casio CZ half sine oscillator. CZhalfSine is a stan-
dard Faust function.

Usage
CZhalfSine(fund,index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
o index: the brightness of the oscillator, 0 gives a sine-wave, 1 is somewhere
between a saw and a square

(0s.)CZhalfSineP

Oscillator that mimics the Casio CZ half sine oscillator, with it’s phase aligned
to fund:sin. CZhalfSineP is a standard Faust function.

Usage
CZhalfSineP(fund,index)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e index: the brightness of the oscillator, 0 gives a sine-wave, 1 is somewhere
between a saw and a square

(os.)CZresSaw

Oscillator that mimics the Casio CZ resonant sawtooth oscillator. CZresSaw is
a standard Faust function.

Usage
CZresSaw(fund,res)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e res: the frequency of resonance as a factor of the fundamental pitch.

274

(os.)CZresTriangle

Oscillator that mimics the Casio CZ resonant triangle oscillator. CZresTriangle
is a standard Faust function.

Usage
CZresTriangle(fund,res)
Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e res: the frequency of resonance as a factor of the fundamental pitch.

(os.)CZresTrap

Oscillator that mimics the Casio CZ resonant trapeze oscillator CZresTrap is a
standard Faust function.

Usage
CZresTrap(fund,res)

Where:

e fund: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
e res: the frequency of resonance as a factor of the fundamental pitch.

PolyBLEP-Based Oscillators

(os.)polyblep

PolyBLEP residual function, used for smoothing steps in the audio signal.

Usage
polyblep(Q,phase)
Where:

e Q: smoothing factor between 0 and 0.5. Determines how far from the ends
of the phase interval the quadratic function is used.
o phase: normalised phase (between 0 and 1)

275

(os.)polyblep_saw

Sawtooth oscillator with suppressed aliasing (using polyblep).

Usage
polyblep_saw(freq)
Where:

e freq: frequency in Hz

(os.)polyblep_square

Square wave oscillator with suppressed aliasing (using polyblep).

Usage
polyblep_square(freq)
Where:

o freq: frequency in Hz

(os.)polyblep_triangle

Triangle wave oscillator with suppressed aliasing (using polyblep).

Usage
polyblep_triangle(freq)
Where:

e freq: frequency in Hz
phaflangers.lib

A library of phasor and flanger effects. Its official prefix is pf.

References

o https://github.com/grame-cncm/faustlibraries/blob/master /phaflangers.
lib

Functions Reference

276

https://github.com/grame-cncm/faustlibraries/blob/master/phaflangers.lib
https://github.com/grame-cncm/faustlibraries/blob/master/phaflangers.lib

(pf.)flanger_mono
Mono flanging effect.

Usage:
_ : flanger_mono(dmax,curdel,depth,fb,invert)
Where:

e dmax: maximum delay-line length (power of 2) - 10 ms typical
e curdel: current dynamic delay (not to exceed dmax)

o depth: effect strength between 0 and 1 (1 typical)

o fb: feedback gain between 0 and 1 (0 typical)

e invert: 0 for normal, 1 to invert sign of flanging sum

Reference

o https://ccrma.stanford.edu/~jos/pasp/Flanging.html

(pf.)flanger_stereo

Stereo flanging effect. flanger_stereo is a standard Faust function.

Usage:
, : flanger_stereo (dmax,curdell,curdel2, depth,fb, invert) : _,_
Where:

¢ dmax: maximum delay-line length (power of 2) - 10 ms typical

e curdell: current dynamic delay for the left channel (not to exceed dmax)

o curdel2: current dynamic delay for the right channel (not to exceed
dmax)

o depth: effect strength between 0 and 1 (1 typical)

o fb: feedback gain between 0 and 1 (0 typical)

e invert: 0 for normal, 1 to invert sign of flanging sum

Reference

o https://ccrma.stanford.edu/~jos/pasp/Flanging.html

(pf.)phaser2_mono
Mono phasing effect.

277

https://ccrma.stanford.edu/~jos/pasp/Flanging.html
https://ccrma.stanford.edu/~jos/pasp/Flanging.html

Phaser

_ : phaser2_mono (Notches, phase,width,frgmin,fratio,frgmax,speed,depth,fb, invert)

Where:

Notches: number of spectral notches (MACRO ARGUMENT - not a
signal)

phase: phase of the oscillator (0-1)

width: approximate width of spectral notches in Hz

frgmin: approximate minimum frequency of first spectral notch in Hz
fratio: ratio of adjacent notch frequencies

frgmax: approximate maximum frequency of first spectral notch in Hz
speed: LFO frequency in Hz (rate of periodic notch sweep cycles)

depth: effect strength between 0 and 1 (1 typical) (aka “intensity”) when
depth=2, “vibrato mode” is obtained (pure allpass chain)

fb: feedback gain between -1 and 1 (0 typical)

invert: 0 for normal, 1 to invert sign of flanging sum

Reference:

(pf.

https://ccrma.stanford.edu/~jos/pasp/Phasing. html
http://www.geofex.com/Article_ Folders/phasers/phase.html

‘An Allpass Approach to Digital Phasing and Flanging’, Julius O. Smith
I11,

CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/STA
NM/stanms/stanm21/

)phaser2_stereo

Stereo phasing effect. phaser2_stereo is a standard Faust function.

Phaser

-

: phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,depth,fb,invert)

Where:

Notches: number of spectral notches (MACRO ARGUMENT - not a
signal)

width: approximate width of spectral notches in Hz

frgmin: approximate minimum frequency of first spectral notch in Hz
fratio: ratio of adjacent notch frequencies

frgmax: approximate maximum frequency of first spectral notch in Hz
speed: LFO frequency in Hz (rate of periodic notch sweep cycles)

depth: effect strength between 0 and 1 (1 typical) (aka “intensity”) when
depth=2, “vibrato mode” is obtained (pure allpass chain)

fb: feedback gain between -1 and 1 (0 typical)

278

R Q.

https://ccrma.stanford.edu/~jos/pasp/Phasing.html
http://www.geofex.com/Article_Folders/phasers/phase.html
https://ccrma.stanford.edu/STANM/stanms/stanm21/
https://ccrma.stanford.edu/STANM/stanms/stanm21/

invert: 0 for normal, 1 to invert sign of flanging sum

Reference:

https://ccrma.stanford.edu/~jos/pasp/Phasing. html
http://www.geofex.com/Article_Folders/phasers/phase.html

‘An Allpass Approach to Digital Phasing and Flanging’, Julius O. Smith
111,

CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/STA
NM/stanms/stanm?21/

physmodels.lib

Faust physical modeling library. Its official prefix is pm.

This library provides an environment to facilitate physical modeling of musical
instruments. It contains dozens of functions implementing low and high level
elements going from a simple waveguide to fully operational models with built-in
Ul, etc.

It is organized as follows:

Global Variables: useful pre-defined variables for physical modeling (e.g.,
speed of sound, etc.).

Conversion Tools: conversion functions specific to physical modeling (e.g.,
length to frequency, etc.).

Bidirectional Utilities: functions to create bidirectional block diagrams for
physical modeling.

Basic Elements: waveguides, specific types of filters, etc.

String Instruments: various types of strings (e.g., steel, nylon, etc.),
bridges, guitars, etc.

Bowed String Instruments: parts and models specific to bowed string
instruments (e.g., bows, bridges, violins, etc.).

Wind Instrument: parts and models specific to wind instruments (e.g.,
reeds, mouthpieces, flutes, clarinets, etc.).

Exciters: pluck generators, “blowers”, etc.

Modal Percussions: percussion instruments based on modal models.
Vocal Synthesis: functions for various vocal synthesis techniques (e.g., fof,
source/filter, etc.) and vocal synthesizers.

Misc Functions: any other functions that don’t fit in the previous category
(e.g., nonlinear filters, etc.).

This library is part of the Faust Physical Modeling ToolKit. More information
on how to use this library can be found on this page. Tutorials on how to make
physical models of musical instruments using Faust can be found here as well.

References

279

https://ccrma.stanford.edu/~jos/pasp/Phasing.html
http://www.geofex.com/Article_Folders/phasers/phase.html
https://ccrma.stanford.edu/STANM/stanms/stanm21/
https://ccrma.stanford.edu/STANM/stanms/stanm21/
https://ccrma.stanford.edu/~rmichon/pmFaust
https://ccrma.stanford.edu/~rmichon/faustTutorials/#making-physical-models-of-musical-instruments-with-faust

 https://github.com/grame-cnem/faustlibraries/blob/master/physmodels
lib

Global Variables
Useful pre-defined variables for physical modeling.

(pm.) speed0fSound

Speed of sound in meters per second (340m/s).

(pm.)maxLength

The default maximum length (3) in meters of strings and tubes used in this
library. This variable should be overriden to allow longer strings or tubes.
Conversion Tools

Useful conversion tools for physical modeling.

(pm.)f21

Frequency to length in meters.

Usage
£21(freq) : distancelnMeters
Where:

e freq: the frequency

(pm.)12f

Length in meters to frequency.

Usage
12f (length) : freq
Where:

o length: length/distance in meters

280

https://github.com/grame-cncm/faustlibraries/blob/master/physmodels.lib
https://github.com/grame-cncm/faustlibraries/blob/master/physmodels.lib

(pm.)12s

Length in meters to number of samples.

Usage
12s(1) : numberOfSamples
Where:

e 1: length in meters

Bidirectional Utilities

Set of fundamental functions to create bi-directional block diagrams in Faust.
These elements are used as the basis of this library to connect high level elements
(e.g., mouthpieces, strings, bridge, instrument body, etc.). Each block has 3
inputs and 3 outputs. The first input/output carry left going waves, the second
input/output carry right going waves, and the third input/output is used to
carry any potential output signal to the end of the algorithm.

(pm.)basicBlock

Empty bidirectional block to be used with chain: 3 signals ins and 3 signals
out.

Usage

chain(basicBlock : basicBlock : etc.)

(pm.)chain

Creates a chain of bidirectional blocks. Blocks must have 3 inputs and outputs.
The first input/output carry left going waves, the second input/output carry
right going waves, and the third input/output is used to carry any potential
output signal to the end of the algorithm. The implied one sample delay created
by the ~ operator is generalized to the left and right going waves. Thus, n blocks
in chain() will add an n samples delay to both left and right going waves.

Usage

leftGoingWaves,rightGoingWaves,mixedOutput : chain(A : B) : leftGoingWaves,rightGoingWave:s
with{

};

281

(pm.)inLeftWave

Adds a signal to left going waves anywhere in a chain of blocks.

Usage
model(x) = chain(A : inLeftWave(x) : B)

Where A and B are bidirectional blocks and x is the signal added to left going
waves in that chain.

(pm.)inRightWave

Adds a signal to right going waves anywhere in a chain of blocks.

Usage
model(x) = chain(A : inRightWave(x) : B)

Where A and B are bidirectional blocks and x is the signal added to right going
waves in that chain.

(pm.)in

Adds a signal to left and right going waves anywhere in a chain of blocks.

Usage
model(x) = chain(A : in(x) : B)

Where A and B are bidirectional blocks and x is the signal added to left and
right going waves in that chain.

(pm.)outLeftWave

Sends the signal of left going waves to the output channel of the chain.

Usage
chain(A : outLeftWave : B)
Where A and B are bidirectional blocks.

282

(pm.)outRightWave

Sends the signal of right going waves to the output channel of the chain.

Usage
chain(A : outRightWave : B)
Where A and B are bidirectional blocks.

(pm.)out

Sends the signal of right and left going waves to the output channel of the chain.

Usage
chain(A : out : B)

Where A and B are bidirectional blocks.

(pm.)terminations

Creates terminations on both sides of a chain without closing the inputs and
outputs of the bidirectional signals chain. As for chain, this function adds a
1 sample delay to the bidirectional signal, both ways. Of course, this function
can be nested within a chain.

Usage

terminations(a,b,c)
with{
};

(pm.)1lTermination

Creates a termination on the left side of a chain without closing the inputs and
outputs of the bidirectional signals chain. This function adds a 1 sample delay
near the termination and can be nested within another chain.

Usage

1Terminations(a,b)
with{
}s;

283

(pm.)rTermination

Creates a termination on the right side of a chain without closing the inputs
and outputs of the bidirectional signals chain. This function adds a 1 sample
delay near the termination and can be nested within another chain.

Usage

rTerminations(b,c)
with{
};

(pm.)closelns

Closes the inputs of a bidirectional chain in all directions.

Usage

closeIns : chain(...)

(pm.)closeOuts

Closes the outputs of a bidirectional chain in all directions except for the main
signal output (3d output).

Usage

,,_ : chain(...)

(pm.)endChain

Closes the inputs and outputs of a bidirectional chain in all directions except
for the main signal output (3d output).

Usage

endChain(chain(...))

Basic Elements

Basic elements for physical modeling (e.g., waveguides, specific filters, etc.).

284

(pm.)waveguideN

A series of waveguide functions based on various types of delays (see fdelay[n]).

List of functions

e waveguideUd: unit delay waveguide

e waveguideFd: fractional delay waveguide

e waveguideFd2: second order fractional delay waveguide
e waveguideFd4: fourth order fractional delay waveguide

Usage
chain(A : waveguideUd(nMax,n) : B)
Where:

e nMax: the maximum length of the delays in the waveguide
o n: the length of the delay lines in samples.

(pm.)waveguide

Standard pm.1ib waveguide (based on waveguideFd4).

Usage
chain(A : waveguide(nMax,n) : B)

Where:

e nMax: the maximum length of the delays in the waveguide
e n: the length of the delay lines in samples.

(pm.)bridgeFilter

Generic two zeros bridge FIR filter (as implemented in the STK) that can be
used to implement the reflectance violin, guitar, etc. bridges.

Usage
_ ¢ bridge(brightness,absorption)

Where:

e brightness: controls the damping of high frequencies (0-1)
e absorption: controls the absorption of the brige and thus the t60 of the

string plugged to it (0-1) (1 = 20 seconds)

285

https://ccrma.stanford.edu/software/stk/

(pm.)modeFilter

Resonant bandpass filter that can be used to implement a single resonance
(mode).

Usage
_ : modeFilter(freq,t60,gain)
Where:

o freq: mode frequency
e t60: mode resonance duration (in seconds)
e gain: mode gain (0-1)

String Instruments

Low and high level string instruments parts. Most of the elements in this section
can be used in a bidirectional chain.

(pm.)stringSegment

A string segment without terminations (just a simple waveguide).

Usage
chain(A : stringSegment (maxLength,length) : B)
Where:

o maxLength: the maximum length of the string in meters (should be static)
e length: the length of the string in meters

(pm.)openString

A bidirectional block implementing a basic “generic” string with a selectable
excitation position. Lowpass filters are built-in and allow to simulate the effect
of dispersion on the sound and thus to change the “stiffness” of the string.

Usage
chain(... : openString(length,stiffness,pluckPosition,excitation)
Where:

e length: the length of the string in meters
o stiffness: the stiffness of the string (0-1) (1 for max stiffness)
o pluckPosition: excitation position (0-1) (1 is bottom)

286

e excitation: the excitation signal

(pm.)nylonString

A bidirectional block implementing a basic nylon string with selectable exci-
tation position. This element is based on openString and has a fix stiffness
corresponding to that of a nylon string.

Usage
chain(... : nylonString(length,pluckPosition,excitation) : ...)
Where:

e length: the length of the string in meters
o pluckPosition: excitation position (0-1) (1 is bottom)
e excitation: the excitation signal

(pm.)steelString

A bidirectional block implementing a basic steel string with selectable excita-
tion position. This element is based on openString and has a fix stiffness
corresponding to that of a steel string.

Usage
chain(... : steelString(length,pluckPosition,excitation) : ...)

Where:

o length: the length of the string in meters
e pluckPosition: excitation position (0-1) (1 is bottom)
e excitation: the excitation signal

(pm.)openStringPick

A bidirectional block implementing a “generic” string with selectable excitation
position. It also has a built-in pickup whose position is the same as the excitation
position. Thus, moving the excitation position will also move the pickup.

Usage

chain(... : openStringPick(length,stiffness,pluckPosition,excitation)

Where:

287

e length: the length of the string in meters

o stiffness: the stiffness of the string (0-1) (1 for max stiffness)
e pluckPosition: excitation position (0-1) (1 is bottom)

e excitation: the excitation signal

(pm.)openStringPickUp

A bidirectional block implementing a “generic” string with selectable excitation
position and stiffness. It also has a built-in pickup whose position can be inde-
pendenly selected. The only constraint is that the pickup has to be placed after
the excitation position.

Usage

chain(... : openStringPickUp(length,stiffness,pluckPosition,excitation)

Where:

e length: the length of the string in meters

o stiffness: the stiffness of the string (0-1) (1 for max stiffness)

e pluckPosition: pluck position between the top of the string and the
pickup (0-1) (1 for same as pickup position)

e pickupPosition: position of the pickup on the string (0-1) (1 is bottom)

e excitation: the excitation signal

(pm.)openStringPickDown

A bidirectional block implementing a “generic” string with selectable excitation
position and stiffness. It also has a built-in pickup whose position can be in-
dependenly selected. The only constraint is that the pickup has to be placed
before the excitation position.

Usage

chain(... : openStringPickDown(length,stiffness,pluckPosition,excitation)

Where:

e length: the length of the string in meters

o stiffness: the stiffness of the string (0-1) (1 for max stiffness)

o pluckPosition: pluck position on the string (0-1) (1 is bottom)

e pickupPosition: position of the pickup between the top of the string and
the excitation position (0-1) (1 is excitation position)

e excitation: the excitation signal

288

(pm.)ksReflexionFilter

The “typical” one-zero Karplus-strong feedforward reflexion filter. This filter
will be typically used in a termination (see below).

Usage

terminations(_,chain(...) ,ksReflexionFilter)

(pm.)rStringRigidTermination

Bidirectional block implementing a right rigid string termination (no damping,
just phase inversion).

Usage

chain(rStringRigidTermination : stringSegment : ...)

(pm.)1StringRigidTermination

Bidirectional block implementing a left rigid string termination (no damping,
just phase inversion).

Usage

chain(... : stringSegment : 1StringRigidTermination)

(pm.)elecGuitarBridge

Bidirectional block implementing a simple electric guitar bridge. This block is
based on bridgeFilter. The bridge doesn’t implement transmittance since it
is not meant to be connected to a body (unlike acoustic guitar). It also partially
sets the resonance duration of the string with the nuts used on the other side.

Usage

chain(... : stringSegment : elecGuitarBridge)

289

(pm.)elecGuitarNuts

Bidirectional block implementing a simple electric guitar nuts. This
block is based on bridgeFilter and does essentially the same thing as
elecGuitarBridge, but on the other side of the chain. It also partially sets
the resonance duration of the string with the bridge used on the other side.

Usage

chain(elecGuitarNuts : stringSegment : ...)

(pm.)guitarBridge

Bidirectional block implementing a simple acoustic guitar bridge. This bridge
damps more hight frequencies than elecGuitarBridge and implements a trans-
mittance filter. It also partially sets the resonance duration of the string with
the nuts used on the other side.

Usage

chain(... : stringSegment : guitarBridge)

(pm.)guitarNuts

Bidirectional block implementing a simple acoustic guitar nuts. This nuts damps
more hight frequencies than elecGuitarNuts and implements a transmittance
filter. It also partially sets the resonance duration of the string with the bridge
used on the other side.

Usage

chain(guitarNuts : stringSegment : ...)

(pm.)idealString

An “ideal” string with rigid terminations and where the plucking position and
the pick-up position are the same. Since terminations are rigid, this string will
ring forever.

Usage

1-1' : idealString(length,reflexion,xPosition,excitation)

290

With: * length: the length of the string in meters * pluckPosition: the pluck-
ing position (0.001-0.999) * excitation: the input signal for the excitation.

(pm.)ks

A Karplus-Strong string (in that case, the string is implemented as a one di-
mension waveguide).

Usage
ks(length,damping,excitation)
Where:

e length: the length of the string in meters
o damping: string damping (0-1)
e excitation: excitation signal

(pm.)ks_ui_MIDI
Ready-to-use, MIDI-enabled Karplus-Strong string with buil-in UI.

Usage
ks_ui_MIDI

(pm.)elecGuitarModel

A simple electric guitar model (without audio effects, of course) with selectable
pluck position. This model implements a single string. Additional strings should
be created by making a polyphonic application out of this function. Pitch is
changed by changing the length of the string and not through a finger model.

Usage
elecGuitarModel (length,pluckPosition,mute,excitation)
Where:

o length: the length of the string in meters

o pluckPosition: pluck position (0-1) (1 is on the bridge)

o mute: mute coefficient (1 for no mute and 0 for instant mute)
e excitation: excitation signal

291

(pm.)elecGuitar

A simple electric guitar model with steel strings (based on elecGuitarModel)
implementing an excitation model. This model implements a single string. Ad-
ditional strings should be created by making a polyphonic application out of
this function.

Usage
elecGuitar(length,pluckPosition,trigger)
Where:

e length: the length of the string in meters

o pluckPosition: pluck position (0-1) (1 is on the bridge)

o mute: mute coefficient (1 for no mute and 0 for instant mute)
e gain: gain of the pluck (0-1)

o trigger: trigger signal (1 for on, 0 for off)

(pm.)elecGuitar_ui_MIDI

Ready-to-use MIDI-enabled electric guitar physical model with built-in Ul

Usage

elecGuitar_ui_MIDI : _

(pm.)guitarBody

WARNING: not implemented yet! Bidirectional block implementing a simple
acoustic guitar body.

Usage

chain(... : guitarBody)

(pm.)guitarModel

A simple acoustic guitar model with steel strings and selectable excitation posi-
tion. This model implements a single string. Additional strings should be cre-
ated by making a polyphonic application out of this function. Pitch is changed
by changing the length of the string and not through a finger model. WARNING:
this function doesn’t currently implement a body (just strings and bridge).

292

Usage
guitarModel (length,pluckPosition,excitation)
Where:

e length: the length of the string in meters
o pluckPosition: pluck position (0-1) (1 is on the bridge)
e excitation: excitation signal

(pm.)guitar

A simple acoustic guitar model with steel strings (based on guitarModel) im-
plementing an excitation model. This model implements a single string. Addi-
tional strings should be created by making a polyphonic application out of this
function.

Usage
guitar(length,pluckPosition,trigger)
Where:

o length: the length of the string in meters

e pluckPosition: pluck position (0-1) (1 is on the bridge)
e gain: gain of the excitation

e trigger: trigger signal (1 for on, 0 for off)

(pm.)guitar_ui_MIDI

Ready-to-use MIDI-enabled steel strings acoustic guitar physical model with
built-in UL

Usage
guitar_ui_MIDI : _

(pm.)nylonGuitarModel

A simple acoustic guitar model with nylon strings and selectable excitation
position. This model implements a single string. Additional strings should
be created by making a polyphonic application out of this function. Pitch is
changed by changing the length of the string and not through a finger model.
WARNING: this function doesn’t currently implement a body (just strings and
bridge).

293

Usage
nylonGuitarModel (length,pluckPosition,excitation)
Where:

e length: the length of the string in meters
o pluckPosition: pluck position (0-1) (1 is on the bridge)
e excitation: excitation signal

(pm.)nylonGuitar

A simple acoustic guitar model with nylon strings (based on nylonGuitarModel)
implementing an excitation model. This model implements a single string. Ad-
ditional strings should be created by making a polyphonic application out of
this function.

Usage
nylonGuitar (length,pluckPosition,trigger)
Where:

o length: the length of the string in meters

e pluckPosition: pluck position (0-1) (1 is on the bridge)
o gain: gain of the excitation (0-1)

e trigger: trigger signal (1 for on, 0 for off)

(pm.)nylonGuitar_ui_MIDI

Ready-to-use MIDI-enabled nylon strings acoustic guitar physical model with
built-in UL

Usage

nylonGuitar_ui_MIDI

(pm.)modeInterpRes

Modular string instrument resonator based on IR measurements made on 3D
printed models. The 2D space allowing for the control of the shape and the
scale of the model is enabled by interpolating between modes parameters. More
information about this technique/project can be found here: * https://ccrma.
stanford.edu/~rmichon/3dPrintingModeling/.

294

https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/

Usage
_ : modeInterpRes(nModes,x,y)
Where:

o nModes: number of modeled modes (40 max)

o x: shape of the resonator (0: square, 1: square with rounded corners, 2:
round)

e y: scale of the resonator (0: small, 1: medium, 2: large)

(pm.)modularInterpBody

Bidirectional block implementing a modular string instrument resonator (see

modeInterpRes).

Usage

chain(... : modularInterpBody(nModes,shape,scale) : ...)
Where:

e nModes: number of modeled modes (40 max)

« shape: shape of the resonator (0: square, 1: square with rounded corners,
2: round)

e scale: scale of the resonator (0: small, 1: medium, 2: large)

(pm.)modularInterpStringModel

String instrument model with a modular body (see modeInterpRes and * https:
//ccrma.stanford.edu/~rmichon/3dPrintingModeling/).

Usage
modularInterpStringModel (length,pluckPosition,shape,scale,bodyExcitation,stringExcitation)
Where:

o stringlength: the length of the string in meters

o pluckPosition: pluck position (0-1) (1 is on the bridge)

o shape: shape of the resonator (0: square, 1: square with rounded corners,
2: round)

o scale: scale of the resonator (0: small, 1: medium, 2: large)

e bodyExcitation: excitation signal for the body

e stringExcitation: excitation signal for the string

295

https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/

(pm.)modularInterpInstr

String instrument with a modular body (see modeInterpRes and * https://cc
rma.stanford.edu/~rmichon/3dPrintingModeling/).

Usage
modularInterpInstr(stringlength,pluckPosition,shape,scale,gain,tapBody,triggerString)
Where:

o stringlength: the length of the string in meters

o pluckPosition: pluck position (0-1) (1 is on the bridge)

« shape: shape of the resonator (0: square, 1: square with rounded corners,
2: round)

o scale: scale of the resonator (0: small, 1: medium, 2: large)

o gain: of the string excitation

e tapBody: send an impulse in the body of the instrument where the string
is connected (1 for on, 0 for off)

e triggerString: trigger signal for the string (1 for on, 0 for off)

(pm.)modularInterpInstr_ui_MIDI

Ready-to-use MIDI-enabled string instrument with a modular body (see
modeInterpRes and * https://ccrma.stanford.edu/~rmichon/3dPrintingMode
ling/) with built-in UL

Usage

modularInterpInstr_ui_MIDI : _

Bowed String Instruments

Low and high level basic string instruments parts. Most of the elements in this
section can be used in a bidirectional chain.

(pm.)bowTable

Extremely basic bow table that can be used to implement a wide range of bow
types for many different bowed string instruments (violin, cello, etc.).

Usage

excitation : bowTable(offeset,slope)

Where:

296

https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/
https://ccrma.stanford.edu/~rmichon/3dPrintingModeling/

e excitation: an excitation signal
o offset: table offset
e slope: table slope

(pm.)violinBowTable
Violin bow table based on bowTable.

Usage
bowVelocity : violinBowTable(bowPressure)
Where:

o bowVelocity: velocity of the bow/excitation signal (0-1)
o bowPressure: bow pressure on the string (0-1)

(pm.)bowInteraction

Bidirectional block implementing the interaction of a bow in a chain.

Usage
chain(... : stringSegment : bowInteraction(bowTable) : stringSegment : ...)
Where:

e bowTable: the bow table

(pm.)violinBow

Bidirectional block implementing a violin bow and its interaction with a string.

Usage
chain(... : stringSegment : violinBow(bowPressure,bowVelocity) : stringSegment :
Where:

o bowVelocity: velocity of the bow / excitation signal (0-1)
o bowPressure: bow pressure on the string (0-1)

297

(pm.)violinBowedString

Violin bowed string bidirectional block with controllable bow position. Termi-
nations are not implemented in this model.

Usage

chain(nuts : violinBowedString(stringlength,bowPressure,bowVelocity,bowPosition)

Where:

o stringlength: the length of the string in meters

o bowVelocity: velocity of the bow / excitation signal (0-1)
o DbowPressure: bow pressure on the string (0-1)

o bowPosition: the position of the bow on the string (0-1)

(pm.)violinNuts

Bidirectional block implementing simple violin nuts. This function is based on
bridgeFilter.

Usage

chain(violinNuts : stringSegment : ...)

(pm.)violinBridge

Bidirectional block implementing a simple violin bridge. This function is based
on bridgeFilter.

Usage

chain(... : stringSegment : violinBridge

(pm.)violinBody

Bidirectional block implementing a simple violin body (just a simple resonant
lowpass filter).

Usage

chain(... : stringSegment : violinBridge : violinBody)

298

: bridge)

(pm.)violinModel

Ready-to-use simple violin physical model. This model implements a single
string. Additional strings should be created by making a polyphonic application
out of this function. Pitch is changed by changing the length of the string (and
not through a finger model).

Usage

violinModel (stringlLength,bowPressure,bowVelocity,bridgeReflexion,
bridgeAbsorption,bowPosition)

Where:

e stringlength: the length of the string in meters

o bowVelocity: velocity of the bow / excitation signal (0-1)
o bowPressure: bow pressure on the string (0-1))

e bowPosition: the position of the bow on the string (0-1)

(pm.)violin_ui

Ready-to-use violin physical model with built-in Ul

Usage

violinModel ui : _

(pm.)violin_ui_MIDI
Ready-to-use MIDI-enabled violin physical model with built-in UL

Usage

violin_ui_MIDI

Wind Instruments

Low and high level basic wind instruments parts. Most of the elements in this
section can be used in a bidirectional chain.

(pm.)openTube

A tube segment without terminations (same as stringSegment).

299

Usage
chain(A : openTube(maxLength,length) : B)
Where:

o maxLength: the maximum length of the tube in meters (should be static)
e length: the length of the tube in meters

(pm.)reedTable

Extremely basic reed table that can be used to implement a wide range of single
reed types for many different instruments (saxophone, clarinet, etc.).

Usage
excitation : reedTable(offeset,slope)
Where:

e excitation: an excitation signal
e offset: table offset
e slope: table slope

(pm.)fluteJetTable

Extremely basic flute jet table.

Usage
excitation : fluteJetTable
Where:

e excitation: an excitation signal

(pm.)brassLipsTable

Simple brass lips/mouthpiece table. Since this implementation is very basic and
that the lips and tube of the instrument are coupled to each other, the length
of that tube must be provided here.

Usage
excitation : brassLipsTable(tubelLength,lipsTension)

Where:

300

e excitation: an excitation signal (can be DC)
e tubelLength: length in meters of the tube connected to the mouthpiece
e lipsTension: tension of the lips (0-1) (default: 0.5)

(pm.)clarinetReed

Clarinet reed based on reedTable with controllable stiffness.

Usage
excitation : clarinetReed(stiffness)
Where:

e excitation: an excitation signal
o stiffness: reed stiffness (0-1)

(pm.)clarinetMouthPiece

Bidirectional block implementing a clarinet mouthpiece as well as the various
interactions happening with traveling waves. This element is ready to be plugged
to a tube...

Usage
chain(clarinetMouthPiece(reedStiffness,pressure) : tube : etc.)
Where:

o pressure: the pressure of the air flow (DC) created by the virtual per-
former (0-1). This can also be any kind of signal that will directly injected
in the mouthpiece (e.g., breath noise, etc.).

o reedStiffness: reed stiffness (0-1)

(pm.)brassLips

Bidirectional block implementing a brass mouthpiece as well as the various
interactions happening with traveling waves. This element is ready to be plugged
to a tube...

Usage

chain(brassLips(tubelLength,lipsTension,pressure) : tube : etc.)

Where:

301

e tubelength: length in meters of the tube connected to the mouthpiece

o lipsTension: tension of the lips (0-1) (default: 0.5)

e pressure: the pressure of the air flow (DC) created by the virtual per-
former (0-1). This can also be any kind of signal that will directly injected
in the mouthpiece (e.g., breath noise, etc.).

(pm.)fluteEmbouchure

Bidirectional block implementing a flute embouchure as well as the various in-
teractions happening with traveling waves. This element is ready to be plugged
between tubes segments...

Usage
chain(... : tube : fluteEmbouchure(pressure) : tube : etc.)
Where:

e pressure: the pressure of the air flow (DC) created by the virtual per-
former (0-1). This can also be any kind of signal that will directly injected
in the mouthpiece (e.g., breath noise, etc.).

(pm.)wBell

Generic wind instrument bell bidirectional block that should be placed at the
end of a chain.

Usage
chain(... : wBell(opening))

Where:
o opening: the “opening” of bell (0-1)

(pm.)fluteHead

Simple flute head implementing waves reflexion.

Usage

chain(fluteHead : tube : ...)

302

(pm.)fluteFoot

Simple flute foot implementing waves reflexion and dispersion.

Usage

chain(... : tube : fluteFoot)

(pm.)clarinetModel

A simple clarinet physical model without tone holes (pitch is changed by chang-
ing the length of the tube of the instrument).

Usage
clarinetModel (length,pressure,reedStiffness,bellOpening)

Where:

o tubeLength: the length of the tube in meters

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will directly injected in the
mouthpiece (e.g., breath noise, etc.).

o reedStiffness: reed stiffness (0-1)

e bellOpening: the opening of bell (0-1)

(pm.)clarinetModel_ui

Same as clarinetModel but with a built-in UI. This function doesn’t implement
a virtual “blower”, thus pressure remains an argument here.

Usage
clarinetModel_ui(pressure)

Where:

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will be directly injected in
the mouthpiece (e.g., breath noise, etc.).

(pm.)clarinet_ui

Ready-to-use clarinet physical model with built-in UI based on clarinetModel.

303

Usage

clarinet_ui : _

(pm.)clarinet_ui_MIDI

Ready-to-use MIDI compliant clarinet physical model with built-in Ul

Usage

clarinet_ui_MIDI : _

(pm.)brassModel

A simple generic brass instrument physical model without pistons (pitch is
changed by changing the length of the tube of the instrument). This model
is kind of hard to control and might not sound very good if bad parameters are
given to it...

Usage
brassModel (tubelLength,lipsTension,mute,pressure)
Where:

o tubeLength: the length of the tube in meters

o lipsTension: tension of the lips (0-1) (default: 0.5)

e mute: mute opening at the end of the instrument (0-1) (default: 0.5)

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will directly injected in the
mouthpiece (e.g., breath noise, etc.).

(pm.)brassModel_ui

Same as brassModel but with a built-in UL This function doesn’t implement a
virtual “blower”, thus pressure remains an argument here.

Usage
brassModel_ui(pressure)
Where:

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will be directly injected in
the mouthpiece (e.g., breath noise, etc.).

304

(pm.)brass_ui

Ready-to-use brass instrument physical model with built-in UI based on
brassModel.

Usage

brass_ui : _

(pm.)brass_ui_MIDI

Ready-to-use MIDI-controllable brass instrument physical model with built-in
UL

Usage
brass_ui_MIDI

(pm.)fluteModel

A simple generic flute instrument physical model without tone holes (pitch is
changed by changing the length of the tube of the instrument).

Usage
fluteModel (tubeLength,mouthPosition,pressure)
Where:

e tubelLength: the length of the tube in meters

e mouthPosition: position of the mouth on the embouchure (0-1) (default:
0.5)

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will directly injected in the
mouthpiece (e.g., breath noise, etc.).

(pm.)fluteModel_ui

Same as fluteModel but with a built-in UI. This function doesn’t implement a
virtual “blower”, thus pressure remains an argument here.

305

Usage
fluteModel _ui(pressure)
Where:

e pressure: the pressure of the air flow created by the virtual performer
(0-1). This can also be any kind of signal that will be directly injected in
the mouthpiece (e.g., breath noise, etc.).

(pm.)flute_ui

Ready-to-use flute physical model with built-in UI based on fluteModel.

Usage

flute_ui : _

(pm.)flute_ui_MIDI

Ready-to-use MIDI-controllable flute physical model with built-in UL

Usage
flute_ui_MIDI

Exciters

Various kind of excitation signal generators.

(pm.)impulseExcitation

Creates an impulse excitation of one sample.

Usage

gate = button('gate');
impulseExcitation(gate) : chain;

Where:

e gate: a gate button

306

(pm.)strikeModel

Creates a filtered noise excitation.

Usage

gate = button('gate');
strikeModel (LPcutoff ,HPcutoff,sharpness,gain,gate) : chain;

Where:

e HPcutoff: highpass cutoff frequency

e LPcutoff: lowpass cutoff frequency

o sharpness: sharpness of the attack and release (0-1)
e gain: gain of the excitation

o gate: a gate button/trigger signal (0/1)

(pm.)strike

Strikes generator with controllable excitation position.

Usage

gate = button('gate');
strike(eXPos,sharpness,gain,gate) : chain;

Where:

¢ exPos: excitation position wiht 0: for max low freqs and 1: for max high
fregs. So, on membrane for example, 0 would be the middle and 1 the
edge

o sharpness: sharpness of the attack and release (0-1)

e gain: gain of the excitation

o gate: a gate button/trigger signal (0/1)

(pm.)pluckString

Creates a plucking excitation signal.

Usage

trigger = button('gate');
pluckString(stringlength,cutoff ,maxFreq,sharpness,trigger)

Where:

e stringLength: length of the string to pluck
e cutoff: cutoff ratio (1 for default)

307

o maxFreq: max frequency ratio (1 for default)

o sharpness: sharpness of the attack and release (1 for default)
o gain: gain of the excitation (0-1)

o trigger: trigger signal (1 for on, 0 for off)

(pm.)blower

A virtual blower creating a DC signal with some breath noise in it.

Usage
blower (pressure,breathGain,breathCutoff)
Where:

o pressure: pressure (0-1)
e breathGain: breath noise gain (0-1) (recommended: 0.005)
e breathCutoff: breath cuttoff frequency (Hz) (recommended: 2000)

(pm.)blower_ui

Same as blower but with a built-in UL

Usage

blower : somethingToBeBlown

Modal Percussions

High and low level functions for modal synthesis of percussion instruments.

(pm.)djembeModel

Dirt-simple djembe modal physical model. Mode parameters are empirically
calculated and don’t correspond to any measurements or 3D model. They kind
of sound good though :).

Usage
excitation : djembeModel(freq)

Where:

e excitation: excitation signal
e freq: fundamental frequency of the bar

308

(pm.)djembe

Dirt-simple djembe modal physical model. Mode parameters are empirically
calculated and don’t correspond to any measurements or 3D model. They kind
of sound good though :).

This model also implements a virtual “exciter”.

Usage
djembe(freq,strikePosition,strikeSharpness,gain,trigger)
Where:

e freq: fundamental frequency of the model

o strikePosition: strike position (0 for the middle of the membrane and
1 for the edge)

e strikeSharpness: sharpness of the strike (0-1, default: 0.5)

e gain: gain of the strike

e trigger: trigger signal (0: off, 1: on)

(pm.)djembe_ui_MIDI
Simple MIDI controllable djembe physical model with built-in UI.

Usage
djembe_ui_MIDI

(pm.)marimbaBarModel
Generic marimba tone bar modal model.

This model was generated using mesh2faust from a 3D CAD model of a
marimba tone bar (1ibraries/modalmodels/marimbaBar). The corresponding
CAD model is that of a C2 tone bar (original fundamental frequency: ~65Hz).
While marimbaBarModel allows to translate the harmonic content of the
generated sound by providing a frequency (freq), mode transposition has
limits and the model will sound less and less like a marimba tone bar as it
diverges from C2. To make an accurate model of a marimba, we’d want to
have an independent model for each bar...

This model contains 5 excitation positions going linearly from the center bottom
to the center top of the bar. Obviously, a model with more excitation position
could be regenerated using mesh2faust.

309

Usage
excitation : marimbaBarModel(freq,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: excitation signal

e freq: fundamental frequency of the bar

o exPos: excitation position (0-4)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.)marimbaResTube

Simple marimba resonance tube.

Usage
marimbaResTube (tubelength,excitation)
Where:

o tubeLength: the length of the tube in meters
o excitation: the excitation signal (audio in)

(pm.)marimbaModel

Simple marimba physical model implementing a single tone bar connected to
tube. This model is scalable and can be adapted to any size of bar/tube (see
marimbaBarModel to know more about the limitations of this type of system).

Usage
excitation : marimbaModel (freq,exPos)
Where:

e freq: the frequency of the bar/tube couple
o exPos: excitation position (0-4)

(pm.)marimba

Simple marimba physical model implementing a single tone bar connected to
tube. This model is scalable and can be adapted to any size of bar/tube (see
marimbaBarModel to know more about the limitations of this type of system).

310

This function also implement a virtual exciter to drive the model.

Usage
excitation : marimba(freq,strikePosition,strikeCutoff,strikeSharpness, gain, trigger)
Where:

e excitation: the excitation signal

o freq: the frequency of the bar/tube couple

o strikePosition: strike position (0-4)

e strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: sharpness of the strike (recommended: ~0.25)

e gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)marimba_ui_MIDI

Simple MIDI controllable marimba physical model with built-in UI implement-
ing a single tone bar connected to tube. This model is scalable and can be
adapted to any size of bar/tube (see marimbaBarModel to know more about the
limitations of this type of system).

Usage

marimba_ui_MIDI : _

(pm.) churchBellModel
Generic church bell modal model generated by mesh2faust from libraries/modalmodels/churchBell.

Modeled after T. Rossing and R. Perrin, Vibrations of Bells, Applied Acoustics
2, 1987.

Model height is 301 mm.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : churchBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

311

¢ nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

e t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.) churchBell
Generic church bell modal model.

Modeled after T. Rossing and R. Perrin, Vibrations of Bells, Applied Acoustics
2, 1987.

Model height is 301 mm.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage
excitation : churchBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)
Where:

e excitation: the excitation signal

o strikePosition: strike position (0-6)

e strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: sharpness of the strike (recommended: ~0.25)

o gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)churchBell_ui
Church bell physical model based on churchBell with built-in UI.

Usage

churchBell _ui : _

312

(pm.)englishBellModel
English church bell modal model generated by mesh2faust from libraries/modalmodels/englishBell.

Modeled after D.Bartocha and Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : englishBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

¢ nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.)englishBell
English church bell modal model.

Modeled after D.Bartocha and Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage
excitation : englishBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)
Where:

e excitation: the excitation signal
e strikePosition: strike position (0-6)

313

o strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

e strikeSharpness: sharpness of the strike (recommended: ~0.25)

e gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)englishBell_ui
English church bell physical model based on englishBell with built-in UL

Usage
englishBell ui : _

(pm.)frenchBellModel
French church bell modal model generated by mesh2faust from libraries/modalmodels/frenchBell.

Modeled after D.Bartocha and Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : frenchBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

o nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

e t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.)frenchBell

French church bell modal model.

314

Modeled after D.Bartocha and Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage
excitation : frenchBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)
Where:

e excitation: the excitation signal

o strikePosition: strike position (0-6)

o strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: sharpness of the strike (recommended: ~0.25)

o gain: gain of the strike (0-1)

e trigger signal (0: off, 1: on)

(pm.)frenchBell_ui
French church bell physical model based on frenchBell with built-in UI.

Usage

frenchBell ui : _

(pm.)germanBellModel
German church bell modal model generated by mesh2faust from libraries/modalmodels/germanBell.

Modeled after D.Bartocha and Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

315

Usage
excitation : germanBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)

Where:

e excitation: the excitation signal

¢ nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.)germanBell
German church bell modal model.

Modeled after D.Bartocha and Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 1 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage
excitation : germanBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)

Where:

e excitation: the excitation signal

e strikePosition: strike position (0-6)

e strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: sharpness of the strike (recommended: ~0.25)

o gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)germanBell_ui

German church bell physical model based on germanBell with built-in UI.

316

Usage

germanBell ui : _

(pm.)russianBellModel
Russian church bell modal model generated by mesh2faust from libraries/modalmodels/russianBell.

Modeled after D.Bartocha and Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 2 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : russianBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

o nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
e t60DecaySlope: T60 decay slope (recommended value: 5)

(pm.)russianBell
Russian church bell modal model.

Modeled after D.Bartocha and Baron, Influence of Tin Bronze Melting and
Pouring Parameters on Its Properties and Bell’ Tone, Archives of Foundry En-
gineering, 2016.

Model height is 2 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

317

Usage
excitation : russianBell(strikePosition,strikeCutoff,strikeSharpness,gain,trigger)
Where:

e excitation: the excitation signal

e strikePosition: strike position (0-6)

o strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: sharpness of the strike (recommended: ~0.25)

o gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)russianBell_ui

Russian church bell physical model based on russianBell with built-in UL

Usage

russianBell ui : _

(pm.)standardBellModel
Standard church bell modal model generated by mesh2faust from libraries/modalmodels/standardBell.

Modeled after T. Rossing and R. Perrin, Vibrations of Bells, Applied Acoustics
2, 1987.

Model height is 1.8 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

Usage
excitation : standardBellModel (nModes,exPos,t60,t60DecayRatio,t60DecaySlope)
Where:

e excitation: the excitation signal

e nModes: number of synthesized modes (max: 50)

o exPos: excitation position (0-6)

e t60: T60 in seconds (recommended value: 0.1)

o t60DecayRatio: T60 decay ratio (recommended value: 1)
o t60DecaySlope: T60 decay slope (recommended value: 5)

318

(pm.)standardBell
Standard church bell modal model.

Modeled after T. Rossing and R. Perrin, Vibrations of Bells, Applied Acoustics
2, 1987.

Model height is 1.8 m.

This model contains 7 excitation positions going linearly from the bottom to
the top of the bell. Obviously, a model with more excitation position could be
regenerated using mesh2faust.

This function also implement a virtual exciter to drive the model.

Usage

excitation : standardBell(strikePosition,strikeCutoff,strikeSharpness, gain, trigger)

Where:

e excitation: the excitation signal

o strikePosition: strike position (0-6)

o strikeCutoff: cuttoff frequency of the strike genarator (recommended:
~7000Hz)

o strikeSharpness: sharpness of the strike (recommended: ~0.25)

o gain: gain of the strike (0-1)

o trigger signal (0: off, 1: on)

(pm.)standardBell _ui
Standard church bell physical model based on standardBell with built-in UL

Usage

standardBell ui : _

Vocal Synthesis

Vocal synthesizer functions (source/filter, fof, etc.).

(pm.)formantValues

Formant data values.

The formant data used here come from the CSOUND manual * http://www.cs
ounds.com/manual/html/.

319

http://www.csounds.com/manual/html/
http://www.csounds.com/manual/html/

Usage

ba.take(j+1,formantValues.f(i))
ba.take(j+1,formantValues.g(i))
ba.take(j+1,formantValues.bw(i))

Where:

e i: formant number
e j: (voiceType*nFormants)+vowel
e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,

4: tenor)
o vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u)

(pm.)voiceGender

Calculate the gender for the provided voiceType value. (0: male, 1: female)

Usage
voiceGender (voiceType)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

(pm.)skirtWidthMultiplier
Calculates value to multiply bandwidth to obtain skirtwidth for a Fof filter.

Usage
skirtWidthMultiplier(vowel,freq,gender)
Where:

o vowel: the vowel (0: a, 1: e, 2: i, 3: o, 4: u)
e freq: the fundamental frequency of the excitation signal
o gender: gender of the voice used in the fof filter (0: male, 1: female)

(pm.)autobendFreq

Autobends the center frequencies of formants 1 and 2 based on the fundamen-
tal frequency of the excitation signal and leaves all other formant frequencies
unchanged. Ported from chant-1ib.

320

Reference

o https://cerma.stanford.edu/~rmichon/chantLib/.

Usage
_ : autobendFreq(n,freq,voiceType)
Where:

e n: formant index

e freq: the fundamental frequency of the excitation signal

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

e input is the center frequency of the corresponding formant

(pm.)vocalEffort

Changes the gains of the formants based on the fundamental frequency of the
excitation signal. Higher formants are reinforced for higher fundamental fre-
quencies. Ported from chant-1ib.

Reference

o https://cerma.stanford.edu/~rmichon/chantLib/.

Usage
_ : vocalEffort(freq,gender)
Where:

e freq: the fundamental frequency of the excitation signal
e gender: the gender of the voice type (0: male, 1: female)
e input is the linear amplitude of the formant

(pm.)fof

Function to generate a single Formant-Wave-Function.

Reference

o https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016__MOlsenFOF .pdf.

321

https://ccrma.stanford.edu/~rmichon/chantLib/
https://ccrma.stanford.edu/~rmichon/chantLib/
https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf

Usage

_ : fof(fc,bw,a,g)
Where:

e fc: formant center frequency,

o bw: formant bandwidth (Hz),

o sw: formant skirtwidth (Hz)

e g: linear scale factor (g=1 gives 0dB amplitude response at fc)
e input is an impulse signal to excite filter

(pm.)fofSH

FOF with sample and hold used on bw and a parameter used in the filter-cycling
FOF function fofCycle.

Reference

o https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_ MOlsenFOF .pdf.

Usage
_ : fofSH(fc,bw,a,g)

Where: all parameters same as for fof

(pm.)fofCycle

FOF implementation where time-varying filter parameter noise is mitigated by
using a cycle of n sample and hold FOF filters.

Reference

o https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016__MOlsenFOF .pdf.

Usage
_ : fofCycle(fc,bw,a,g,n)
Where:

e n: the number of FOF filters to cycle through
o all other parameters are same as for fof

322

https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf
https://ccrma.stanford.edu/~mjolsen/pdfs/smc2016_MOlsenFOF.pdf

(pm.)fofSmooth

FOF implementation where time-varying filter parameter noise is mitigated by
lowpass filtering the filter parameters bw and a with smooth.

Usage
_ : fofSmooth(fc,bw,sw,g,tau)
Where:

e tau: the desired smoothing time constant in seconds
o all other parameters are same as for fof

(pm.)formantFilterFofCycle

Formant filter based on a single FOF filter. Formant parameters are linearly
interpolated allowing to go smoothly from one vowel to another. A cycle of
n fof filters with sample-and-hold is used so that the fof filter parameters can
be varied in realtime. This technique is more robust but more computationally
expensive than formantFilterFofSmooth.Voice type can be selected but must
correspond to the frequency range of the provided source to be realistic.

Usage
_ : formantFilterFofCycle(voiceType,vowel,nFormants,i,freq)
Where:

o voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

e vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: 1)

e nFormants: number of formant regions in frequency domain, typically 5

o i: formant number (i.e. 0 - 4) used to index formant data value arrays

e freq: fundamental frequency of excitation signal. Used to calculate rise
time of envelope

(pm.)formantFilterFofSmooth

Formant filter based on a single FOF filter. Formant parameters are linearly
interpolated allowing to go smoothly from one vowel to another. Fof filter
parameters are lowpass filtered to mitigate possible noise from varying them
in realtime. Voice type can be selected but must correspond to the frequency
range of the provided source to be realistic.

323

Usage
_ : formantFilterFofSmooth (voiceType ,vowel ,nFormants,i, freq)
Where:

o voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: o, 4: u)

e nFormants: number of formant regions in frequency domain, typically 5

o i: formant number (i.e. 1 - 5) used to index formant data value arrays

e freq: fundamental frequency of excitation signal. Used to calculate rise
time of envelope

(pm.)formantFilterBP

Formant filter based on a single resonant bandpass filter. Formant parameters
are linearly interpolated allowing to go smoothly from one vowel to another.
Voice type can be selected but must correspond to the frequency range of the
provided source to be realistic.

Usage
_ : formantFilterBP(voiceType,vowel,nFormants,i,freq)
Where:

o voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

e vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: 1)

e nFormants: number of formant regions in frequency domain, typically 5

e i: formant index used to index formant data value arrays

e freq: fundamental frequency of excitation signal.

(pm.)formantFilterbank

Formant filterbank which can use different types of filterbank functions and dif-
ferent excitation signals. Formant parameters are linearly interpolated allowing
to go smoothly from one vowel to another. Voice type can be selected but must
correspond to the frequency range of the provided source to be realistic.

Usage
_ : formantFilterbank(voiceType,vowel,formantGen,freq)

Where:

324

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

e vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: 1)

e formantGen: the specific formant filterbank function (i.e. FormantFilter-
bankBP, FormantFilterbankFof,...)

e freq: fundamental frequency of excitation signal. Needed for FOF version
to calculate rise time of envelope

(pm.)formantFilterbankFofCycle

Formant filterbank based on a bank of fof filters. Formant parameters are
linearly interpolated allowing to go smoothly from one vowel to another. Voice
type can be selected but must correspond to the frequency range of the provided
source to be realistic.

Usage
_ : formantFilterbankFofCycle(voiceType,vowel,freq)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u)

e freq: the fundamental frequency of the excitation signal. Needed to
calculate the skirtwidth of the FOF envelopes and for the autobendFreq
and vocalEffort functions

(pm.)formantFilterbankFofSmooth

Formant filterbank based on a bank of fof filters. Formant parameters are
linearly interpolated allowing to go smoothly from one vowel to another. Voice
type can be selected but must correspond to the frequency range of the provided
source to be realistic.

Usage
_ : formantFilterbankFofSmooth(voiceType,vowel,freq)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)
o vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u)

325

e freq: the fundamental frequency of the excitation signal. Needed to
calculate the skirtwidth of the FOF envelopes and for the autobendFreq
and vocalEffort functions

(pm.)formantFilterbankBP

Formant filterbank based on a bank of resonant bandpass filters. Formant pa-
rameters are linearly interpolated allowing to go smoothly from one vowel to
another. Voice type can be selected but must correspond to the frequency range
of the provided source to be realistic.

Usage
_ ¢ formantFilterbankBP(voiceType,vowel,freq)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: o, 4: u)

e freq: the fundamental frequency of the excitation signal. Needed for the
autobendFreq and vocalEffort functions

(pm.)SFFormantModel

Simple formant/vocal synthesizer based on a source/filter model. The source
and filterbank must be specified by the user. filterbank must take the same
input parameters as formantFilterbank (BP/FofCycle /FofSmooth). Formant
parameters are linearly interpolated allowing to go smoothly from one vowel to
another. Voice type can be selected but must correspond to the frequency range
of the synthesized voice to be realistic.

Usage
SFFormantModel (voiceType,vowel,exType,freq,gain,source,filterbank,isFof)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: ¢, 2: i, 3: 0,4: u

o exType: voice vs. fricative sound ratio (0-1 where 1 is 100% fricative)

e freq: the fundamental frequency of the source signal

e gain: linear gain multiplier to multiply the source by

o isFof: whether model is FOF based (0: no, 1: yes)

326

(pm.)SFFormantModelFofCycle

Simple formant/vocal synthesizer based on a source/filter model. The source
is just a periodic impulse and the “filter” is a bank of FOF filters. Formant
parameters are linearly interpolated allowing to go smoothly from one vowel to
another. Voice type can be selected but must correspond to the frequency range
of the synthesized voice to be realistic. This model does not work with noise in
the source signal so exType has been removed and model does not depend on
SFFormantModel function.

Usage
SFFormantModelFofCycle(voiceType,vowel,freq,gain)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0,4: u

e freq: the fundamental frequency of the source signal

o gain: linear gain multiplier to multiply the source by

(pm.)SFFormantModelFofSmooth

Simple formant/vocal synthesizer based on a source/filter model. The source
is just a periodic impulse and the “filter” is a bank of FOF filters. Formant
parameters are linearly interpolated allowing to go smoothly from one vowel to
another. Voice type can be selected but must correspond to the frequency range
of the synthesized voice to be realistic.

Usage
SFFormantModelFofSmooth(voiceType,vowel,freq,gain)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0,4: u

e freq: the fundamental frequency of the source signal

o gain: linear gain multiplier to multiply the source by

(pm.)SFFormantModelBP

Simple formant/vocal synthesizer based on a source/filter model. The source
is just a sawtooth wave and the “filter” is a bank of resonant bandpass filters.

327

Formant parameters are linearly interpolated allowing to go smoothly from one
vowel to another. Voice type can be selected but must correspond to the fre-
quency range of the synthesized voice to be realistic.

The formant data used here come from the CSOUND manual * http://www.cs
ounds.com/manual/html/.

Usage
SFFormantModelBP (voiceType,vowel,exType,freq,gain)
Where:

e voiceType: the voice type (0: alto, 1: bass, 2: countertenor, 3: soprano,
4: tenor)

o vowel: the vowel (0: a, 1: e, 2: i, 3: 0, 4: u

o exType: voice vs. fricative sound ratio (0-1 where 1 is 100% fricative)

e freq: the fundamental frequency of the source signal

e gain: linear gain multiplier to multiply the source by

(pm.)SFFormantModelFofCycle_ui

Ready-to-use source-filter vocal synthesizer with built-in user interface.

Usage
SFFormantModelFofCycle_ui : _

(pm.)SFFormantModelFofSmooth_ui

Ready-to-use source-filter vocal synthesizer with built-in user interface.

Usage

SFFormantModelFofSmooth_ui : _

(pm.)SFFormantModelBP_ui

Ready-to-use source-filter vocal synthesizer with built-in user interface.

Usage
SFFormantModelBP_ui : _

328

http://www.csounds.com/manual/html/
http://www.csounds.com/manual/html/

(pm.)SFFormantModelFofCycle_ui_MIDI

Ready-to-use MIDI-controllable source-filter vocal synthesizer.

Usage
SFFormantModelFofCycle_ui_MIDI : _

(pm.)SFFormantModelFofSmooth_ui_MIDI

Ready-to-use MIDI-controllable source-filter vocal synthesizer.

Usage
SFFormantModelFofSmooth_ui_ MIDI : _

(pm.)SFFormantModelBP_ui_MIDI

Ready-to-use MIDI-controllable source-filter vocal synthesizer.

Usage
SFFormantModelBP_ui_MIDI : _

Misc Functions

Various miscellaneous functions.

(pm.)allpassNL

Bidirectional block adding nonlinearities in both directions in a chain. Nonlin-
earities are created by modulating the coefficients of a passive allpass filter by
the signal it is processing.

Usage
chain(... : allpassNL(nonlinearity) : ...)

Where:

e nonlinearity: amount of nonlinearity to be added (0-1)

329

(pm) .modalModel

Implement multiple resonance modes using resonant bandpass filters.

Usage
_ : modalModel(n, freqs, t60s, gains)
Where:

e n: number of given modes

o fregs : list of filter center freqencies

e t60s : list of mode resonance durations (in seconds)
o gains : list of mode gains (0-1)

For example, to generate a model with 2 modes (440 Hz and 660 Hz, a fifth)
where the higher one decays faster and is attenuated:

os.impulse : modalModel(2, (440, 660),
(0.5, 0.25),
(ba.db2linear(-1), ba.db2linear(-6))

Further reading: Grumiaux et. al., 2017: Impulse-Response and CAD-Model-
Based Physical Modeling in Faust

quantizers.lib

Faust Frequency Quantization Library. Its official prefix is qu.

References

e https://github.com/grame-cncm/faustlibraries/blob/master /quantizers.l
ib

Functions Reference

(qu.)quantize

Configurable frequency quantization tool. Qutput only the frequencies that are
part of the specified scale. Works for positive audio frequencies.

Usage

_ : quantize(rf,nl)

Where :

e rf : frequency of the root note of the scale

330

https://raw.githubusercontent.com/grame-cncm/faust/master-dev/tools/physicalModeling/ir2dsp/lacPaper2017.pdf
https://raw.githubusercontent.com/grame-cncm/faust/master-dev/tools/physicalModeling/ir2dsp/lacPaper2017.pdf
https://github.com/grame-cncm/faustlibraries/blob/master/quantizers.lib
https://github.com/grame-cncm/faustlibraries/blob/master/quantizers.lib

e nl : list of the ratio of the frequencies of each note in relation to the root

frequency

(qu.)quantizeSmoothed

Configurable frequency quantization tool. Output frequencies that are closer to
the frequencies of the specified scale notes. Works for positive audio frequencies.

Usage

_ : quantizeSmoothed(rf,nl)
nl = (1,1.2,1.4,1.7);
Where :

e rf : frequency of the root note of the scale
e nl : list of the ratio of the frequencies of each note in relation to the root

frequency

(qu.)ionian

List of the frequency ratios of the notes of the ionian mode.

Usage
_ : quantize(rf,ionian)
Where:

e rf: frequency of the root note of the scale

(qu.)dorian

List of the frequency ratios of the notes of the dorian mode.

Usage
_ @ quantize(rf,dorian)
Where:

o rf: frequency of the root note of the scale

331

(qu.)phrygian
List of the frequency ratios of the notes of the phrygian mode.

Usage
_ : quantize(rf,phrygian)

Where:

e rf: frequency of the root note of the scale

(qu.)lydian

List of the frequency ratios of the notes of the lydian mode.

Usage
_ : quantize(rf,lydian)
Where:

e rf: frequency of the root note of the scale

(qu.)mixo

List of the frequency ratios of the notes of the mixolydian mode.

Usage
_ : quantize(rf,mixo)

Where:

e rf: frequency of the root note of the scale

(qu.)eolian

List of the frequency ratios of the notes of the eolian mode.

Usage
_ : quantize(rf,eolian)

Where:

o rf: frequency of the root note of the scale

332

(qu.)locrian

List of the frequency ratios of the notes of the locrian mode.

Usage
_ : quantize(rf,locrian)
Where:

o rf: frequency of the root note of the scale

(qu.)pentanat

List of the frequency ratios of the notes of the pythagorean tuning for the minor
pentatonic scale.

Usage
_ : quantize(rf,pentanat)

Where:

e rf: frequency of the root note of the scale

(qu.)kumoi

List of the frequency ratios of the notes of the kumoijoshi, the japanese penta-
tonic scale.

Usage
_ : quantize(rf,kumoi)

Where:

o rf: frequency of the root note of the scale

(qu.)natural

List of the frequency ratios of the notes of the natural major scale.

333

Usage
_ : quantize(rf,natural)

Where:

o rf: frequency of the root note of the scale

(qu.)dodeca

List of the frequency ratios of the notes of the dodecaphonic scale.

Usage
_ : quantize(rf,dodeca)

Where:

o rf: frequency of the root note of the scale

(qu.)dimin

List of the frequency ratios of the notes of the diminished scale.

Usage
_ : quantize(rf,dimin)
Where:

e rf: frequency of the root note of the scale

(qu.)penta

List of the frequency ratios of the notes of the minor pentatonic scale.

Usage
_ @ quantize(rf,penta)

Where:

o rf: frequency of the root note of the scale

334

reducemaps.lib

A library providing reduce/map operations in Faust. Its official prefix is rm. The
basic idea behind reduce operations is to combine several values into a single
one by repeatedly applying a binary operation. A typical example is finding the
maximum of a set of values by repeatedly applying the binary operation max.

In this reducemaps library, you’ll find two types of reduce, depending on whether
you want to reduce n consecutive samples of the same signal or a set of n parallel
signals.

References

« https://github.com/grame-cncm /faustlibraries/blob/master /reducemaps
1ib

(rm.)parReduce

parReduce (op,N) combines a set of N parallel signals into a single one using a
binary operation op.

With parReduce, this reduction process simultaneously occurs on each half of
the incoming signals. In other words, parReduce(max,256) is equivalent to
parReduce (max, 128) ,parReduce (max,128) : max.

To be used with parReduce, binary operation op must be associative. Addi-
tionally, the concept of a binary operation extends to operations that have 2*n
inputs and n outputs. For example, complex signals can be simulated using two
signals for the real and imaginary parts. In such case, a binary operation would
have 4 inputs and 2 outputs.

Please note also that parReduce is faster than topReduce or botReduce for
large number of signals. It is therefore the recommended operation whenever
op is associative.

Usage
s---, : parReduce(op, N)
Where:

e op: is a binary operation

o N: is the number of incomming signals (N>0). We use a capital letter here
to indicate that the number of incomming signals must be constant and
known at compile time.

335

https://github.com/grame-cncm/faustlibraries/blob/master/reducemaps.lib
https://github.com/grame-cncm/faustlibraries/blob/master/reducemaps.lib

(rm.)topReduce

topReduce (op,N) involves combining a set of N parallel signals into a sin-
gle one using a binary operation op. With topReduce, the reduction process
starts from the top two incoming signals, down to the bottom. In other words,
topReduce (max,256) is equivalent to topReduce (max,255),_ : max.

Contrary to parReduce, the binary operation op doesn’t have to be associative
here. Like with parReduce the concept of a binary operation can be extended
to operations that have 2*n inputs and n outputs. For example, complex signals
can be simulated using two signals representing the real and imaginary parts.
In such cases, a binary operation would have 4 inputs and 2 outputs.

Usage
s.-.., : topReduce(op, N)
Where:

e op: is a binary operation

o N: is the number of incomming signals (N>0). We use a capital letter here
to indicate that the number of incomming signals must be constant and
known at compile time.

(rm.)botReduce

botReduce (op,N) combines a set of N parallel signals into a single one using a
binary operation op. With botReduce, the reduction process starts from the bot-
tom two incoming signals, up to the top. In other words, botReduce (max,256)
is equivalent to _,botReduce (max,255) : max.

Contrary to parReduce, the binary operation op doesn’t have to be associative
here. Like with parReduce the concept of a binary operation can be extended
to operations that have 2*n inputs and n outputs. For example, complex signals
can be simulated using two signals representing the real and imaginary parts.
In such cases, a binary operation would have 4 inputs and 2 outputs.

Usage
s...5_ : botReduce(op, N)

Where:

e op: is a binary operation

e N: is the number of incomming signals (N>0). We use a capital letter here
to indicate that the number of incomming signals must be constant and
known at compile time.

336

(rm.)reduce

Reduce a block of n consecutive samples of the incomming signal using a binary
operation op. For example: reduce (max,128) will compute the maximun value
of each block of 128 samples. Please note that the resulting value, while com-
puted continuously, will be constant for the duration of a block. A new value is
only produced at the end of a block. Note also that blocks should be of at least
one sample (n>0).

Usage
_ : reduce(op, n)
Where:

e op: is a binary operation
e n: is the number of consecutive samples in a block.

(rm.)reducemap

Like reduce but a foo function is applied to the result. From a mathematical
point of view: reducemap(op,foo,n) is equivalent to reduce(op,n) :foo but
more efficient.

Usage
_ : reducemap(op, foo, n)
Where:

e op: is a binary operation
e foo: is a function applied to the result of the reduction
e n: is the number of consecutive samples in a block.

reverbs.lib

A library of reverb effects. Its official prefix is re.

References

« https://github.com/grame-cncm/faustlibraries/blob/master/reverbs.lib

Schroeder Reverberators

337

https://github.com/grame-cncm/faustlibraries/blob/master/reverbs.lib

(re.)jcrev

This artificial reverberator take a mono signal and output stereo (satrev) and
quad (jcrev). They were implemented by John Chowning in the MUS10
computer-music language (descended from Music V by Max Mathews). They
are Schroeder Reverberators, well tuned for their size. Nowadays, the more
expensive freeverb is more commonly used (see the Faust examples directory).

jcrev reverb below was made from a listing of “RV”, dated April 14, 1972, which
was recovered from an old SAIL DART backup tape. John Chowning thinks
this might be the one that became the well known and often copied JCREV.

jcrev is a standard Faust function.

Usage

_ : jerev : _,_,_,_

(re.)satrev

This artificial reverberator take a mono signal and output stereo (satrev) and
quad (jcrev). They were implemented by John Chowning in the MUS10
computer-music language (descended from Music V by Max Mathews). They
are Schroeder Reverberators, well tuned for their size. Nowadays, the more
expensive freeverb is more commonly used (see the Faust examples directory).

satrev was made from a listing of “SATREV”, dated May 15, 1971, which
was recovered from an old SAIL DART backup tape. John Chowning thinks
this might be the one used on his often-heard brass canon sound examples,
one of which can be found at * https://ccrma.stanford.edu/~jos/wav/FM-
BrassCanon2.wav.

Usage

_ ! satrev : _,_

Feedback Delay Network (FDIN) Reverberators

(re.)fdnrev0

Pure Feedback Delay Network Reverberator (generalized for easy scaling).
fdnrev0 is a standard Faust function.

338

https://ccrma.stanford.edu/~jos/wav/FM-BrassCanon2.wav
https://ccrma.stanford.edu/~jos/wav/FM-BrassCanon2.wav

Usage

<1,2,4,...,N signals> <:
fdnrevO (MAXDELAY,delays,BBS0O, freqgs,durs,loopgainmax,nonl) :>
<1,2,4,...,N signals>

Where:

e N: 24,8, .. (power of 2)

e MAXDELAY: power of 2 at least as large as longest delay-line length

e delays: N delay lines, N a power of 2, lengths preferably coprime

e BBSO: odd positive integer = order of bandsplit desired at freqs

e fregs: NB-1 crossover frequencies separating desired frequency bands
o durs: NB decay times (t60) desired for the various bands

e loopgainmax: scalar gain between 0 and 1 used to “squelch” the reverb
o nonl: nonlinearity (0 to 0.999.., 0 being linear)

Reference

o https://ccrma.stanford.edu/~jos/pasp/FDN_ Reverberation.html

(re.)zita_rev_£fdn

Internal 8x8 late-reverberation FDN used in the FOSS Linux reverb zita-revl
by Fons Adriaensen fons@linuxaudio.org. This is an FDN reverb with allpass
comb filters in each feedback delay in addition to the damping filters.

Usage
si.bus(8) : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) : si.bus(8)
Where:

e f1: crossover frequency (Hz) separating dc and midrange frequencies
o £2: frequency (Hz) above fl1 where T60 = t60m/2 (see below)

e t60dc: desired decay time (t60) at frequency 0 (sec)

e t60m: desired decay time (t60) at midrange frequencies (sec)

o fsmax: maximum sampling rate to be used (Hz)

Reference

o http://www kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html
o https://cerma.stanford.edu/~jos/pasp/Zita_ Rev1.html

339

https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html
mailto:fons@linuxaudio.org
http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html
https://ccrma.stanford.edu/~jos/pasp/Zita_Rev1.html

(re.)zita_revl_stereo

Extend zita_rev_fdn to include zita_revl input/output mapping in stereo
mode. zita_revl_stereo is a standard Faust function.

Usage
, : zita_revl_stereo(rdel,f1,f2,t60dc,t60m,fsmax) : _,

Where:

rdel = delay (in ms) before reverberation begins (e.g., 0 to ~100 ms) (remaining
args and refs as for zita_rev_fdn above)

(re.)zita_revl_ambi

Extend zita_rev_fdn to include zita_revl input/output mapping in “am-
bisonics mode”, as provided in the Linux C++ version.

Usage

, : zita_revl_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) : _,
Where:

-

rgxyz = relative gain of lanes 1,4,2 to lane 0 in output (e.g., -9 to 9) (remaining
args and references as for zita_revl_stereo above)

Freeverb

(re.)mono_freeverb

A simple Schroeder reverberator primarily developed by “Jezar at Dreampoint”
that is extensively used in the free-software world. It uses four Schroeder
allpasses in series and eight parallel Schroeder-Moorer filtered-feedback comb-
filters for each audio channel, and is said to be especially well tuned.

mono_freeverb is a standard Faust function.

Usage
_ ¢ mono_freeverb(fbl, fb2, damp, spread)
Where:

o fbl: coefficient of the lowpass comb filters (0-1)
o £b2: coefficient of the allpass comb filters (0-1)
o damp: damping of the lowpass comb filter (0-1)

340

o spread: spatial spread in number of samples (for stereo)

License While this version is licensed LGPL (with exception) along with other
GRAME library functions, the file freeverb.dsp in the examples directory of
older Faust distributions, such as faust-0.9.85, was released under the BSD
license, which is less restrictive.

(re.)stereo_freeverb

A simple Schroeder reverberator primarily developed by “Jezar at Dreampoint”
that is extensively used in the free-software world. It uses four Schroeder
allpasses in series and eight parallel Schroeder-Moorer filtered-feedback comb-
filters for each audio channel, and is said to be especially well tuned.

Usage
, : stereo_freeverb(fbl, fb2, damp, spread) : _,_
Where:

o fbl: coefficient of the lowpass comb filters (0-1)

o £b2: coefficient of the allpass comb filters (0-1)

o damp: damping of the lowpass comb filter (0-1)

o spread: spatial spread in number of samples (for stereo)

Dattorro Reverb

(re.)dattorro_rev

Reverberator based on the Dattorro reverb topology. This implementation does
not use modulated delay lengths (excursion).

Usage

. dattorro_rev(pre_delay, bw, i_diff1l, i_diff2, decay, d_diff1l, d_diff2, damping)

Where:

e pre_delay: pre-delay in samples (fixed at compile time)
o bw: band-width filter (pre filtering); (0 - 1)

e i_diff1: input diffusion factor 1; (0 - 1)

e i_diff2: input diffusion factor 2;

e decay: decay rate; (0 - 1); infinite decay = 1.0
d_diff1: decay diffusion factor 1; (0 - 1)

e d_diff2: decay diffusion factor 2;

341

- =

e damping: high-frequency damping; no damping = 0.0

Reference

o https://cerma.stanford.edu/~dattorro/EffectDesignPart1.pdf

(re.)dattorro_rev_default

Reverberator based on the Dattorro reverb topology with reverb parameters
from the original paper. This implementation does not use modulated delay
lengths (excursion) and uses zero length pre-delay.

Usage

, : dattorro_rev_default : _,_

Reference

 https://cerma.stanford.edu/~dattorro/EffectDesignPart1.pdf

JPverb and Greyhole Reverbs

(re.)jpverb

An algorithmic reverb (stereo in/out), inspired by the lush chorused sound of
certain vintage Lexicon and Alesis reverberation units. Designed to sound great
with synthetic sound sources, rather than sound like a realistic space.

Usage
: jpverb(t60, damp, size, early_diff, mod_depth, mod_freq, low, mid, high, low_cutoff, 1

Where:

e t60: approximate reverberation time in seconds ([0.1..60] sec) (T60 - the
time for the reverb to decay by 60db when damp == 0). Does not effect
early reflections

e damp: controls damping of high-frequencies as the reverb decays. 0 is no
damping, 1 is very strong damping. Values should be in the range ([0..1])

e size: scales size of delay-lines within the reverberator, producing the
impression of a larger or smaller space. Values below 1 can sound metallic.
Values should be in the range [0.5..5]

e early_diff: controls shape of early reflections. Values of 0.707 or more
produce smooth exponential decay. Lower values produce a slower build-
up of echoes. Values should be in the range (]0..1])

342

https://ccrma.stanford.edu/~dattorro/EffectDesignPart1.pdf
https://ccrma.stanford.edu/~dattorro/EffectDesignPart1.pdf

mod_depth: depth ([0..1]) of delay-line modulation. Use in combination
with mod_freq to set amount of chorusing within the structure
mod_freq: frequency ([0..10] Hz) of delay-line modulation. Use in combi-
nation with mod_depth to set amount of chorusing within the structure
low: multiplier ([0..1]) for the reverberation time within the low band
mid: multiplier ([0..1]) for the reverberation time within the mid band
high: multiplier ([0..1]) for the reverberation time within the high band
low_cutoff: frequency (100..6000 Hz) at which the crossover between the
low and mid bands of the reverb occurs

high_cutoff: frequency (1000..10000 Hz) at which the crossover between
the mid and high bands of the reverb occurs

Reference

https://doc.sccode.org/Overviews/DEIND. html

(re.)greyhole

A complex echo-like effect (stereo in/out), inspired by the classic Eventide effect
of a similar name. The effect consists of a diffuser (like a mini-reverb, struc-
turally similar to the one used in jpverb) connected in a feedback system with
a long, modulated delay-line. Excels at producing spacey washes of sound.

Usage

-

: greyhole(dt, damp, size, early_diff, feedback, mod_depth, mod_freq)

Where:

dt: approximate reverberation time in seconds ([0.1..60 sec])

damp: controls damping of high-frequencies as the reverb decays. 0 is no
damping, 1 is very strong damping. Values should be between ([0..1])
size: control of relative “room size” roughly in the range ([0.5..3])
early_diff: controls pattern of echoes produced by the diffuser. At very
low values, the diffuser acts like a delay-line whose length is controlled by
the ‘size’ parameter. Medium values produce a slow build-up of echoes,
giving the sound a reversed-like quality. Values of 0.707 or greater than
produce smooth exponentially decaying echoes. Values should be in the
range ([0..1])

feedback: amount of feedback through the system. Sets the number of
repeating echoes. A setting of 1.0 produces infinite sustain. Values should
be in the range (]0..1])

mod_depth: depth ([0..1]) of delay-line modulation. Use in combination
with mod_freq to produce chorus and pitch-variations in the echoes

343

P -

https://doc.sccode.org/Overviews/DEIND.html

o mod_freq: frequency ([0..10] Hz) of delay-line modulation. Use in com-
bination with mod_depth to produce chorus and pitch-variations in the
echoes

Reference

o https://doc.sccode.org/Overviews/DEIND.html

routes.lib

A library to handle signal routing in Faust. Its official prefix is ro.

References

o https://github.com/grame-cncm/faustlibraries/blob/master/routes.lib

Functions Reference

(ro.)cross

Cross N signals: (x1,x2,..,xn) -> (xn,..,x2,x1). cross is a standard
Faust function.

Usage

cross(N)
,_,_ : cross(3) : _,_,_

Where:

e N: number of signals (int, as a constant numerical expression)

Note Special case: cross2:

cross2 = _,cross(2),_;

(ro.)crossnn

Cross two bus (N)s.

Usage
(si.bus(2*N)) : crossnn(N) : (si.bus(2xN))
Where:

344

https://doc.sccode.org/Overviews/DEIND.html
https://github.com/grame-cncm/faustlibraries/blob/master/routes.lib

¢ N: the number of signals in the bus (int, as a constant numerical expression)

(ro.)crossnil

Cross bus (N) and bus(1).

Usage
(si.bus(N),_) : crossnl(N) : (_,si.bus(N))
Where:

e N: the number of signals in the first bus (int, as a constant numerical

expression)

(ro.)crossin

Cross bus (1) and bus(N).

Usage
(_,si.bus(N)) : crossni(N) : (si.bus(N),_)
Where:

o N: the number of signals in the second bus (int, as a constant numerical

expression)

(ro.)crossNM

Cross bus (N) and bus(M).

Usage
(si.bus(N),si.bus(M)) : crossNM(N,M) : (si.bus(M),si.bus(N))

Where:
e N: the number of signals in the first bus (int, as a constant numerical

expression)
e M: the number of signals in the second bus (int, as a constant numerical

expression)

345

(ro.)interleave

Interleave R x C cables from column order to row order. input : x(0), x(1),
X(2) ..., x(rowcol-1) output: z(0+0row), x(0+1row), z(0+2row), ..., x(14+0row),
x(1+1Irow), x(14+2*row), ..

Usage
si.bus(R*C) : interleave(R,C) : si.bus(Rx*C)

Where:

e R: the number of row (int, as a constant numerical expression)
¢ C: the number of column (int, as a constant numerical expression)

(ro.)butterfly

Addition (first half) then substraction (second half) of interleaved signals.

Usage
si.bus(N) : butterfly(N) : si.bus(N)
Where:

e N: size of the butterfly (N is int, even and as a constant numerical expres-
sion)

(ro.)hadamard

Hadamard matrix function of size N = 27k.

Usage
si.bus(N) : hadamard(N) : si.bus(N)
Where:

o N: 27k, size of the matrix (int, as a constant numerical expression)

(ro.)recursivize

Create a recursion from two arbitrary processors p and q.

346

Usage
, @ recursivize(p,q)

Where:

R

¢ p: the forward arbitrary processor
e q: the feedback arbitrary processor

(ro.)bubbleSort

Sort a set of N parallel signals in ascending order on-the-fly through the Bubble
Sort algorithm.

Mechanism: having a set of N parallel signals indexed from 0 to N - 1, compare
the first pair of signals and swap them if sig[0] > sig[1]; repeat the pair compar-
ison for the signals sig[1] and sig[2], then again recursively until reaching the
signals sig[N - 2] and sig[N - 1]; by the end, the largest element in the set will
be placed last; repeat the process for the remaining N - 1 signals until there is
a single pair left.

Note that this implementation will always perform the worst-case computation,
O(n"2).

Even though the Bubble Sort algorithm is one of the least efficient ones, it is a
useful example of how automatic sorting can be implemented at the signal level.

Usage
si.bus(N) : bubbleSort(N) : si.bus(N)
Where:

¢ N: the number of signals to be sorted (must be an int >= 0, as a constant
numerical expression)

Reference

o https://en.wikipedia.org/wiki/Bubble_sort

signals.lib

A library of basic elements to handle signals in Faust. Its official prefix is si.

References

 https://github.com/grame-cncm/faustlibraries/blob/master/signals.lib

347

https://en.wikipedia.org/wiki/Bubble_sort
https://github.com/grame-cncm/faustlibraries/blob/master/signals.lib

Functions Reference

(si.)bus

Put N cables in parallel. bus is a standard Faust function.

Usage

bus (N)
bus(4) : _,_,_,_

Where:

e N:is an integer known at compile time that indicates the number of parallel
cables

(si.)block

Block - terminate N signals. block is a standard Faust function.

Usage
si.bus(N) : block(N)
Where:

e N: the number of signals to be blocked known at compile time

(si.)interpolate

Linear interpolation between two signals.

Usage
, : interpolate(i)
Where:

 i: interpolation control between 0 and 1 (0: first input; 1: second input)

(si.)repeat

Repeat an effect N time(s) and take the parallel sum of all intermediate buses.

348

References
 https://github.com/orlarey/presentation-compilateur-faust/blob/maste
r/slides.pdf
Usage
si.bus(inputs(FX)) : repeat(N, FX) : si.bus(outputs(FX))
Where:

e N: Number of repetitions, minimum of 1, a constant numerical expression
e FX: an arbitrary effect (N inputs and N outputs) that will be repeated

Example 1:

process = repeat(2, dm.zita_light) : _*.5,_x.5;

Example 2:

N = 4;

C = 2;

fx(i) = i+1, par(j, C, @(i*5000));

process = 0, si.bus(C) : repeat(N, fx) : !, par(i, C, _*.2/N);

(si.)smoo

Smoothing function based on smooth ideal to smooth UI signals (sliders, etc.)
down. Approximately, this is a 7 Hz one-pole low-pass considering the coefficient
calculation: exp(-2pi*CF/SR).

smoo is a standard Faust function.

Usage

hslider(...) : smoo;

(si.)polySmooth

A smoothing function based on smooth that doesn’t smooth when a trigger
signal is given. This is very useful when making polyphonic synthesizer to make
sure that the value of the parameter is the right one when the note is started.

Usage
hslider(...) : polySmooth(g,s,d)
Where:

349

https://github.com/orlarey/presentation-compilateur-faust/blob/master/slides.pdf
https://github.com/orlarey/presentation-compilateur-faust/blob/master/slides.pdf

o g: the gate/trigger signal used when making polyphonic synths

o s: the smoothness (see smooth)

e d: the number of samples to wait before the signal start being smoothed
after g switched to 1

(si.)smoothAndH

A smoothing function based on smooth that holds its output signal when a
trigger is sent to it. This feature is convenient when implementing polyphonic
instruments to prevent some smoothed parameter to change when a note-off
event is sent.

Usage
hslider(...) : smoothAndH(g,s)
Where:

o g: the hold signal (0 for hold, 1 for bypass)
o s: the smoothness (see smooth)

(si.)bsmooth

Block smooth linear interpolation during a block of samples (given by the ma.BS
value).

Usage

hslider(...) : bsmooth : _

(si.)dot

Dot product for two vectors of size N.

Usage
si.bus(N), si.bus(N) : dot(N)
Where:

e N: size of the vectors (int, must be known at compile time)

350

(si.)smooth

Exponential smoothing by a unity-dc-gain one-pole lowpass. smooth is a stan-
dard Faust function.

Usage:

: si.smooth(ba.tau2pole(tau))

Where:

e tau: desired smoothing time constant in seconds, or
hslider(...) : smooth(s)
Where:

e s: smoothness between 0 and 1. s=0 for no smoothing, s=0.999 is “very
smooth”, s>1 is unstable, and s=1 yields the zero signal for all inputs.
The exponential time-constant is approximately 1/(1-s) samples, when s
is close to (but less than) 1.

References:

o https://ccrma.stanford.edu/~jos/mdft/Convolution_ Example_2_ADS
R.html

e https://ccrma.stanford.edu/~jos/aspf/Appendix_ B_ Inspecting Assem
bly.html

(si.)smoothq

Smoothing with continuously variable curves from Exponential to Linear, with
a constant time.

Usage
_ : smoothq(time, q)
Where:

’

e time: seconds to reach target
e q: curve shape (between 0..1, 0 is Exponential, 1 is Linear)

(si.)cbus

N parallel cables for complex signals. cbus is a standard Faust function.

351

https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html
https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html
https://ccrma.stanford.edu/~jos/aspf/Appendix_B_Inspecting_Assembly.html
https://ccrma.stanford.edu/~jos/aspf/Appendix_B_Inspecting_Assembly.html

Usage

cbus (N)

cbus(4) : (r0,i0), (r1,i1), (r2,i2), (x3,i3)
Where:

e N:isan integer known at compile time that indicates the number of parallel

cables.
e each complex number is represented by two real signals as (real imag)

(si.)cmul

Multiply two complex signals pointwise. cmul is a standard Faust function.

Usage
(r1,i1) : cmul(r2,i2) : (_,_)
Where:

« Each complex number is represented by two real signals as (real,imag), so
e (r1,i1) = real and imaginary parts of signal 1
e (r2,i2) = real and imaginary parts of signal 2

(si.)cconj

Complex conjugation of a (complex) signal. cconj is a standard Faust function.

Usage
(r1,i1) : cconj : (_,_)
Where:

« Each complex number is represented by two real signals as (real,imag), so
e (r1,i1) = real and imaginary parts of the input signal
e (r1,-i1) = real and imaginary parts of the output signal

(si.)onePoleSwitching

One pole filter with independent attack and release times.

352

Usage
_ : onePoleSwitching(att,rel)
Where:

e att: the attack tau time constant in second
e rel: the release tau time constant in second

(si.)rev

Reverse the input signal by blocks of n>0 samples. rev(1) is the indentity
function. rev(n) has a latency of n-1 samples.

Usage
_ : rev(n)

Where:

e n: the block size in samples

(si.)vecOp

This function is a generalisation of Faust’s iterators such as prod and sum, and
it allows to perform operations on an arbitrary number of vectors, provided that
they all have the same length. Unlike Faust’s iterators prod and sum where the
vector size is equal to one and the vector space dimension must be specified
by the user, this function will infer the vector space dimension and vector size
based on the vectors list that we provide.

The outputs of the function are equal to the vector size, whereas the number
of inputs is dependent on whether the elements of the vectors provided expect
an incoming signal themselves or not. We will see a clarifying example later; in
general, the number of total inputs will be the sum of the inputs in each input
vector.

Note that we must provide a list of at least two vectors, each with a size that is
greater or equal to one.

Usage

si.bus(inputs(vectorsList)) : vecOp((vectorsList), op) : si.bus(outputs(ba.take(l, vec

353

Where

e vectorsList: is a list of vectors
e op: is a two-input, one-output operator

For example, consider the following vectors lists:

vOo=(, 1,2, 3);
vi=(4,5,6,7);

v2 = (8,9, 10 , 11);

v3 = (12 , 13 , 14 , 15);

vd = (+(16) , _ , 18 , *(19));
vV (vo , v1 , v2 , v3);

Although Faust has limitations for list processing, these vectors can be combined
or processed individually.

If we do:
process = vecOp(v0, +);

the function will deduce a vector space of dimension equal to four and a vector
length equal to one. Note that this is equivalent to writing:

process = vO : sum(i, 4, _);
Similarly, we can write:
process = vecOp((v0 , v1), *) :> _;

and we have a dimension-two space and length-four vectors. This is the dot
product between vectors v0 and v1, which is equivalent to writing:

process = vO , vl : dot(4);

The examples above have no inputs, as none of the elements of the vectors
expect inputs. On the other hand, we can write:

process = vecOp((v4 , v4), +);

and the function will have six inputs and four outputs, as each vector has three
of the four elements expecting an input, times two, as the two input vectors are
identical.

Finally, we can write:
process = vecOp(vv, &);

to perform the bitwise AND on all the elements at the same position in each
vector, having dimension equal to the vector length equal to four.

Or even:

process = vecOp((vv , vv), &);

354

which gives us a dimension equal to two, and a vector size equal to sixteen.

For a more practical use-case, this is how we can implement a time-invariant
feedback delay network with Hadamard matrix:
N = 4;
normalisation = 1.0 / sqrt(N);
coeffVec = par(i, N, .99 * normalisation);
delVec = par(i, N, (i + 1) * 3);
process = vecOp((si.bus(N) , si.bus(N)), +) ~
vecOp ((vecOp((ro.hadamard(N) , coeffVec), *) , delVec), @);

soundfiles.lib

A library to handle soundfiles in Faust. Its official prefix is so.

References

o https://github.com/grame-cncm/faustlibraries/blob/master /soundfiles.l
ib

Functions Reference

(so.)loop

Play a soundfile in a loop taking into account its sampling rate. loop is a
standard Faust function.

Usage
loop(sf, part) : si.bus(outputs(sf))
Where:

o sf: the soundfile
e part: the part in the soundfile list of sounds

(so.)loop_speed

Play a soundfile in a loop taking into account its sampling rate, with speed
control. loop_speed is a standard Faust function.

355

https://github.com/grame-cncm/faustlibraries/blob/master/soundfiles.lib
https://github.com/grame-cncm/faustlibraries/blob/master/soundfiles.lib

Usage
loop_speed(sf, part, speed) : si.bus(outputs(sf))
Where:

o sf: the soundfile
e part: the part in the soundfile list of sounds
e speed: the speed between 0 and n

(so.)loop_speed_level

Play a soundfile in a loop taking into account its sampling rate, with speed and
level controls. loop_speed_level is a standard Faust function.

Usage
loop_speed_level(sf, part, speed, level) : si.bus(outputs(sf))
Where:

o sf: the soundfile

o part: the part in the soundfile list of sounds
e speed: the speed between 0 and n

e level: the volume between 0 and n

spats.lib

This library contains a collection of tools for sound spatialization. Its official
prefix is sp.

References

o https://github.com/grame-cncm/faustlibraries/blob/master/spats.lib

(sp.)panner

A simple linear stereo panner. panner is a standard Faust function.

Usage
_ : panner(g) : _,_
Where:

o g: the panning (0-1)

356

https://github.com/grame-cncm/faustlibraries/blob/master/spats.lib

(sp.)constantPowerPan

Apply the constant power pan rule to a stereo signal. The channels are not
respatialized. Their gains are simply adjusted. A pan of 0 preserves the left
channel and silences the right channel. A pan of 1 has the opposite effect. A
pan value of 0.5 applies a gain of 0.5 to both channels.

Usage

: constantPowerPan(p) : _,_

-

Where:
o p: the panning (0-1)

(sp.)spat
GMEM SPAT: n-outputs spatializer. spat is a standard Faust function.

Usage
_ @ spat(N,r,d) : si.bus(N)
Where:

o N: number of outputs (a constant numerical expression)
o r: rotation (between 0 et 1)
o d: distance of the source (between 0 et 1)

(sp.)stereoize

Transform an arbitrary processor p into a stereo processor with 2 inputs and 2

outputs.

Usage
, : stereoize(p) : _,_

Where:

e p: the arbitrary processor

synths.lib

This library contains a collection of synthesizers. Its official prefix is sy.

357

References

o https://github.com/grame-cncm/faustlibraries/blob/master /synths.lib

(sy.)popFilterDrum

A simple percussion instrument based on a “popped” resonant bandpass filter.
popFilterDrum is a standard Faust function.

Usage
popFilterDrum(freq,q,gate)
Where:

e freq: the resonance frequency of the instrument in Hz
o q: the q of the res filter (typically, 5 is a good value)
o gate: the trigger signal (0 or 1)

(sy.)dubDub

A simple synth based on a sawtooth wave filtered by a resonant lowpass. dubDub
is a standard Faust function.

Usage
dubDub(freq, ctFreq,q,gate)
Where:

e freq: frequency of the sawtooth in Hz
e ctFreq: cutoff frequency of the filter
e q: Q of the filter

o gate: the trigger signal (0 or 1)

(sy.)sawTrombone

A simple trombone based on a lowpassed sawtooth wave. sawTrombone is a
standard Faust function.

Usage
sawTrombone (freq,gain,gate)
Where:

e freq: the frequency in Hz

358

https://github.com/grame-cncm/faustlibraries/blob/master/synths.lib

e gain: the gain (0-1)
o gate: the gate (0 or 1)

(sy.)combString

Simplest string physical model ever based on a comb filter. combString is a
standard Faust function.

Usage
combString(freq,res,gate)
Where:

e freq: the frequency of the string in Hz
o res: string T60 (resonance time) in second
o gate: trigger signal (0 or 1)

(sy.)additiveDrum

A simple drum using additive synthesis. additiveDrum is a standard Faust
function.

Usage
additiveDrum(freq,freqRatio, gain,harmDec,att,rel, gate)

Where:

e freq: the resonance frequency of the drum in Hz

o freqRatio: a list of ratio to choose the frequency of the mode in func-
tion of freq e.g.(1 1.2 1.5 ..). The first element should always be one
(fundamental).

o gain: the gain of each mode as a list (1 0.9 0.8 ...). The first element is
the gain of the fundamental.

e harmDec: harmonic decay ratio (0-1): configure the speed at which higher
modes decay compare to lower modes.

e att: attack duration in second

o rel: release duration in second

o gate: trigger signal (0 or 1)

(sy.)fm

An FM synthesizer with an arbitrary number of modulators connected as a
sequence. fm is a standard Faust function.

359

Usage

freqs = (300,400,...);
indices = (20,...);
fm(freqgs,indices)

Where:

o fregs: a list of frequencies where the first one is the frequency of the
carrier and the others, the frequency of the modulator(s)
e indices: the indices of modulation (Nfregs-1)

Drum Synthesis

Drum Synthesis ported in Faust from a version written in Elementary and
JavaScript by Nick Thompson.

Reference

o https://www.nickwritesablog.com/drum-synthesis-in-javascript/

(sy.)kick

Kick drum synthesis via a pitched sine sweep.

Usage
kick(pitch, click, attack, decay, drive, gate)
Where:

e pitch: the base frequency of the kick drum in Hz

e click: the speed of the pitch envelope, tuned for [0.005s, 15|

o attack: attack time in seconds, tuned for [0.005s, 0.4s]

o decay: decay time in seconds, tuned for [0.005s, 4.0s]

e drive: a gain multiplier going into the saturator. Tuned for [1, 10]
e gate: the gate which triggers the amp envelope

Reference

« https://github.com /nick-thompson/drumsynth/blob/master/kick.js

(sy.)clap

Clap synthesis via filtered white noise.

360

https://www.elementary.audio/
https://www.nickwritesablog.com/drum-synthesis-in-javascript/
https://github.com/nick-thompson/drumsynth/blob/master/kick.js

Usage
clap(tone, attack, decay, gate)
Where:

 tone: bandpass filter cutoff frequency, tuned for [400Hz, 3500Hz|
o attack: attack time in seconds, tuned for [0s, 0.2s]

o decay: decay time in seconds, tuned for [0s, 4.0s]

o gate: the gate which triggers the amp envelope

Reference

 https://github.com/nick-thompson/drumsynth/blob/master/clap.js

(sy.)hat

Hi hat drum synthesis via phase modulation.

Usage
hat(pitch, tone, attack, decay, gate): _
Where:

o pitch: base frequency in the range [317Hz, 3170Hz]

e tone: bandpass filter cutoff frequency, tuned for [800Hz, 18kHz|
o attack: attack time in seconds, tuned for [0.005s, 0.2s]

o decay: decay time in seconds, tuned for [0.005s, 4.0s]

o gate: the gate which triggers the amp envelope

Reference

 https://github.com/nick-thompson/drumsynth/blob/master/hat.js

vaeffects.lib

A library of virtual analog filter effects. Its official prefix is ve.

References

o https://github.com/grame-cncm/faustlibraries/blob/master /vaeffects.lib

Moog Filters

361

https://github.com/nick-thompson/drumsynth/blob/master/clap.js
https://github.com/nick-thompson/drumsynth/blob/master/hat.js
https://github.com/grame-cncm/faustlibraries/blob/master/vaeffects.lib

(ve.)moog_vcf

Moog “Voltage Controlled Filter” (VCF) in “analog” form. Moog VCF imple-
mented using the same logical block diagram as the classic analog circuit. As
such, it neglects the one-sample delay associated with the feedback path around
the four one-poles. This extra delay alters the response, especially at high
frequencies (see reference [1] for details). See moog_vcf_2b below for a more
accurate implementation.

Usage
_ : moog_vcf (res,fr)
Where:

o res: normalized amount of corner-resonance between 0 and 1 (0 is no
resonance, 1 is maximum)
o fr: corner-resonance frequency in Hz (less than SR/6.3 or so)

References

¢ https://ccrma.stanford.edu/~stilti/papers/moogvef.pdf
o https://cerma.stanford.edu/~jos/pasp/vegf.html

(ve.)moog_vcf_2b[n]

Moog “Voltage Controlled Filter” (VCF) as two biquads. Implementation of
the ideal Moog VCF transfer function factored into second-order sections. As
a result, it is more accurate than moog_vcf above, but its coefficient formu-
las are more complex when one or both parameters are varied. Here, res is
the fourth root of that in moog_vcf, so, as the sampling rate approaches in-
finity, moog_vcf (res,fr) becomes equivalent to moog_vcf_2b[n] (res~4,fr)
(when res and fr are constant). moog_vcf_2b uses two direct-form biquads (t£2).
moog_vcf_2bn uses two protected normalized-ladder biquads (tf2np).

Usage

_ : moog_vcf_2b(res,fr)
_ : moog_vcf_2bn(res,fr)

Where:

o res: normalized amount of corner-resonance between 0 and 1 (0 is min
resonance, 1 is maximum)
o fr: corner-resonance frequency in Hz

362

https://ccrma.stanford.edu/~stilti/papers/moogvcf.pdf
https://ccrma.stanford.edu/~jos/pasp/vegf.html

(ve.)moogLadder

Virtual analog model of the 4th-order Moog Ladder, which is arguably the
most well-known ladder filter in analog synthesizers. Several lst-order filters
are cascaded in series. Feedback is then used, in part, to control the cut-off
frequency and the resonance.

References [Zavalishin 2012] (revision 2.1.2, February 2020):

o https://www.native-instruments.com/fileadmin/ni__media/downloads/p
df/VAFilterDesign_ 2.1.2.pdf

This fix is based on Lorenzo Della Cioppa’s correction to Pirkle’s implementa-
tion; see this post: https://www.kvraudio.com/forum/viewtopic.php?f=33&t=571909

Usage
_ : moogLadder (normFreq,Q)
Where:

o normFreq: normalized frequency (0-1)
o Q: quality factor between .707 (0 feedback coefficient) to 25 (feedback =
4, which is the self-oscillating threshold).

(ve.)moogHalfLadder

Virtual analog model of the 2nd-order Moog Half Ladder (simplified version of
(ve.)moogLadder). Several lst-order filters are cascaded in series. Feedback is
then used, in part, to control the cut-off frequency and the resonance.

This filter was implemented in Faust by Eric Tarr during the 2019 Embedded
DSP With Faust Workshop.
References

 https://www.willpirkle.com/app-notes/virtual-analog-moog-half-ladder-
filter
o http://www.willpirkle.com/Downloads/AN-8MoogHalfLadderFilter.pdf

Usage
_ : moogHalfLadder (normFreq,Q)

Where:

o normFreq: normalized frequency (0-1)
e Q:q

363

https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.2.pdf
https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.2.pdf
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://www.willpirkle.com/app-notes/virtual-analog-moog-half-ladder-filter
https://www.willpirkle.com/app-notes/virtual-analog-moog-half-ladder-filter
http://www.willpirkle.com/Downloads/AN-8MoogHalfLadderFilter.pdf

(ve.)diodeLadder

4th order virtual analog diode ladder filter. In addition to the individual states
used within each independent 1st-order filter, there are also additional feedback
paths found in the block diagram. These feedback paths are labeled as connect-
ing states. Rather than separately storing these connecting states in the Faust
implementation, they are simply implicitly calculated by tracing back to the
other states (s1,s2,83,s4) each recursive step.

This filter was implemented in Faust by Eric Tarr during the 2019 Embedded
DSP With Faust Workshop.
References
o https://www.willpirkle.com/virtual-analog-diode-ladder-filter/
o http://www.willpirkle.com/Downloads/AN-6DiodeLadderFilter.pdf
Usage
_ : diodeLadder (normFreq,Q)
Where:
o normFreq: normalized frequency (0-1)
e Q:q
Korg 35 Filters

The following filters are virtual analog models of the Korg 35 low-pass filter and
high-pass filter found in the MS-10 and MS-20 synthesizers. The virtual analog
models for the LPF and HPF are different, making these filters more interesting
than simply tapping different states of the same circuit.

These filters were implemented in Faust by Eric Tarr during the 2019 Embedded
DSP With Faust Workshop.
Filter history:

o https://secretlifeofsynthesizers.com/the-korg-35-filter/

(ve.)korg35LPF

Virtual analog models of the Korg 35 low-pass filter found in the MS-10 and
MS-20 synthesizers.

364

https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://www.willpirkle.com/virtual-analog-diode-ladder-filter/
http://www.willpirkle.com/Downloads/AN-6DiodeLadderFilter.pdf
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://ccrma.stanford.edu/workshops/faust-embedded-19/
https://secretlifeofsynthesizers.com/the-korg-35-filter/

Usage
_ : korg35LPF (normFreq, Q)
Where:

o normFreq: normalized frequency (0-1)
e Q:q

(ve.)korg35HPF

Virtual analog models of the Korg 35 high-pass filter found in the MS-10 and
MS-20 synthesizers.

Usage
_ : korg35HPF (normFreq, Q)
Where:

o normFreq: normalized frequency (0-1)
e Q:q

Oberheim Filters

The following filter (4 types) is an implementation of the virtual analog model
described in Section 7.2 of the Will Pirkle book, “Designing Software Synthesizer
Plug-ins in C4++". It is based on the block diagram in Figure 7.5.

The Oberheim filter is a state-variable filter with soft-clipping distortion within
the circuit.

In many VA filters, distortion is accomplished using the “tanh” function. For
this Faust implementation, that distortion function was replaced with the
(ef.)cubicnl function.

(ve.)oberheim

Generic multi-outputs Oberheim filter that produces the BSF, BPF, HPF and
LPF outputs (see description above).

Usage

_ : oberheim(normFreq,Q) : _,_,_,_

Where:

o normFreq: normalized frequency (0-1)

365

e Q:q

(ve.)oberheimBSF

Band-Stop Oberheim filter (see description above). Specialize the generic im-
plementation: keep the first BSF output, the compiler will only generate the

needed code.

Usage
_ : oberheimBSF(normFreq,Q) : _
Where:

o normFreq: normalized frequency (0-1)
e Q:q

(ve.)oberheimBPF

Band-Pass Oberheim filter (see description above). Specialize the generic im-
plementation: keep the second BPF output, the compiler will only generate the

needed code.

Usage
_ : oberheimBPF (normFreq,Q)
Where:

o normFreq: normalized frequency (0-1)
* Qiq

(ve.)oberheimHPF

High-Pass Oberheim filter (see description above). Specialize the generic im-
plementation: keep the third HPF output, the compiler will only generate the

needed code.

Usage
_ : oberheimHPF (normFreq,Q)
Where:

o normFreq: normalized frequency (0-1)
e Q:q

366

(ve.)oberheimLPF

Low-Pass Oberheim filter (see description above). Specialize the generic imple-
mentation: keep the fourth LPF output, the compiler will only generate the
needed code.

Usage
_ : oberheimLPF(normFreq,Q)
Where:

e normFreq: normalized frequency (0-1)
e Qiq

Sallen Key Filters

The following filters were implemented based on VA models of synthesizer filters.

The modeling approach is based on a Topology Preserving Transform (TPT) to
resolve the delay-free feedback loop in the corresponding analog filters.

The primary processing block used to build other filters (Moog, Korg, etc.) is
based on a lst-order Sallen-Key filter.

The filters included in this script are 1st-order LPF/HPF and 2nd-order state-
variable filters capable of LPF, HPF, and BPF.

Resources:

o Vadim Zavalishin (2018) “The Art of VA Filter Design”, v2.1.0

o https://www.native-instruments.com/fileadmin/ni_media/downloads/p
df/VAFilterDesign_ 2.1.0.pdf

o Will Pirkle (2014) “Resolving Delay-Free Loops in Recursive Filters Using

o the Modified Hirma Method”, AES 137 http://www.aes.org/e-lib/brow
se.cfm?elib=17517

e Description and diagrams of 1st- and 2nd-order TPT filters:

o https://www.willpirkle.com/706-2/

(ve.)sallenKeyOnePole

Sallen-Key generic One Pole filter that produces the LPF and HPF outputs (see
description above).

For the Faust implementation of this filter, recursion (letrec) is used for storing
filter “states”. The output (e.g. y) is calculated by using the input signal and

367

https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.0.pdf
https://www.native-instruments.com/fileadmin/ni_media/downloads/pdf/VAFilterDesign_2.1.0.pdf
http://www.aes.org/e-lib/browse.cfm?elib=17517
http://www.aes.org/e-lib/browse.cfm?elib=17517
https://www.willpirkle.com/706-2/

the previous states of the filter. During the current recursive step, the states of
the filter (e.g. s) for the next step are also calculated. Admittedly, this is not an
efficient way to implement a filter because it requires independently calculating
the output and each state during each recursive step. However, it works as a
way to store and use “states” within the constraints of Faust. The simplest
example is the 1st-order LPF (shown on the cover of Zavalishin * 2018 and Fig
4.3 of https://www.willpirkle.com/706-2/). Here, the input signal is split in
parallel for the calculation of the output signal, y, and the state s. The value
of the state is only used for feedback to the next step of recursion. It is blocked
(1) from also being routed to the output. A trick used for calculating the state
s is to observe that the input to the delay block is the sum of two signal: what
appears to be a feedforward path and a feedback path. In reality, the signals
being summed are identical (signal*2) plus the value of the current state.

Usage
_ : sallenKeyOnePole(normFreq) : _,_

Where:

o normFreq: normalized frequency (0-1)

(ve.)sallenKeyOnePoleLPF

Sallen-Key One Pole lowpass filter (see description above). Specialize the generic
implementation: keep the first LPF output, the compiler will only generate the
needed code.

Usage
_ : sallenKeyOnePoleLPF (normFreq)

Where:

o normFreq: normalized frequency (0-1)

(ve.)sallenKeyOnePoleHPF

Sallen-Key One Pole Highpass filter (see description above). The dry input
signal is routed in parallel to the output. The LPF’d signal is subtracted from
the input so that the HPF remains. Specialize the generic implementation: keep
the second HPF output, the compiler will only generate the needed code.

Usage
_ : sallenKeyOnePoleHPF (normFreq)

368

https://www.willpirkle.com/706-2/

Where:

o normFreq: normalized frequency (0-1)

(ve.)sallenKey2ndOrder

Sallen-Key generic 2nd order filter that produces the LPF, BPF and HPF out-
puts.

This is a 2nd-order Sallen-Key state-variable filter. The idea is that by “tap-
ping” into different points in the circuit, different filters (LPF,BPF HPF) can
be achieved. See Figure 4.6 of * https://www.willpirkle.com/706-2/

This is also a good example of the next step for generalizing the Faust program-
ming approach used for all these VA filters. In this case, there are three things
to calculate each recursive step (y,s1,s2). For each thing, the circuit is only
calculated up to that point.

Comparing the LPF to BPF, the output signal (y) is calculated similarly. Ex-
cept, the output of the BPF stops earlier in the circuit. Similarly, the states
(s1 and s2) only differ in that s2 includes a couple more terms beyond what is
used for s1.

Usage
_ : sallenKey2ndOrder (normFreq,Q)
Where:

R R

o normFreq: normalized frequency (0-1)
* Qiq

(ve.)sallenKey2ndOrderLPF

Sallen-Key 2nd order lowpass filter (see description above). Specialize the
generic implementation: keep the first LPF output, the compiler will only gen-
erate the needed code.

Usage
_ @ sallenKey2ndOrderLPF (normFreq,Q)

Where:

o normFreq: normalized frequency (0-1)
e Qiq

369

https://www.willpirkle.com/706-2/

(ve.)sallenKey2ndOrderBPF

Sallen-Key 2nd order bandpass filter (see description above). Specialize the
generic implementation: keep the second BPF output, the compiler will only
generate the needed code.

Usage
_ : sallenKey2ndOrderBPF (normFreq, Q)
Where:

o normFreq: normalized frequency (0-1)
e Q:q

(ve.)sallenKey2ndOrderHPF

Sallen-Key 2nd order highpass filter (see description above). Specialize the
generic implementation: keep the third HPF output, the compiler will only
generate the needed code.

Usage
_ : sallenKey2ndOrderHPF (normFreq, Q)
Where:

o normFreq: normalized frequency (0-1)
* Qiq

Effects

(ve.)wah4d
Wah effect, 4th order. wah4 is a standard Faust function.

Usage
_ : wah4(fr)
Where:

e fr: resonance frequency in Hz

Reference

o https://ccrma.stanford.edu/~jos/pasp/vegf.html

370

https://ccrma.stanford.edu/~jos/pasp/vegf.html

(ve.)autowah

Auto-wah effect. autowah is a standard Faust function.

Usage
_ : autowah(level)
Where:

o level: amount of effect desired (0 to 1).

(ve.)crybaby
Digitized CryBaby wah pedal. crybaby is a standard Faust function.

Usage
crybaby (wah)
Where:

e wah: “pedal angle” from 0 to 1

Reference

o https://cerma.stanford.edu/~jos/pasp/vegf.html

(ve.)vocoder

A very simple vocoder where the spectrum of the modulation signal is analyzed
using a filter bank. vocoder is a standard Faust function.

Usage
_ : vocoder(nBands,att,rel,BWRatio,source,excitation)
Where:

¢ nBands: Number of vocoder bands

e att: Attack time in seconds

e rel: Release time in seconds

e BWRatio: Coefficient to adjust the bandwidth of each band (0.1 - 2)
e source: Modulation signal

o excitation: Excitation/Carrier signal

371

https://ccrma.stanford.edu/~jos/pasp/vegf.html

version.lib

Semantic versioning for the Faust libraries. Its official prefix is v1.

References

o https://github.com/grame-cncm/faustlibraries/blob/master /version.lib

(vl.)version

Return the version number of the Faust standard libraries as a MAJOR, MI-
NOR, PATCH versioning triplet.

Usage

version : _,_,_

wdmodels.lib

A library of basic adaptors and methods to help construct Wave Digital Filter
models in Faust. Its official prefix is wd. ## Library Readme This library is
intended for use for creating Wave Digital (WD) based models of audio circuitry
for real-time audio processing within the Faust programming language. The goal
is to provide a framework to create real-time virtual-analog audio effects and
synthesizers using WD models without the use of C++. Furthermore, we seek
to provide access to the technique of WD modeling to those without extensive
knowledge of advanced digital signal processing techniques. Finally, we hope to
provide a library which can integrate with all aspects of Faust, thus creating
a platform for virtual circuit bending. The library itself is written in Faust to
maintain portability.

This library is heavily based on Kurt Werner’s Dissertation, “Virtual Analog
Modeling of Audio Circuitry Using Wave Digital Filters.” I have tried to main-
tain consistent notation between the adaptors appearing within thesis and my
adaptor code. The majority of the adaptors found in chapter 1 and chapter 3
are currently supported.

For inquires about use of this library in a commercial product, please contact
dirk [dot] roosenburg [dot] 30 [at] gmail [dot] com. This documentation is taken
directly from the readme. Please refer to it for a more updated version.

Many of the more in depth comments within the library include jargon. I plan
to create videos detailing the theory of WD models. For now I recommend Kurt
Werner’s PhD, Virtual analog modeling of Audio circuitry using Wave Digital
Filters.

I have tried to maintain consistent syntax and notation to the thesis. This

372

https://github.com/grame-cncm/faustlibraries/blob/master/version.lib
https://github.com/droosenb/faust-wdf-library
https://searchworks.stanford.edu/view/11891203
https://searchworks.stanford.edu/view/11891203

library currently includes the majority of the adaptors covered in chapter 1 and
some from chapter 3.

Using this Library

Use of this library expects some level of familiarity with WDF techniques, espe-
cially simplification and decomposition of electronic circuits into WDF connec-
tion trees. I plan to create video to cover both these techniques and use of the
library.

Quick Start

To get a quick overview of the library, start with the secondOrderFilters.dsp
code found in examples. Note that the wdmodels.1ib library is now embedded
in the online Faust IDE.

A Simple RC Filter Model

Creating a model using this library consists fo three steps. First, declare a set of
components. Second, model the relationship between them using a tree. Finally,
build the tree using the libraries build functions.

First, a set of components is declared using adaptors from the library. This list
of components is created based on analysis of the circuit using WDF techniques,
though generally each circuit element (resistor, capacitor, diode, etc.) can be
expected to appear within the component set. For example, first order RC
lowpass filter would require an unadapted voltage source, a 47k resistor, and a
10nF capacitor which outputs the voltage across itself. These can be declared
with:

vsl(i) = wd.u_voltage(i, no.noise);
r1(i) = wd.resistor(i, 47*%107°3);
c1(i) = wd.capacitor_Vout(i, 10%107-9);

Note that the first argument, i, is left un-parametrized. Components must be
declared in this form, as the build algorithm expects to receive adaptors which
have exactly one parameter.

Also note that we have chosen to declare a white noise function as the input
to our voltage source. We could potentially declare this as a direct input to
our model, but to do so is more complicated process which cannot be covered
within this tutorial. For information on how to do this see Declaring Model
Parameters as Inputs or see various implementations in examples.

Second, the declared components and interconnection/structural adaptors
(i.e. series, parallel, etc) are arranged into the connection tree which is produced
from performing WD analysis on the modeled circuit. For example, to produce
our first order RC lowpass circuit model, the following tree is declared:

373

https://github.com/droosenb/faust-wdf-library/tree/main/examples
https://faustide.grame.fr/
https://github.com/droosenb/faust-wdf-library/tree/main/examples

tree_lowpass = vsl : wd.series : (rl, cl);
For more information on how to represent trees in Faust, see Trees in Faust.

Finally, the tree is built using the the buildtree function. To build and compute
our first order RC lowpass circuit model, we use:

process = wd.buildtree(tree_lowpass);

More information about build functions, see Model Building Functions.

Building a Model

After creating a connection tree which consists of WD adaptors, the connection
tree must be passed to a build function in order to build the model.

Automatic model building buildtree(connection_tree)

The simplest build function for use with basic models. This automatically imple-
ments buildup, builddown, and buildout to create a working model. However,
it gives minimum control to the user and cannot currently be used on trees which
have parameters declared as inputs.

Manual model building Wave Digital Filters are an explicit state-space
model, meaning they use a previous system state in order to calculate the current
output. This is achieved in Faust by using a single global feedback operator.
The models feed-forward terms are generated using builddown and the models
feedback terms are generated using buildup. Thus, the most common model
implementation (the method used by buildtree) is:

builddown(connection_tree)~buildup(connection_tree) : buildout(connection_tree)

Since the ~ operator in Faust will leave feedback terms hanging as outputs,
buildout is a function provided for convenience. It automatically truncates the
hanging outputs by identifying leaf components which have an intended output
and generating an output matrix.

Building the model manually allows for greater user control and is often very
helpful in testing. Also provided for testing are the getres and parres functions,
which can be used to determine the upward-facing port resistance of an element.

Declaring Model Parameters as Inputs

When possible, parameters of components should be declared explicitly, meaning
they are dependent on a function with no inputs. This might be something as
simple as integer(declaring a static component), a function dependent on a UI
input (declaring a component with variable value), or even a time-dependent
function like an oscillator (declaring an audio input or circuit bending).

374

However, it is often necessary to declare parameters as input. To achieve this
there are two possible methods. The first and recommended option is to create a
separate model function and declare parameters which will later be implemented
as inputs. This allows inputs to be explicitly declared as component parameters.
For example, one might use:

model (inl) = buildtree(tree)
with {
vin(i) = wd.u_voltage(i, inl);
tree = vin : ...;
}s;
In order to simulate an audio input to the circuit.

Note that the tree and components must be declared inside a with {...} state-
ment, or the model’s parameters will not be accessible.

The Empty Signal Operator The Empty signal operator, _ should NEVER
be used to declare a parameter as in input in a wave-digital model.

Using it will result on breaking the internal routing of the model and thus breaks
the model. Instead, use explicit declaration as shown directly above.

Trees in Faust

Since WD models use connection trees to represent relationships of elements,
a comprehensive way to represent trees is critical. As there is no current con-
vention for creating trees in Faust, I've developed a method using the existing
series and parallel/list methods in Faust.

The series operator : is used to separate parent and child elements. For example
the tree:

A

I
B

is represented by A : B in Faust.

To denote a parent element with multiple child elements, simply use a list (al,
a2, ... an) of children connected to a single parent. ¢ For example the tree:

A

/\
B C

is represented by:

A (B, ©O)

375

Finally, for a tree with many levels, simply break the tree into subtrees following
the above rules and connect the subtree as if it was an individual node. For
example the tree:

A
/\

can be represented by:

B_sub = B : X; //B subtree
C_sub = C : (Y, Z); //C subtree
tree = A : (B_sub, C_sub); //full tree

or more simply, using parentheses:

A (B : X)), (C: (Y, 2))) #+#+# How Adaptors are Structured In wave
digital filters, adaptors can be described by the form b = Sa where b is a vector

of output waves b = (b0, bl, b2, ... bn), ais a vector of input wavesa =
(a0, al, a2, ... an), and Sis an n x n scattering matrix. S is dependent on
R, a list of port resistances (RO, R1, R2, ... Rn).

The output wave vector b can be divided into downward-going and upward-
going waves (downward-going waves travel down the connection tree, upward-
going waves travel up). For adapted adaptors, with the zeroth port being the
upward-facing port, the downward-going wave vector is (b1, b2, ... bn) and
the upward-going wave vector is (b0). For unadapted adaptors, there are no
upward-going waves, so the downward-going wave vector is simply b = (b0,
bl, b2, ... bn).

In order for adaptors to be interpretable by the compiler, they must be struc-
tured in a specific way. Each adaptor is divided into three cases by their first
parameter. This parameter, while accessible by the user, should only be set by
the compiler /builder.

All other parameters are value declarations (for components), inputs (for volt-
age or current ins), or parameter controls (for potentiometers/variable capaci-
tors/variable inductors).

First case - downward going waves (0, params) => downward-going(R1,

. Rn, a0, al, ... an) outputs: (bl, b2, ... bn) this function takes
any number of port resistances, the downward going wave, and any number of
upward going waves as inputs. These values/waves are used to calculate the
downward going waves coming from this adaptor.

Second case (1, params) => upward-going(R1l, ... Rn, al, ... an)
outputs : (b0) this function takes any number of port resistances and any

376

number of upward going waves as inputs. These values/waves are used to
calculate the upward going wave coming from this adaptor.

Third case (2, params) => port-resistance(Rl, ... Rn) outputs:
(RO) this function takes any number of port resistances as inputs. These values
are used to calculate the upward going port resistance of the element.

Unadapted Adaptors Unadapted adaptor’s names will always begin u_ An
unadapted adaptor MUST be used as the root of the WD connection tree. Un-
adapted adaptors can ONLY be used as a root of the WD connection tree. While
unadapted adaptors contain all three cases, the second and third are purely
structural. Only the first case should contain computational information.

How the Build Functions Work

Expect this section to be added soon! It’s currently in progress.

Acknowledgements

Many thanks to Kurt Werner for helping me to understand wave digital filter
models. Without his publications and consultations, the library would not ex-
ist. Thanks also to my advisors, Rob Owen and Eli Stine whose input was
critical to the development of the library. Finally, thanks to Romain Michon,
Stephane Letz, and the Faust Slack for contributing to testing, development,
and inspiration when creating the library.

References

e https://github.com/grame-cncm/faustlibraries /blob /master /wdmodels.l
ib

Algebraic One Port Adaptors

(wd.)resistor
Adapted Resistor.

A basic node implementing a resistor for use within Wave Digital Filter connec-
tion trees.

It should be used as a leaf/terminating element of the connection tree.

Usage

r1(i) = resistor(i, R);
buildtree(A : rl);

377

https://github.com/grame-cncm/faustlibraries/blob/master/wdmodels.lib
https://github.com/grame-cncm/faustlibraries/blob/master/wdmodels.lib

Where:

e i: index used by model-building functions. Should never be user declared.
¢ R : Resistance/Impedance of the resistor being modeled in Ohms.

Note: the adaptor must be declared as a separate function before integration
into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.1

(wd.)resistor_Vout
Adapted Resistor 4 voltage Out.

A basic adaptor implementing a resistor for use within Wave Digital Filter
connection trees.

It should be used as a leaf/terminating element of the connection tree. The
resistor will also pass the voltage across itself as an output of the model.

Usage

rout(i) = resistor_Vout(i, R);
buildtree(A : rout)

Where:

e i: index used by model-building functions. Should never be user declared.
o R : Resistance/Impedance of the resistor being modeled in Ohms.

Note: the adaptor must be declared as a separate function before integration

into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.1

(wd.)resistor_Iout
Resistor + current Out.

A basic adaptor implementing a resistor for use within Wave Digital Filter
connection trees.

It should be used as a leaf/terminating element of the connection tree. The
resistor will also pass the current through itself as an output of the model.

378

Usage

rout (i) = resistor_Iout(i, R);
buildtree(A : rout)

Where:

e i: index used by model-building functions. Should never be user declared.
o R : Resistance/Impedance of the resistor being modeled in Ohms.

Note: the adaptor must be declared as a separate function before integration
into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.1

(wd.)u_voltage
Unadapted Ideal Voltage Source.

An adaptor implementing an ideal voltage source within Wave Digital Filter
connection trees.

It should be used as the root/top element of the connection tree. Can be used
for either DC (constant) or AC (signal) voltage sources.

Usage

v1(i) = u_Voltage(i, ein);
buildtree(vl : B);

Where:

e i: index used by model-building functions. Should never be user declared.
e ein: Voltage/Potential across ideal voltage source in Volts

Note: only usable as the root of a tree. The adaptor must be declared as a
separate function before integration into the connection tree. Correct imple-
mentation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.2

(wd.)u_current

Unadapted Ideal Current Source.

379

An unadapted adaptor implementing an ideal current source within Wave Digi-
tal Filter connection trees.

It should be used as the root/top element of the connection tree. Can be used
for either DC (constant) or AC (signal) current sources.

Usage

i1(i) = u_current(i, jin);
buildtree(i1l : B);

Where:

e 1i: index used by model-building functions. Should never be user declared.
¢ jin : Current through the ideal current source in Amps

Note: only usable as the root of a tree. The adaptor must be declared as a
separate function before integration into the connection tree. Correct imple-
mentation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.3

(wd.)resVoltage
Adapted Resistive Voltage Source.

An adaptor implementing a resistive voltage source within Wave Digital Filter
connection trees.

It should be used as a leaf/terminating element of the connection tree. It is
comprised of an ideal voltage source in series with a resistor. Can be used for
either DC (constant) or AC (signal) voltage sources.

Usage

v1(i) = resVoltage(i, R, ein);
buildtree(A : v1);

Where:

e i: index used by model-building functions. Should never be user declared
e R : Resistance/Impedance of the series resistor in Ohms
e ein: Voltage/Potential of the ideal voltage source in Volts

Note: the adaptor must be declared as a separate function before integration
into the connection tree. Correct implementation is shown above.

380

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.4

(wd.)resVoltage_Vout
Adapted Resistive Voltage Source + voltage output.

An adaptor implementing an adapted resistive voltage source within Wave Dig-
ital Filter connection trees.

It should be used as a leaf/terminating element of the connection tree. It is
comprised of an ideal voltage source in series with a resistor. Can be used for
either DC (constant) or AC (signal) voltage sources. The resistive voltage source
will also pass the voltage across it as an output of the model.

Usage

vout (i) = resVoltage_Vout(i, R, ein);
buildtree(A : vout)

Where:

e i: index used by model-building functions. Should never be user declared
e R : Resistance/Impedance of the series resistor in Ohms
e ein: Voltage/Potential across ideal voltage source in Volts

Note: the adaptor must be declared as a separate function before integration
into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.4

(wd.)u_resVoltage
Unadapted Resistive Voltage Source.

An unadapted adaptor implementing a resistive voltage source within Wave
Digital Filter connection trees.

It should be used as the root/top element of the connection tree. It is comprised
of an ideal voltage source in series with a resistor. Can be used for either DC
(constant) or AC (signal) voltage sources.

Usage

v1(i) = u_resVoltage(i, R, ein);
buildtree(vl : B);

381

Where:

e i: index used by model-building functions. Should never be user declared
e R : Resistance/Impedance of the series resistor in Ohms
e ein: Voltage/Potential across ideal voltage source in Volts

Note: only usable as the root of a tree. The adaptor must be declared as a
separate function before integration into the connection tree. Correct imple-
mentation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.4

(wd.)resCurrent
Adapted Resistive Current Source.

An adaptor implementing a resistive current source within Wave Digital Filter
connection trees.

It should be used as a leaf/terminating element of the connection tree. It is
comprised of an ideal current source in parallel with a resistor. Can be used for
either DC (constant) or AC (signal) current sources.

Usage

i1(i) = resCurrent(i, R, jin);
buildtree(A : il);

Where:

e i: index used by model-building functions. Should never be user declared.
¢ R : Resistance/Impedance of the parallel resistor in Ohms
e jin : Current through the ideal current source in Amps

Note: the adaptor must be declared as a separate function before integration

into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.5

(wd.)u_resCurrent
Unadapted Resistive Current Source.

An unadapted adaptor implementing a resistive current source within Wave
Digital Filter connection trees.

382

It should be used as the root/top element of the connection tree. It is comprised
of an ideal current source in parallel with a resistor. Can be used for either DC
(constant) or AC (signal) current sources.

Usage

i1(i) = u_resCurrent(i, R, jin);
buildtree(i1l : B);

Where:

e i: index used by model-building functions. Should never be user declared.
e R : Resistance/Impedance of the series resistor in Ohms
e jin : Current through the ideal current source in Amps

Note: only usable as the root of a tree. The adaptor must be declared as a
separate function before integration into the connection tree. Correct imple-
mentation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.5

(wd.)u_switch
Unadapted Ideal Switch.

An unadapted adaptor implementing an ideal switch for Wave Digital Filter
connection trees.

It should be used as the root/top element of the connection tree

Usage

s1(i) = u_resCurrent(i, lambda);
buildtree(s1 : B);

Where:

e i: index used by model-building functions. Should never be user declared.
e lambda : switch state control. -1 for closed switch, 1 for open switch.

Note: only usable as the root of a tree. The adaptor must be declared as a
separate function before integration into the connection tree. Correct imple-
mentation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.2.8

383

Reactive One Port Adaptors

(wd.)capacitor
Adapted Capacitor.

A basic adaptor implementing a capacitor for use within Wave Digital Filter
connection trees.

It should be used as a leaf/terminating element of the connection tree. This
capacitor model was digitized using the bi-linear transform.

Usage

c1(i) = capacitor(i, R);
buildtree(A : cl1)

Where:

e 1i: index used by model-building functions. Should never be user declared.
e R : Capacitance/Impedance of the capacitor being modeled in Farads.

Note: the adaptor must be declared as a separate function before integration
into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.3.1

(wd.)capacitor_Vout
Adapted Capacitor + voltage out.

A basic adaptor implementing a capacitor for use within Wave Digital Filter
connection trees.

It should be used as a leaf/terminating element of the connection tree. The
capacitor will also pass the voltage across itself as an output of the model. This
capacitor model was digitized using the bi-linear transform.

Usage

cout(i) = capacitor_Vout(i, R);
buildtree(A : cout)

Where:

e i: index used by model-building functions. Should never be user declared
e R : Capacitance/Impedence of the capacitor being modeled in Farads

384

Note: the adaptor must be declared as a seperate function before integration
into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.3.1

(wd.)inductor
Unadapted Inductor.

A basic adaptor implementing an inductor for use within Wave Digital Filter
connection trees.

It should be used as a leaf/terminating element of the connection tree. This
inductor model was digitized using the bi-linear transform.

Usage

11(i) = inductor(i, R);
buildtree(A : 11);

Where:

e i: index used by model-building functions. Should never be user declared
o R : Inductance/Impedance of the inductor being modeled in Henries

Note: the adaptor must be declared as a separate function before integration
into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wayve Digital Filters”, 1.3.2

(wd.)inductor_Vout
Unadapted Inductor 4+ Voltage out.

A basic adaptor implementing an inductor for use within Wave Digital Filter
connection trees.

It should be used as a leaf/terminating element of the connection tree. The
inductor will also pass the voltage across itself as an output of the model. This
inductor model was digitized using the bi-linear transform.

Usage

lout(i) = inductor_Vout(i, R);
buildtree(A : lout)

385

Where:

e i: index used by model-building functions. Should never be user declared
e R : Inductance/Impedance of the inductor being modeled in Henries

Note: the adaptor must be declared as a separate function before integration
into the connection tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.3.2

Nonlinear One Port Adaptors

(wd.)u_idealDiode
Unadapted Ideal Diode.

An unadapted adaptor implementing an ideal diode for Wave Digital Filter
connection trees.

It should be used as the root/top element of the connection tree.

Usage
buildtree(u_idealDiode : B);
Note: only usable as the root of a tree. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 3.2.3

(wd.)u_chua
Unadapted Chua Diode.

An adaptor implementing the chua diode / non-linear resistor within Wave
Digital Filter connection trees.

It should be used as the root/top element of the connection tree.

Usage

chual(i) = u_chua(i, G1, G2, V0);
buildtree(chual : B);

Where:

e i: index used by model-building functions. Should never be user declared

386

e G1 : resistance parameter 1 of the chua diode
e G2 : resistance parameter 2 of the chua diode
e VO : voltage parameter of the chua diode

Note: only usable as the root of a tree. The adaptor must be declared as a
separate function before integration into the connection tree. Correct imple-
mentation is shown above.

Reference Meerkotter and Scholz, “Digital Simulation of Nonlinear Circuits
by Wave Digital Filter Principles”

(wd.)lambert

An implementation of the lambert function. It uses Halley’s method of iteration
to approximate the output. Included in the WD library for use in non-linear
diode models. Adapted from K M Brigg’s c++ lambert function approximation.

Usage

lambert(n, itr)

Where: * n: value at which the lambert function will be evaluated * itr: number
of iterations before output

(wd.)u_diodePair
Unadapted pair of diodes facing in opposite directions.

An unadapted adaptor implementing two antiparallel diodes for Wave Digital
Filter connection trees. The behavior is approximated using Schottkey’s ideal
diode law.

Usage

d1(i) = u_diodePair(i, Is, Vt);
buildtree(d1 : B);

Where:

e i: index used by model-building functions. Should never be user declared
e Is : saturation current of the diodes
e Vt : thermal resistances of the diodes

Note: only usable as the root of a tree. Correct implementation is shown above.

387

Reference K. Werner et al. “An Improved and Generalized Diode Clipper
Model for Wave Digital Filters”

(wd.)u_diodeSingle
Unadapted single diode.

An unadapted adaptor implementing a single diode for Wave Digital Filter con-
nection trees. The behavior is approximated using Schottkey’s ideal diode law.

Usage

d1(i) = u_diodeSingle(i, Is, Vt);
buildtree(d1 : B);

Where:

e i: index used by model-building functions. Should never be user declared
e Is : saturation current of the diodes
e Vt : thermal resistances of the diodes

Note: only usable as the root of a tree. Correct implementation is shown above.

Reference K. Werner et al. “An Improved and Generalized Diode Clipper
Model for Wave Digital Filters”

(wd.)u_diodeAntiparallel

Unadapted set of antiparallel diodes with M diodes facing forwards and N diodes
facing backwards.

An unadapted adaptor implementing antiparallel diodes for Wave Digital Filter
connection trees. The behavior is approximated using Schottkey’s ideal diode
law.

Usage

d1(i) = u_diodeAntiparallel(i, Is, Vt);
buildtree(d1 : B);

Where:

e i: index used by model-building functions. Should never be user declared
e Is: saturation current of the diodes
e Vt : thermal resistances of the diodes

Note: only usable as the root of a tree. Correct implementation is shown above.

388

Reference K. Werner et al. “An Improved and Generalized Diode Clipper
Model for Wave Digital Filters”

Two Port Adaptors

(wd.)u_parallel2Port
Unadapted 2-port parallel connection.

An unadapted adaptor implementing a 2-port parallel connection between adap-
tors for Wave Digital Filter connection trees. Elements connected to this adaptor
will behave as if connected in parallel in circuit.

Usage
buildtree(u_parallel2Port : (A, B));
Note: only usable as the root of a tree. This adaptor has no user-accessible

parameters. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.1

(wd.)parallel2Port
Adapted 2-port parallel connection.

An adaptor implementing a 2-port parallel connection between adaptors for
Wave Digital Filter connection trees. Elements connected to this adaptor will
behave as if connected in parallel in circuit.

Usage
buildtree(A : parallel2Port : B);

Note: this adaptor has no user-accessible parameters. It should be used within
the connection tree with one previous and one forward adaptor. Correct imple-
mentation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.1

389

(wd.)u_series2Port
Unadapted 2-port series connection.

An unadapted adaptor implementing a 2-port series connection between adap-
tors for Wave Digital Filter connection trees. Elements connected to this adaptor
will behave as if connected in series in circuit.

Usage
buildtree(u_series2Port : (A, B));

Note: only usable as the root of a tree. This adaptor has no user-accessible
parameters. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.1

(wd.)series2Port
Adapted 2-port series connection.

An adaptor implementing a 2-port series connection between adaptors for Wave
Digital Filter connection trees. Elements connected to this adaptor will behave
as if connected in series in circuit.

Usage
buildtree(A : series2Port : B);

Note: this adaptor has no user-accessible parameters. It should be used within
the connection tree with one previous and one forward adaptor. Correct imple-
mentation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.1

(wd.)parallelCurrent
Adapted 2-port parallel connection + ideal current source.

An adaptor implementing a 2-port series connection and internal idealized cur-
rent source between adaptors for Wave Digital Filter connection trees. This
adaptor connects the two connected elements and an additional ideal current
source in parallel.

390

Usage

i1(i) = parallelCurrent(i, jin);
buildtree(A : il : B);

Where:

e i: index used by model-building functions. Should never be user declared
e jin : Current through the ideal current source in Amps

Note: the adaptor must be declared as a separate function before integration
into the connection tree. It should be used within a connection tree with one
previous and one forward adaptor. Correct implementation is shown above.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.2

(wd.)seriesVoltage
Adapted 2-port series connection + ideal voltage source.

An adaptor implementing a 2-port series connection and internal ideal voltage
source between adaptors for Wave Digital Filter connection trees. This adaptor
connects the two connected adaptors and an additional ideal voltage source in
series.

Usage

v1(i) = seriesVoltage(i, vin)
buildtree(A : vl : B);

Where:

e i: index used by model-building functions. Should never be user declared
e vin : voltage across the ideal current source in Volts

Note: the adaptor must be declared as a separate function before integration
into the connection tree. It should be used within the connection tree with one
previous and one forward adaptor.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.2

(wd.)u_transformer

Unadapted ideal transformer.

391

An adaptor implementing an ideal transformer for Wave Digital Filter connec-
tion trees. The first downward-facing port corresponds to the primary winding
connections, and the second downward-facing port to the secondary winding
connections.

Usage

t1(i) = u_transformer(i, tr);
buildtree(tl : (A , B));

Where:

e i: index used by model-building functions. Should never be user declared
e tr : the turn ratio between the windings on the primary and secondary
coils

Note: the adaptor must be declared as a separate function before integration
into the connection tree. It may only be used as the root of the connection tree
with two forward nodes.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wayve Digital Filters”, 1.4.3

(wd.)transformer
Adapted ideal transformer.

An adaptor implementing an ideal transformer for Wave Digital Filter connec-
tion trees. The upward-facing port corresponds to the primary winding connec-
tions, and the downward-facing port to the secondary winding connections

Usage

t1(i) = transformer(i, tr);
buildtree(A : t1 : B);

Where:

e i: index used by model-building functions. Should never be user declared
e tr : the turn ratio between the windings on the primary and secondary
coils

Note: the adaptor must be declared as a separate function before integration
into the connection tree. It should be used within the connection tree with one
backward and one forward nodes.

392

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.3

(wd.)u_transformerActive
Unadapted ideal active transformer.

An adaptor implementing an ideal transformer for Wave Digital Filter connec-
tion trees. The first downward-facing port corresponds to the primary winding
connections, and the second downward-facing port to the secondary winding
connections.

Usage

t1(i) = u_transformerActive(i, gammal, gamma?2);
buildtree(tl : (A , B));

Where:

e i: index used by model-building functions. Should never be user declared

e gammal : the turn ratio describing the voltage relationship between the
primary and secondary coils

o gamma2 : the turn ratio describing the current relationship between the
primary and secondary coils

Note: the adaptor must be declared as a separate function before integration
into the connection tree. It may only be used as the root of the connection tree
with two forward nodes.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.3

(wd.)transformerActive
Adapted ideal active transformer.

An adaptor implementing an ideal active transformer for Wave Digital Filter
connection trees. The upward-facing port corresponds to the primary winding
connections, and the downward-facing port to the secondary winding connec-
tions

Usage

t1(i) = transformerActive(i, gammal, gamma?2);
buildtree(A : t1 : B);

Where:

393

e i: index used by model-building functions. Should never be user declared

o gammal : the turn ratio describing the voltage relationship between the
primary and secondary coils

e gamma?2 : the turn ratio describing the current relationship between the
primary and secondary coils

Note: the adaptor must be declared as a separate function before integration
into the connection tree. It should be used within the connection tree with two
forward nodes.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.4.3

Three Port Adaptors

(wd.)parallel
Adapted 3-port parallel connection.

An adaptor implementing a 3-port parallel connection between adaptors for
Wave Digital Filter connection trees. This adaptor is used to connect adaptors
simulating components connected in parallel in the circuit.

Usage
buildtree(A : parallel : (B, C));
Note: this adaptor has no user-accessible parameters. It should be used within

the connection tree with one previous and two forward adaptors.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.5.1

(wd.)series
Adapted 3-port series connection.

An adaptor implementing a 3-port series connection between adaptors for Wave
Digital Filter connection trees. This adaptor is used to connect adaptors simu-
lating components connected in series in the circuit.

Usage

tree = A : (series : (B, C));

394

Note: this adaptor has no user-accessible parameters. It should be used within
the connection tree with one previous and two forward adaptors.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 1.5.2

R-Type Adaptors

(wd.)u_sixportPassive
Unadapted six-port rigid connection.

An adaptor implementing a six-port passive rigid connection between elements.
It implements the simplest possible rigid connection found in the Fender Bass-
man Tonestack circuit.

Usage

tree = u_sixportPassive : (A, B, C, D, E, F));

Note: this adaptor has no user-accessible parameters. It should be used within
the connection tree with six forward adaptors.

Reference K. Werner, “Virtual Analog Modeling of Audio Circuitry Using
Wave Digital Filters”, 2.1.5

Node Creating Functions

(wd.)genericNode

Function for generating an adapted node from another faust function or scat-
tering matrix.

This function generates a node which is suitable for use in the connection tree
structure. genericNode separates the function that it is passed into upward-
going and downward-going waves.

Usage
n1(i) = genericNode(i, scatter, upRes);
Where:

e i: index used by model-building functions. Should never be user declared

395

e scatter : the function which describes the the node’s scattering behavior
e upRes : the function which describes the node’s upward-facing port-
resistance

Note: scatter must be a function with n inputs, n outputs, and n-1 parameter
inputs. input/output 1 will be used as the adapted upward-facing port of the
node, ports 2 to n will all be downward-facing. The first input/output pair is
assumed to already be adapted - i.e. the output 1 is not dependent on input 1.
The parameter inputs will receive the port resistances of the downward-facing
ports.

upRes must be a function with n-1 parameter inputs and 1 output. The param-
eter inputs will receive the port resistances of the downward-facing ports. The
output should give the upward-facing port resistance of the node based on the
upward-facing port resistances of the input.

If used on a leaf element (n=1), the model will automatically introduce a one-
sample delay. Thus, the output of the node at sample t based on the input, a[t],
should be the output one sample ahead, b[t+1]. This may require transforma-
tion of the output signal.

(wd.)genericNode_Vout

Function for generating a terminating/leaf node which gives the voltage across
itself as a model output.

This function generates a node which is suitable for use in the connection tree
structure. It also calculates the voltage across the element and gives it as a
model output.

Usage
n1(i) = genericNode_Vout(i, scatter, upRes);
Where:

e i: index used by model-building functions. Should never be user declared

e scatter : the function which describes the the node’s scattering behavior

e upRes : the function which describes the node’s upward-facing port-
resistance

Note: scatter must be a function with 1 input and 1 output. It should give
the output from the node based on the incident wave.

The model will automatically introduce a one-sample delay to the output of the
function Thus, the output of the node at sample t based on the input, a[t], should
be the output one sample ahead, b[t+1]. This may require transformation of
the output signal.

396

upRes must be a function with no inputs and 1 output. The output should give
the upward-facing port resistance of the node.

(wd.)genericNode_Iout

Function for generating a terminating/leaf node which gives the current through
itself as a model output.

This function generates a node which is suitable for use in the connection tree
structure. It also calculates the current through the element and gives it as a
model output.

Usage
n1(i) = genericNode_Iout(i, scatter, upRes);
Where:

e i: index used by model-building functions. Should never be user declared

e scatter : the function which describes the the node’s scattering behavior

e upRes : the function which describes the node’s upward-facing port-
resistance

Note: scatter must be a function with 1 input and 1 output. It should give
the output from the node based on the incident wave.

The model will automatically introduce a one-sample delay to the output of the
function. Thus, the output of the node at sample t based on the input, a[t],
should be the output one sample ahead, b[t+1]. This may require transforma-
tion of the output signal.

upRes must be a function with no inputs and 1 output. The output should give
the upward-facing port resistance of the node.

(wd.)u_genericNode

Function for generating an unadapted node from another Faust function or
scattering matrix.

This function generates a node which is suitable for use as the root of the
connection tree structure.

Usage

n1(i) = u_genericNode(i, scatter);

Where:

397

e i: index used by model-building functions. Should never be user declared
e scatter : the function which describes the the node’s scattering behavior

Note: scatter must be a function with n inputs, n outputs, and n parameter
inputs. each input/output pair will be used as a downward-facing port of the
node the parameter inputs will receive the port resistances of the downward-
facing ports.

Model Building Functions

(wd.)builddown

Function for building the structure for calculating waves traveling down the WD
connection tree.

It recursively steps through the given tree, parametrizes the adaptors, and builds
an algorithm. It is used in conjunction with the buildup() function to create a
model.

Usage
builddown(A : B)~buildup(A : B);

Where: (A : B) :is a connection tree composed of WD adaptors

(wd.)buildup

Function for building the structure for calculating waves traveling up the WD
connection tree.

It recursively steps through the given tree, parametrizes the adaptors, and builds
an algorithm. It is used in conjunction with the builddown() function to create
a full structure.

Usage
builddown(A : B)~buildup(A : B);

Where: (A : B) :is a connection tree composed of WD adaptors

(wd.)getres

Function for determining the upward-facing port resistance of a partial WD
connection tree.

398

It recursively steps through the given tree, parametrizes the adaptors, and builds
an algorithm. It is used by the buildup and builddown functions but is also
helpful in testing.

Usage

getres(A : B)~getres(A : B);

Where: (A : B) :is a partial connection tree composed of WD adaptors

Note: This function cannot be used on a complete WD tree. When called on
an unadapted adaptor (u__ prefix), it will create errors.

(wd.)parres

Function for determining the upward-facing port resistance of a partial WD
connection tree.

It recursively steps through the given tree, parametrizes the adaptors, and builds
an algorithm. It is used by the buildup and builddown functions but is also
helpful in testing. This function is a parallelized version of getres.

Usage
parres((A , B))~parres((A , B));
Where: (A , B) :is a partial connection tree composed of WD adaptors

Note: this function cannot be used on a complete WD tree. When called on an
unadapted adaptor (u__ prefix), it will create errors.

(wd.)buildout

Function for creating the output matrix for a WD model from a WD connection
tree.

It recursively steps through the given tree and creates an output matrix passing
only outputs.

Usage

buildout(A : B);

Where: (A : B) :is a connection tree composed of WD adaptors

399

(wd.)buildtree

Function for building the DSP model from a WD connection tree structure.

It recursively steps through the given tree, parametrizes the adaptors, and builds
the algorithm.

Usage

buildtree(A : B);

Where: (A : B) : a connection tree composed of WD adaptors

webaudio.lib

This library implement WebAudio filters, using their C++ version as a starting
point, taken from Mozilla Firefox implementation.

References

 https://github.com/grame-cncm/faustlibraries/blob/master /webaudio.l
ib

(wa.)lowpass2

Standard second-order resonant lowpass filter with 12dB/octave rolloff. Fre-
quencies below the cutoff pass through, frequencies above it are attenuated.

Usage
_ : lowpass2(f0, Q, dtune)
Where:

e fO: cutoff frequency in Hz
e Q: the quality factor
e dtune: detuning of the frequency in cents

Reference

« https://searchfox.org/mozilla-central /source/dom/media/webaudio/blin
k/Biquad.cpp#98

(wa.)highpass2

Standard second-order resonant highpass filter with 12dB/octave rolloff. Fre-
quencies below the cutoff are attenuated, frequencies above it pass through.

400

https://github.com/grame-cncm/faustlibraries/blob/master/webaudio.lib
https://github.com/grame-cncm/faustlibraries/blob/master/webaudio.lib
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#98
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#98

Usage
_ : highpass2(£f0, Q, dtune)
Where:

e fO: cutoff frequency in Hz
e Q: the quality factor
e dtune: detuning of the frequency in cents

Reference

« https://searchfox.org/mozilla-central /source/dom/media/webaudio/blin
k/Biquad.cpp#127

(wa.)bandpass2

Standard second-order bandpass filter. Frequencies outside the given range of
frequencies are attenuated, the frequencies inside it pass through.

Usage
_ : bandpass2(f0, Q, dtune)
Where:

e £0: cutoff frequency in Hz
e Q: the quality factor
e dtune: detuning of the frequency in cents

Reference

o https://searchfox.org/mozilla-central /source/dom/media/webaudio/blin
k/Biquad.cpp#334

(wa.)notch2

Standard notch filter, also called a band-stop or band-rejection filter. It is the
opposite of a bandpass filter: frequencies outside the give range of frequencies
pass through, frequencies inside it are attenuated.

Usage
_ : notch2(f0, Q, dtune)
Where:

e £0: cutoff frequency in Hz

401

https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#127
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#127
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#334
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#334

e Q: the quality factor
e dtune: detuning of the frequency in cents
Reference

o https://searchfox.org/mozilla-central /source/dom/media/webaudio/blin
k/Biquad.cpp#301

(wa.)allpass2

Standard second-order allpass filter. It lets all frequencies through, but changes
the phase-relationship between the various frequencies.

Usage
_ @ allpass2(f0, Q, dtune)
Where:

e £0: cutoff frequency in Hz
e Q: the quality factor
e dtune: detuning of the frequency in cents

Reference

o https://searchfox.org/mozilla-central /source/dom/media/webaudio/blin
k/Biquad.cpp#268

(wa.)peaking?2

Frequencies inside the range get a boost or an attenuation, frequencies outside
it are unchanged.

Usage

_ : peaking2(f0, gain, Q, dtune)

Where:

e fO: cutoff frequency in Hz

e gain: the gain in dB

e Q: the quality factor

e dtune: detuning of the frequency in cents

402

https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#301
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#301
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#268
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#268

Reference
 https://searchfox.org/mozilla-central /source/dom/media/webaudio/blin
k/Biquad.cpp#233

(wa.)lowshelf2
Standard second-order lowshelf filter. Frequencies lower than the frequency get
a boost, or an attenuation, frequencies over it are unchanged.

_ & lowshelf2(f0, gain, dtune)

Where:

e £0: cutoff frequency in Hz
e gain: the gain in dB
e dtune: detuning of the frequency in cents

Reference
« https://searchfox.org/mozilla-central/source/dom/media/webaudio/blin
k/Biquad.cpp#169

(wa.)highshelf2
Standard second-order highshelf filter. Frequencies higher than the frequency
get a boost or an attenuation, frequencies lower than it are unchanged.

_ ¢ highshelf2(f0, gain, dtune)

Where:

e fO: cutoff frequency in Hz
e gain: the gain in dB
e dtune: detuning of the frequency in cents

Reference

 https://searchfox.org/mozilla-central /source/dom/media/webaudio/blin
k/Biquad.cpp#201

403

https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#233
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#233
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#169
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#169
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#201
https://searchfox.org/mozilla-central/source/dom/media/webaudio/blink/Biquad.cpp#201

	Faust Libraries
	Using the Faust Libraries
	Organization of This Documentation

	General Organization
	Versioning
	Examples

	Standard Functions
	Analysis Tools
	Basic Elements
	Conversion
	Effects
	Envelope Generators
	Filters
	Oscillators/Sound Generators
	Synths

	Contributing
	New Functions
	New Libraries
	Coding Conventions
	Function Naming
	Variable Argument List
	Documentation
	Library Import
	“Demo” Functions
	“Standard” Functions

	Testing the library
	Library deployment

	The Faust Project
	aanl.lib
	Auxiliary Functions
	(aa.)clip
	(aa.)Rsqrt
	(aa.)Rlog
	(aa.)Rtan
	(aa.)Racos
	(aa.)Rasin
	(aa.)Racosh
	(aa.)Rcosh
	(aa.)Rsinh
	(aa.)Ratanh
	(aa.)ADAA1
	(aa.)ADAA2

	Main functions
	Saturators
	(aa.)hardclip
	(aa.)hardclip2
	(aa.)cubic1
	(aa.)parabolic
	(aa.)parabolic2
	(aa.)hyperbolic
	(aa.)hyperbolic2
	(aa.)sinarctan
	(aa.)sinarctan2
	(aa.)tanh1
	(aa.)arctan
	(aa.)arctan2
	(aa.)asinh1
	(aa.)asinh2

	Trigonometry
	(aa.)cosine1
	(aa.)cosine2
	(aa.)arccos
	(aa.)arccos2
	(aa.)acosh1
	(aa.)acosh2
	(aa.)sine
	(aa.)sine2
	(aa.)arcsin
	(aa.)arcsin2
	(aa.)tangent
	(aa.)atanh1
	(aa.)atanh2

	analyzers.lib
	Amplitude Tracking
	(an.)abs_envelope_rect
	(an.)abs_envelope_tau
	(an.)abs_envelope_t60
	(an.)abs_envelope_t19
	(an.)amp_follower
	(an.)amp_follower_ud
	(an.)amp_follower_ar
	(an.)ms_envelope_rect
	(an.)ms_envelope_tau
	(an.)ms_envelope_t60
	(an.)ms_envelope_t19
	(an.)rms_envelope_rect
	(an.)rms_envelope_tau
	(an.)rms_envelope_t60
	(an.)rms_envelope_t19
	(an.)zcr

	Adaptive Frequency Analysis
	(an.)pitchTracker
	(an.)spectralCentroid

	Spectrum-Analyzers
	(an.)mth_octave_analyzer

	Mth-Octave Spectral Level
	(an.)mth_octave_spectral_level6e
	(an.)[third|half]_octave_[analyzer|filterbank]

	Arbritary-Crossover Filter-Banks and Spectrum Analyzers
	(an.)analyzer

	Fast Fourier Transform (fft) and its Inverse (ifft)
	(an.)goertzelOpt
	(an.)goertzelComp
	(an.)goertzel
	(an.)fft
	(an.)ifft

	basics.lib
	Conversion Tools
	(ba.)samp2sec
	(ba.)sec2samp
	(ba.)db2linear
	(ba.)linear2db
	(ba.)lin2LogGain
	(ba.)log2LinGain
	(ba.)tau2pole
	(ba.)pole2tau
	(ba.)midikey2hz
	(ba.)hz2midikey
	(ba.)semi2ratio
	(ba.)ratio2semi
	(ba.)cent2ratio
	(ba.)ratio2cent
	(ba.)pianokey2hz
	(ba.)hz2pianokey

	Counters and Time/Tempo Tools
	(ba.)counter
	(ba.)countdown
	(ba.)countup
	(ba.)sweep
	(ba.)time
	(ba.)ramp
	(ba.)line
	(ba.)tempo
	(ba.)period
	(ba.)pulse
	(ba.)pulsen
	(ba.)cycle
	(ba.)beat
	(ba.)pulse_countup
	(ba.)pulse_countdown
	(ba.)pulse_countup_loop
	(ba.)pulse_countdown_loop
	(ba.)resetCtr

	Array Processing/Pattern Matching
	(ba.)count
	(ba.)take
	(ba.)subseq

	Function tabulation
	(ba.)tabulate
	(ba.)tabulate_chebychev
	(ba.)tabulateNd

	Selectors (Conditions)
	(ba.)if
	(ba.)ifNc
	(ba.)ifNcNo
	(ba.)selector
	(ba.)select2stereo
	(ba.)selectn
	(ba.)selectmulti
	(ba.)selectoutn

	Other
	(ba.)latch
	(ba.)sAndH
	(ba.)downSample
	(ba.)peakhold
	(ba.)peakholder
	(ba.)kr2ar
	(ba.)impulsify
	(ba.)automat
	(ba.)bpf
	(ba.)listInterp
	(ba.)bypass1
	(ba.)bypass2
	(ba.)bypass1to2
	(ba.)bypass_fade
	(ba.)toggle
	(ba.)on_and_off
	(ba.)bitcrusher

	Sliding Reduce
	(ba.)slidingReduce
	(ba.)slidingSum
	(ba.)slidingSump
	(ba.)slidingMax
	(ba.)slidingMin
	(ba.)slidingMean
	(ba.)slidingMeanp
	(ba.)slidingRMS
	(ba.)slidingRMSp

	Parallel Operators
	(ba.)parallelOp
	(ba.)parallelMax
	(ba.)parallelMin
	(ba.)parallelMean
	(ba.)parallelRMS

	compressors.lib
	Conversion Tools
	(co.)ratio2strength
	(co.)strength2ratio

	Functions Reference
	(co.)peak_compression_gain_mono_db
	(co.)peak_compression_gain_N_chan_db
	(co.)FFcompressor_N_chan
	(co.)FBcompressor_N_chan
	(co.)FBFFcompressor_N_chan
	(co.)RMS_compression_gain_mono_db
	(co.)RMS_compression_gain_N_chan_db
	(co.)RMS_FBFFcompressor_N_chan
	(co.)RMS_FBcompressor_peak_limiter_N_chan

	Linear gain computer section
	(co.)peak_compression_gain_mono
	(co.)peak_compression_gain_N_chan
	(co.)RMS_compression_gain_mono
	(co.)RMS_compression_gain_N_chan

	Original versions section
	(co.)compressor_lad_mono
	(co.)compressor_mono
	(co.)compressor_stereo
	(co.)compression_gain_mono
	(co.)limiter_1176_R4_mono
	(co.)limiter_1176_R4_stereo

	Expanders
	(co.)peak_expansion_gain_N_chan_db
	(co.)expander_N_chan
	(co.)expanderSC_N_chan

	Lookahead Limiters
	(co.)limiter_lad_N
	(co.)limiter_lad_mono
	(co.)limiter_lad_stereo
	(co.)limiter_lad_quad
	(co.)limiter_lad_bw

	delays.lib
	Basic Delay Functions
	(de.)delay
	(de.)fdelay
	(de.)sdelay

	Lagrange Interpolation
	(de.)fdelaylti and (de.)fdelayltv
	(de.)fdelay[N]

	Thiran Allpass Interpolation
	(de.)fdelay[N]a

	demos.lib
	Analyzers
	(dm.)mth_octave_spectral_level_demo

	Filters
	(dm.)parametric_eq_demo
	(dm.)spectral_tilt_demo
	(dm.)mth_octave_filterbank_demo and (dm.)filterbank_demo

	Effects
	(dm.)cubicnl_demo
	(dm.)gate_demo
	(dm.)compressor_demo
	(dm.)moog_vcf_demo
	(dm.)wah4_demo
	(dm.)crybaby_demo
	(dm.)flanger_demo
	(dm.)phaser2_demo

	Reverbs
	(dm.)freeverb_demo
	(dm.)stereo_reverb_tester
	(dm.)fdnrev0_demo
	(dm.)zita_rev_fdn_demo
	(dm.)zita_light
	(dm.)zita_rev1
	(dm.)dattorro_rev_demo
	(dm.)jprev_demo
	(dm.)greyhole_demo

	Generators
	(dm.)sawtooth_demo
	(dm.)virtual_analog_oscillator_demo
	(dm.)oscrs_demo
	(dm.)velvet_noise_demo
	(dm.)latch_demo
	(dm.)envelopes_demo
	(dm.)fft_spectral_level_demo
	(dm.)reverse_echo_demo(nChans)
	(dm.)pospass_demo
	(dm.)exciter
	(dm.)vocoder_demo
	(dm.)colored_noise_demo

	dx7.lib
	(dx.)dx7_ampf
	(dx.)dx7_egraterisef
	(dx.)dx7_egraterisepercf
	(dx.)dx7_egratedecayf
	(dx.)dx7_egratedecaypercf
	(dx.)dx7_eglv2peakf
	(dx.)dx7_velsensf
	(dx.)dx7_fdbkscalef
	(dx.)dx7_op
	(dx.)dx7_algo
	(dx.)dx7_ui

	envelopes.lib
	Functions Reference
	(en.)ar
	(en.)asr
	(en.)adsr
	(en.)adsrf_bias
	(en.)adsr_bias
	(en.)ahdsrf_bias
	(en.)ahdsr_bias
	(en.)smoothEnvelope
	(en.)arfe
	(en.)are
	(en.)asre
	(en.)adsre
	(en.)ahdsre
	(en.)dx7envelope

	fds.lib
	Model Construction
	(fd.)model1D
	(fd.)model2D

	Interpolation
	(fd.)stairsInterp1D
	(fd.)stairsInterp2D
	(fd.)linInterp1D
	(fd.)linInterp2D
	(fd.)stairsInterp1DOut
	(fd.)stairsInterp2DOut
	(fd.)linInterp1DOut
	(fd.)stairsInterp2DOut

	Routing
	(fd.)route1D
	(fd.)route2D

	Scheme Operations
	(fd.)schemePoint
	(fd.)buildScheme1D
	(fd.)buildScheme2D

	Interaction Models
	(fd.)hammer
	(fd.)bow

	filters.lib
	Basic Filters
	(fi.)zero
	(fi.)pole
	(fi.)integrator
	(fi.)dcblockerat
	(fi.)dcblocker
	(fi.)lptN

	Comb Filters
	(fi.)ff_comb
	(fi.)ff_fcomb
	(fi.)ffcombfilter
	(fi.)fb_comb
	(fi.)fb_fcomb
	(fi.)rev1
	(fi.)fbcombfilter and (fi.)ffbcombfilter
	(fi.)allpass_comb
	(fi.)allpass_fcomb
	(fi.)rev2
	(fi.)allpass_fcomb5 and (fi.)allpass_fcomb1a

	Direct-Form Digital Filter Sections
	(fi.)iir
	(fi.)fir
	(fi.)conv and (fi.)convN
	(fi.)tf1, (fi.)tf2 and (fi.)tf3
	(fi.)notchw

	Direct-Form Second-Order Biquad Sections
	(fi.)tf21, (fi.)tf22, (fi.)tf22t and (fi.)tf21t

	Ladder/Lattice Digital Filters
	(fi.)av2sv
	(fi.)bvav2nuv
	(fi.)iir_lat2
	(fi.)allpassnt
	(fi.)iir_kl
	(fi.)allpassnklt
	(fi.)iir_lat1
	(fi.)allpassn1mt
	(fi.)iir_nl
	(fi.)allpassnnlt

	Useful Special Cases
	(fi.)tf2np
	(fi.)wgr
	(fi.)nlf2
	(fi.)apnl

	Ladder/Lattice Allpass Filters
	(fi.)allpassn
	(fi.)allpassnn
	(fi.)allpassnkl
	(fi.)allpass1m

	Digital Filter Sections Specified as Analog Filter Sections
	(fi.)tf2s and (fi.)tf2snp
	(fi.)tf1snp
	(fi.)tf3slf
	(fi.)tf1s
	(fi.)tf2sb
	(fi.)tf1sb

	Simple Resonator Filters
	(fi.)resonlp
	(fi.)resonhp
	(fi.)resonbp

	Butterworth Lowpass/Highpass Filters
	(fi.)lowpass
	(fi.)highpass
	(fi.)lowpass0_highpass1

	Special Filter-Bank Delay-Equalizing Allpass Filters
	(fi.)lowpass_plus|minus_highpass

	Elliptic (Cauer) Lowpass Filters
	(fi.)lowpass3e
	(fi.)lowpass6e

	Elliptic Highpass Filters
	(fi.)highpass3e
	(fi.)highpass6e

	Butterworth Bandpass/Bandstop Filters
	(fi.)bandpass
	(fi.)bandstop

	Elliptic Bandpass Filters
	(fi.)bandpass6e
	(fi.)bandpass12e
	(fi.)pospass

	Parametric Equalizers (Shelf, Peaking)
	(fi.)low_shelf
	(fi.)high_shelf
	(fi.)peak_eq
	(fi.)peak_eq_cq
	(fi.)peak_eq_rm
	(fi.)spectral_tilt
	(fi.)levelfilter
	(fi.)levelfilterN

	Mth-Octave Filter-Banks
	(fi.)mth_octave_filterbank[n]

	Arbitrary-Crossover Filter-Banks and Spectrum Analyzers
	(fi.)filterbank
	(fi.)filterbanki

	State Variable Filters
	(fi.)svf

	Linkwitz-Riley 4th-order 2-way, 3-way, and 4-way crossovers
	(fi.)lowpassLR4
	(fi.)highpassLR4
	(fi.)crossover2LR4
	(fi.)crossover3LR4
	(fi.)crossover4LR4
	(fi.)crossover8LR4

	Standardized Filters
	(fi.)itu_r_bs_1770_4_kfilter

	Averaging Functions
	(fi.)avg_rect
	(fi.)avg_tau
	(fi.)avg_t60
	(fi.)avg_t19

	hoa.lib
	Encoding/decoding Functions
	(ho.)encoder
	(ho.)rEncoder
	(ho.)stereoEncoder
	(ho.)multiEncoder
	(ho.)decoder
	(ho.)decoderStereo
	(ho.)iBasicDecoder
	(ho.)circularScaledVBAP
	(ho.)imlsDecoder
	(ho.)iDecoder

	Optimization Functions
	(ho.)optimBasic
	(ho.)optimMaxRe
	(ho.)optimInPhase
	(ho.)optim
	(ho.)wider
	(ho.)mirror
	(ho.)map
	(ho.)rotate
	(ho.)scope

	Spatial Sound Processes
	(ho.).fxDecorrelation
	(ho.).synDecorrelation
	(ho.).fxRingMod
	(ho.).synRingMod

	3D Functions
	(ho.)encoder3D
	(ho.)rEncoder3D
	(ho.)optimBasic3D
	(ho.)optimMaxRe3D
	(ho.)optimInPhase3D
	(ho.)optim3D

	Faust Libraries Index
	aanl
	analyzers
	basics
	compressors
	delays
	demos
	dx7
	envelopes
	fds
	filters
	hoa
	interpolators
	maths
	mi
	misceffects
	oscillators
	noises
	phaflangers
	physmodels
	quantizers
	reducemaps
	reverbs
	routes
	signals
	soundfiles
	spats
	synths
	vaeffects
	version
	wdmodels
	webaudio

	interpolators.lib
	Two points interpolation functions
	(it.)interpolate_linear
	(it.)interpolate_cosine

	Four points interpolation functions
	(it.)interpolate_cubic

	Two points interpolators
	(it.)interpolator_two_points
	(it.)interpolator_linear
	(it.)interpolator_cosine

	Four points interpolators
	(it.)interpolator_four_points
	(it.)interpolator_cubic
	(it.)interpolator_select

	Lagrange based interpolators
	(it.)lagrangeCoeffs(N, xCoordsList)
	(it.)lagrangeInterpolation(N, xCoordsList)
	(it.)frdtable(N, S)
	(it.)frwtable(N, S)

	Misc functions
	(it.)remap

	maths.lib
	Functions Reference
	(ma.)SR
	(ma.)T
	(ma.)BS
	(ma.)PI
	(ma.)deg2rad
	(ma.)rad2deg
	(ma.)E
	(ma.)EPSILON
	(ma.)MIN
	(ma.)MAX
	(ma.)FTZ
	(ma.)copysign
	(ma.)neg
	(ma.)not
	(ma.)sub(x,y)
	(ma.)inv
	(ma.)cbrt
	(ma.)hypot
	(ma.)ldexp
	(ma.)scalb
	(ma.)log1p
	(ma.)logb
	(ma.)ilogb
	(ma.)log2
	(ma.)expm1
	(ma.)acosh
	(ma.)asinh
	(ma.)atanh
	(ma.)sinh
	(ma.)cosh
	(ma.)tanh
	(ma.)erf
	(ma.)erfc
	(ma.)gamma
	(ma.)lgamma
	(ma.)J0
	(ma.)J1
	(ma.)Jn
	(ma.)Y0
	(ma.)Y1
	(ma.)Yn
	(ma.)fabs, (ma.)fmax, (ma.)fmin
	(ma.)np2
	(ma.)frac
	(ma.)modulo
	(ma.)isnan
	(ma.)isinf
	(ma.)chebychev
	(ma.)chebychevpoly
	(ma.)diffn
	(ma.)signum
	(ma.)nextpow2
	(ma.)zc

	mi.lib
	Sources
	Utility Functions
	(mi.)initState

	Mass Algorithms
	(mi.)mass
	(mi.)oscil
	(mi.)ground
	(mi.)posInput

	Interaction Algorithms
	(mi.)spring
	(mi.)damper
	(mi.)springDamper
	(mi.)nlSpringDamper2
	(mi.)nlSpringDamper3
	(mi.)nlSpringDamperClipped
	(mi.)nlPluck
	(mi.)nlBow
	(mi.)collision
	(mi.)nlCollisionClipped

	misceffects.lib
	Dynamic
	(ef.)cubicnl
	(ef.)gate_mono
	(ef.)gate_stereo

	Fibonacci
	(ef.)fibonacci
	(ef.)fibonacciGeneral
	(ef.)fibonacciSeq

	Filtering
	(ef.)speakerbp
	(ef.)piano_dispersion_filter
	(ef.)stereo_width

	Meshes
	(ef.)mesh_square

	Mixing
	(ef.)dryWetMixer
	(ef.)dryWetMixerConstantPower
	(ef.)mixLinearClamp
	(ef.)mixLinearLoop
	(ef.)mixPowerClamp
	(ef.)mixPowerLoop

	Time Based
	(ef.)echo
	(ef.)reverseEchoN(nChans,delay)
	(ef.)reverseDelayRamped(delay,phase)
	(ef.)uniformPanToStereo(nChans)

	Pitch Shifting
	(ef.)transpose

	Saturators
	(ef.)softclipQuadratic
	(ef.)wavefold

	noises.lib
	Functions Reference
	(no.)noise
	(no.)multirandom
	(no.)multinoise
	(no.)noises
	(no.)randomseed
	(no.)rnoise
	(no.)rmultirandom
	(no.)rmultinoise
	(no.)rnoises
	(no.)pink_noise
	(no.)pink_noise_vm
	(no.)lfnoise, (no.)lfnoise0 and (no.)lfnoiseN
	(no.)sparse_noise
	(no.)velvet_noise_vm
	(no.)gnoise
	(no.)colored_noise

	oscillators.lib
	Wave-Table-Based Oscillators
	(os.)sinwaveform
	(os.)coswaveform
	(os.)phasor
	(os.)hs_phasor
	(os.)hsp_phasor
	(os.)oscsin
	(os.)hs_oscsin
	(os.)osccos
	(os.)hs_osccos
	(os.)oscp
	(os.)osci
	(os.)osc
	(os.)m_oscsin
	(os.)m_osccos

	Low Frequency Oscillators
	(os.)lf_imptrain
	(os.)lf_pulsetrainpos
	(os.)lf_pulsetrain
	(os.)lf_squarewavepos
	(os.)lf_squarewave
	(os.)lf_trianglepos
	(os.)lf_triangle

	Low Frequency Sawtooths
	(os.)lf_rawsaw
	(os.)lf_sawpos
	(os.)lf_sawpos_phase
	(os.)lf_sawpos_reset
	(os.)lf_sawpos_phase_reset
	(os.)lf_saw

	Alias-Suppressed Sawtooth
	(os.)sawN
	(os.)sawNp
	(os.)saw2, (os.)saw3, (os.)saw4
	(os.)saw2ptr
	(os.)saw2dpw
	(os.)sawtooth
	(os.)saw2f2, (os.)saw2f4

	Alias-Suppressed Pulse, Square, and Impulse Trains
	(os.)impulse
	(os.)pulsetrainN
	(os.)pulsetrain
	(os.)squareN
	(os.)square
	(os.)imptrainN
	(os.)imptrain
	(os.)triangleN
	(os.)triangle

	Filter-Based Oscillators
	(os.)oscb
	(os.)oscrq
	(os.)oscrs
	(os.)oscrc
	(os.)oscs
	(os.)quadosc
	(os.)sidebands
	(os.)sidebands_list

	Waveguide-Resonator-Based Oscillators
	(os.)oscwc
	(os.)oscws
	(os.)oscq
	(os.)oscw

	Casio CZ Oscillators
	(os.)CZsaw
	(os.)CZsawP
	(os.)CZsquare
	(os.)CZsquareP
	(os.)CZpulse
	(os.)CZpulseP
	(os.)CZsinePulse
	(os.)CZsinePulseP
	(os.)CZhalfSine
	(os.)CZhalfSineP
	(os.)CZresSaw
	(os.)CZresTriangle
	(os.)CZresTrap

	PolyBLEP-Based Oscillators
	(os.)polyblep
	(os.)polyblep_saw
	(os.)polyblep_square
	(os.)polyblep_triangle

	phaflangers.lib
	Functions Reference
	(pf.)flanger_mono
	(pf.)flanger_stereo
	(pf.)phaser2_mono
	(pf.)phaser2_stereo

	physmodels.lib
	Global Variables
	(pm.)speedOfSound
	(pm.)maxLength

	Conversion Tools
	(pm.)f2l
	(pm.)l2f
	(pm.)l2s

	Bidirectional Utilities
	(pm.)basicBlock
	(pm.)chain
	(pm.)inLeftWave
	(pm.)inRightWave
	(pm.)in
	(pm.)outLeftWave
	(pm.)outRightWave
	(pm.)out
	(pm.)terminations
	(pm.)lTermination
	(pm.)rTermination
	(pm.)closeIns
	(pm.)closeOuts
	(pm.)endChain

	Basic Elements
	(pm.)waveguideN
	(pm.)waveguide
	(pm.)bridgeFilter
	(pm.)modeFilter

	String Instruments
	(pm.)stringSegment
	(pm.)openString
	(pm.)nylonString
	(pm.)steelString
	(pm.)openStringPick
	(pm.)openStringPickUp
	(pm.)openStringPickDown
	(pm.)ksReflexionFilter
	(pm.)rStringRigidTermination
	(pm.)lStringRigidTermination
	(pm.)elecGuitarBridge
	(pm.)elecGuitarNuts
	(pm.)guitarBridge
	(pm.)guitarNuts
	(pm.)idealString
	(pm.)ks
	(pm.)ks_ui_MIDI
	(pm.)elecGuitarModel
	(pm.)elecGuitar
	(pm.)elecGuitar_ui_MIDI
	(pm.)guitarBody
	(pm.)guitarModel
	(pm.)guitar
	(pm.)guitar_ui_MIDI
	(pm.)nylonGuitarModel
	(pm.)nylonGuitar
	(pm.)nylonGuitar_ui_MIDI
	(pm.)modeInterpRes
	(pm.)modularInterpBody
	(pm.)modularInterpStringModel
	(pm.)modularInterpInstr
	(pm.)modularInterpInstr_ui_MIDI

	Bowed String Instruments
	(pm.)bowTable
	(pm.)violinBowTable
	(pm.)bowInteraction
	(pm.)violinBow
	(pm.)violinBowedString
	(pm.)violinNuts
	(pm.)violinBridge
	(pm.)violinBody
	(pm.)violinModel
	(pm.)violin_ui
	(pm.)violin_ui_MIDI

	Wind Instruments
	(pm.)openTube
	(pm.)reedTable
	(pm.)fluteJetTable
	(pm.)brassLipsTable
	(pm.)clarinetReed
	(pm.)clarinetMouthPiece
	(pm.)brassLips
	(pm.)fluteEmbouchure
	(pm.)wBell
	(pm.)fluteHead
	(pm.)fluteFoot
	(pm.)clarinetModel
	(pm.)clarinetModel_ui
	(pm.)clarinet_ui
	(pm.)clarinet_ui_MIDI
	(pm.)brassModel
	(pm.)brassModel_ui
	(pm.)brass_ui
	(pm.)brass_ui_MIDI
	(pm.)fluteModel
	(pm.)fluteModel_ui
	(pm.)flute_ui
	(pm.)flute_ui_MIDI

	Exciters
	(pm.)impulseExcitation
	(pm.)strikeModel
	(pm.)strike
	(pm.)pluckString
	(pm.)blower
	(pm.)blower_ui

	Modal Percussions
	(pm.)djembeModel
	(pm.)djembe
	(pm.)djembe_ui_MIDI
	(pm.)marimbaBarModel
	(pm.)marimbaResTube
	(pm.)marimbaModel
	(pm.)marimba
	(pm.)marimba_ui_MIDI
	(pm.)churchBellModel
	(pm.)churchBell
	(pm.)churchBell_ui
	(pm.)englishBellModel
	(pm.)englishBell
	(pm.)englishBell_ui
	(pm.)frenchBellModel
	(pm.)frenchBell
	(pm.)frenchBell_ui
	(pm.)germanBellModel
	(pm.)germanBell
	(pm.)germanBell_ui
	(pm.)russianBellModel
	(pm.)russianBell
	(pm.)russianBell_ui
	(pm.)standardBellModel
	(pm.)standardBell
	(pm.)standardBell_ui

	Vocal Synthesis
	(pm.)formantValues
	(pm.)voiceGender
	(pm.)skirtWidthMultiplier
	(pm.)autobendFreq
	(pm.)vocalEffort
	(pm.)fof
	(pm.)fofSH
	(pm.)fofCycle
	(pm.)fofSmooth
	(pm.)formantFilterFofCycle
	(pm.)formantFilterFofSmooth
	(pm.)formantFilterBP
	(pm.)formantFilterbank
	(pm.)formantFilterbankFofCycle
	(pm.)formantFilterbankFofSmooth
	(pm.)formantFilterbankBP
	(pm.)SFFormantModel
	(pm.)SFFormantModelFofCycle
	(pm.)SFFormantModelFofSmooth
	(pm.)SFFormantModelBP
	(pm.)SFFormantModelFofCycle_ui
	(pm.)SFFormantModelFofSmooth_ui
	(pm.)SFFormantModelBP_ui
	(pm.)SFFormantModelFofCycle_ui_MIDI
	(pm.)SFFormantModelFofSmooth_ui_MIDI
	(pm.)SFFormantModelBP_ui_MIDI

	Misc Functions
	(pm.)allpassNL
	(pm).modalModel

	quantizers.lib
	Functions Reference
	(qu.)quantize
	(qu.)quantizeSmoothed
	(qu.)ionian
	(qu.)dorian
	(qu.)phrygian
	(qu.)lydian
	(qu.)mixo
	(qu.)eolian
	(qu.)locrian
	(qu.)pentanat
	(qu.)kumoi
	(qu.)natural
	(qu.)dodeca
	(qu.)dimin
	(qu.)penta

	reducemaps.lib
	(rm.)parReduce
	(rm.)topReduce
	(rm.)botReduce
	(rm.)reduce
	(rm.)reducemap

	reverbs.lib
	Schroeder Reverberators
	(re.)jcrev
	(re.)satrev

	Feedback Delay Network (FDN) Reverberators
	(re.)fdnrev0
	(re.)zita_rev_fdn
	(re.)zita_rev1_stereo
	(re.)zita_rev1_ambi

	Freeverb
	(re.)mono_freeverb
	(re.)stereo_freeverb

	Dattorro Reverb
	(re.)dattorro_rev
	(re.)dattorro_rev_default

	JPverb and Greyhole Reverbs
	(re.)jpverb
	(re.)greyhole

	routes.lib
	Functions Reference
	(ro.)cross
	(ro.)crossnn
	(ro.)crossn1
	(ro.)cross1n
	(ro.)crossNM
	(ro.)interleave
	(ro.)butterfly
	(ro.)hadamard
	(ro.)recursivize
	(ro.)bubbleSort

	signals.lib
	Functions Reference
	(si.)bus
	(si.)block
	(si.)interpolate
	(si.)repeat
	(si.)smoo
	(si.)polySmooth
	(si.)smoothAndH
	(si.)bsmooth
	(si.)dot
	(si.)smooth
	(si.)smoothq
	(si.)cbus
	(si.)cmul
	(si.)cconj
	(si.)onePoleSwitching
	(si.)rev
	(si.)vecOp

	soundfiles.lib
	Functions Reference
	(so.)loop
	(so.)loop_speed
	(so.)loop_speed_level

	spats.lib
	(sp.)panner
	(sp.)constantPowerPan
	(sp.)spat
	(sp.)stereoize

	synths.lib
	(sy.)popFilterDrum
	(sy.)dubDub
	(sy.)sawTrombone
	(sy.)combString
	(sy.)additiveDrum
	(sy.)fm
	Drum Synthesis
	(sy.)kick
	(sy.)clap
	(sy.)hat

	vaeffects.lib
	Moog Filters
	(ve.)moog_vcf
	(ve.)moog_vcf_2b[n]
	(ve.)moogLadder
	(ve.)moogHalfLadder
	(ve.)diodeLadder

	Korg 35 Filters
	(ve.)korg35LPF
	(ve.)korg35HPF

	Oberheim Filters
	(ve.)oberheim
	(ve.)oberheimBSF
	(ve.)oberheimBPF
	(ve.)oberheimHPF
	(ve.)oberheimLPF

	Sallen Key Filters
	(ve.)sallenKeyOnePole
	(ve.)sallenKeyOnePoleLPF
	(ve.)sallenKeyOnePoleHPF
	(ve.)sallenKey2ndOrder
	(ve.)sallenKey2ndOrderLPF
	(ve.)sallenKey2ndOrderBPF
	(ve.)sallenKey2ndOrderHPF

	Effects
	(ve.)wah4
	(ve.)autowah
	(ve.)crybaby
	(ve.)vocoder

	version.lib
	(vl.)version

	wdmodels.lib
	Using this Library
	Quick Start
	A Simple RC Filter Model
	Building a Model
	Declaring Model Parameters as Inputs
	Trees in Faust
	How the Build Functions Work
	Acknowledgements

	Algebraic One Port Adaptors
	(wd.)resistor
	(wd.)resistor_Vout
	(wd.)resistor_Iout
	(wd.)u_voltage
	(wd.)u_current
	(wd.)resVoltage
	(wd.)resVoltage_Vout
	(wd.)u_resVoltage
	(wd.)resCurrent
	(wd.)u_resCurrent
	(wd.)u_switch

	Reactive One Port Adaptors
	(wd.)capacitor
	(wd.)capacitor_Vout
	(wd.)inductor
	(wd.)inductor_Vout

	Nonlinear One Port Adaptors
	(wd.)u_idealDiode
	(wd.)u_chua
	(wd.)lambert
	(wd.)u_diodePair
	(wd.)u_diodeSingle
	(wd.)u_diodeAntiparallel

	Two Port Adaptors
	(wd.)u_parallel2Port
	(wd.)parallel2Port
	(wd.)u_series2Port
	(wd.)series2Port
	(wd.)parallelCurrent
	(wd.)seriesVoltage
	(wd.)u_transformer
	(wd.)transformer
	(wd.)u_transformerActive
	(wd.)transformerActive

	Three Port Adaptors
	(wd.)parallel
	(wd.)series

	R-Type Adaptors
	(wd.)u_sixportPassive

	Node Creating Functions
	(wd.)genericNode
	(wd.)genericNode_Vout
	(wd.)genericNode_Iout
	(wd.)u_genericNode

	Model Building Functions
	(wd.)builddown
	(wd.)buildup
	(wd.)getres
	(wd.)parres
	(wd.)buildout
	(wd.)buildtree

	webaudio.lib
	(wa.)lowpass2
	(wa.)highpass2
	(wa.)bandpass2
	(wa.)notch2
	(wa.)allpass2
	(wa.)peaking2
	(wa.)lowshelf2
	(wa.)highshelf2

