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SLIM: Sparse Linear Methods

for Top-N Recommender Systems
Xia Ning and George Karypis
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Abstract—This paper focuses on developing effective and
efficient algorithms for top-N recommender systems. A novel
Sparse LInear Method (SLIM) is proposed, which generates top-
N recommendations by aggregating from user purchase/rating
profiles. A sparse aggregation coefficient matrix W is learned
from SLIM by solving an �1-norm and �2-norm regularized
optimization problem. W is demonstrated to produce high-
quality recommendations and its sparsity allows SLIM to generate
recommendations very fast. A comprehensive set of experiments
is conducted by comparing the SLIM method and other state-of-
the-art top-N recommendation methods. The experiments show
that SLIM achieves significant improvements both in run time
performance and recommendation quality over the best existing
methods.

Keywords-Top-N Recommender Systems, Sparse Linear Meth-
ods, �1-norm Regularization

I. INTRODUCTION

The emergence and fast growth of E-commerce have signif-

icantly changed people’s traditional perspective on purchasing

products by providing huge amounts of products and detailed

product information, thus making online transactions much

easier. However, as the number of products conforming to

the customers’ desires has dramatically increased, the problem

has become how to effectively and efficiently help customers

identify the products that best fit their personal tastes. In par-

ticular, given the user purchase/rating profiles, recommending

a ranked list of items for the user so as to encourage additional

purchases has the most application scenarios. This leads to the

widely used top-N recommender systems.

In recent years, various algorithms for top-N recommen-

dation have been developed [1]. These algorithms can be

categorized into two classes: neighborhood-based collabora-

tive filtering methods and model-based methods. Among the

neighborhood-based methods, those based on item neigh-

borhoods can generate recommendations very fast, but they

achieve this with a sacrifice on recommendation quality. On

the other hand, model-based methods, particularly those based

on latent factor models incur a higher cost while generating

recommendations, but the quality of these recommendations

is higher, and they have been shown to achieve the best

performance especially on large recommendation tasks.

In this paper, we propose a novel Sparse LInear Method

(SLIM) for top-N recommendation that is able to make high-

quality recommendations fast. SLIM learns a sparse coefficient

matrix for the items in the system solely from the user

purchase/rating profiles by solving a regularized optimization

problem. Sparsity is introduced into the coefficient matrix

which allows it to generate recommendations efficiently. Fea-

ture selection methods allow SLIM to substantially reduce

the amount of time required to learn the coefficient matrix.

Furthermore, SLIM can be used to do top-N recommenda-

tions from ratings, which is a less exploited direction in

recommender system research.

The SLIM method addresses the demands for high quality

and efficiency in top-N recommender systems concurrently, so

it is better suitable for real-time applications. We conduct a

comprehensive set of experiments on various datasets from dif-

ferent real applications. The results show that SLIM produces

better recommendations than the state-of-the-art methods at a

very high speed. In addition, it achieves good performance in

using ratings to do top-N recommendation.

The rest of this paper is organized as follows. In Section II,

a brief review on related work is provided. In Section III,

definitions and notations are introduced. In Section IV, the

methods are described. In Section V, the materials used for

experiments are presented. In Section VI, the results are

presented. Finally in Section VII are the discussions and

conclusions.

II. RELATED WORK

Top-N recommender systems are used in E-commerce appli-

cations to recommend size-N ranked lists of items that users

may like the most, and they have been intensively studied

during the last few years. The methods for top-N recom-

mendation can be broadly classified into two categories. The

first category is the neighborhood-based collaborative filtering

methods [2]. For a certain user, user-based k-nearest-neighbor

(userkNN) collaborative filtering methods first identify a set

of similar users, and then recommend top-N items based on

what items those similar users have purchased. Similarly, item-

based k-nearest-neighbor (itemkNN) collaborative filtering

methods first identify a set of similar items for each of the

items that the user has purchased, and then recommend top-N

items based on those similar items. The user/item similarity is

calculated from user-item purchase/rating matrix in a collab-

orative filtering fashion with some similarity measures (e.g.,

Pearson correlation, cosine similarity) applied. One advantage

of the item-based methods is that they are efficient to generate

recommendations due to the fact that the item neighborhood
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is sparse. However, they suffer from low accuracy since there

is essentially no knowledge learned about item characteristics

so as to produce accurate top-N recommendations.

The second category is model-based methods, particularly

latent factor models as they have achieved the state-of-the-art

performance on large-scale recommendation tasks. The key

idea of latent factor models is to factorize the user-item matrix

into (low-rank) user factors and item factors that represent

user tastes and item characteristics in a common latent space,

respectively. The prediction for a user on an item can be

calculated as the dot product of the corresponding user factor

and item factor. There are various Matrix Factorization (MF)-

based methods proposed in recent years for building such

latent factor models. Cremonesi et al [3] proposed a simple

Pure Singular-Value-Decomposition-based (PureSVD) matrix

factorization method, which describes users and items by the

most principle singular vectors of the user-item matrix. Pan

et al [4] and Hu et al [5] proposed a Weighted Regularized

Matrix Factorization (WRMF) method formulated as a regu-

larized Least-Squares (LS) problem, in which a weighting

matrix is used to differentiate the contributions from observed

purchase/rating activities and unobserved ones. Rennie [6]

and Srebro [7] proposed a Max-Margin Matrix Factorization

(MMMF) method, which requires a low-norm factorization of

the user-item matrix and allows unbounded dimensionality for

the latent space. This is implemented by minimizing the trace-

norm of the reconstructed user-item matrix from the factors.

Sindhwani et al [8] proposed a Weighted Non-Negative Matrix

Factorization (WNNMF) method, in which they enforce non-

negativity on the user and item factors so as to lend “part-

based” interpretability to the model. Hofmann [9] applied

Probabilistic Latent Semantic Analysis (PLSA) technique for

collaborative filtering, which has been shown equivalent to

non-negative matrix factorization. PLSA introduces a latent

space such that the co-occurrence of users and items (i.e.,

a certain user has purchased a certain item) can be rendered

conditionally independent. Koren [10] proposed an intersect-

ing approach between neighborhood-based method and MF. In

his approach, item similarity is learned simultaneously with a

matrix factorization so as to take advantages of both methods.

Top-N recommendation has also been formulated as a

ranking problem. Rendle et al [11] proposed a Bayesian

Personalized Ranking (BPR) criterion, which is the maximum

posterior estimator from a Bayesian analysis and measures the

difference between the rankings of user-purchased items and

the rest items. BPR can be well adopted for item knn method

(BPRkNN) and MF methods (BPRMF) as a general objective

function.

III. DEFINITIONS AND NOTATIONS

In this paper, the symbols u and t will be used to denote

the users and items, respectively. Individual users and items

will be denoted using different subscripts (i.e., ui, tj). The

set of all users and items in the system will be denoted by U
(|U| = m) and T (|T | = n), respectively. The entire set of

user-item purchases/ratings will be represented by a user-item

purchase/rating matrix A of size m × n, in which the (i, j)

entry (denoted by aij) is 1 or a positive value if user ui has

ever purchased/rated item tj , otherwise the entry is marked as

0. The i-th row of A represents the purchase/rating history of

user ui on all items T , and this row is denoted by a
T

i . The

j-th column of A represents the purchase/rating history of all

users U on item tj and this column is denoted by aj .

In this paper, all vectors (e.g., a
T

i and aj) are represented

by bold lower-case letters and all matrices (e.g., A) are

represented by upper-case letters. Row vectors are represented

by having the transpose supscriptT, otherwise by default they

are column vectors. A predicted/approximated value is denoted

by having a ∼ head. We will use corresponding matrix/vector

notations instead of user/item purchase/rating profiles if no

ambiguity is raised.

IV. SPARSE LINEAR METHODS FOR Top-N

RECOMMENDATION

A. SLIM for Top-N Recommendation

In this paper, we propose a Sparse LInear Method (SLIM)

to do top-N recommendation. In the SLIM method, the recom-

mendation score on an un-purchased/-rated item tj of a user

ui is calculated as a sparse aggregation of items that have

been purchased/rated by ui, that is,

ãij = a
T

i wj , (1)

where aij = 0 and wj is a sparse size-n column vector of

aggregation coefficients. Thus, the model utilized by SLIM can

be presented as

Ã = AW, (2)

where A is the binary user-item purchase matrix or the

user-item rating matrix, W is an n × n sparse matrix of

aggregation coefficients, whose j-th column corresponds to

wj as in Equation 1, and each row ã
T

i of Ã (ãT

i = a
T

i W )

represents the recommendation scores on all items for user

ui. Top-N recommendation for ui is done by sorting ui’s non-

purchased/-rated items based on their recommendation scores

in ã
T

i in decreasing order and recommending the top-N items.

B. Learning W for SLIM

We view the purchase/rating activity of user ui on item tj in

A (i.e., aij) as the ground-truth item recommendation score.

Given a user-item purchase/rating matrix A of size m×n, we

learn the sparse n×n matrix W in Equation 2 as the minimizer

for the following regularized optimization problem:

minimize
W

1

2
‖A−AW‖2F +

β

2
‖W‖2F + λ‖W‖1

subject to W ≥ 0

diag(W ) = 0,

(3)

where ‖W‖1 =
∑n

i=1

∑n

j=1
|wij | is the entry-wise �1-norm

of W , and ‖ · ‖F is the matrix Frobenius norm. In Equa-

tion 3, AW is the estimated matrix of recommendation scores

(i.e., Ã) by the sparse linear model as in Equation 2. The

first term 1

2
‖A − AW‖2F (i.e., the residual sum of squares)

measures how well the linear model fits the training data, and

‖W‖2F and ‖W‖2
1

are �F -norm and �1-norm regularization
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terms, respectively. The constants β and λ are regularization

parameters. The larger the parameters are, the more severe the

regularizations are. The non-negativity constraint is applied

on W such that the learned W represents positive relations

between items, if any. The constraint diag(W ) = 0 is also

applied so as to avoid trivial solutions (i.e., the optimal W is

an identical matrix such that an item always recommends itself

so as to minimize 1

2
‖A−AW‖2F ). In addition, the constraint

diag(W ) = 0 ensures that aij is not used to compute ãij .

1) �1-norm and �F -norm Regularizations for SLIM : In

order to learn a sparse W , we introduce the �1-norm of W

as a regularizer in Equation 3. It is well known that �1-norm

regularization introduces sparsity into the solutions [12].

Besides the �1-norm, we have the �F -norm of W as another

regularizer, which leads the optimization problem to an elastic

net problem [13]. The �F -norm measures model complexity

and prevents overfitting (as in ridge regression). Moreover,

�1-norm and �F -norm regularization together implicitly group

correlated items in the solutions [13].

2) Computing W: Since the columns of W are independent,

the optimization problem in Equation 3 can be decoupled into

a set of optimization problems of the form

minimize
wj

1

2
‖aj −Awj‖

2

2
+

β

2
‖wj‖

2

2
+ λ‖wj‖1

subject to wj ≥ 0

wj,j = 0,

(4)

which allows each column of W to be solved independently.

In Equation 4, wj is the j-th column of W and aj is

the j-th column of A, ‖ · ‖2 is �2-norm of vectors, and

‖wj‖1 =
∑n

i=1
|wij | is the entry-wise �1-norm of vector wj .

Due to the column-wise independence property of W , learn-

ing W can be easily parallelized. The optimization problem

of Equation 4 can be solved using coordinate descent and soft

thresholding [14].

3) SLIM with Feature Selection: The estimation of wj

in Equation 4 can be considered as the solution to a regularized

regression problem in which the j-th column of A is the

dependent variable to be estimated as a function of the

remaining n − 1 columns of A (independent variables). This

view suggests that feature selection methods can potentially

be used to reduce the number of independent variables prior

to computing wj . The advantage of such feature selection

methods is that they reduce the number of columns in A,

which can substantially decrease the overall amount of time

required for SLIM learning.

Motivated by these observations, we extended the SLIM

method to incorporate feature selection. We will refer to

these methods as fsSLIM. Even though many feature selection

approaches can be used, in this paper we only investigated

one approach, inspired by the itemkNN top-N recommendation

algorithms. Specifically, since the goal is to learn a linear

model to estimate the j-th column of A (i.e., aj), then the

columns of A that are the most similar to aj can be used

as the selected features. As our experiments will later show,

using the cosine similarity and this feature selection approach,

leads to a method that has considerably lower computational

requirements with minimal quality degradation.

C. Efficient Top-N Recommendation from SLIM

The SLIM method in Equation 2 and the sparsity of W en-

able significantly faster top-N recommendation. In Equation 2,

a
T

i is always very sparse (i.e., the user usually purchased/rated

only a small fraction of all items), and when W is also sparse,

the calculation of ã
T

i can be very fast by exploiting W ’s

sparse structure (i.e., applying a “gather” operation along W

columns on its non-zero values in the rows corresponding to

non-zero values in a
T

i ). Thus, the computational complexity to

do recommendations for user ui is O(nai
×nw + N log(N)),

where nai
is the number of non-zero values in a

T

i , and nw

is the average number of non-zero values in the rows of W .

The N log(N) term is for sorting the highest scoring N items,

which can be selected from the potentially nai×nw non-zeros

entries in ã
T

i in linear time using linear selection.

D. SLIM vs Existing Linear Methods

Linear methods have already been used for top-N recom-

mendation. For example, the itemkNN method in [2] has a

linear model similar to that of SLIM. The model of itemkNN

is a knn item-item cosine similarity matrix S, that is, each

row s
T

i has exactly k nonzero values representing the cosine

similarities between item tj and its k most similar neighbors.

The fundamental difference between itemkNN and SLIM’s

linear models is that the former is highly dependent on the

pre-specified item-item similarity measure used to identify

the neighbors, whereas the later generates W by solving

the optimization problem of Equation 3. In this way, W

can potentially encode rich and subtle relations across items

that may not be easily captured by conventional item-item

similarity metrics. This is validated by the experimental results

in Section VI that show the W substantially outperforms S.

Rendle et al [11] discussed an adaptive k-Nearest-Neighbor

method, which used the same model as in itemkNN in [2]

but adaptively learn the item-item similarity matrix. How-

ever, the item-item similarity matrix in [11] is fully dense,

symmetric and has negative values. W is different from

Rendle et al’s item-item similarity matrix in that, in addition

to its sparsity which leads to fast recommendation and low

requirement for storage, W is not necessarily symmetric due

to the optimization process and thus allows more flexibility

for recommendation.

Paterek [15] introduced a linear model for each item for

rating prediction, in which the rating of a user ui on an item tj
is calculated as the aggregation of the ratings of ui on all other

items. They learned the aggregation coefficients (equivalent to

W ) by solving an �2-norm regularized least squares problem

for each item. The learned coefficients are fully dense. The

advantage of SLIM over Paterek’s method is that �1-norm

regularization is incorporated during learning which enforces

W to be sparse, and thus, the most informative signals are

captured in W while noises are discarded. In addition, SLIM

learns W from all purchase/rating activities so as to better fuse

information, compared to Paterek’s method, which only uses

a certain set of purchase/rating activities.
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TABLE I: The Datasets Used in Evaluation

dataset #users #items #trns rsize csize density ratings

ccard 42,067 18,004 308,420 7.33 17.13 0.04% -

ctlg2 22,505 17,096 1,814,072 80.61 106.11 0.47% -

ctlg3 58,565 37,841 453,219 7.74 11.98 0.02% -

ecmrc 6,594 3,972 50,372 7.64 12.68 0.19% -

BX 3,586 7,602 84,981 23.70 11.18 0.31% 1-10

ML10M 69,878 10,677 10,000,054 143.11 936.60 1.34% 1-10

Netflix 39,884 8,478 1,256,115 31.49 148.16 0.37% 1-5

Yahoo 85,325 55,371 3,973,104 46.56 71.75 0.08% 1-5

Columns corresponding to #users, #items and #trns show the number of users,

number of items and number of transactions, respectively, in each dataset.

Columns corresponding to rsize and csize show the average number of trans-

actions for each user and on each item (i.e., row density and column density

of the user-item matrix), respectively, in each dataset. Column corresponding

to density shows the density of each dataset (i.e., density = #trns/(#users ×

#items)). Column corresponding to ratings shows the rating range of each

dataset with granularity 1.

E. Relations between SLIM and MF Methods

MF methods for top-N recommendation have a model

Ã = UV T, (5)

where U and V T are the user and item factors, respectively.

Comparing MF model in Equation 5 and the SLIM method

in Equation 2, we can see that SLIM’s model can be considered

as a special case of MF model (i.e., A is equivalent to U and

W is equivalent to V T)

U and V T in Equation 5 are in a latent space, whose dimen-

sionality is usually specified as a parameter. The “latent” space

becomes exactly the item space in Equation 2, and therefore,

in SLIM there is no need to learn user representation in the

“latent” space and thus the learning process is simplified. On

the other hand, U and V T are typically of low dimensionality,

and thus useful information may potentially get lost during the

low-rank approximation of A from U and V T. On the contrary,

in SLIM, since information on users are fully preserved in A

and the counterpart on items is optimized via the learning,

SLIM can potentially give better recommendations than MF

methods.

In addition, since both U and V T in Equation 5 are typically

dense, the computation of a
T

i requires the calculation of each

ãij from its corresponding dense vectors in U and V T. This

results in a high computational complexity for MF methods

to do recommendations, that is, O(k2 × n) for each user,

where k is the number of latent factors, and n is the number

of items. The computational complexity can be potentially

reduced by utilizing the sparse matrix factorization algorithms

developed in [16], [17], [18]. However, none of these sparse

matrix factorization algorithms have been applied to solve top-

N recommendation problem due to their high computational

costs.

V. MATERIALS

A. Datasets

We evaluated the performance of SLIM methods on eight

different real datasets whose characteristics are shown in Ta-

ble I. These datasets can be broadly classified into two

categories.

The first category (containing ccard, ctlg2, ctlg3 and

ecmrc [2]) was derived from customer purchasing transactions.

Specifically, the ccard dataset corresponds to credit card pur-

chasing transactions of a major department store, n which each

card has at least 5 transactions. The ctlg2 and ctlg3 datasets

correspond to the catalog purchasing transactions of two major

mail-order catalog retailers. The ecmrc dataset corresponds

to web-based purchasing transactions of an e-commerce site.

These four datasets have only binary purchase information.

The second category (containing BX, ML10M, Netflix

and Yahoo) contains multi-value ratings. All the ratings are

converted to binary indications if needed. In particular, the

BX dataset is a subset from the Book-Crossing dataset1, in

which each user has rated at least 20 items and each item

has been rated by at least 5 users and at most 300 users.

The ML10M dataset corresponds to movie ratings and was

obtained from the MovieLens2 research projects. The Netflix

dataset is a subset extracted from the Netflix Prize dataset3

such that each user has rated 20 – 250 movies, and each movie

is rated by 20 – 50 users. Finally, the Yahoo dataset is a subset

extracted from Yahoo! Music user ratings of songs, provided

as part of the Yahoo! Research Alliance Webscope program4.

In Yahoo dataset, each user has rated 20 – 200 songs, and

each music has been rated by at least 10 users and at most

5000 users.

B. Evaluation Methodology & Metrics

We applied 5-time Leave-One-Out cross validation

(LOOCV) to evaluate the performance of SLIM methods. In

each run, each of the datasets is split into a training set and a

testing set by randomly selecting one of the non-zero entries

of each user and placing it into the testing set. The training set

is used to train a model, then for each user a size-N ranked

list of recommended items is generated by the model. The

evaluation is conducted by comparing the recommendation

list of each user and the item of that user in the testing set.

In the majority of the results reported in Section VI, N is

equal to 10. However, we also report some limited results for

different values of N .

The recommendation quality is measured by the Hit Rate

(HR) and the Average Reciprocal Hit-Rank (ARHR) [2]. HR

is defined as follows,

HR =
#hits

#users
, (6)

where #users is the total number of users, and #hits is the

number of users whose item in the testing set is recommended

(i.e., hit) in the size-N recommendation list. A second measure

for evaluation is ARHR, which is defined as follows:

ARHR =
1

#users

#hits∑

i=1

1

pi

, (7)

where if an item of a user is hit, p is the position of the item in

the ranked recommendation list. ARHR is a weighted version

1http://www.informatik.uni-freiburg.de/∼cziegler/BX/
2http://www.grouplens.org/node/12
3http://www.netflixprize.com/
4http://research.yahoo.com/Academic Relations
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of HR and it measures how strongly an item is recommended,

in which the weight is the reciprocal of the hit position in the

recommendation list.

For the experiments utilizing ratings, we evaluate the per-

formance of the methods by looking at how well they can

recommend the items that have a particular rating value. For

this purpose, we define the per-rating Hit Rate (rHR) and

cumulative Hit Rate (cHR). The rHR is calculated as the hit

rate on items that have a certain rating value. cHR is calculated

as the hit rate on items that have a rating value which is no

lower than a certain rating threshold.

Note that in the top-N recommendation literature, there exist

other metrics for evaluation. Such metrics include area under

the ROC curve (AUC), which measures relative positions of

true positives and false positives in an entire ranked list.

Variances of AUC can measure the positions in top part of a

ranked list. Another popular metric is recall. However, in top-

N recommendation scenario, we believe HR and ARHR are

the most direct and meaningful measures, since the users only

care if a short recommendation list has the items of interest or

not rather than a very long recommendation list. Due to this

we use HR and ARHR in our evaluation.

All the algorithms compared in Section VI are implemented

in C. All the experiments are done on a Linux cluster with 6-

core Intel Xeon X7542 “Westmere” processors at 2.66 GHz.

VI. EXPERIMENTAL RESULTS

In this section, we present the performance of SLIM methods

and compare them with other popular top-N recommendation

methods. We present the results from two sets of experiments.

In the first set of experiments, all the top-N recommendation

methods use binary user-item purchase information during

learning, and thus all the methods are appended by -b to

indicate binary data used (e.g., SLIM-b) if there is confusion. In

the second set of experiments, all the top-N recommendation

methods use user-item rating information during learning, and

correspondingly they are appended by -r if there is confusion.

We optimized all the C implementations of the algorithms

to make sure that any time difference in performance is due to

the algorithms themselves, and not due to the implementation.

For all the methods, we conducted an exhaustive grid search

to identify the best parameters to use. We only report the

performance corresponding to the parameters that lead to the

best results in this section.

A. SLIM Performance on Binary data

1) Comparison Algorithms: We compare the performance

of SLIM with another three categories of top-N recommen-

dation algorithms. The first category of algorithms is the

item/user neighborhood-based collaborative filtering methods

itemkNN, itemprob and userkNN. Methods itemkNN and

userkNN are as discussed in Section II and Section IV-E.

Method itemprob is similarity to itemkNN except that instead

of item-item cosine similarity, it uses modified item-item

transition probabilities. These methods are engineered with

various heuristics for better performance5.

5http://glaros.dtc.umn.edu/gkhome/suggest/overview

The second category of algorithms is the MF methods,

including PureSVD and WRMF as discussed in Section II.

Note that both PureSVD and WRMF use 0 values in the user-

item matrix during learning. PureSVD is demonstrated to

outperform other MF methods in top-N recommendation using

ratings [3], including the MF methods which treat 0s as missing

data. WRMF represents the state-of-the-art matrix factorization

methods for top-N recommendation using binary information.

The third category of algorithms is the methods which rely

on ranking/retrieval criteria, including BPRMF and BPRkNN as

discussed in Section II and Section IV-E. It is demonstrated

in [11] that BPRMF outperforms other methods in top-N recom-

mendation in terms of AUC measure using binary information.

2) Top-N Recommendation Performance: Table II shows

the overall performance of different top-N recommendation

algorithms. These results show that SLIM produces recommen-

dations that are consistently better (in terms of HR and ARHR)

than other methods over all the datasets except ML10M (SLIM

has HR 0.311 on ML10M, which is only worse than BPRkNN

with HR 0.327). In term of HR, SLIM is on average 19.67%,

12.91%, 22.41%, 50.80%, 13.42%, 14.32% and 12.95% better

than itemkNN, itemprob, userkNN, PureSVD, WRMF, BPRMF

and BPRkNN, respectively, over all the eight datasets. Similar

performance gains can also be observed with respect to

ARHR. Among the three MF-based models, WRMF and BPRMF

have similar performance, which is substantially better than

PureSVD on all datasets except ML10M and Netflix. BPRkNN

has better performance than MF methods on large datasets (i.e.,

ML10M, Netflix and Yahoo) but worse than MF methods on

small datasets.

In terms of recommendation efficiency, SLIM is comparable

to itemkNN and itemprob (i.e., the required times range in

seconds), but considerably faster than the other methods (i.e.,

the required times range in minutes). The somewhat worse

efficiency of SLIM compared to itemkNN is due to the fact that

the resulting best W matrix is denser than the best performing

item-item cosine similarity matrix from itemkNN. PureSVD,

WRMF and BPRMF have worse computational complexities (i.e.,

linear to the product of the number of items and the dimen-

sionality of the latent space), which is validated by their high

recommendation run time. BPRkNN produces a fully dense

item-item similarity matrix, which is responsible for its high

recommendation time.

In terms of the amount of time required to learn the

models, we see that the time required by itemkNN/itemprob

is substantially smaller than the rest of the methods. The

amount of time required by SLIM to learn its model, relative

to PureSVD, WRMF, BPRMF and BPRkNN, varies depending on

the datasets. However, even though SLIM is slower on some

datasets (e.g., ML10M and Yahoo), this situation can be easily

remediated by the feature-selection-based fsSLIM as will be

discussed later in Section VI-A3.

One thing that is surprising with the results shown in Ta-

ble II is that the MF-based methods are sometimes even worse

than the simple itemkNN, itemprob and userkNN in terms

of HR. For example, BPRMF performs worse for BX, ML10M,

Netflix and Yahoo. This may because that in the BPRMF
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TABLE II: Comparison of Top-N Recommendation Algorithms

method
ccard ctlg2

params HR ARHR mt tt params HR ARHR mt tt

itemkNN 50 - 0.195 0.145 0.54(s) 1.34(s) 10 - 0.222 0.108 33.78(s) 1.19(s)

itemprob 50 0.2 0.226 0.154 0.97(s) 1.24(s) 10 0.5 0.222 0.105 47.86(s) 0.99(s)

userkNN 150 - 0.189 0.122 0.06(s) 14.84(s) 50 - 0.204 0.106 0.37(s) 48.45(s)

PureSVD 3500 10 0.101 0.058 42.89(m) 2.65(h) 1300 10 0.196 0.099 3.95(m) 18.46(m)

WRMF 250 15 0.230 0.150 4.01(h) 9.14(m) 300 10 0.235 0.114 20.42(h) 5.49(s)

BPRMF 350 0.3 0.238 0.157 1.29(h) 6.64(m) 400 0.1 0.249 0.123 9.72(h) 3.14(m)

BPRkNN 1e-4 0.01 0.208 0.145 2.38(m) 8.15(m) 0.001 0.001 0.224 0.104 1.28(h) 22.03(m)

SLIM 5 0.5 0.246 0.170 17.24(m) 13.57(s) 5 2.0 0.272 0.140 7.24(h) 26.98(s)

fsSLIM 100 0.5 0.243 0.168 4.97(m) 4.45(s) 100 1.0 0.282 0.149 10.92(m) 5.00(s)

fsSLIM 50 0.5 0.244 0.169 2.40(m) 3.34(s) 10 0.5 0.262 0.138 4.21(m) 2.01(s)

method
ctlg3 ecmrc

params HR ARHR mt tt params HR ARHR mt tt

itemkNN 300 - 0.544 0.313 0.55(s) 6.66(s) 300 - 0.218 0.125 0.06(s) 0.54(s)

itemprob 400 0.3 0.558 0.322 0.87(s) 7.62(s) 30 0.2 0.245 0.138 0.09(s) 0.12(s)

userkNN 350 - 0.492 0.285 0.11(s) 19.18(s) 400 - 0.212 0.119 0.01(s) 0.78(s)

PureSVD 3000 10 0.373 0.210 1.11(h) 4.28(h) 1900 10 0.186 0.110 3.67(m) 3.22(m)

WRMF 420 20 0.543 0.308 14.42(h) 50.67(m) 270 15 0.242 0.133 3.22(h) 13.60(s)

BPRMF 300 0.5 0.541 0.283 1.49(h) 13.66(m) 350 0.1 0.249 0.128 4.00(m) 12.76(s)

BPRkNN 0.001 1e-4 0.542 0.304 6.20(m) 20.28(m) 1e-5 0.010 0.242 0.130 1.02(m) 13.53(s)

SLIM 3 0.5 0.579 0.347 1.02(h) 16.23(s) 5 0.5 0.255 0.149 11.10(s) 0.51(s)

fsSLIM 100 0.0 0.546 0.292 12.57(m) 9.62(s) 100 0.5 0.252 0.147 16.89(s) 0.32(s)

fsSLIM 400 0.5 0.570 0.339 14.27(m) 12.52(s) 30 0.5 0.252 0.147 5.41(s) 0.16(s)

method
BX ML10M

params HR ARHR mt tt params HR ARHR mt tt

itemkNN 10 - 0.085 0.044 1.34(s) 0.08(s) 20 - 0.238 0.106 1.97(m) 8.93(s)

itemprob 30 0.3 0.103 0.050 2.11(s) 0.22(s) 20 0.5 0.237 0.106 1.88(m) 7.49(s)

userkNN 100 - 0.083 0.039 0.01(s) 1.49(s) 50 - 0.303 0.146 2.26(s) 34.42(m)

PureSVD 1500 10 0.072 0.037 1.91(m) 2.57(m) 170 10 0.294 0.139 1.68(m) 1.72(m)

WRMF 400 5 0.086 0.040 12.01(h) 29.77(s) 100 2 0.306 0.139 16.27(h) 1.59(m)

BPRMF 350 0.1 0.089 0.040 8.95(m) 12.44(s) 350 0.1 0.281 0.123 4.77(h) 5.20(m)

BPRkNN 1e-4 0.010 0.082 0.035 5.16(m) 42.23(s) 0.001 1e-4 0.327 0.156 15.78(h) 1.08(h)

SLIM 3 0.5 0.109 0.055 5.51(m) 1.39(s) 1 2.0 0.311 0.153 50.98(h) 41.59(s)

fsSLIM 100 0.5 0.109 0.053 36.26(s) 0.63(s) 100 0.5 0.311 0.152 37.12(m) 17.97(s)

fsSLIM 30 1.0 0.105 0.055 16.07(s) 0.18(s) 20 1.0 0.298 0.145 14.26(m) 8.87(s)

method
Netflix Yahoo

params HR ARHR mt tt params HR ARHR mt tt

itemkNN 150 - 0.178 0.088 24.53(s) 13.17(s) 400 - 0.107 0.041 21.54(s) 2.25(m)

itemprob 10 0.5 0.177 0.083 30.36(s) 1.01(s) 350 0.5 0.107 0.041 34.23(s) 1.90(m)

userkNN 200 - 0.154 0.077 0.33(s) 1.04(m) 50 - 0.107 0.041 18.46(s) 3.26(m)

PureSVD 3500 10 0.182 0.092 29.86(m) 21.29(m) 170 10 0.074 0.027 53.05(s) 11.18(m)

WRMF 350 10 0.184 0.085 22.47(h) 2.63(m) 200 8 0.090 0.032 16.23(h) 50.05(m)

BPRMF 400 0.1 0.156 0.071 43.55(m) 3.56(m) 400 0.1 0.093 0.033 10.36(h) 47.28(m)

BPRkNN 0.01 0.01 0.188 0.092 10.91(m) 6.12(m) 0.01 0.001 0.104 0.038 2.60(h) 4.11(h)

SLIM 5 1.0 0.200 0.102 7.85(h) 9.84(s) 5 0.5 0.122 0.047 21.30(h) 5.69(m)

fsSLIM 100 0.5 0.202 0.104 6.43(m) 5.73(s) 100 0.5 0.124 0.048 1.39(m) 41.24(s)

fsSLIM 150 0.5 0.202 0.104 9.09(m) 7.47(s) 400 0.5 0.123 0.048 2.41(m) 1.72(m)

Columns corresponding to params present the parameters for the corresponding method. For methods itemkNN and userkNN, the

paramesters are number of neighbors, respectively. For method itemprob, the parameters are the number of neighbors and transition

parameter α. For method PureSVD, the parameters are the number of singular values and the number of iterations during SVD. For

method WRMF, the parameters are the dimension of the latent space and the weight on purchases. For method BPRMF, the parameters

are the dimension of the latent space and learning rate, respectively. For method BPRkNN, the parameters are the learning rate and

regularization parameter λ. For method SLIM, the parameters are �2-norm regularization parameter β and �1-norm regularization

parameter λ. For method fsSLIM, the parameters are the number of neighbors and �1-norm regularization parameter λ. Columns

corresponding to HR and ARHR present the hit rate and average reciprocal hit-rank, respectively. Columns corresponding to mt

and tt present the time used by model learning and recommendation, respectively. The mt/tt numbers with (s), (m) and (h) are time

used in seconds, minutes and hours, respectively. Bold numbers are the best performance in terms of HR for each dataset.

paper [11], the authors evaluated the entire AUC curve to

measure if the interested items are ranked higher than the

rest. However, a good AUC value does not necessarily lead

to good performance on top-N of the ranked list. In addition,

in the case of PureSVD, the best performance is achieved when

a rather larger number of singular values is used (e.g., ccard,

ctlg3, BX and Netflix).

3) fsSLIM Performance: Table II also presents the results

for the SLIM version that utilizes feature selection (rows

labeled as fsSLIM). In the first set of experiments we used

the item-item cosine similarity (as in itemkNN) and for each

column of A selected its 100 other most similar columns

and used the m × 100 matrix to estimate the coefficient

matrix in Equation 3. The results are shown in the first

fsSLIM row in Table II. In the second set of experiments

we selected the most similar columns of A based on item-

item cosine similarity or item-item probability similarity (as

in itemprob), whichever performs best, and corresponding

number of columns. The results of these experiments are

shown in the second fsSLIM row.

502



0.0

0.5

1.0

1.5

2.0

2.5

tim
e 

(s
)

0.0 0.5 1.0 2.0 3.0 5.0
λ

0.0

0.5

1.0

2.0

3.0

5.0

β

(a) Recommendation time

0.06

0.07

0.08

0.09

0.10

0.11

H
R

0.0 0.5 1.0 2.0 3.0 5.0
λ

0.0

0.5

1.0

2.0

3.0

5.0

β

(b) HR

Fig. 1: �1-Norm and �2-Norm Regularization Effects on BX

0

0.001%

0.01%

0.1%

1%

10%

100%

0 20% 40% 60% 80% 100%

%
 o

f i
te

m
s

% of purchases/ratings

short
-head
(popular)

long-tail

(unpopular)

ML10M

Fig. 2: Purchase/Rating Distribution in ML10M

There are three important observations that can be made

from the fsSLIM results. First, the performance of fsSLIM is

comparable to that of SLIM for nearly all the datasets. Second,

the amount of time required by fsSLIM to learn the model is

much smaller than that required by SLIM. Third, using fsSLIM

to estimate W , whose sparsity structure is constrained by

the itemkNN/itemprob neighbors, leads to significantly better

recommendation performance than itemkNN/itemprob itself.

This suggests that we can utilize feature selection to improve

the learning time without decreasing the performance.

4) Regularization Effects in SLIM : Figure 1 shows the

effects of �1-norm and �2-norm regularizations in terms of

recommendation time (which directly depends on how sparse

W is.) and HR on the dataset BX(similar results are observed

from all the other datasets). Figure 1 demonstrates that as

greater �1-norm regularization (i.e., larger λ in Equation 3)

is applied, lower recommendation time is achieved, indicating

that the learned W is sparser. Figure 1 also shows the

effects of �1-norm and �2-norm regularizations together for

recommendation quality. The best recommendation quality is

achieved when both of the regularization parameters β and λ

are non-zero. In addition, the recommendation quality changes

smoothly as the regularization parameters β and λ change.

5) SLIM for the Long-Tail Distribution: The long-tail effect,

which refers to the fact that a disproportionally large number

of purchases/ratings are condensed in a small number of items

(popular items), has been a concern for recommender systems.

Popular items tend to dominate the recommendations, making

it difficult to produce novel and diverse recommendations.

TABLE III: Performance on the Long Tail of ML10M

method
ML10M long tail

params HR ARHR mt tt

itemkNN 10 - 0.130 0.052 1.59(m) 4.62(s)

itemprob 10 0.5 0.126 0.051 1.65(m) 4.04(s)

userkNN 50 - 0.162 0.069 2.10(s) 20.43(m)

PureSVD 350 70 0.224 0.096 2.98(m) 10.45(m)

WRMF 100 2 0.232 0.097 23.15(h) 1.74(m)

BPRMF 300 0.01 0.240 0.102 22.63(h) 8.56(m)

BPRkNN 0.001 1e-4 0.239 0.098 15.72(h) 36.42(m)

SLIM 1 5.0 0.256 0.106 57.55(h) 47.69(s)

fsSLIM 10 5.0 0.255 0.105 25.37(m) 9.57(s)

fsSLIM 100 4.0 0.255 0.105 58.32(m) 19.32(s)

1% most popular items are eliminated from ML10M. Params have same

meanings as those in Table II.

Since while constructing the BX, Netflix and Yahoo

datasets, we eliminated the items that are purchased/rated

by many users, these datasets do not suffer from long-tail

effects. The results presented in Table II as they relate to these

datasets demonstrate that SLIM is superior to other methods

in producing non-trivial top-N recommendations when no

significantly popular items are present.

The plot in Figure 2 demonstrates the long-tail distribution

of the items in ML10M dataset, in which only 1% of the items

contribute 20% of the ratings. We eliminate these 1% most

popular items and use the remaining ratings for all the top-N

methods during learning. The results are presented in Table III.

These results show that the performance of all methods is

notably worse than the corresponding performance in Table II

in which the “short head” (i.e., corresponding to the most

popular items) is present. However, SLIM outperforms the

rest methods. In particular, SLIM outperforms BPRkNN even

though BPRkNN does better than SLIM as in Table II when

the popular items are presented in ML10M. This conforms to

the observations based on BX, Netflix and Yahoo results, that

SLIM is resistant to the long-tail effects.

6) Recommendation for Different Top-N: Figure 3 shows

the performance of the methods for different values of N

(i.e., 5, 10, 15, 20 and 25) for BX, ML10M, Netflix and Yahoo

datasets. Table IV presents the performance difference between

SLIM and the best of the other methods in terms of HR on the

four datasets. For example, 0.012 in Table IV for BX when

N = 5 is calculated as the difference between SLIM’s HR and

the best HR from all the other methods on BX when top-5

items are recommended. The performance difference between

SLIM and the best of the other methods are higher for smaller

values of N across the datasets BX, ML10M and Netflix.

Figure 3 and Table IV demonstrate that SLIM produces better

than the other methods when smaller number of items are

recommended. This indicates that SLIM tends to rank most

relevant items higher than the other methods.

7) Sparsity Pattern of W : We use ML10M as an example

to illustrate what SLIM is learning. The item-item similarity

matrix S constructed from itemkNN and the W from SLIM

are shown in Figure 4. Note that in Figure 4, the S matrix

is obtained using 100 nearest neighbors. The density of the

matrices produced by itemkNN and SLIM is 0.936% and

0.935%, respectively. However, their sparsity patterns are
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TABLE IV: Performance Difference on Top-N Recommendations

dataset
N

5 10 15 20 25

BX 0.012 0.006 0.000 0.000 0.001

ML10M 0.000 -0.016 -0.013 -0.018 -0.021

Netflix 0.013 0.012 0.008 0.005 0.003

Yahoo 0.009 0.015 0.015 0.016 0.017

Columns corresponding to N shows the performance (in

terms of HR) difference between SLIM and the best of the

rest methods on corresponding top-N recommendatons.

different. First, the S matrix has non-zero item-item similarity

values that are clustered towards the diagonal, while W has

non-zero values that are more evenly distributed. Second,

during recommendation, on average 53.60 non-zero values in

S contribute to the recommendation score calculation on one

item for one user, whereas in case of W , on average 14.79

non-zero values make contributions, which is 1/3 as that in S.

W recovers 31.8% of the non-zero entries in S (those entries

have larger values than average) and it also discovers new

non-zero entries that are not in S. The newly discovered item-

item similarities contribute to 37.1% of the hits from W . This

(a) S from itemkNN (b) W from SLIM

Fig. 4: Sparsity Patterns for ML10M (dark for non-zeros)

suggests that W , even though it is also very sparse, recovers

some subtle relations that are not captured by item-item cosine

similarity measure, which brings performance improvement.

In SLIM, item tk that are co-purchased with item tj also

contributes to the similarity between item tj and another item

ti, even tk has never been co-purchased with ti. Furthermore,

treating missing values as 0s helps to generalize. Including all

missing values as 0s in wj vector in Equation 4 help smooth

out item similarities and help incorporate the impacts from

dissimilar/un-co-purchased items. The above can be shown

theoretically by the coordinate descent updates (proof omitted

here).

8) Matrix Reconstruction: We compare SLIM with MF

methods by looking at how it reconstructs the user/item

purchase matrix. We use BPRMF as an example of MF methods

since it has the typical properties that most of the state-of-the-

art MF methods have. We focused on ML10M, whose matrix A

has a density of 1.3%. The reconstructed matrix ÃSLIM = AW

from SLIM has a density 25.1%, whose non-zero values have

a mean of 0.0593. For those 1.3% non-zero entries in A, ÃSLIM

recovered 99.1% of them and their mean value is 0.4489 (i.e.,

7.57 times of the non-zero mean). The reconstructed matrix

ÃBPRMF = UV T is fully dense, with 13.1% of its values greater

than 0 with mean of 1.8636, and 86.9% of its values less than

0 with a mean of -2.4718. For those 1.3% non-zero entries in

A, ÃBPRMF has 97.3% of them as positive values with a mean of

4.7623 (i.e., 2.56 times of positive mean). This suggests that

SLIM recovers A better than BPRMF since SLIM recovers more

non-zero entries with relatively much larger values.

B. SLIM Performance on Ratings

1) Comparison Algorithms: We compare the performance

of SLIM with PureSVD, WRMF and BPRkNN. In SLIM, the W

matrix is learned by using the user-item rating matrix A as

in Equation 2. PureSVD also uses the user-item rating matrix

for the SVD calculation. In WRMF, the ratings are used as

weights following the approach suggested in [5]. We modified

BPRkNN such that in addition to raking rated items higher than

non-rated items, they also rank high-rated items higher than

low-rated items. We will use the suffix -r after each method

to explicitly denote that a method utilizes rating information

during the model construction. Similarly, we will use the suffix
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-b in this section to denote that a method utilizes binary

information as in Section VI-A for comparison purpose.

2) Top-N Recommendation Performance on Ratings: We

compare SLIM-r with PureSVD-r, WRMF-r and BPRkNN-r on

the BX, ML10M, Netflix and Yahoo datasets for which rating

information is available. In addition, we also evaluated SLIM-b,

PureSVD-b, WRMF-b and BPRkNN-b on the four datasets, for

which the models are still learned from binary user-item

purchase matrix but the recommendations are evaluated based

on ratings.

Figure 5 presents the results of these experiments. The first

column of figures show the rating distribution of the four

datasets. The second column of figures show the per-rating

hit rates (rHR) for the four datasets. Finally, the third column

of figures show the cumulative hit rates (cHR) for the four

datasets. In Figure 5, the binary top-N models correspond to

the best performing models of each method as in Table II. The

results from top-N models using ratings are selected based on

the cHR performance on rating 6, 6, 3 and 3 for the datasets,

respectively.

The results in Figure 5 show that all the -r methods tend

to produce higher hit rates on items with higher ratings.

However, the per-rating hit rates of the -b methods have

smaller dynamics across different ratings. This is because

during learning, high-rated items and low-rated items are not

differentiated in the -b methods. In addition, the -r methods

outperform -b methods in terms of rHR on high-rated items.

In particular, -r methods consistently outperform -b methods

on items with ratings above the average across all the datasets.

Figure 5 also shows that the SLIM-r consistently outper-

forms the other methods in terms of both rHR and cHR

on items with higher ratings over all the four datasets. In

particular, it outperforms PureSVD-r in terms of cHR, which

is demonstrated in [3] to be the best performing methods

for top-N recommendation using ratings. This indicates that

incorporating rating information during learning allows the

SLIM methods to identify more highly-rated items.

VII. DISCUSSION & CONCLUSIONS

A. Observed Data vs Missing Data

In the user-item purchase/rating matrix A, the non-zero en-

tries represent purchase/rating activities. However, the entries

with “0” value can be ambiguous. They may either represent

that the users will never purchase the items, the users may

purchase the items but have not done so, or we do not know

if the users have purchased the items or not or if they will.

This is the typical “missing data” setting and it has been well

studied in recommender systems [4], [8].

In SLIM, we treated all missing data in aj and A in Equa-

tion 4 as true negative(i.e., the users will never purchase

the items). Differentiation of observed data and missing data

in Equation 4 is under development.

B. Conclusions

In this paper, we proposed a sparse linear method for top-

N recommendation, which is able to generate high-quality

top-N recommendations fast. SLIM employs a sparse linear

model in which the recommendation score for a new item

can be calculated as an aggregation of other items. A sparse

aggregation coefficient matrix W is learned for SLIM to make

the aggregation very fast. W is learned by solving an �1-

norm and �2-norm regularized optimization problem such that

sparsity is introduced into W .

We conducted a comprehensive set of experiments and com-

pared SLIM with other state-of-the-art top-N recommendation

algorithms. The results showed that SLIM achieves predic-

tion quality better that the state-of-the-art MF-based methods.

Moreover, SLIM generates recommendations very fast. The

experimental results also demonstrated the good properties of

SLIM compared to other methods. Such properties include that

SLIM is able to have significant speedup if feature selection

is applied prior to learning. SLIM is also resistant to long-tail

effects in top-N recommendation problems. In addition, when

trained using ratings, SLIM tends to produce recommendations

that are also potentially highly rated. Due to these properties,

SLIM is very suitable for real-time top-N recommendation

tasks.
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