
Solutions 2
Jumping Rivers

For this practical we will explore models for the prediction of progres-
sion of diabetes for 442 patients. Measurements of their age, gender,
body mass index, blood pressure and size blood serum measurements
were taken to gether with a numeric measurement of disease progres-
sion one year after a baseline.

The data are available in the jrpyanalytics package and can be
accessed with

import jrpyanalytics
diabetes = jrpyanalytics.datasets.diabetes.load_data()

The data have already been normalised, so we do not need to worry
about this. However we should separate the inputs from the output
ready for modelling.

X, y = diabetes.drop('y', axis=1), diabetes['y']

• It is good practice to have a dedicated test set for final assessment
of our chosen models. We can create training and test sets from
data using sklearn.model_selection.train_test_split(). The
following code will partition our data with 10% held out for final
testing. The other 90% we will use for training and cross validation
of different models.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X,y, test_size = 0.1,
random_state = 2019, # ensures same random subset

)

• Begin by fitting a linear regression to the training set using all
available predictor variables.

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train,y_train)

• Use the mean_squared_error function from the sklearn.metrics
module on the full training set. This will give us the training error.

from sklearn.metrics import mean_squared_error
mean_squared_error(y_train,model.predict(X_train))

solutions 2 2

2798.6714131129825

• Training error gives us a measure of how far from the original data
our model is. However it is typically different to test error, which
would give us a better idea of how our model generalises to new
data. Use 10 fold cross validation to estimate the test error rate for
this model.

from sklearn.model_selection import cross_validate
from sklearn.metrics import make_scorer
score = make_scorer(mean_squared_error)
scores = cross_validate(

model, X_train, y_train,
scoring=score, cv=10

)
scores['test_score'].mean()

2939.891936497848

• How does this compare to the training error

##
Test error is larger, this is typically true.
training error tends to under estimate test error.
##

• Fit a lasso regression model to the diabetes data.

from sklearn.linear_model import LassoCV
lasso_model = LassoCV(cv=10)
lasso_model.fit(X_train,y_train)

• How do the coefficients of the lasso model compare to those of the
standard linear regression?

lasso_model.coef_

array([0. , -150.4344357 , 550.02447118, 290.81253559,
-96.19308788, -0. , -180.92291918, 0. ,
547.21048248, 12.60989253])

model.coef_

3 of the coefficients have been chosen as 0
for lasso. The remaining coefficients have been
"shrunk"

array([-4.64533072, -183.27587176, 545.42457602, 307.97143272,
-644.25638471, 429.79494741, 19.85978671, 34.65533001,
760.80145466, 25.99043256])

solutions 2 3

• Try fitting ridge and elastic net models too

from sklearn.linear_model import RidgeCV
from sklearn.linear_model import ElasticNetCV

ridge_model = RidgeCV(cv = 10)
enet_model = ElasticNetCV(cv = 10)

ridge_model.fit(X_train,y_train)

enet_model.fit(X_train,y_train)

• Which model performs best on the test set in terms of mean
squared error?

mean_squared_error(y_test,model.predict(X_test))

3546.657941607803

mean_squared_error(y_test,lasso_model.predict(X_test))

3675.1104481698912

mean_squared_error(y_test,ridge_model.predict(X_test))

3549.0846216338086

mean_squared_error(y_test,enet_model.predict(X_test))

Standard linear regression was best here, although ridge was
close. Perhaps finding better parameters for the ridge
penalty might yield a better model.

3886.5752154203346

