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ABSTRACT

We present a method of interpolating irregularly-sampled multi-dimensional data onto
arbitrary coordinates using local polynomial regression. Local regression techniques fit
models to a subset of samples in the vicinity of a given coordinate, and may optionally
weight samples according to measurement error and/or relative position, resulting in
a smooth, self-consistent function that may be evaluated over the entire sample space.
Additionally, we derive an optional method for determining local kernel estimators in
a single step, approximating an optimal reduced chi-squared statistic on the fit.

Keywords: resampling, interpolation, local polynomial regression, multivariate polyno-
mials, kernel estimation

1. INTRODUCTION

Irregularly sampled data are commonplace in astronomy and other scientific fields, where interpo-
lation onto a regular spaced grid is almost always required for visualization and analysis. However,
resampling data in three or more dimensions simultaneously is complicated and computationally ex-
pensive, so frequently one resorts to resampling multiple times in a series of steps for each dimension.
This process can be time-consuming and prone to propagating errors, introduced in the interpolation
procedure, from one dimension into others. It also does not account for the continuity requirements
on adjacent values in the multiple dimensions imposed by the physical data collection process. In
this paper, we outline a method to carry out simultaneous resampling (interpolation) in multiple
dimensions.

1.1. Motivation

The FIFI-LS instrument (Colditz et al. 2018; Fischer et al. 2018) used on SOFIA is an example
of an integral field spectrograph that generates data cubes in which the original values are not
evenly sampled on a regular three-dimensional grid. As described by Fischer et al. (2018), FIFI-LS
records flux values at an array of discrete 25 x and y positions on the sky (spaxels), and at an
array of 16 wavelengths λ. The spaxels are not regularly spaced on the sky. Furthermore, the set of
sampled wavelength values varies from spaxel to spaxel, and some measurements are either missing
or noisy. Vacca et al. (2020) 1 give a brief overview of the pipeline developed to convert instrumental
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1 See also the FIFI-LS Observer’s Handbook and The FIFI-LS Guest Observer (GO) Data Handbook.
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values recorded by the instrument into flux estimates at regularly sampled spatial and wavelength
coordinates. The initial version of this data processing pipeline dealt with the irregularly sampled
cloud of data points in three dimensions by first interpolating the flux values in wavelength at each
spatial point onto a regular array, so that each spaxel was assigned the identical wavelength array.
Then at each wavelength, interpolation was performed again in the spatial dimension to compute
fluxes on a regular spatial grid. In this way, a regularly sampled data cube in three dimensions
(space and wavelength) was generated. Although this procedure is effective, it can be slow, and
the wavelength interpolation ignores the coupling (due to physical continuity requirements) of data
points that are spatially adjacent (and therefore within the instruments point spread function).

1.2. Local Polynomial Regression (LPR)

One of the most employed and well understood methods of interpolating data is to model sample
measurements as a smooth function of unknown parameters, and then estimate a set of parameters
that best fit those data using regression. For the purposes of this paper, polynomials functions are
used for their versatility and ease of use.

One could choose to model the entire sample space with a single set of parameters that describe
the “True” underlying function of the noisy sample measurements. However, as the complexity of
the structure to be modelled increases, so too does the number of parameters required, leading to
numerous difficulties. Numerical instability becomes more pronounced in higher dimensions and for
higher polynomial orders (Noferini and Townsend (2016)). Gelman and Imbens (2019) show that for
polynomials, high order fits have increased sensitivity to noise, and strong dependence on the order
of polynomial fit. It is therefore preferable to derive numerous model from subsets of samples in the
local vicinity of each point at which a fit is required.

LPR is discussed in detail by (Fan and Gijbels 1996), with multivariate extensions provided
by (Masry 1996), and expanded upon by (Gu et al. 2015). All methods essentially minimize the
following problem via weighted least squares given by (Fan et al. 1996) as

min
ĉ

N∑
i=1

(
yi −

p∑
j=0

cj(xi − v)j

)2

Wt(
xi − v
h

) (1)

where (x1, y1), · · · , (xN , yN) form an i.i.d sample from a certain population, Wt is a non-negative,
symmetric, and bounded weighting function with smoothing parameter (or bandwidth) h, and v is
the point of interest. h may be optimized globally or locally for each resampling point by balancing
the bias and variance of ĉ such that the optimal bandwidth minimizes the Mean Squared Error (MSE)
of ĉ(x)− c(x)

ĥ = arg min
h

ˆMSE(f(ĉ,x)) (2)

Unfortunately, this is not always effective when resampling irregular data taken from real observa-
tions. The optimal bandwidth given by (Gu et al. 2015) assumes that x are i.i.d, with a common
density, and errors on the sample measurements (ε) are likewise i.i.d with zero mean, and indepen-
dent of x. These assumptions cannot always hold for FIFI-LS observations on SOFIA when data are
combined over multiple flights over long periods of time, leading to uneven sampling density, and
calibration errors that can vary substantially between samples.
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Additionally, little attention has been given to defining what constitutes the “local” subset of
samples in a fit. While the standard method of selecting the N-nearest neighbors is acceptable if x is
i.d.d, doing so for irregularly sampled data in which there is no such guarantee is a dangerous tactic
to employ. For FIFI-LS observations, the spatial and spectral response of the telescope is known,
it is scientifically irresponsible to perform regression on samples for which there is no coupling to
the response function. In higher dimensions, the problem of determining local sample subsets using
nearest-neighbors becomes increasingly severe as there is no accounting for sufficient sampling along
a given dimension, potentially leading to unstable solutions and co-linearity. The following LPR
implementation attempts to overcome many of these difficulties while remaining computationally
viable.

2. FORMULATION

2.1. Polynomial Representation of K-Dimensional Data

We assume that the input data consist of N measurements (samples) y distributed over K dimen-
sions and that the ‘true’ (but unknown) generating function for the measured values is given by
f which can be adequately represented by a K-dimensional polynomial function whose order ok is
allowed to vary in each dimension k. Then at the coordinate x we have,

f(x) =

o1∑
p1=0

o2∑
p2=0

· · ·
oK∑
pK=0

λ(p1,p2,···pK)c(p1,p2,···pK)x
p1

1 x
p1

1 · · · x
pK
K (3)

Here, c are the coefficients of the polynomial and p are the exponents of the coordinate variables x
for the K dimensions, while λ(p1,p2,···pK) is defined as

λ(p1,p2,···pK) =

{
1, if

∑K
k=0 pk ≤ max(o)

0, otherwise.
(4)

We can then define a set S containing all polynomial exponent combinations where λ = 1,

S = {(p1, p2, · · · pK)|λ(p1,p2,···pK) = 1} (5)

and can then re-write equation 3 in the form

f(x) =
∑
s∈S

csΦs (6)

where the polynomial terms of the equation are given as

Φs =
K∏
k=1

xskk (7)

The set s is in lexographic order such that (for K = 3) {0, 1, 1} comes before {1, 0, 0}. As an
example, when K = 2 and ok = 2 for all k we have
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s(p=2,K=2) = [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)]

Φ = [1, x2, x
2
2, x1, x1x2, x

2
1]

f(x) = c1 + c2x2 + c3x
2
2 + c4x1 + c5x1x2 + c6x

2
1.

Similarly, for K = 3 where p1 = 1, p2 = 2, and p3 = 3 we have

s(p=[1,2,3],K=3) = [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0), (0, 1, 1), (0, 1, 2),

(0, 2, 0), (0, 2, 1), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 2, 0)]

Φ = [1, x3, x
2
3, x

3
3, x2, x2x3, x2x

2
3, x

2
2, x

2
2x3, x1x3, x1x

2
3, x1x2, x1x2x3, x1x

2
2]

f(x) = c1 + c2x3 + c3x
2
3 + c4x

3
3 + c5x2 + c6x2x3 + c7x2x

2
3 + c8x2 + c9x

2
2x3+

c10x1x3 + c11x1x
2
3 + c12x1x2 + c13x1x2x3 + c14x1x

2
2

2.2. Resampling Algorithm

With the above representation for f we now wish to evaluate f(x) at a point x = v. We assume
that f has been sampled at N data (or measurement) points yi, i = 1, · · · , N . Throughout, we refer
to the measurement values yi at coordinates xi as samples, and the coordinates v as resampling
points. To compute f(v) we consider the N data values within a window region set Ω centered on
v. This set comprises values within an ellipsoidal hyper-surface. We assume each measured value yi
has an associated noise εi. In this case,

f(xi) + εi = yi, (8)

and the task of determining f(v) becomes one of estimating the S coefficients c of f from N noisy
measurements. Using the above notation we have

c ·Φ + ε = y (9)

which can be expressed in matrix notation as
1 Φ(2,1) Φ(3,1) · · · Φ(S,1)

1 Φ(2,2) Φ(3,2) · · · Φ(S,2)

1 Φ(2,3) Φ(3,3) · · · Φ(S,3)
...

...
...

. . .
...

1 Φ(2,N) Φ(3,N) · · · Φ(S,N)




c1

c2
...

cS

+


ε1

ε2

ε3
...

εN

 =


y1

y2

y3
...

yN

 (10)

where Φ(m,i) is the mth element of the set of Φ for sample point i. We now wish to solve for the
set of S coefficients c. The standard procedure is to use the least-squares formalism, by which the
estimated values for the coefficients, ĉ, are given by Fan et al. (1996) as

ĉ = (ΦTΦ)−1ΦTy (11)

or, in the case of a weighted fit,

ĉ = (ΦTWΦ)−1ΦTWy (12)
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where W is an NxN diagonal weight matrix in which the diagonal elements are the weights for
each measurement point. Once the ĉ values have been determined, f(v) can be evaluated:

Φs(v) =
K∏
k=1

vskk (13)

f(v) =
∑
s∈S

ĉsΦs(v) (14)

The conditional bias and variance on ĉ are given by Fan et al. (1996) as

Bias(ĉ|Φ) = E(ĉ|Φ)− c = (ΦTWΦ)−1ΦTWr (15)

Var(ĉ|Φ) = Cĉ = (ΦTWΦ)−1(ΦTΣΦ)(ΦTWΦ)−1 (16)

where the residuals on the fit are given as

r = Φĉ− y (17)

and

Σ = diag(w2
δ(xi,m)σ2

x(xi)) (18)

σx(x) is the conditional variance of y given x, and wδ(xi,m) is the positional (distance) weighting
for sample i with respect to resampling point m (equivalent to the Wt function in equation 1).

2.3. Error Propagation and Estimation

The Mean Squared Error (MSE) of a fit at point v is given by Fan et al. (1996) as

MSE{f(v)} = (Bias{f(v) | ĉv})2 + Var{f(v) | ĉv} (19)

and variance on the fit at Φ(v) may be propagated as

Var{f(v) | ĉv} = Φ(v)TCĉΦ(v) (20)

We also derive a data driven estimate of the variance-covariance matrix from the residuals on the
fit r using

Var{ĉ |Φ, r} = Rĉ = χ2
r(Φ

TWΦ)−1 (21)

where χ2
r is the reduced chi-squared statistic calculated as

χ2
r =

|Ω|
tr(W )(|Ω| − |S|)

rTWr (22)

Note that |S| is the total number of parameters that are being estimated in for the fit, where S
is given in equation 5, and |Ω| are the total number of samples in the “local” region of v, so the
quantity |Ω| − |S| gives the degrees of freedom in our fit. The variance on a fit at v according to
residuals is then given as

Var{f(v) | r} = Φ(v)TRĉΦ(v) (23)
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3. IMPLEMENTATION

The resampling algorithm takes N samples with coordinates x and generates local polynomial fits
at M resampling points with coordinates v. In this case, the “local” region for a single resampling
point m is defined by a K-dimensional ellipsoid centered on vm. The principle axes of the ellipsoid
are given as a user supplied parameter ω so that equation of the ellipsoid centered on point m is
given as

K∑
k=1

(xk − vm,k)2

ω2
k

= 1 (24)

The window region of point m contains the set of samples Ωm where sample i is included when

i ∈ Ωm |
K∑
k=1

(xi,k − vm,k)2

ω2
k

≤ 1 (25)

This window region will be constant for all resampling points. Therefore, it should be chosen
carefully as it defines the subset of samples that are to be considered “local” for the LPR of each
resampling point. Although there is no strict limit to the size of the window in each dimension, it
should be chosen so that there are sufficient samples to perform a polynomial fit of the desired order
in most cases (see section 3.2.2). Since ω is constant, determining ω for measurements consisting of
variable sample densities can be difficult. It may be necessary to set ω to a large value in order to
ensure fits occur at certain resampling points.

If the instrumental response of the observing device is of importance, then the window size should
be chosen to represent a maximum distance for any coupling effects. For example, FIFI-LS reductions
use a default window of 3 × fwhmλ̄ in the spatial dimensions. If distance weighting is enabled (see
section 3.3), and σx � ω, there is no significant consequence for the final result with increased ω.
Computationally, however, the window size increases the number of operations by O(ωK) assuming
uniform sampling density, and should be given extra consideration in higher dimensional reductions.
Figure 1 gives a graphical representation of the window in 3 dimensions.

3.1. Search Problem

In many cases, both M and N are large, and deriving Ω for all M resampling points is compu-
tationally expensive. To shorten processing time, the reduction is performed in parallel with each
thread performing a search on set of samples that are guaranteed to be close to another set of resam-
pling points. This is accomplished by dividing up the sample coordinate space into regularly spaced
K-orthotopes (blocks) with the width in dimension k equal to ωk. Binning resampling points and
samples into blocks is a quick and easy procedure. For any given block, the search for samples within
the window region of any resampling point in that block should be limited to the block itself, and all
immediately neighboring blocks as shown in figure 2.
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Figure 1. The window region centered around point vm in 3-dimensions. All samples falling within the
shaded region will be included in the fit. The principle axes (ω) of the ellipsoid defining the bounds of the
window are supplied by the user.

Figure 2. Division of a 2-D sample space into blocks. The search for samples inside the window region of
all resampling points within the target block is limited to immediately neighboring blocks.
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The procedure used to bin samples and points into blocks simply by assigning an integer index to
any given coordinate x in K-dimensions using

blocki,k =

⌊
xi,k −min(xk)

ωk

⌋
(26)

for coordinate i in dimension k where b· · · c indicates the floored value. All neighboring blocks (the
“neighborhood”) including the block itself may then be found by simply applying the kernel

neighborhoodi,k = blocki,k + [−1, 0, 1] (27)

Once the block indices for all samples and points have been found, reductions are performed in
parallel over all blocks. Each thread in the parallel reduction is sent a block of resampling points
along with its neighborhood of samples as shown in figure 3. Every resampling point in a thread is
then processed in serial, first determining which samples in the neighborhood are inside the window
region Ωm of point m, and then deriving a fitted value at that location (figure 4).

Figure 3. Left: Samples (blue dots) and resampling points (red crosses) divided into blocks for parallel
reduction. Right: Four threads of the parallel reduction, each containing a single block of resampling points
(red grid squares) and its surrounding neighborhood of samples (blue grid squares).
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Figure 4. Left: A single thread of the parallel reduction containing a set of resampling points (crosses)
and samples (blue dots). Each resampling point will be processed in series. Right: All samples within the
window region (Ωm) of point m at coordinate vm will be included in the fit.

3.2. Distribution Checks

Before deriving a fit from the samples in the window region Ωm of about coordinate vm of resampling
point m, a number of checks may be performed. These ensure that a polynomial fit of the desired
order is possible, and the position of the resampling point relative to the sample distribution will
result in a representative fit.

3.2.1. Edge Rejection

Polynomial fits (especially higher order polynomials) generally become increasingly less represen-
tative of the samples from which they were derived away from the center of the sample distribution.
A simple one-dimensional example shown in figure 5 illustrates this deviation.

Away from the center of the distribution (x̄ = 0), both the deviation and error on the fit begin to
increase significantly, and it would be undesirable to attempt a fit in such regions. Therefore, the
user may supply an “edge threshold” parameter (βedge > 0) effectively defining an “edge” around the
center of the distribution. No fitting will be permitted for any resampling point located outside of
this edge, and the value of the fit for any rejected point will be set to a user-defined failure value.
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Figure 5. A 3rd order polynomial fit (red) to the samples (blue). The shaded red area is the 1σ error on
the fit.

For a single dimension, we define the edge threshold parameter such that

f(x) =

ĉm · Φ(vm), if |vm − x̄| ≤ σx/βedge

Failure value, otherwise.
(28)

As βedge increases, the acceptable fitting region becomes more concentrated about the center of
the distribution (x̄). In multiple dimensions, the covariance of the sample distribution (Σx) is used,
allowing the additional benefit of preventing fits away from colinear type distributions. For K > 1,
the following exclusion is applied:

f(x) =

ĉm · Φ(vm), if
√

(vm − x̄)TΣx
−1(vm − x̄) ≤ β−1

edge

Failure value, otherwise.
(29)

The point rejection region for a 2-dimensional sample distribution is illustrated in figure 6 using an
edge threshold parameter βedge = 0.5, rejecting any fits occurring at more than 2σx from the center
of the sample distribution.
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Figure 6. Edge rejection with βedge = 0.5. No fits will be attempted more than 2σx from the center of the
sample distribution (blue dots). The fit exclusion area is shaded red and lines of constant σx (Mahalanobis
distance) are plotted as red dashed lines.

3.2.2. Polynomial Order Rejection

For the terms of a polynomial equation to be linearly independent over each dimension, we require
that there be at least norder samples to fit for a given order o, where

norder =
K∏
k=1

(ok + 1) (30)

For example, two samples can uniquely define a first order (linear) 1-dimensional polynomial so
long as those samples occupy unique coordinates. However, those same two points can be modelled
exactly by an infinite number of higher order polynomials. There is currently one mandatory and
two optional polynomial order checks. In all cases it is mandatory that

|Ωm| ≥ norder (31)

where |Ωm| indicates the cardinality (size, or number of samples) of the set Ωm for point m. If the
above condition is not met, the fit is aborted, and a failure value is returned for the value at vm.
In general, we want a “best fit” solution (in a least-squares sense) where |Ωm| > norder. However,
equation 31 only requires that an exact fit is possible. If the user can guarantee that the samples are
uniformly distributed, then the procedure may be stopped here to save processing time.
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The second step checks the number of unique coordinates in each dimension k such that

|{xi,k∀i ∈ Ωm}| > ok (32)

where |{· · · }| gives the cardinality (number of unique values) of the sample coordinates for a given
dimension. The above check ensures that we have enough unique terms to allow for matrix inversion
in equations 11 and 12. Depending on how the user has defined βedge (see 3.2.1), this may allow for
extrapolation at any point within the window.

The final check ensures that there are enough samples to provide for a least-squares best fit solution,
and that any fitting occurs within the bounds defined by the samples. For a fit to occur,

|{xi,k∀i ∈ Ωm |xi,k < vm,k}| ≥ ok

|{xi,k∀i ∈ Ωm |xi,k > vm,k}| ≥ ok (33)

ensuring that |Ωm| ≥ 2norder.
Examples of these three order checking algorithms are shown in figure 7. If the sample distribution

does not meet the criteria defined in the order checking algorithm, the returned fit value will be set
to a user defined failure value.

Figure 7. The three available edge checking algorithms shown in order of increasing robustness from left to
right. Samples (black dots) are regularly spaced at Ω/2 in the horizontal direction, and Ω/6 in the vertical
direction. Regions in which fits may occur are shaded green.

3.3. Weighting

Weighted polynomial regression is a method by which some samples in the local polynomial fit have
a stronger influence on the solution of the best fit coefficients, as defined in equation 12. Weighting
may be based on the measurement error associated with each sample, the position of a sample relative
to each resampling point, or a combination of both error and position.

The weighting applied to point m is given as

diag(Wm) = wσ,iwδ(xi,m) | i ∈ Ωm (34)
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where Ωm is the local subset of samples included in the fit for point m. If positional (distance)
weighting is not applied, then wδ = 1, and error weighting is disabled when wσ = 1. If no weighting
occurs, then W = I, where I is an identity matrix of rank |Ωm|, and the notation |.| indicates the
cardinality (size or number of unique values) in the set.

3.3.1. Error Weighting

If the 1σ measurement error of sample i is known (σyi), the associated weighting factor is:

wσ,i =
1

σ2
yi

(35)

The following figure (8) shows an example of fitting with and without error weighting.

Figure 8. An example of the application of error weighting in 1-dimension. Two of the samples shown with
large error bars will skew the fit away from the underlying function if errors are not accounted for.

3.3.2. Distance Weighting

Distance weighting applies higher significance to samples that are closer to the resampling point.
For the solution to converge effectively, the weighting kernel should be a non-negative, bounded
probability function (Gu et al. (2015)). Two popular functions are the Epanechnikov and Gaussian
kernels, of which we have opted for the Gaussian function as it has some desirable qualities that
are exploited during the adaptive weighting formulation (see section 3.4). The distance weighting
applied to a single sample i at coordinate xi for a local polynomial fit centered on resampling point
m at coordinate vm is given as

w(δ,i,m) = exp

(
−

K∑
k=1

(vm,k − xi,k)2

αk

)
(36)

where α is a user supplied smoothing parameter which may vary for each dimension (k). As α→ 0,
closer samples gain increasing influence over the fit, whereas larger α values result in more equal
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weighting between samples, irrespective of distance. Note that in terms of the bandwidth given in
equation 1, h =

√
α. We also frequently use the equation defining a multivariate Gaussian where

wδ = exp
(
−(v − x)TA−1(v − x)

)
(37)

where A = diag(2σ2
w) = diag(α), and σw is the standard deviation of the Gaussian. An example of

distance weighting, and the effect of modifying α can be seen in figure 9.

Figure 9. The effect of distance weighting on a second order polynomial fit to samples generated using
y = cos(πx). The smoothing parameter (α) can be modified to increase the influence of samples in the fit
based on distance from the resampling point (∆x).

3.4. Adaptive Weighting

If the data we wish to model can be easily represented by a smooth function, then standard distance
weighting may produce an acceptable fit. However, when the underlying function contains a mix of
structures of varying complexity, a single distance weighting parameter may not be adequate. This is
alleviated somewhat by allowing the bandwidth parameter h in equation 1 to vary at each resampling
point, and is extensively discussed by Fan et al. (1996) and Masry (1996) amongst others.

Most methods seek to find the optimal smoothing parameter by minimizing the mean squared error
given in equation 19, balancing the leading bias and variance. In the case where we have supplied
measurement errors, this does not always result in what one may consider an “optimal fit”. This is
especially true in the case of FIFI-LS where minimizing the overall MSE results in highly spurious
fits. An alternative presented here, defines the optimal fit as one in which the reduced chi-squared
statistic (χ2

r), given in equation 22, is equal to one. When the measurement error is known, χ2
r > 1

indicates a poor fit which does not adequately represent the data. Conversely, a fit where χ2
r < 1 is

over-fitting the data, and can be thought of as fitting to the noise. Therefore, our goal in determining
an optimal smoothing parameter is to get χ2

r → 1, rather than minimizing the MSE, which could
likely result in χ2

r � 1.
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We accomplish this by performing an initial test reduction using both distance and error weighting
where

W = WδWσ = diag(wδ,iwσ,i) = diag(
wδ,i
σ2
y,i

) (38)

and propagate the theoretical and stochastic variance as defined in equations 20 and 23. We assume
that the two measurements are related by

χ2
r =

Var{f(v | ĉv)}
Var{f(v | r)}

(39)

Now, for a set of n error-normalized observations the unbiased sample variance is given by

S2
n−1 =

1

n− 1

n∑
i=1

(Zi − Z̄)2 (40)

where we set

Z =
y − ŷ
σy

(41)

From Mood (1974) we know that the mean squared error is

MSE(S2
n−1) =

1

n

(
µ4 −

n− 3

n− 1
σ4
f

)
=

1

n

(
β2 +

2n

n− 1

)
σ4
f (42)

where µ4 is the fourth moment of the distribution, and β2 is the excess kurtosis, also given by

β2 =
µ4

σ4
f

− 3 (43)

Clearly, in this case MSE(S2
n−1) ≈ χ2

r when n � 1, and if we make the strong assumption that
excess kurtosis is independent of σf , then from equation 42 we can write

χ2
r = β2

sσ
4
f (44)

where βs is a constant. Since σy (the error in the measured sample values) was supplied by the user
and is assumed to be correct, we allow σf to represent an error factor introduced by the weighting
function. A representative value for σf can be derived by integrating equation 37 as

σf =

∫
RK

wδ =
(π

2

)K/2
det(A)1/2 (45)

Therefore,

χr = βs
π

2
det(A) (46)
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with χr =
√
χ2
r. βs can then be determined from a suitable test reduction, and a new weighting

function can be defined such that χr → 1. To accomplish this, and using our assumption that βs is
constant, we set

det(Anew) = det(A)/χr (47)

3.4.1. Test Reduction

One fundamental assumption made during the adaptive weighting algorithm is that the MSE is
dependent on the excess kurtosis introduced by the weighting function (see equation 42). This
approximation can only be relied upon when n� 1, and we therefore need to select an initial kernel
that can fulfill this requirement. However, if the kernel is too large such that a low order polynomial
could not possibly represent the expected structure in the data, a misleadingly high excess kurtosis
would be reported due to an excess of outliers.

In astronomical observations (for which this algorithm was devised), the Full-Width-Half-Maximum
(FWHM) for the point spread function of the observing system is usually known, at least approxi-
mately. If so, we know the uncertainty in the positional measurements is given as

σx =
FWHMx

2
√

2 ln 2
(48)

To effectively nyquist sample the expected structures present in data retrieved from an instrument
with a Gaussian response function we set

σtest =
π√

2 ln 2
σx

=
π

4 ln 2
FWHMx (49)

We can then define the test distance weighting kernel as

Atest = diag(2σ2
test) = diag(αtest) (50)

There is one other important difference to the standard reduction: the user supplied resampling
points (coordinates at which fits are required) are completely ignored, and instead replaced with
the sample coordinates themselves. In other words, a fit is performed at each sample coordinate
generated from the values of all samples within its window region (see figure 10).
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Figure 10. Left: A standard reduction on a single block. Samples are shown as blue dots, and resampling
points are shown as red crosses with the window region of a single point marked as a dashed red line. Right:
A test reduction for determining the adaptive weighting kernels where resampling points are equal to the
sample coordinates.

3.4.2. Adaptive Weighting Kernel

A counter-intuitive consequence is that positional weighting kernels are derived for each sample
rather than at each resampling point. This is extremely beneficial when repeatedly resampling the
same sample set onto different resampling points as the weighting kernels only need to be calculated
once. Once generated, these kernels allow for almost real-time interactive analysis of a large data
set over a modestly sized region of interest. Kernels are also self-consistent, dependent only on the
samples themselves rather than the resampling points defined by the user.

The final distance weighting applied to sample i for a fit at point m is

w(δ, i,m) = exp
(
−(vm − xi)TA−1

test,i(vm − xi)
)

(51)

where Ai is the adaptive weighting kernel (matrix of rank K), derived for each sample i, i =
1, · · · , N . There are currently two adaptive weighting algorithms: “scaled” and “shaped”. The
scaled algorithm applies a scaling factor to αtest, expanding or contracting the width of the kernel
by an equal factor across all dimensions. The second algorithm (shaped) is an extension of the first,
available when K > 1, and allows the kernel to stretch and rotate about a given sample.

3.4.2.1. Adaptive Kernel Scaling —During the test reduction, a fit is performed at each sample coor-
dinate xi derived from all samples within the window region Ωi. We use a test smoothing parameter
αtest, defining the test weighting kernel as

Atest = diag(αtest) (52)

so that the scaled weighting kernel (Ascaled) will satisfy

det(Ascaled, i) =
det(Atest)

χr,i
(53)
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Since the scaled algorithm merely applies a global scaling factor to the test diagonal kernel, we can
write

det(Ascaled) =
det(Atest)

χr
K∏
k=1

αscaled =
1

χr

K∏
k=1

αtest

αscaled = χ
− 1

K
r αtest (54)

3.4.3. Adaptive Kernel Shaping

The shaped adaptive weighting algorithm allows the overall kernel scale to vary according to the
scaled method described above, and allows the principle axes of the kernel to stretch and rotate about
each sample. Note that this only has meaning in two dimensions or more (K > 1). When attempted
for K = 1, the shaped kernel is equivalent to the scaled kernel.

To first order, variance on the fit may be propagated as

V ar(y) = JTV ar(x)J

= VxJ
T IJ

= VxJ
TJ (55)

where V ar(x) is the variance-covariance matrix of the sample measurements. We assume that
V ar(x) is dimensionally independent, and may be represented by the scalar Vx as a function of
measurement error only. Here, J is the Jacobian matrix of the fitting function given as

J =


∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xK
∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xK
...

...
. . .

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xK

 (56)

where ∂fi
∂xk

is the partial derivative of the function for sample i with respect to dimension k. Deriva-
tives of the polynomial function are easily determined using a subset of the Φ terms (see equation 7).
The set of polynomial terms defined in equation 5 guarantees that all necessary derivative terms are
present so long as the polynomial order is ≥ 1. For example, consider a second order polynomial fit
in two dimensions

f(x) = c1 + c2x0 + c3x
2
0 + c4x1 + c5x0x1 + c6x

2
1

∂f

∂x0

= c2 + 2c3x0 + c5x1

∂f

∂x1

= c4 + c5x0 + 2c6x1
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In terms of Φ, these become

f(Φ) = c1Φ1 + c2Φ2 + c3Φ3 + c4Φ4 + c5Φ5 + c6Φ6

∂f

∂x0

= c2Φ1 + 2c3Φ2 + c5Φ4

∂f

∂x1

= c4Φ1 + c5Φ2 + 2c6Φ4

Since all Φ terms are precalculated, calculating derivatives is a fast and computationally cheap
operation. Once f ′(xj)∀ j ∈ Ωi has been evaluated, we create the (K, |Ωi|) matrix of weighted
partial derivatives for JTJ from all samples in Ωi by defining

gi =
∂fj
∂xk

, ∀ k = {1, 2, · · · , K} , ∀ j ∈ Ωi (57)

and define the derivative mean-squared-cross-products (MSCP) as

JTJ =
1

tr(WW T )
gTWW Tg (58)

where W is the weight matrix defined in equation 34. This results in the (K,K) matrix

JTJ =


∂f̄
∂x0

∂f̄
∂x0

∂f̄
∂x0

∂f̄
∂x1

. . . ∂f̄
∂x0

∂f̄
∂xK

∂f̄
∂x1

∂f̄
∂x0

∂f̄
∂x1

∂f̄
∂x1

. . . ∂f̄
∂x1

∂f̄
∂xK

...
...

. . .
...

∂f̄
∂xK

∂f̄
∂x0

∂f̄
∂xK

∂f̄
∂x1

. . . ∂f̄
∂xK

∂f̄
∂xK

 (59)

At this point we could define the normalized shape matrix as

g =
1

det(JTJ)1/K
(JTJ)−1 (60)

where det(g) = 1. This normalization reflects that we are only interested in the shape of the
kernel, and that the overall scaling will still be handled according to section 3.4.2.1. However, highly
elongated kernels could result in poor fits for certain sample distributions. Additionally, if χ2

r ≈ 1
for the test fit, then we really do not want to shape the kernel when it is already optimal. Therefore,
we provide a correction to the stretch of the kernel based on number of factors. Singular value
decomposition (SVD) is used to factorize the normalized g matrix into

USV T = SVD(g) (61)

Note that this will only be attempted if g has full rank, and if det(g) 6= 0. If not, determination of
the kernel shape will be aborted, but the kernel will still be scaled accordingly with g = I.

The singular values S represent the relative magnitudes of the partial derivatives in each dimension
where

∏K
k=1 Sk = 1, and the unitary (XTX = I) U and V matrices apply rotation and/or reflection.
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Therefore, the SVD of the gradient matrix can be thought of as an initial rotation (V ), followed by
a stretch (S) and a final rotation (U). To correct for stretch, we modify g as follows:

ḡ = USγV T (62)

where γ is a real-valued (−1 ≤ γ ≤ 1) stretch correction factor. Note that for any value of γ,
det(ḡ) = 1. i.e., ḡ will always be normalized and not introduce any global scaling factors into the
kernel. If γ = 0 the stretch along each dimensional axis will be equal, and consequently, rotation
is irrelevant so that the solution is equivalent to the scaled solution. If γ = 1 the shape remains
unchanged such that ḡ = g. Finally, if γ = −1, the kernel is effectively rotated so that it is
perpendicular to maximum gradient direction. As γ → 0 from either direction, the kernel becomes
increasingly symmetrical. The effect of γ on the shape kernel is shown in figure 11.

Figure 11. The effect of γ on the shape kernel. The unaltered shape is returned when γ = 1, symmetrical
when γ = 0, and stretch is reversed when γ = −1.

Now all that remains is the task of determining γ, which is dependent on three factors: χ2
r, the

density profile of samples in the window region (ρ), and the deviation of the center of the window
from the mean sample distribution (σx̄). The function γ = f(χ2

r, ρ, σx̄) must satisfy

lim
χ2
r→∞

γ = 1

lim
χ2
r→0

γ = −1

lim
ρ→0

γ = 0

lim
σx̄→∞

γ = 0 (63)

One such function that can fulfill these requirements is the logistic function; specifically, a modified
version of the Richard’s curve.

γ =
2

(1 + (2exp(σx̄) − 1)exp(ρ(1− χ2
r)))

1/exp(σx̄)
− 1 (64)

Some properties to note are that:
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1. The sign of γ is dependent on χ2
r and is negative for 0 ≤ χ2

r < 1, positive for χ2
r > 1, and sets

γ = 0 at χ2
r = 1.

2. The growth rate increases with ρ.

3. The asymptotes are at γ = ±1, with the point of inflection (point of maximal growth) set by
σx̄. The point of inflection is set at χ2

r = 1 when σx̄ = 0, and approaches the upper asymptote
as σx̄ increases.

Figure 12 shows how γ varies with χ2
r, and the effects of ρ and σx̄.

Figure 12. The stretch correction factor (γ) as a function of χ2
r . Left: The effect of relative density (ρ)

on the shape of the function with fixed σx̄. Right: The effect of window deviation from the mean sample
distribution (σx̄) with fixed ρ.

3.4.3.1. Relative Density —The local relative density (ρ) of samples is required to calculate the factor
γ in equation 64 when determining the shaped adaptive weighting kernel. This is a measure such
that ρ = 1 when samples are uniformly distributed, 0 ≤ ρ < 1 when a fit occurs in a local depression
of the sample density, and ρ > 1 when samples are clustered around the fit point. The local relative
density is given as:

ρ =
ρ(measured)

ρ(uniform)
(65)

The expected uniform density of samples inside a window region with principle axes given by ωk in
dimension k is

ρ(uniform) = N
Γ
(
1 + K

2

)
πK/2

∏K
k=1 ωk

(66)



22 Perera

The measured density inside the window is

ρ(measured) =

∑N
i=1wδ,i∫

RΩ wδ(∆x)
(67)

Figure 13. Relative density values for different types of sample distributions. The center of each window
region (red dashed circle) is marked with a red cross, and samples are marked as blue dots. All plots were
generated using ω = 1 and α = 0.3. Left: uniform sample distribution should give ρ = 1. In this case,
the discrete nature of a small number of measurements leads to a slight deviation from the optimal value.
Middle: samples clustered near the center of the window yield χ2

r > 1. Right: χ2
r < 1 when the window

centeroccurs in a local minimum of the sample density.

where ∆x = v−x gives the relative position of samples to the center of the window, and
∫
RΩ wδ(∆x)

is the integral of the distance weighting function (given in equations 36 and 51) over the window
region inK dimensions. This integral cannot be solved exactly, and thus, we resort to computationally
expensive numerical methods (although “computationally expensive” is relative in this sense, and
the operation takes only a small fraction of a second on most laptops). Fortunately, this only needs
to be solved once as the test reduction uses a single weighting function due to constant ω for all
sample fits. However, if one were to take an iterative approach to determining the optimal kernel
shape, this integral would need to be evaluated for each sample, as each weighting function could be
unique following an initial test reduction. If this approach was taken, then it would be recommended
to either disregard density by setting ρ = constant in equation 64, or using the result obtained from
the initial test reduction. Examples of local density values for several types of sample distribution
can be seen in figure 13.

3.4.3.2. Window Offset Deviation —The window offset deviation (σx̄) that is applied in equation 64 is
given as

σ2
x̄ = (v − x̄)TΣ−1

x (v − x̄) (68)



Resampling of Multi-Dimensional Data 23

for a distribution of N samples with coordinates x with mean position x̄. The window region is
centered on v where the covariance of the sample distribution between dimensions i and j is given as

Σxi,j =
1

N −M

N∑
n=1

(x̄n,i − x̄i)(xn,j − x̄j) (69)

Here, M are the number of degrees of freedom lost when determining the center of the sample
distribution x̄. M is typically set to 1 when a simple mean operation is performed. Figure 6,
in addition to displaying edge rejection thresholds, also shows lines of constant σx̄ for a normally
distributed set of samples.

3.4.3.3. Shaped Adaptive Kernel —Now all parameters required for the derivation of the shaped adap-
tive weight matrix have been derived, all that remains is to define the kernel itself.

Ashaped =

(
det(Atest)

χr

)1/K

ĝ (70)

Note that once again, det(Atest)/ det(Ashaped) = χr. Unlike the scaled solution, the shape of the
kernel depends only on ĝ and does not propagate the shape of Atest. Therefore, since all information
on the shape of Atest is lost, it is recommended that the user sets the ratio of ω/σx to be equal for
all dimensions in which adaptive weighting is enabled (see section 3.4.3.4), or to otherwise use the
scaled weighting kernel.

As a brief graphical example, the scaled and shaped kernels are generated from an image (samples
are pixels) and then plotted for comparison in figure 14. Note that the kernels are large in smooth
regions, and small in regions containing complex structure and edges. The area of a shaped and
scaled kernel on a single sample will always be equal. However, the shaped kernels are truncated in
the direction of the gradient, and will preserve edges to a greater degree.

3.4.3.4. Partial Adaptive Weighting for Select Dimensions. —The size and/or shape of the kernel may
be fixed in certain dimensions and allowed to vary in others. To accomplish this, the number of fixed
and adaptive enabled dimensions as set to Kfix and Kadapt where Kfix + Kadapt = K, and the sets
of dimensions allocated to each are defined as kfix and kadapt. For the test reduction, the smoothing
parameter is set to

αtest, k =

αk, if k ∈ kfix

αtest,k, if k ∈ kadapt

(71)
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Figure 14. Comparison of the scaled (solid green) and shaped (dashed red) kernels. The upper-left image
was used as an input for the test reduction where each pixel used as a sample. The bottom-left image
contains a black-dotted kernel, representing the test kernel with smoothing parameter αtest. Kernels are
relatively large in smooth regions and smaller in regions containing structure. Note that the shaped kernels
are stretched perpendicular to the principle gradient direction, and will preserve edges well in subsequent
reductions. The data for this image was taken from skimage.data.camera (see scikitimage (2014)).

All calculations are performed as described in sections 3.4.2.1 and 3.4.3.3 with a few important
changes:

The final scaled adaptive kernel is given as

Ascaled,(i,j) =


αi, if i = j and i ∈ kfix

0, if i 6= j

χ
−1/Kadapt
r αtest, if i = j and i ∈ kadapt

(72)
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For the shaped kernel, a modification is made to ĝ2 (following the stretch correction) so that

ĝi,j =

1, if i = j and i ∈ kfix

0, if i 6= j and i ∨ j ∈ kfix

(73)

and the final shaped adaptive kernel is given as

Ashaped,(i,j) =


αi, if i = j and i ∈ kfix

0, if i 6= j and i ∨ j ∈ kfix(∏
k∈kadapt

αtest,k

det(ĝ)χr

) 1
Kadapt

ĝi,j, if i ∧ j ∈ kadapt

(74)

Consideration must be given to the fact that for high K reductions where Kadapt→1, the change
in size of a kernel along an adaptive-enabled dimension becomes increasingly severe as it must ac-
commodate the necessary change in overall kernel volume based on χ2

r. The effect of fixing certain
dimensions in the adaptive weighting calculation can be seen in figure 15.

Figure 15. Fixing the smoothing parameter in a single dimension of the shaped adaptive kernel. In
this example, χ2

r = 4 and an arbitrary derivative MSCP of [[3, 1], [1, 1]] was supplied with minimal stretch
correction (ρ � 1). A single line of constant weighting is drawn for each kernel, with Atest shown as a
dotted black circle with αtest,0 = αtest,1 (circular). In all cases, the ratio of kernel determinants is equal to
(det(Atest)/ det(Afix) =

√
χ2
r).
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4. CODE ARCHITECTURE

4.1. Language and packages

The resampling code is written in Python 2 (see Rossum (1995)) version 3. Python is a dynamic
open source programming language supported by a vast ecosystem of specialized packages of which
we rely on only a few: Data such as the sample values, errors, Φ, etc., are stored as Numpy arrays
(Oliphant (2006)) and processed using JIT (Just-In-Time) compiled Numba functions (Lam and
Pitrou (2015)). Numba was instrumental in performing multidimensional resampling in a reasonable
time frame since Python is notoriously slow when compared to other languages, and allows for op-
erations to be performed on a time scale comparable with the C language. The balltree algorithm
(Omohundro (1989)) from the Scikit-learn package (Pedregosa et al. (2011)) is used to quickly de-
termine which samples are inside the window region of a resampling point (see figure 4). Finally,
parallel processing is handled by the Joblib 3. The resampling code exists as a submodule of the
toolkit module in the SOFIA data reduction pipeline package (REDUX) that is not yet publicly
available. However, efforts are being made to release the REDUX package within the year.

4.2. Classes and Structure

Figure 16 gives a high level representation of the various classes and process flow. The first step is
to create an instance of the Resampler class, initialized with some parameters that must include the
window defining the ”local” region (ω), the polynomial fit order, and the data we wish to resample.
The user may interact with the Resampler through some type of interface. Nearly all examples in
this paper were generated from the Python command line and Jupyter notebooks, although some
FIFI-LS images were created using the SOFIA data reduction pipeline (REDUX).

During the instantiation of the Resampler object, the sample coordinates (X) are used to initialize
a Tree object that allocates samples into blocks and their associated neighborhoods as described in
section 3.1 as a function of the window region ω. The Φ(x) terms (see section 2.1) are also created
at this stage and stored as a Tree attribute.

Once the Resampler object has been created, a reduction may be started by supplying a set of
reduction parameters (such as weighting schemes) and a set of coordinates (resampling points) con-
taining the desired locations for the fitted output values. Another Tree object is created by the
reduction manager from the resampling point coordinates (V ), allocating blocks and creating a set
of Φ(V ) terms.

Each intersection of a reduction Tree block with a sample Tree neighborhood is than passed in
parallel from the reduction manager to the main engine of the resampling algorithm (the box labelled
“Fit” in figure 16). For a single block of resampling points, the sample sets Ω for each point are
derived simultaneously from the sample neighborhood using the balltree algorithm. A fit at each point
is processed in series before being passed back to the reduction manager where they are aggregated.
Once all parallel reductions are complete, the results become available to the Resampler where they
are either used to update the reduction parameters when determining an adaptive solution (resulting
in a second reduction) or passed back to the user.

2 Available from the Python Software Foundation
3 Available from https://joblib.readthedocs.io/en/latest/

http://www.python.org
https://joblib.readthedocs.io/en/latest/
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Figure 16. Main software objects and process flow for the full resampling algorithm. Data and variables
are denoted by a green open circle. Notes and actions are marked by a filled black circle. Aggregate objects
(can exist independently of the parent object) are marked with open diamond heads, while composite objects
(cannot exist without parent object) are marked with a filled diamond head.

5. APPLICATIONS

5.1. 2-Dimensional Resampling of Regular Data

The following example uses a (128 × 128 pixels) subset of the “camera” test data set from the
Python scikit-image package (scikitimage (2014)), already displayed in figure 14 to show the effects
of the resampling algorithm applied to regularly spaced 2-D samples onto a finer grid where ∆x = 0.2
pixels. The FWHM of the observing device was estimated to be 1 pixel (by eye), and the error was
estimated from the standard deviation of the blank sky region on the upper-right corner of the image
(≈ 0.7% of the maximum sample value). The window radius is set to 12 pixels resulting in a median
of 452 samples per 3rd order polynomial fit.

Figure 17 shows the sample image, and fits on a finer grid using standard distance weighting with

α = 2
(

FWHM/2
√

2 ln 2
)2

and the results of the scaled and shaped adaptive distance weighting

algorithm. In addition, different edge and order rejection algorithms were applied, the effects of
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which can be seen on the borders of each fitted image. The standard distance weighting algorithm
rejected fits using the bounded order requirement, while the adaptive fits allowed for extrapolation
in cases where enough unique samples are present. However, the “scaled” solution applied an edge
rejection threshold of βedge = 1. In this specific case, edge and order rejection options are applied
for the sake of example only. Good fits are possible due to regularly spaced sampling, well-behaved
data, and that we are not attempting any fits outside of the bounds of the sample region.

Figure 17. Resampling an image (upper-left) onto a finer grid using the standard distance weighting
algorithm (upper-left), the “scaled” adaptive weighting algorithm (lower-left), and the “shaped” adaptive
weighting algorithm (lower-right). The red and green squares on the upper-left image mark regions shown
in figure 18.
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At first glance, the standard and scaled solutions appear fairly similar to the original image, while
a strong reduction in the pixelation effects can be seen in the shaped image. The similarity of
the standard and scaled solutions is cosmetic only, and show notable differences when viewed on a
smaller local scale. Figure 18 show enhanced sections of the fit on a smaller scale which are marked
for reference on the upper left image of figure 17.

Figure 18. Subsections of the sample image and fits marked by the regions in figure 17. The upper row
(“Feature”), contains an area with strong features (green box in figure 17), while the lower row (“Sky”)
shows a relatively smooth portion of the sample data (red box in figure 17). The columns from left to
right display the sample image, the standard distance weighted fit, the scaled adaptive fit, and the shaped
adaptive fit.

Figure 19. Histograms of log10(χ2
r) for each of the distance weighting algorithms. The normalized count

density is given as ρ(N) = Ni/ (∆P
∑

iNi) where ∆P is the spacing between bins.
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Finally, figure 19 displays histograms of the χ2
r distribution for all fits over the entire resampled

images (409,600 pixels). On a log10 scale where P = log10(χ2
r), the distribution can be approximated

by a normal distribution N (mean(P ), variance(P )). For our example fits Nstandard = (−3.126, 0.905),
Nscaled = (0.198, 0.371), and Nshaped = (0.092, 0.442). In other words, the adaptive weighting algo-
rithms produced fits where χ2

r is more closely centered around 1 with smaller variance.

5.2. 3-Dimensional Resampling of Irregular Data

The following examples apply the new resampling algorithm to real data taken with the FIFI-LS
instrument on board SOFIA (see section 1.1).

5.2.1. M82: A comparison of weighting schemes on a high SNR source

Observations of M82 were taken over multiple SOFIA flights using the long wavelength spectrom-
eter. Data are irregularly spaced in cross-elevation, elevation, and wavelength (x, y, λ) centered on
λ = 157.694µm, and J2000 coordinates (09h55m55.38s +69d40m53.4s) with x and y in units of
arcseconds. The average spatial FWHM of the observations is fwhmx = fwhmy = 15.8′′, and the
average spectral FWHM is fwhmλ = 0.06689507µm. Histograms of the sample measurement values
and errors are shown in figure 20.

The sample distribution is shown in figure 21. Note that the spatial (x, y) distribution consists of
a sparsely sampled region near the center bounded by two more densely sampled areas above and
below, as shown on the left image. It can be seen from the right-most image that the wavelength
sampling interval For a single cluster of spatial coordinates shown on the left image as a single blue
dot, the median λ sampling interval is ∆λ = 0.003482µm ≈ 19 samples/fwhmλ.

Figure 20. Histograms of the sample measurement values (left) and 1σ measurement errors (right).
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Figure 21. Left: Spatial sample distribution in x (cross-elevation) and y (elevation) coordinates. Right:
Sample distribution displayed in x, y, and λ (wavelength).

Resampling was conducted to determine solutions for the standard, scaled, and shaped distance
weighting algorithms on a regular spaced (x, y) (30 × 72) grid (M = 2, 160) with spacing ∆x =
∆y = 3′′ at constant λ = 157.83418µm. The window region was set to ωx,y = fwhmx,y × 3, and
ωλ = fwhmλ/2 resulting in a median of 4,200 samples per second order polynomial fit in a sample
space containing N = 147, 200 samples. Fits were rejected according to the bounded order rejection
algorithm, along with an edge rejection threshold of βedge = 0.7 in the spatial dimensions, and 0.5
in λ. For the standard distance weighting reduction, the smoothing parameter was set to αx,y =
fwhmx,y, and αλ = fwhmλ/4. Adaptive weighting (scaled and shaped) was only applied to the
spatial dimensions, and fixed at αλ in the wavelength dimension.

Figure 22 displays all three fits on the same scale, whereas figure 23 displays each fit normalized to
within 10−3 → 1 on a log scale in order to better represent the dynamic range.

Clear discontinuities can be seen from a visual inspection of the standard distance weighting re-
duction in figure 22 in areas where spatial sampling density appears to transition from one value to
another as shown in the left image of figure 21. However, both adaptive weighting algorithms appear
smooth and continuous in these density transition regions.

Reduction times on a MacBook Pro with a 2.5 GHz Intel Core i7 processor using 16 GB of memory
is 0.6 seconds using the standard weighting algorithm, and 22 and 20 seconds for the “shaped” and
“scaled” weighting algorithms, respectively.

This factor in increased reduction time represents the fact that kernels are calculated for each
sample (in the neighborhoods of all resampling points) rather than at each resampling point, and
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that M � N . Generally, when M ≈ N , the reduction time for an adaptive weighting algorithm is
roughly 2 to 3 times that of the standard weighting algorithm.

Figure 22. Images generated for λ = 157.83418µm with each available weighting algorithm. Black dotted
lines indicate regions centered on constant x = 4.06′′ and y = 1.43′′ of width fwhmx,y. The samples plotted
in figure 24 reside in these regions, with the cross marking a line of constant λ = 157.83418µm through the
image.

Figure 23. Images from figure 22 displayed on a log scale.
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Figure 24 displays fits in which the coordinates for two dimensions are held fixed, and resampling
occurs along the remaining (x, y, or λ) dimension as marked in the left image of figure 22 (over the
peak). The scale of the Gaussian standard deviation of the weighting function is plotted for each
dimension. In those dimensions in which adaptive weighting is enabled (x, y), the minimum and
maximum standard deviations of the “scaled” weighting kernels are also drawn. For reference, all
samples within ±fwhm/2 are plotted with color representing the Mahalanobis distance of a sample
from the resampling point in the fixed dimensions. Color indicates the sample coordinate deviation
of coordinates in the two fixed dimensions with respect to the resampling point coordinate. i.e., for
the top plot in figure 24 along x, where y = 1.43′′ and λ = 157.83418µm

∆σ(y, λ) =

√(
y − 1.43

σy

)2

+

(
λ− 157.83418

σλ

)2

Figure 24. Cross sections of the fit along each dimension for each weighting scheme. Top: A fit along
the x dimension, with y and λ held constant. Center: A fit along the y dimension, with x and λ held
constant. Bottom: A fit along the λ dimension, with x and y held constant. The intersection of all fixed
dimensions is marked by a cross in the left image of figure 22, and samples within the marked regions are
plotted for reference. Samples are color coded according to deviation of each sample to the resampling point
in dimensions that are held constant.
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Figure 25 shows the resulting χ2
r distribution for the fit along each dimension. In all cases, χ2

r > 1
indicating a poor fit. However, this is the result of attempting a fit on data samples that cannot
be modelled within the expected 1σ noise limits supplied with the data. From figure 20, the typical
supplied sample measurement errors are ε = 10Jy. A quick look at figure 24 shows that the range of
values at a single coordinate can vary by approximately ±200Jy between samples that occupy close
spatial/spectral coordinates.

Figure 25. Histograms of the χ2
r values for each cross-section in x, y, and λ at 5,000 regularly spaced

resampling points along each dimension into 100 bins.
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For reference, a fit generated using standard distance weighting with α = [αx, αy, αλ]/12 is shown
in figure 26 resulting in a χ2

r approximately centered around 1. The resulting fit is unusable with no
discernible structure and must be placed on a log scale for visualization.

Figure 26. The result of fitting M82 sample data to ≈ χ2
r = 1. Left: Histogram of log10(χ2

r) into 50 bins.
Right: The image slice (also shown in figure 22) when fit approximating χ2

r = 1. Colors represent flux (Jy)
on a log10 scale of the absolute value.
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5.2.2. 30 Doradus: A comparison of simultaneous vs. sequenced dimensional resampling

The 30 Doradus data set is intended to highlight some differences between the old and new FIFI-LS
data reduction pipelines, and the advantages of fitting multiple dimensions simultaneously. The initial
pipeline sequentially resampled the data in wavelength (1 dimension) followed by spatial resampling
in two dimensions onto a regular grid.

Our example data set contains multiple observations of 30 Doradus totalling 481,600 (x, y, λ) FIFI-
LS sample measurements which are resampled onto a (327×356×50) grid. Unlike the previous M82
example, the sampling density is relatively uniform near the area of interest, but the SNR ratio is
much lower. The sample distribution is displayed in figure 27, and histograms of sample measurement
values and errors are shown in figure 28.

The central wavelength of the observations was at λ = 51.87619µm with FWHMλ = 0.056389µm,
and FWHMx,y = 6.2′′. For both resampling algorithms, the window radius in the spectral dimension
is set to ωλ = FWHMλ/2. When resampling in 3-dimensions simultaneously, the spatial window
radius is set to ωx,y = 3×FWHMx,y. Spectral resampling drastically reduces the number of samples
available for spatial resampling. To allow for a smooth fit, the standard practice using the old pipeline
was to increase the spatial window radius to ωx,y = 6 × FWHMx,y. In both cases, a second order
polynomial fit is generated along the spectral and spatial dimensions using the standard distance
weighting algorithm with a smoothing parameter of αλ = FWHMλ/4 and αx,y = 2× FWHMx,y.

Figure 27. Left: The spatial distribution of samples in x (cross-elevation), and y (elevation). Right: The
full 3D sampling distribution in x, y, and λ (wavelength).
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Figure 28. Left: Histogram of the sample measurement values. Right: Histogram of the associated 1σ
measurement errors.

Many properties of the reduction are hard to compare due to major differences in the way data
are handled (for example, number of samples per fit or χ2

r). We do, however, present comparisons of
both a spatial and spectral slice that intersect at the point of greatest emission.

Figure 29 displays a spatial slice at λ = 51.94550µm, and a spectral profile is shown in figure 30
at (RA, Dec) = (5h38m45.9046s, -69d05m06.2397s) which is also marked as a black cross on the left
image of figure 29.

Figure 29. Spatial slices at λ = 51.94550µm. Left: The result of first resampling in wavelength followed
by the 2-dimensional spatial interpolation. Right: resampling in all dimensions simultaneously. The spatial
position of the spectral profile shown in figure 30 is marked as a black cross on the left image. The red circle
encloses a prominent artifact.
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Figure 30. The spectral profile at RA = 5h38m45.9046s, Dec = -69d05m06.2397s. The red line shows
the results of sequential resampling, while the blue line shows the results of directly resampling onto a
3-dimensional grid.

It can easily be seen that resampling in all dimensions simultaneously using the new FIFI-LS
pipeline has produced a smoother image with fewer artifacts than the older version, although peak
fluxes are relatively equal. Additionally, the spectral profile produced by the 3-dimensional fit is
smooth and continuous, whereas discontinuities are clearly visible when resampling occurs sequen-
tially over spectral and spatial dimensions. In fact, the strong artifact shown by the red circle in
figure 29 is not consistent with slices at neighboring wavelengths, and is colinear with many other
artifacts that are on the boundary of a change in sampling density as shown in figure 27, indicating
that it is not a valid structure.

6. FUTURE WORK

This paper is primarily concerned with local polynomial regression, but could easily be extended
to other families of functions or filters. For example, Gaussian, Lorentzian, Voigt, trigonometric,
median etc. Modified versions of the algorithm already exist for the weighted median or mean of a
local region, but do not yet implement adaptive weighting.

Another improvement that could be made would be to allow for variable window regions. Currently,
the user must explicitly select a single set of window dimensions (ω) applied around each resampling
point. In practice, this should be set to some minimum value to allow sufficient samples from which
to derive a fit, but also be large enough to account for expansion of the adaptive weighting kernel.
Since computational complexity is ∝ O(|Ω|), the window dimensions can have a significant effect on
total reduction time. Given that selecting a small window region can invalidate certain fits, the user
may be forced to choose a large window region that rectifies this situation effecting only a few points
at the cost of increased processing time.
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7. CONCLUSION

We have introduced a new procedure by which simultaneous multi-dimensional interpolation can
be carried out. Consideration has been given to the distribution of irregularly sampled data, and
with appropriate choices, spurious fits can be reduced or eliminated. An optional method is available
to determine adaptive weighting factors in a single step, approximating χ2

r → 1 on subsequent
reductions. These methods have been applied to resample three-dimensional irregular data observed
with the FIFI-LS instrument onto a regular data cube.
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