FICO® Xpress Optimization

Last update 01 October 2022

FICO® Xpress Optimizer Python interface

User’'s manual

FICO

©1983-2022 Fair Isaac Corporation. All rights reserved. This documentation is the property of Fair Isaac
Corporation ("FICQ"). Receipt or possession of this documentation does not convey rights to disclose,
reproduce, make derivative works, use, or allow others to use it except solely for internal evaluation purposes
to determine whether to purchase a license to the software described in this documentation, or as otherwise
set forth in a written software license agreement between you and FICO (or a FICO affiliate). Use of this
documentation and the software described in it must conform strictly to the foregoing permitted uses, and
no other use is permitted.

The information in this documentation is subject to change without notice. If you find any problems in this
documentation, please report them to us in writing. Neither FICO nor its affiliates warrant that this
documentation is error-free, nor are there any other warranties with respect to the documentation except as
may be provided in the license agreement. FICO and its affiliates specifically disclaim any warranties,
express or implied, including, but not limited to, non-infringement, merchantability and fitness for a particular
purpose. Portions of this documentation and the software described in it may contain copyright of various
authors and may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall FICO or its affiliates be liable to any person for direct, indirect, special, incidental, or
consequential damages, including lost profits, arising out of the use of this documentation or the software
described in it, even if FICO or its affiliates have been advised of the possibility of such damage. FICO and its
affiliates have no obligation to provide maintenance, support, updates, enhancements, or modifications
except as required to licensed users under a license agreement.

FICO is a registered trademark of Fair Isaac Corporation in the United States and may be a registered
trademark of Fair Isaac Corporation in other countries. Other product and company names herein may be
trademarks of their respective owners.

Xpress Optimizer

Deliverable Version: A

Last Revised: 01 October 2022
Version 41.01 (FICO® Xpress 9.0)

Contents

1 Introduction 1
1T 0utline e e e 1
1.2 Installing the Python Xpressmodule 1

1.2.1 Installation from the Python Package Index (PyPl) 2
1.2.2 InstallationfromConda 2
1.2.3 Troubleshooting theinstallation 2

2 Modeling an optimization problem 4
2.1 Gettingstarted e e e e 4
2.2 Creatingaproblem e e e e 4
2.3 Variables e 5

Variable names and Pythonobjects 6
24 Constraints e e e 7
2.5 Objectivefunction e e 9
2.6 Compact formulation 9
2.7 Special Ordered Sets (SOSS) v i vt i i e e e e 10
2.8 Indicatorconstraints. e e 10
2.9 Piecewiselinearfunctions e 10
210 Generalconstraints e e e e e 12
2.11 Using loadproblemforefficiency 13
2.12 Modeling and solving nonlinearproblems 14
213 Solvingaproblem e e e 16
214 Queryingaproblem e e e e 16
2.15 Reading and writingaproblem 18
2.16 Hints for building models efficiently 19
217 EXCepPtioNS e e e e e e e 20

3 Using Python numerical libraries 21
3.1 Using NumPy in the Xpress Pythoninterface 21
3.2 Products of NumPy @rrays o o v it e e e e e e e 23

4 Controls and Attributes 24
47 Controls L e 24
42 Examples e e e 25
4.3 Aftributes e e e e e 25
4.4 Examples e 26
4.5 Accessing controls and attributes as objectmembers. L. 26

5 Using Callbacks 29
5.1 Introduction e e e e 29

6 Examples of use 31
6.1 Creatingsimpleproblems 31

6.1.1 Generating a small Linear Programming problem 31
6.1.2 A Mixed Integer Linear Programming problem 32
6.2 Modelingexamples e 33

Fair Isaac Corporation Proprietary Information i

Contents

6.21 Asimplemodel
6.2.2 Using IIS to investigate an infeasible problem
6.2.3 Modeling a problem using Python listsandvectors
6.2.4 Aknapsackproblem
6.2.5 A Min-cost-flow problemusingNumPy
6.2.6 Anonlinearmodel
6.2.7 Findingthe maximum-arean-gon
6.2.8 Solvingthen-queensproblem
6.2.9 SolvingSudokuproblems.
6.3 ExamplesusingNumPy e
6.3.1 Using NumPy multidimensional arrays to create variables
6.3.2 Using the dot product to create arrays of expressions
6.3.3 Using the Dot product to create constraints and quadratic functions
6.3.4 Using NumPy to create quadratic optimization problems

6.4 Advanced examples: callbacks and problem querying, modifying, and analysis

6.4.1 Visualize the branch-and-bound tree ofaproblem
6.4.2 Query and modify asimpleproblem
6.4.3 Change a problem aftersolution
6.4.4 Comparing the coefficients of two equally sized problems
6.4.5 Combining modeling and APl functions
6.4.6 A simple Traveling Salesman Problem (TSP) solver
6.4.7 SolvinganonconvexMIQCQP,
6.5 Translated Moselexamples.

7 Reference Manual

7.1 Usingthischapter
Formatofthereference
7.2 ClassesoftheXpressmodule
7.3 Global methods of the Xpressmodule
7.4 Methods of theclassproblem 0......
7.5 Methods for branchingobjects
7.6 Methods for adding/removing callbacks of a problemobject
7.7 Methods to be used within a callback of a problemobject
7.8 Xpressbaseclasses e
Xpress.atir L e e
xpress.branchobj. e
Xpress.constraint
Xpress.Ctrl e
XPreSS.EXPreSSION . . . v v i i e e e e e e e e e
xpress.interm . .. L L e
Xpress.nonlin e
Xpress.poolcut
Xpress.problem e
xpress.quadterm L L e
XPIESS.SOS + o o v v i i e e e e e e e e e e e e e e e e e e
XPIESS.VAI . o o v v i i e e e e e e e e e e e
Xpress.voidstar
Xpress.xprsobject
7.9 Xpressobjectfunctions
object.extractLinear e
object.extractQuadratic
700 Xpressoperators e e e e e e e
Xpress.abs e
XPIESS.AC0S o v v v e i e e e e e e e e e e e e e
Xpress.And . . oL L L e

Fair Isaac Corporation Proprietary Information

Contents

XPrESS.A@SIN . . v v v i e e e e e e e e e e e e e e e e e 88
XPress.atan e e e e e e 89
XPIESS.COS . v o v v v i e e e e e e e e e e e e e e 90
Xpress.Dot e e 91
Xpress.erf . . . e 93
XPress.erfC e 94
XPIESS.EXP & v v e v e 95
XPress.log e 96
Xpress.logl0 e 97
XPFESS.MAX . o v v v e 98
XPrESS.MIN . . o o o e e e e e e e e e e e 99
XPrESS. OF . . o o e e e e e e e 100
XPreSS. PWl o o e e e e e e 101
XPress.Prod L e e e e e 102
XPrESS.SIgN . . . o v e e e e e e e e e e e 103
XPIESS.SIN & . . o e e e e e e e e e e e e e e e e e 104
XPrESS.SAM . v o o o e e e e e e e e e 105
XPrESS.SUM . . . o o o e e e e e e e e e e e e e e 106
XPress.tan e e e e 107
XPIESS.USEI . o o v e 108
711 Xpressbasefunctions 110
xpress.addcbmsghandler L m
Xpress.evaluate e e 112
Xpress.examples L e 114
xpress.featurequery e e 115
Xpress.free 116
Xpress.getbanner L e 117
xpress.getcomputeallowed 118
xpress.getcheckedmode 119
xpress.getdaysleft 120
Xpress.getlasterror. L e 121
Xpress.getlicerrmsg e e 122
XPress.getversion L e e e e e e e e e e e 123
XPress.nit e e e e e e e 124
Xpress.manual e e e e e e e e 125
xpress.removecbmsghandler 126
xpress.setarchconsistency e 127
xpress.setcomputeallowed 128
xpress.setcheckedmode 129
xpress.setdefaults e 130
xpress.setdefaultcontrol 131
XPFESS.VAIS . o v v e i e 132
xpress.getOutputEnabled e e 134
xpress.setOutputEnabled 135
7.2 Xpress problemmethods 136
problem.addcbbariteration 137
problem.addcbbarlog 139
problem.addcbchecktime 140
problem.addcbchgbranchobject 141
problem.addcbcutlog e 142
problem.addcbdestroymt 143
problem.addcbgapnotify 144
problem.addcbmiplog 146
problem.addcbinfnode e 147
problem.addcbintsol e 148

Fair Isaac Corporation Proprietary Information iii

Contents

problem.addcblplog e 149
problem.addcbmessage e 150
problem.addcbmipthread 151
problem.addcbnewnode e 152
problem.addcbnodecutoff 153
problem.addcbnodelpsolved 154
problem.addcboptnode 155
problem.addcbpreintsol 156
problem.addcbprenode e 157
problem.addcbusersolnotify 158
problem.addcoefs 159
problem.addcols e 161
problem.addConstraint e 163
problem.addcuts e 164
problem.adddfs 165
problem.addgencons 166
problem.addindicator 167
problem.addmipsol e 168
problem.addobj e 169
problem.addObjective 170
problem.addpwlcons 171
problem.addgmatrix 172
problem.addrows L e e 173
problem.addsetnames e 174
problem.addSOS e 175
problem.addtolsets 176
problem.addVariable 177
problem.addvars e 178
problem.basisstability 179
problem.bndsa e 180
problem.btran e 181
problem.calcobjn 182
problem.calcobjective 183
problem.calcreducedcosts e 184
problem.calcslacks e 185
problem.calcsolinfo e 186
problem.cascade e 187
problem.cascadeorder e 188
problem.chgbounds 189
problem.chgcoef e 190
problem.chgcoltype e 191
problem.chgcascadenlimit 192
problem.chgccoef 193
problem.chgdeltatype 194
problem.chgdf e 195
problem.chgglblimit 196
problem.chgmcoef 197
problem.chgobjn 198
problem.chgmqobj. e 199
problem.chgnlcoef 200
problem.chgobj e 201
problem.chgobjsense e 202
problem.chgqobj 203
problem.chggrowcoeff 204
problem.chgrhs e 205

Fair Isaac Corporation Proprietary Information iv

Contents

problem.chgrhsrange 206
problem.chgrowstatus 207
problem.chgrowtype 208
problem.chgrowwt e 209
problem.chgtolset 210
problem.chgvar e 211
problem.construct L e e 212
problem.copy e e 213
problem.copycallbacks e 214
problem.copycontrols 215
problem.crossoverlpsol 216
problem.delcoefs 217
problem.delConstraint e 218
problem.delcpcuts e 219
problem.delcuts e 220
problem.delgencons e 221
problem.delindicators 222
problem.delpwlcons e 223
problem.delobj e 224
problem.delgmatrix e 225
problem.delSOS e 226
problem.deltolsets 227
problem.delVariable 228
problem.delvars e 229
problem.dumpcontrols e 230
problem.estimaterowdualranges L o 231
problem.evaluatecoef 232
problem.evaluateformula 233
problem.fixmipentities 234
problem.fixpenalties 235
problem.ftran e e 236
problem.getAttrib 237
problem.getattribinfo 238
problem.getbasis e 239
problem.getbasisval e 240
problem.getccoef e 241
problem.getcoef e 242
problem.getcoefformula 243
problem.getcoefs L 244
problem.getcolinfo. e 245
problem.getcols e 246
problem.getcoltype e 247
problem.getConstraint 248
problem.getControl 249
problem.getcontrolinfo 250
problem.getcpecutlist. e 251
problem.getcpcuts e e 252
problem.getcutlist 253
problem.getcutmap e 254
problem.getcutslack 255
problem.getdirs e 256
problem.getdf e 257
problem.getDual 258
problem.getdualray e 259
problem.getgencons L e e e 260

Fair Isaac Corporation Proprietary Information v

Contents

problem.getmipentities 261
problem.getiisdata e 262
problem.getindex 264
problem.getindexFromName 265
problem.getindicators L 266
problem.getinfeas 267
problem.getlastbarsol 268
problem.getlasterror 269
problem.getlb e 270
problem.getlpsol e 271
problem.getlpsolval 272
problem.getmessagestatus 273
problem.getmipsol L e 274
problem.getmipsolval e 275
problem.getmqobj e 276
problem.getobjn e 277
problem.getnamelist. 278
problem.getobj e 279
problem.getObjVal e 280
problem.getpivotorder e e 281
problem.getpivots e e 282
problem.getpresolvebasis 283
problem.getpresolvemap e 284
problem.getpresolvesol e 285
problem.getprimalray e e 286
problem.getProbStatus 287
problem.getProbStatusString 288
problem.getpwlcons e 289
problem.getqobj e 290
problem.getqrowcoeff L e 291
problem.getqrowgmatrix e e 292
problem.getqrowgmatrixtriplets 293
problem.getqrows L e e e 294
problem.getRCost e 295
problem.getrhs e 296
problem.getrhsrange e 297
problem.getrowinfo 298
problem.getrows e 299
problem.getrowstatus e 300
problem.getrowtype 301
problem.getrowwt e e e 302
problem.getscaledinfeas e 303
problem.getSlack 304
problem.getslpsol e 305
problem.getSolution e 306
problem.getSOS e 308
problem.gettolset e 309
problem.getub L 310
problem.getunbvec 31
problem.getvar e e e 312
problem.getVariable e 314
problem.hasdualray 315
problem.hasprimalray 316
problem.iisall e 317
problem.iisclear e 318

Fair Isaac Corporation Proprietary Information Vi

Contents

problem.iisfirst 319
problem.iisisolations e 320
problem.iisnext e e 321
problem.iisstatus 322
problem.iiswrite e 323
problem.interrupt e 324
problem.loadbasis 325
problem.loadbranchdirs 326
problem.loadcoefs e 327
problem.loadcuts 329
problem.loaddelayedrows 330
problem.loaddfs 331
problem.loaddirs e e 332
problem.loadlpsol e 333
problem.loadmipsol e 334
problem.loadmodelcuts e 335
problem.loadpresolvebasis 336
problem.loadpresolvedirs e 337
problem.loadproblem e 338
problem.loadsecurevecs e 340
problem.loadtolsets 341
problem.loadvars e 342
problem.lpoptimize 344
problem.mipoptimize e 345
problem.msaddcustompreset e 346
problem.msaddjob 347
problem.msaddpreset e 348
problem.msclear e 349
problem.name e e e e 350
problem.nlpoptimize 351
problem.optimize e 352
problem.objsa L 353
problem.postsolve e 354
problem.presolve e e 355
problem.presolverow 356
problem.printmemory e e e e e 357
problem.printevalinfo e 358
problem.read e e e 359
problem.readbasis e e 360
problem.readbinsol e 361
problem.readdirs e e e 362
problem.readslxsol e 363
problem.refinemipsol 364
problem.reinitialize 365
problem.removecbbariteration L. 366
problem.removecbbarlog e 367
problem.removecbchecktime 368
problem.removecbchgbranchobject o oo o oL 369
problem.removecbcutlog 370
problem.removechdestroymt 371
problem.removecbgapnotify 372
problem.removecbmiplog e 373
problem.removecbinfnode 374
problem.removecbintsol 375
problem.removecblplog 376

Fair Isaac Corporation Proprietary Information vii

Contents

problem.removecbmessage e 377
problem.removecbmipthread 378
problem.removecbnewnode e 379
problem.removecbnodecutoff 380
problem.removecbnodelpsolved 381
problem.removecboptnode 382
problem.removecbpreintsol e 383
problem.removecbprenode e 384
problem.removecbusersolnotify 385
problem.repairinfeas 386
problem.repairweightedinfeas 388
problem.repairweightedinfeasbounds L. 390
problem.reset e e e e 392
problem.restore e e 393
problem.rhssa e e e e 394
problem.save e e 395
problem.scale 396
problem.scaling e e 397
problem.setbranchbounds 398
problem.setbranchcuts 399
problem.setcbcascadeend e 400
problem.setcbcascadestart. 401
problem.setcbcascadevar e 402
problem.setcbcascadevarfail 403
problem.setcbcoefevalerror e 404
problem.setcbconstruct e 405
problem.setcbdestroy 407
problem.setcbdrcol 408
problem.setcbintsol 409
problem.setcbiterend e 410
problem.setcbiterstart. e 11
problem.setcbitervar 412
problem.setcbmessage e 1413
problem.setcbmsjobend 414
problem.setcbmsjobstart 415
problem.setcbmswinner e 416
problem.setcboptnode 417
problem.setcbprenode e 418
problem.setcbpreupdatelinearization 419
problem.setcbslpend e 420
problem.setcbslpnode. e 421
problem.setcbslpstart e 422
problem.setControl e 423
problem.setcurrentiv. e 424
problem.setdefaultcontrol 425
problem.setdefaults e 426
problem.setindicators e 427
problem.setlogfile 428
problem.setmessagestatus e 429
problem.setObjective e 430
problem.setprobname e 431
problem.storebounds 432
problem.storecuts e e 433
problem.strongbranch 434
problem.strongbranchcb 435

Fair Isaac Corporation Proprietary Information viii

Contents

problem.tune L e 436
problem.tunerreadmethod 437
problem.tunerwritemethod 438
problem.unconstruct 439
problem.updatelinearization 440
problem.validate e 441
problem.validatekkt 442
problem.validaterow e 443
problem.validatevector e 444
problem.write e 445
problem.writebasis e 446
problem.writebinsol 447
problem.writedirs e e e 448
problem.writeprtsol e 449
problem.writesIxsol 450
problem.writesol e 451
problem.getOutputEnabled 452
problem.setOutputEnabled 453

7.13 Xpress branchobjectmethods 454
branchobj.addbounds 455
branchobj.addbranches 456
branchobj.addcuts 457
branchobj.addrows 458
branchobj.getbounds e 459
branchobj.getbranches e 460
branchobj.getid e 461
branchobj.getlasterror 462
branchobj.getrows e 463
branchobj.setpreferredbranch 464
branchobj.setpriority e 465
branchobj.store 466
branchobj.validate 467
Appendix 468
A Contacting FICO 468
Product SUPPOrt o e e e e e 468
Producteducation 468
Product documentation e 468
Salesand maintenance e e 469
Related services e e e e e e 469
FICOCOMMUNItY o o o e e e e e e e e e e e e e e 469
ADOUt FICO e e e 469
Index 470

Fair Isaac Corporation Proprietary Information ix

CHAPTER 1
Introduction

The Xpress Python interface allows for creating and solving optimization problems using the Python®
programming language and the FICO Xpress Optimizer library. This manual describes how to use the
Xpress Python interface.

1.1 Outline

The following chapters cover:

m Creating, handling, solving, and querying optimization problems (Chapter 2);
m Using Python numerical libraries such as NumPy to create optimization problems (Chapter 3);
m Setting and getting the value of parameters (controls and attributes) of a problem (Chapter 4);

m Using Python functions as callbacks for the Xpress Optimizer and the Xpress Nonlinear solver
(Chapter 5);

m Several examples of usage of the Xpress Python interface (Chapter 6);

m A reference with all functions and parameters in the Python interface (Chapter 7).

It is assumed here that the reader has basic understanding of the Python programming language. Ample
documentation on Python is available at htip://docs.python.org, including a tutorial and a reference
manual. Unless specified otherwise, Python 3 is used in all of the examples and code samples
throughout this manual. The current version of the Xpress Python interface works on Python 3.7 to 3.10.

Other components of the FICO-Xpress Optimization suite can interface with Python, albeit not the same
Python versions. The Mosel module python3, for example, works with Python 3.5 or later. See the Mosel
Language Reference Manual for specifics, and more in general the Xpress Insight Installation Guide,
Appendix A: Supported Platforms for information on Python support.

"Python" is a registered trademark of the Python Software Foundation.

1.2 Installing the Python Xpress module

The Xpress Python module can be installed from the two main Python repositories: The Python Package
Index (PyPl) and the Conda repository. Installing the Xpress Python interface does not require one to
install the whole Xpress suite, as all necessary libraries are provided.

The install comes with a copy of the community license, which allows for solving problems with up to
5000 between variables and constraints. If you already have an Xpress license, please make sure to set
the XPAUTH_PATH environment variable to the full path to the license file, xpauth . xpr. See also
Section 1.2.3 below.

Fair Isaac Corporation Proprietary Information 1

http://docs.python.org

Chapter 1: Introduction

The manual is located in the xpress/doc subdirectory of the Python installation folder, and its location
can be identified by invoking the xpress.manual () function.

1.2.1 Installation from the Python Package Index (PyPI)

The Xpress Python interface is available on the PyPI server and can be installed with the following
command:

pip install xpress

Packages for Python 3.7 to 3.10 are available, for Windows, Linux, and MacOS. The package contains the
Python interface module, its documentation in PDF format, the Xpress Optimizer’s libraries, various
examples of use, and a copy of the community license (see
http://subscribe.fico.com/xpress-optimization-community-license). Online documentation can be viewed
at the FICO Xpress Optimization Help page.

The above command installs the latest version of the Xpress Python module. Earlier versions of the
module can be installed by appending a "==VERSION" string to the module name, for instance

pip install xpress==8.11.2

1.2.2 Installation from Conda

A Conda package is available for download with the following command:

conda install -c fico-xpress xpress

The content of the Conda package is the same as that of the PyPI package. Similar to the PyPI package,
Conda packages for Python 3.7 to 3.10 are available, for Windows, Linux, and MacOS. Similar to PyPI, the
Conda installer fetches the latest version of the package but allows for installing earlier versions as in the
following example (note that the Conda installer only uses a single "="):

conda install -c fico-xpress xpress=8.11.3

1.2.3 Troubleshooting the installation

Whether the Xpress Python module is downloaded from PyPI or from the Conda server, there are a few
remarks that might help ensure that the installation works right away. The advice below is independent of
the Python platform (PyCharm, Spyder, etc.) that may be in use.

The Xpress Python interface uses the Python package NumPy for some operation, hence NumPy must be
installed. It is usually installed if a Conda installation is used, nevertheless ensure that a recent-enough
version is installed.

After installation, a license is not strictly necessary as the embedded Community license is used. If you
already have a license (for example, a trial license, a full license, or one from the Academic Partnership
Program), you can set the XPAUTH_PATH environment variable to the full path to the license file. For
example, if the license file is /home/brian/xpauth.xpr, then XPAUTH_PATH should be set to
/home/brian/xpauth.xpr in order for the module to pick the right license.

If you installed the Xpress Optimization suite before downloading the Xpress Conda or PyPI package, the
Xpress Python interface will try to use the license file your Xpress installation automatically:

m On Windows, the Xpress installer sets the XPRESSDIR environment variable to the installation
directory, and the Xpress Python interface will look for a license file at
$XPRESSDIR%\bin\xpauth.xpr.

Fair Isaac Corporation Proprietary Information 2

http://subscribe.fico.com/xpress-optimization-community-license
http://www.fico.com/fico-xpress-optimization/docs/latest/solver/optimizer/python/HTML/GUID-616C323F-05D8-3460-B0D7-80F77DA7D046.html

Chapter 1: Introduction

m On Linux and MacOS, the Xpress installer creates a script named xpvars. sh in the bin folder of
the Xpress installation. This script sets XPRESSDIR to the installation directory, and sets
XPAUTH_PATH to the location of the license file. If xpvars . sh has been properly sourced into the
shell environment where Python is executed, the Xpress Python interface will use this
XPAUTH_PATH value to locate the license from your Xpress installation. If for some reason
XPAUTH_PATH is not set, the Xpress Python interface will look for a license file at
$XPRESSDIR/bin/xpauth.xpr.

If you do not want to use the license file from your Xpress installation, you can override this behaviour by
setting the XPAUTH_PATH environment variable to the full path to the license file that you want to use.

Fair Isaac Corporation Proprietary Information

CHAPTER 2

Modeling an optimization problem

This chapter illustrates the modeling capabilities of the Xpress Python interface. It shows how to create
variables, constraints of different types, add an objective function, and solving and retrieving a problem’s
solution. It also shows how to read or write a problem from/to a file.

2.1 Getting started

The Xpress Python module is imported as follows:

import xpress

A complete list of methods and constants available in the module is obtained by running the Python
command dir (xpress). Because all types and methods must be called by prepending "xpress.", itis
advisable to alias the module name upon import:

import xpress as xp

We assume that this is the way the module is imported from now on. It is also possible to import all
methods and types to avoid prepending the module name or its alias, but this practice is usually advised
against:

from xpress import =

2.2 Creating a problem

Create an empty optimization problem myproblem as follows:
myproblem = xp.problem()
A name can be assigned to a problem upon creation:

myproblem = xp.problem(name="My first problem")

The problem has no variables or constraint at this point. The synopsis of the xpress.problem method
is as follows:

xpress.problem(*args, name='noname', sense=xpress.minimize)

The only two named arguments are name and sense and they denote the problem name and the
optimization sense, respectively. The argument args is a list composed as follows:

Fair Isaac Corporation Proprietary Information 4

Chapter 2: Modeling an optimization problem

m zero or more variables declared with xpress.var or xpress.vars;
B zero or more constraints created from functions of the variables;
m at most one function in the variables;

m at most one string.

The variables and constraints will be added to the problem as if they were with the
problem.addVariable and problem.addConstraint functions, respectively, while the function is
treated as the objective function and added to the problem as if with the problem.setObjective
function. If the sense parameter is also added, this becomes the optimization sense. Because the
arguments are scanned in the order they are received, the user ought to ensure that a constraint or the
objective function are passed only after all of the variables containing them are passed.

Note that indicator constraints (see Section 2.8) cannot be added directly in the problem declaration but
need to be added using problem.addIndicator.

The following is an example of the compact declaration: variables x and y are declared first, then the
problem declaration is passed these variables and followed by two constraints and a function to be used
as objective function. Note that because no optimization sense is given, minimization is assumed.

import xpress as xp

x = xp.var()

y = xp.var (lb=-1, ub=1)

prob = xp.problem(x, y, 2*x + y > 1, x + 2*xy > 1, x + y, name='myproblem')

All operations for adding/deleting variables, constraint, SOS and others are allowed on problems declared
this way; note that setting a new objective function with problem.setObjective resets the
optimization sense, and sets it to xpress.minimize if none is given.

2.3 Variables

The Xpress type var allows for creating optimization variables. Note that variables are not tied to a
problem but may exist globally in a Python program. In order for them to be included into a problem, they
have to be explicitly added to that problem. Below is the complete declaration with the list of all
parameters (all of them are optional):

var (name, lb, ub, threshold, vartype)

The parameters are:
1. name is a Python UTF-8 string containing the name of the variable (its ASCII version will be saved if
written onto a file); a default name is assigned if the user does not specify it;
2. 1bis the lower bound (0 by default);
3. ub is the upper bound (+inf is the default);

4. threshold is the threshold for semi-continuous, semi-integer, and partially integer variables; it
must be between its lower and its upper bound; it has no default, so if a variable is defined as
partially integer the threshold must be specified;

5. vartype is the variable type, one of the six following types:

B xpress.continuous for continuous variables;
B xpress.binary for binary variables (lower and upper bound are further restricted to 0 and 1);

Fair Isaac Corporation Proprietary Information 5

Chapter 2: Modeling an optimization problem

xpress.integer for integer variables;
xpress.semicontinuous for semi-continuous variables;
xpress.semiinteger for semi-integer variables;

xpress.partiallyinteger for partially integer variables.

The features of each variable are accessible as members of the associated object: after declaring a
variable with x = xpress.var (), its name, lower and upper bound can be accessed via x . name,
x.1b, and x . ub. Note that, after a variable x has been added to one or more problems, a change in its
feature will not be reflected in these problems, but only in the problems to which this variable is added
subsequently.

One or more variables (or list of variables) can be added to a problem with the addvariable method:

v = xp.var (lb=-1, ub=2)

m.addVariable (v)

b
I

= [xp.var (ub=10) for i1 in range(10)]
[xp.var (ub=10, vartype=xp.integer) for i in range(10)]

=
I

m.addVariable (x,y)

By default, variables added to an Xpress problems are constrained to be nonnegative. In order to add a
free variable, one must specify its lower bound to be —oc as follows:

v = xp.var (lb=-xp.infinity)

Variable names and Python objects

Variables and, as described below, constraints and other objects of the Xpress Python interface can have
a name. Variable names and constraint names can be useful when saving a problem to a file and when
querying the problem for the value of a variable in an optimal solution. If a variable is not given a name

explicitly, it will be assigned a default name that is usually "C" followed by a sequence number.

Python also uses these names when printing expressions, because the variables’ __str___ function is
redirected to their name. Therefore, when querying Python for a variable or for an expression containing
that variable, its name will be printed rather than the Python object used in the program, as in the
following example:

>>> v = xp.var (lb=-1, ub=2)
>>> v

Cc1

>>> v.__str__ ()

lCll

>>> x = xp.var (name='myvar')
>>> v + 2 % x

Cl + 2 myvar

>>>

This allows for querying a problem using both the variable object and its name, depending on what is
more convenient. The following example prints twice an optimal solution to a simple problem:

X = xp.var (name='varl')

y = xp.var (name='var2')

p = xp.problem(x, y, x + y >= 3, x + 2*y)
p.optimize ()

print (p.getSolution([x, y1))

print (p.getSolution(['varl', 'var2']))

Fair Isaac Corporation Proprietary Information 6

Chapter 2: Modeling an optimization problem

It can be therefore useful to create xpress.var objects with a meaningful argument, perhaps similar
to the name they have in the Python program one is writing.

2.4 Constraints

Linear, quadratic, and nonlinear constraints can be specified as follows:

constraint (constraint, body, 1lb, ub, sense, rhs, name)

The parameters are:

1. constraint is the full-form constraint, suchas x1 + 2 * x2 <= 4;
body is the body of the constraint, suchas 3 * x1 + x2 (it may contain constants);
1b is the lower bound on the body of the constraint;

ub is the upper bound on the body of the constraint;

a W DN

sense is the sense of the constraint, one among xpress.leq, xpress.geq, xpress.eq, and
xpress.rng; in the first three cases, the parameter rhs must be specified; only in the fourth case
must 1b and ub be specified;

6. rhs is the right-hand side of the constraint;

7. name is the name of the constraint. Parameters 1b, ub, and rhs must be constant.

A much more natural way to formulate a constraint is possible though:

myconstr = xl1 + x2 * (x2 + 1) <= 4
myconstr2 = xp.exp(xp.sin(xl)) + x2 * (x2**5 + 1) <= 4

One or more constraints (or list of constraints) can be added to a problem via the addConstraint
method:

m.addConstraint (myconstr)

m.addConstraint (vl + xp.tan(v2) <= 3)
m.addConstraint (x[1i] + y[i] <= 2 for 1 in range(10))
myconstr = x1 + x2 * (x2 + 1) <= 4

m.addConstraint (myconstr)

In order to help formulate compact problems, the sum operator of the xpress module can be used to
express sums of expressions. Its argument is a list of expressions:

m.addConstraint (xp.Sum([y[i] for i in range(10)]) <= 1)
m.addConstraint (xp.Sum([x[i]**5 for i1 in range(9)]) <= x[9])

When handling variables or expressions, it is advised to use the Sum operator in the Xpress module rather
than the native Python operator, for reasons of efficiency.

As for variables, an object of type constraint allows for read/write access of its features via its
members name, body, 1b, and ub. The same caveat for variables holds here: any change to an object’s
members will only have an effect in the problems to which a constraint is added after the change.

A set of variables or constraint can also be created using Python’s fundamental data structure: lists and
dictionaries, as well as NumPy'’s arrays. As described in Section 2.16 below, one can for example create a
list of variables x [i], all with upper bound 10, indexed from 0 to k-1 as follows:

Fair Isaac Corporation Proprietary Information 7

Chapter 2: Modeling an optimization problem

k=24
x = [xpress.var (ub=10) for _ in range (k)]

If a more elaborate indexing is required, dictionaries can be used. Suppose we want to create an integer
variable x for each item in the list [’ Seattle’,’Miami’,’Omaha’,’Charleston’]. Then

=l
I

= ['Seattle', 'Miami', 'Omaha’', 'Charleston']
x = {1: xpress.var (vartype=xpress.integer) for i in L}

This allows one to refer to such variables using the names in L, for instance x [’ Seattle’],
x[’Charleston’], etc.

Similarly, one can use lists and dictionaries to create constraints, like in the following example on lists:

L = range (20)

x = [xpress.var (ub=1) for i in L]

y = [xpress.var (vartype=xpress.binary) for i in L]
constr = [x[i] <= y[i] for in L]

p = xpress.problem()
p.addvVariable (x,Vy)
p.addConstraint (constr)

Below is an example with dictionaries. Note that Python allows for conditional indexing on the two
parameters i and 5, and each constraint can be referred to with pairs of names, e.g.
clig[’Seattle’,’Miami’].

L = ['Seattle', 'Miami', 'Omaha', 'Charleston’']

x = {i: xpress.var (vartype=xpress.binary) for i in L}

clig = {(i,3): x[i] + x[Jj] <=1 for i in L for j in L if i != j}
p = xpress.problem()

p.addVariable (x)

p.addConstraint (cliq)

There is yet another function for creating an indexed set of variables: the function xpress.vars. It
takes one or more lists, sets, or ranges, and produces as many variables as can be indexed with all
combinations from the provided lists/sets. This allows for creating a set of variables with the same
bounds and type and a similar name, in case the problem is written onto an MPS or LP file. Its syntax is
as follows:

xpress.vars (*indices, name='x', 1lb=0, ub=xpress.infinity,
threshold = -xpress.infinity, vartype=xpress.continuous)

The parameter »indices stands for one or more arguments, each a Python list, a Python set, or a
positive integer. If *indices consists of one list, then the result contains one element for each element
of the list. In case of more lists, sets, or ranges in *indices, the Cartesian product of these lists/sets
provides the indexing space of the result. All other arguments are the same as for the declaration of a
single variable. Here is an example of use:

myvar = xpress.vars(['a',6'b','c'], 1lb=-1, ub=+1)

The result is the three variables myvar[’a’], myvar[’b’],and myvar [’ c’], all with -1 as lower
bound and +1 as upper bound. The following is an example of multi-indexed variables:

y = xpress.vars(['a',6 'b','c','d"'], [100, 120, 150], vartype=xpress.integer)

The result is the 12 variables y[7a’, 1001,y [’a’,120],y[’a’,150],y[’b’,100],.,y[’d’,150].

Fair Isaac Corporation Proprietary Information 8

Chapter 2: Modeling an optimization problem

If argument name is not specified, a prefix "x" is used. The name of each variable resulting from a call to
xpress.vars is the given prefix and the comma-separated list of index values between brackets, for
example it will be "x(a,100)", "x(a,120)", "x(a,150)" for the example above. The call

X = xpress.vars(['a',6 'b','c','d"'], [100, 120, 150], name='var')

produces variables x[”a’, 100] whose name is "var(a,120)", etc.

In the rindices argument, in lieu of a list or a set one can also specify an integer positive number k,
which is interpreted as the range of numbers 0,1, ..., k-1. Thusthecall x = xpress.vars (5, 7,
vartype = xpress.integer) creates 35 variables x[0,0],x[0,1],x[0, 21,...,x[4, 6].

The xpress.vars function, effectively, is a more readable way to create a Python dictionary of variables.
The instruction

x = xpress.vars(['a',6 'b','c','d"'], [100, 120, 150], ub=20, name='newvar')
is equivalent to the following:

x = {(i,]J): xpress.var (ub=20, name='newvar ({0}, {1})'.format (i, j))
for i in ['a','b','c','d"]
for j in [100, 120, 150]}

2.5 Objective function

The objective function is any expression, so it can be constructed as for constraints. The method
problem.setObjective can be used to set (or replace if one has been specified before) the objective
function of a problem. The definition of setObjective is as follows:

setObjective (objective, sense=xpress.minimize)

where objective is the expression defining the new objective and sense is either xpress.minimize
or xpress.maximize. Examples follow; in the first, the objective function is to be minimized as per
default, while the second example specifies the optimization sense as maximization.

m.setObjective (xp.Sum ([y[i]**2 for 1 in range (10)1]))
m.setObjective (vl + 3 * v2, sense=xp.maximize)

Finally, a note on efficiency. For creating a large number of variables, one can obtain a Numpy multiarray
of any dimension by just specifying numbers as the index arguments, as in the following example where a
4x7x5 multiarray of variables is created:

x = xp.vars(4,7,5)

For added efficiency, one can drop variable naming if standard names (such as "C1", "C2", "C3") are
acceptable. This is done by specifying the argument name="" as in the example below.

x = xp.vars(4,7,5, name="")

2.6 Compact formulation

The interface allows for a more compact problem formulation where xpress.problem is passed all
components of the problem: for instance, consider the code below:

import xpress as xp

Fair Isaac Corporation Proprietary Information 9

Chapter 2: Modeling an optimization problem

xp.var (vartype=xp.integer, name='x1l', 1lb=-10, ub=10)

Xp.var (name="'x2")

= xp.problem(x, y, x**2 + 2%y, x + 3%y <= 4, name='myexample',6 sense=xp.maximize)
.optimize ()

Mol oL S

The declaration of p is equivalent to the following:

import xpress as xp

x = xp.var (vartype=xp.integer, name='x1l', 1lb=-10, ub=10)
= xp.var (name='x2")

= xp.problem(name='myexample"')

.addvVariable (x, y)

.setObjective (x**2 + 2*y, sense=xp.maximize)
.addConstraint (x + 3xy <= 4)

.optimize ()

2.7 Special Ordered Sets (SOSs)

A Special Order Set (SOS) is a modeling tool for constraining a small number of consecutive variables in a
list to be nonzero. The Xpress Python interface allows for defining a SOS as follows:

'O '0 'O 'O O~

sos (indices, weights, type, name)

The first argument, indices, is a list of variables, while weights is a list of floating point numbers. The
type of SOS (either 1 or 2) is specified by type. While indices and weights are mandatory
parameters, type and name are not; type is set to a default of 1 when not specified. Examples follow:

setl = xp.sos(x, [0.5 + i*0.1 for i in range(l0)], type=2)
set2 = xp.sos([y[i] for i in range(5)], [i+l1] for i in range(5)])
set3 = xp.sos([vl, v2], [2, 5], 2)

One or more SOS can be added to a problem via the problem.addsos method:

setl = xp.sos(x, [0.5 + i1i%0.1 for i in range(10)], type=2)
m.addSoS (setl)

n = 10

w = [xp.var() for i in range(n)]

m.addSOS ([xp.sos ([w[i],w[i+1]], [2,3], type=2) for i in range(n-1)1])

The name member of a SOS object can be read and written by the user.

2.8 Indicator constraints

Indicator constraints are defined by a binary variable, called the indicator, and a constraint. Depending on
the value of the indicator, the constraint is enforced or relaxed.

For instance, if the constraint x + y > 3 should only be enforced if the binary variable u is equal to 1, then
(u=1— x+y > 3) is an indicator constraint.

An indicator constraint in Python can be added to a problem with the addIndicator as follows (note
the "=="as the symbol for equality):

m.addIndicator(vb == 1, vl + v2 >= 4)

2.9 Piecewise linear functions

Other types of constraints are available for modelling. Piecewise linear constraints allow to define a

Fair Isaac Corporation Proprietary Information 10

Chapter 2: Modeling an optimization problem

variable as a piecewise linear function of another. The function does not have to be continuous, but
please see the Optimizer's manual for information on how discontinuities are dealt with.

The most efficient way to model piecewise linear functions is through the API function
problem.addpwlcons.

x = xp.var (lb=-xp.infinity)
xp.var ()

z1l = xp.var (lb=-xp.infinity)
z2 = xp.var (lb=-xp.infinity)

=
I

xp.problem(x,y,zl,z2)

o]
I

Define zl1l and z2 as a piecewise linear functions of x. Two functions

are defined.

p.addpwlcons ([x, x], # input variable of each function
[z1, z2], # created variables
[0,4], # index of the first breakpoints for zl and z2
[o,4, 4 17, -2,-1,1,2]1, # x values of the breakpoints
[4,12,11,20,-2,-2,2,2]) # y values

p.setObjective (zl + 2*y)

.addConstraint (z2 <= vy)

.optimize ()

B

s 'O

The above example creates variables x, y, z1, and z2, then constrains z1 and z2 to be (piecewise linear)
functions of x, to be used with y in other constraints and in the objective function.

The Xpress Python interface provides another, more intuitive way of specifying such a function with the
method xpress.pwl, which is passed a dictionary associating intervals (defined as tuples of two
elements) with linear functions. The code below exemplifies the use of xpress.pwl to construct two
functions. The first, which is included into the objective of the problem, is the piecewise linear function
2x + 4 for x € [0,4] and 3x — 1 for x € [4,7]; the second function is constant at =2 for x < -1, it is equal to
2x for x € [-1,1], and is constant at 2 for x > 2:

x = xp.var (lb=-xp.infinity)
xp.var ()
xp.problem(x, y)

T~
o

Create objective and constraint directly, without first creating
piecewise linear functions.

p.setObjective (xp.pwl ({ (0, 4): 2xx + 4, (4, 7): 3%x — 1}) + 2%y)

p.addConstraint (xp.pwl ({ (-xp.infinity, -1): -2,
(-1, 1): 2%x,
(1, xp.infinity): 2}) <=1y)

p.optimize ()

Here the definition of auxiliary variables z1 and z2 becomes redundant as the calls to xpress.pwl do
not need any extra variable. The dictionary that is used in xpress.pwl has tuples of two elements each
as keys and linear expressions (or constants) as values.

The tuples are treated as (pairwise disjoint) intervals, hence every tuple (a, b) in the set of keys must be
such that a < b and such that, for any two tuples (a,b) and (c, d) inthe keys, eitherb < cord < a.

Piecewise linear functions should be defined over the whole domain of the input variable (x in the
example above); with the syntax of xpress . pwl, it is possible to omit a portion of the domain of the
input variable; in that case the value of the function is taken to be zero.

Piecewise linear functions can be used as operators when defining an optimization problem. For
instance, one could write the constraint

y + 3%z**2 <= 3*xxp.pwl({(0, 1): x + 4, (1, 3): 1})

Fair Isaac Corporation Proprietary Information 11

Chapter 2: Modeling an optimization problem

Note that regardless of how a piecewise linear constraint is formulated, there must always be only one
input variable, i.e., the piecewise linear function is always univariate. In addition, piecewise constant
functions need a further specification as a variable does not appear in the values: for this case, one can
specify the key-value pair None: x as in the example below.

Set a piecewise CONSTANT objective
p.setObjective (xp.pwl ({(0, 1): 4, (1, 2): 1, (2,3): 3, None: x})

2.10 General constraints

The Xpress Python interface allows the user to use the mathematical operators min, max, abs, and the
logical operators and, or without having to explicitly introduce extra variables. The Xpress Optimizer
handles such operators by automatically reformulating them as MIP constraints. These constraints are
called general constraints by the Optimizer's library.

The min (resp. max) general operators impose that a variable be the minimum (resp. maximum) of two or
more variables in a list of arguments. The abs constraints link a variable y to another variable x so that
y = Ixl.

The And and Or operators express a logical link between two or more binary variables x4, xs, ..., Xx. The
result of this function is itself a binary expression that can take on value 0 (false) or 1 (true).

The most efficient way, in terms of modelling speed, to formulate a model using the aforementioned
operator is through the function problem.addgencons, which adds a general constraint. In the
following example, variables y1, y2, and y3 are constrained to be, respectively, the maximum among the
set {x[0], x[1], 46},the absolute value of x[3], and the logical and of x[4],x[5],and x[6].

x = [xp.var() for _ in range(7)]
yl = xp.var()
y2 = xp.var ()
y3 = xp.var()

type = [xpress.gencons_max, Xpress.gencons_abs, xpress.gencons_and]
resultant = [yl, y2, y3]

colstart = [0, 2, 3]

col = [x[0], x[1], x[3], x[4], x[5], x[6]]

valstart = [0,1,1]

val = [46]

p = xp.problem(x, yl, y2, y3)
prob.addgencons (type, resultant, colstart, col, wvalstart, val);
prob.optimize ()

A more intuitive way to create problems containing these operators is by using the methods max, min,
abs, And, and Or of the xpress module.

x = [xp.var() for _ in range(4)]

yl = xp.var()

y2 = xp.var()

p = xp.problem(x,yl,y2)

.addConstraint (yl == xp.max(x[0], x[1], 46)) # max() accepts a tuple of arguments
.addConstraint (y2 == xp.abs(x[3]))

.addConstraint (y3 == xp.And(x[4], x[5], x[6]))

.optimize ()

's ‘0 ‘T 'O

The methods And and Or can be replaced by the Python binary operators & and |, as in the following
example

y = [xp.var (vartype=xp.binary) for _ in range(5)]
p = xp.problem(y)

p.addConstraint ((y[0] & y[1]) + (y[2] | yI[3]) + 2*xy[4] >= 2)

Fair Isaac Corporation Proprietary Information 12

Chapter 2: Modeling an optimization problem

Note that And and Or have a capital initial as the lower-case correspondents are reserved Python
keywords, and that the & and | operators have a lower precedence than arithmetic operators such as +
and should hence be used with parentheses.

We also point out that because the & and | operator have lower operator precedence in Python than other
arithmetic operators (+, *, etc.) and even comparison operators (<, etc.), all uses of & and | should be
enclosed in brackets. as shown in the examples above.

2.11 Using loadproblem for efficiency

The high-level functions problem.addConstraint and problem.addVariable allow for efficient,
concise, and understandable modeling of any optimization problem. An even faster way to create a
problem is through the problem. 1oadproblem function, which uses a more direct interface to the
Optimizer’s libraries and is hence preferable with very large problems and when efficiency in model
creation is necessary.

The functon problem. loadproblem can be used to create problems with linear and/or quadratic
constraints, a linear and/or quadratic objective function, and with continuous and/or discrete variables.
Its syntax with default parameter values allows for specifying only the components of interest. We refer
the reader to its entry in Chapter 7, and present here a few examples of usages. More examples are
shown in Chapter 6.

The first example uses 1loadproblem to create a problem similar to that created earlier in this chapter.
We first write the problem using standard modeling functions:

import xpress as xp

= xp.var (vartype=xp.integer, name='x1l', 1lb=-10, ub=10)
= xp.var (name='x2")

= xp.problem(name="'myexample')

.addvariable (x, y)

.setObjective (x**2 + 2%y)

.addConstraint (x + 3xy <= 4)

.addConstraint (7*x + 4*y >= 8)

'C'O T T O X

The following code creates a problem with the same features, including variable names and their types

import xpress as xp
p = xp.problem()
p.loadproblem (probname='myexample',

rowtype=['L', 'G'], constraint senses
rhs=[4, 8], right-hand sides
rng=None, no range rows

objcoef=[0, 2],
start=[0, 2, 4],

linear obj. coeff.
start pos. of all columns

#

#

#

#

#
collen=None, # unused
rowind=[0, 1, 0, 1], # row index in each column
rowcoef=[1, 7, 3, 4], # coefficients
lb=[-10,0], # variable lower bounds
ub=[10,xp.infinity], # upper bounds
objgcoll=[0], # quadratic obj. terms, column 1
objgcol2=[01], # column 2
objgcoef=[2], # coeff
coltype=['I"], # variable types
entind=[0], # index of integer variable
colnames=['x1l"', 'x2'])

Apart from the intuitive lists grtypes (for constraint types: * L’ for "lesser-than", ’ G’ for "greater-than",
&’ for "equal-to"), rhs (constraints’ right-hand sides), ob7j (objective linear coefficients), d1b and dub
(variables’ lower and upper bounds), a few paramters deserve some attention. The three lists mstart,
mrwind, dmatval describe the coefficient matrix: mrwind and dmatwval contain, respectively, the row
indices and the coefficients, while mstart is a list of n + 1 integers (where n is the number of variables,

Fair Isaac Corporation Proprietary Information 13

Chapter 2: Modeling an optimization problem

i.e., the size of obj, d1b, and dub); mstart [i] indicates the position, within mrwind and dmatval, of
the indices and coefficients of the i-th column. The last element mstart [n+1] indicates the number of
nonzeros in the matrix.

The following shows two equivalent knapsack problems, again created first using the high-level modeling
routines and then the lower-level API function.

import xpress as xp

N =6

X = [xp.var (vartype=xp.binary) for _ in range(N)]
value = [1, 4, 6, 4, 7, 3]

weight = [1, 3, 5, 5, 8, 4]

p = xp.problem(name="'knapsack')

p.addvVariable (x)

p.setObjective (xp.Sum(value[i] * x[1i] for i in range(N)), sense=xp.maximize)
p.addConstraint (xp.Sum(weight[i] * x[i] for i in range(N)) <= 12)

Note that problem. loadproblem assumes that the optimization sense is minimization and hence a
callto problem.chgobisense is necessary to set the sense to maximization.

import xpress as xp
p = xp.problem()

N =6
value = [1, 4, 6, 4, 7, 3]
weight = [1, 3, 5, 5, 8, 4]

p.loadproblem (probname="'knapsack',

rowtype=['L"'], constraint senses
rhs=[12], right-hand sides
rng=None, No range rows

objcoef=value,
start=range (N+1),

linear obj. coeff.
start pos. of all columns

collen=None, (unused)

rowind=[0] * N, row index in each column (always 0)
rowcoef=weight, coefficients

1lb=[0] * N, variable lower bounds

ub=[1] * N, upper bounds

variable types
indices of the N binary variables

HHoH o H W I I H H

coltype=['B'] * N,
entind=range (N))
p.chgobjsense (xp.maximize)

2.12 Modeling and solving nonlinear problems

Version 8.3 of the Xpress Optimizer suite introduces nonlinear modeling in the Python interface. It allows
for creating and solving nonlinear, possibly nonconvex problems with similar functions as for linear,
quadratic, and conic problems and their mixed integer counterpart.

A nonlinear problem can be defined by creating one or more variables and then adding constraints and an
objective function. This can be done using the same Python calls as one would do for other problems.
The available operators are +, —, *, /, =+ (which is the Python equivalent for the power operator, "*").
Univariate functions can also be used from the following list: sin, cos, tan, asin, acos, atan, exp,
log, logl0, abs, sign, and sgrt. Multivariate functions are min and max, which can receive an
arbitrary number of arguments.

Examples of nonlinear constraints are as follows:

import xpress as xp
import math

X
p

xp.var ()
xp.problem/()

p.addVariable (x)

Fair Isaac Corporation Proprietary Information 14

Chapter 2: Modeling an optimization problem

polynomial constraint
p.addConstraint (xx*4 + 2 * xx*2 — 5 >= 0)

A terrible way to constrain x to be integer
p.addConstraint (xp.sin (math.pi * x) == 0)

p.addConstraint (x**2 * xp.sign (x) <= 4)

Note that non-native mathematical functions such as 1og and sin must be prefixed with xpress or its
alias, xp in this case. This can be avoided by importing all symbols from xpress using the import =
command as follows

from xpress import =*
x = var ()
a = sin(x)

but this hides namespaces and is usually frowned upon.

User functions are also accepted in the Python interface, and must be specified with the keyword user
and the function as the first argument. They are handled in the Nonlinear solver in a transparent way, so
all is needed is to define a Python function to be run as the user function and specify it in the problem
with user, as in the following example:

import xpress as xp
import math

def mynorm(xl, x2):
return (math.sqgrt(x1l**2 + x2*x%2) 2*x1l, 2%x2)

def myfun(vl, v2, v3):
return vl / v2 + math.cos(v3)

X,y = xp.var (), xp.var()

p = xp.problem()

p.addvariable (x,y)

p.setObjective (xp.user (mynorm, x, y, derivatives=True))

p.addConstraint (x+y >= 2)
p.addConstraint (xp.user (myfun, x**2, x**3, 1/y) <= 3)

Note that user functions can be specified so that they can return derivatives. If we do not wish to return
derivatives, a Python function in k variables must return a single number. If we want to provide the solver
with derivatives, then the function must return a tuple of k+7 numbers.

When defining a user function that provides derivatives (see mynorm in the example), we must set the
derivative=True parameter in the xpress.user call. The derivative parameteris False by
default. If a function returns a tuple of values but it is defined with derivatives=False or, viceversa, if
it returns a single value but it is defined with derivatives=True, the behaviour is undefined.

As a final word of caution, solving nonlinear problem requires a preprocessing step that is transparent to
the user except for two steps: first, if the objective function has a nonlinear component f(x) then a new
constraint (called objective transfer row or objtransrow) and a new variable, the objective transfer column
or objtranscol) are called that are defined as follows:

objtransrow : —objtranscol + f(x) = 0

The resulting problem is equivalent in that the set of optimal (resp. feasible) solutions of this problem will
be the same as those of the original problem. The user, however, will notice an increase by one of both
the number of rows and of columns when a nonlinear objective function is set.

Fair Isaac Corporation Proprietary Information 15

Chapter 2: Modeling an optimization problem

The second caveat is about yet another variable that may be added to the problem for reasons having to
do with one of the Xpress Nonlinear solvers. This variable is called equalscol and it is fixed to 1. Its
existence and value are therefore of no interest to the user.

It should also be noted that the control xs1p_postsolve is set to 1 by default when the solver uses the
SLP nonlinear solver. This is necessary to ensure that the solution retrieved after a optimize () or
nlpoptimize () call refers to the original problem and not to a possible reformulation. The reader can
find more information on this in the Xpress Nonlinear reference manual.

2.13 Solving a problem

Simply call problem.optimize to solve an optimization problem that was either built or read from a
file. The type of solver is determined based on the type of problem: if at least one integer variable was
declared, then the problem will be solved as a mixed integer (linear, quadratically constrained, or
nonlinear) problem, while if all variables are continuous the problem is solved as a continuous
optimization problem. If the problem is nonlinear in that it contains non-quadratic, non-conic nonlinear
constraints, then the appropriate nonlinear solver of the Xpress Optimization suite will be called. Note
that in case of a nonconvex quadratic problem, the Xpress Nonlinear solver will be applied as the Xpress
Optimizer solver cannot handle such problems.

m.optimize ()

The status of a problem after solution can be found via the solvestatus and solstatus attributes,
and also in the return value of the optimize function, as follows:

import xpress as xp

m = xp.problem()
m.read ("example3.1lp")
solvestatus, solstatus = m.optimize()

if solvestatus == xp.SolveStatus.COMPLETED:

print ("Solve completed with solution status: ", solstatus.name)
else:

print ("Solve status: ", solvestatus.name)

The output of the solver when reading and solving a problem is the same as with other interfaces of the
Xpress Optimizer. The verbosity level is determined by the control outputlog, which is 1 by default. To
turn off the solver’s output, it should be set to zero (see Chapter 4 for how to set a control).

2.14 Querying a problem

It is useful, after solving a problem, to obtain the value of an optimal solution. After solving a continuous
or mixed integer problem, the two methods problem.getSolution and problem.getSlack return
the list (of portions thereof) of an optimal solution or the slack of the constraints, respectively. If an
optimal solution was not found but a feasible solution is available, these methods will return data based
on this solution.

Both problem.getSolution and problem.getSlack can be used in multiple ways: if no argument
is passed, the whole solution or slack list is returned. If a list of indices, variable/constraint objects, or
names is passed, a list of values is returned corresponding to the range specified.

For problem.getSolution, there are more ways to call it: indices, strings, expressions are the basic

types. An index ind will yield the value of the variable whose index in that problem (i.e. the order in which
it was added to the problem) is ind; if the index is out of range, an error will occur. A string str will yield
the value of the variable whose name is equal to str, if such variable exists, otherwise an error will occur.

Fair Isaac Corporation Proprietary Information 16

Chapter 2: Modeling an optimization problem

Finally, an expression, which can be just a variable, will yield the value of the expression given the current
solution.

These basic types can be combined, even on multiple levels, with Python’s fundamental aggregate types:
problem.getSolution can be passed a list, a dictionary, a tuple, or any sequence, including NumPy
arrays, of indices, strings, expressions, and other aggregate objects thereof. The result will have the same
structure as the argument passed (list, dictionary, etc.) containing the value corresponding to the passed
expressions, variable indices, or variable names.

The uses of problem.getSolution are exemplified in the following code:

import xpress as xp
import numpy as np

vl = xp.var (name='Varl')
X [xp.var (lb=-1, ub=1, vartype=xp.integer) for i in range(10)]

3
I

xp.problem/()
m.addVariable (vl, x)
[...] # add constraints and objective
m.optimize ()

print (m.getSolution ())

print ("vl is", m.getSolution(vl))

a = m.getSolution (x)
b = m.getSolution (range(4))

Prints a list with an optimal solution

Only prints the value of vl

Gets the values of all variables in the list x
Gets the value of vl and x[0], x[1], x[2], i.e.
the first four variables of the problem

c = Gets the value of vl by its name

3

FH= H 3 o H

.getSolution('Varl')
.getSolution({1: %, 2: O,
3: 'Varl'})

[0}
I
3

Returns a dictionary containing the same keys as
in the arguments and the values of the
variables/expressions passed

Gets the value of an expression under the
current solution

Gets a NumPy array with the solution of x

d = m.getSolution (vl + 3%*x)

FH= = H o H

e = m.getSolution(np.array(x))

Consider all lines afterm. optimize (). The first of them returns a Python list of ncol floating point
scalars, where ncol is the number of variables of the problem (nrow is the number of constraints, the size
of the list returned by problem.getSlack) containing the full solution. The second example retrieves
the value of the single variable v1.

The third example returns an array of the same size as x with the value of all variables of the list x. The
fourth example shows that a range of indices can be specified in order to obtain a list of values without
specifying the corresponding variables. Recall that the column and row indices begin at 0. The fifth line
shows that a variable can be passed by name, while the sixth line shows that passing a dictionary with
variables, expression, indices, or variable names returns a dictionary with the same keys as the dictionary
passed, but with its values set to the values of the corresponding variables/expressions.

The seventh line shows how to request the value of an expression when evaluated with the current
solution found for the problem, and the eight line is equivalent to m.getSolution (x) but the returned
object is a NumPy array with the solution (this can be useful when using NumPy with large vectors both
for defining a problem and handling solution vectors).

The method problem.getSlack works with indices, constraint names, constraint objects, and lists
thereof. The following examples illustrate a few possible uses.

import xpress as xp
N = 10

x = [xp.var (vartype=xp.binary) for i in range (N)]

Fair Isaac Corporation Proprietary Information 17

Chapter 2: Modeling an optimization problem

m = xp.problem()

m.addVariable (x)

conl
con2

xp.Sum(x[i] * i for i in range(N)) <= N)
(x[1] >= x[i+1l] for i in range(N-1))

m.addConstraint (conl, con2)
m.setObjective (xp.Sum(x[i] for i in range(N))
m.optimize ()

print (m.getSlack()) # prints a list of slacks for all N constraints
print ("slack_1 is", m.getSlack(conl)) # only prints the slack of conl

a
b

m.getSlack (con2) # gets the slack of N-1 constraints con2 as a list of floats
m.getSlack (range(2)) # gets the slack of conl and con2[0]

In addition, for problems with only continuous variables, the two methods problem.getDual and
problem.getRCost return the list (or a portion thereof) of dual variables and reduced costs,
respectively. Their usage is similar to that of problem.getSlack.

Note that the inner workings of the Python interface obtain a copy of the whole solution, slack, dual, or
reduced cost vectors, even if only one element is requested. It is therefore advisable that instead of
repeated calls (for instance, in a loop) to problem.getSolution, problem.getSlack, etc. only one
call is made and the result is stored in a list to be consulted in the loop. Hence, in the following example:

import xpress as xp

n = 10000
N = range(n)

x = [xp.var() for i in N]

p = xp.problem()

p.addvVariable (x)

m.addConstraint (xp.Sum(x[1i] * i for 1 in N) <= n))
m.setObjective (xp.Sum(x[i] for i in N)
m.optimize ()

for i in N:
if m.getSolution(x[i]) > le-3:
print (i)

the last three lines should be substituted as follows, as this will prevent repeatedly copying a large
(10,000) list:

sol = m.getSolution()

for i in N:
if sol[i] > le-3:
print (i)

A very similar function of the class problemis evaluate, which allows for running all of the above
evaluation functions while passing, rather than the solution currently available for the problem, any list or
any dictionary assigning a £1oat to the variables used in the expressions.

2.15 Reading and writing a problem

After creating an empty problem, one can read a problem from a file via the read method, which only
takes the file name as its argument. An already-built problem can be written to a file with the write
method. Its arguments are similar to those in the Xpress Optimizer API function XPRSwriteprob, to

Fair Isaac Corporation Proprietary Information 18

Chapter 2: Modeling an optimization problem

which we refer.

import xpress as xp

m = xp.problem()
m.read ("example2.1lp")
m.optimize ()

print (m.getSolution())
m2 = xp.problem()

vl xp.var ()
v2 Xp.var (vartype=xp.integer)

m2.addVariable (vl, v2)
m2.addConstraint (vl + v2 <= 4)
m2.setObjective (v1x*2 + v2)

m2.write ("twovarsproblem", "lp")

2.16 Hints for building models efficiently

The Xpress Python interface allows for creating optimization models using methods described in this and
other sections. As happens with other interpreted languages, using explicit loops may result in a slow
Python script. When using the Xpress Python interface, this can be noticeable in large optimization
models if multiple calls to addvariable, addConstraint, or addsos are made. For this reason, the
Xpress module allows for generators and list, dictionaries, and sequences as arguments to these
methods, to ensure faster execution.

Let us consider an example:

import xpress as xp

N = 100000
S = range (N)

x = [xp.var() for i in S]
y = [xp.var (vartype=xp.binary) for i in S]

for i in S:
m.addVariable (x[1i])
m.addVariable(y[i])

for i in S:
m.addConstraint (x[i] <= y[i])

m.optimize ()

While the declaration of x and y is correct and efficient, the two subsequent loops are very inefficient:
they imply 2N calls to addvariable and N calls to addConstraint. Both methods add some
overhead due to the conversion of Python object into data that can be read by the Optimizer, and the total
overhead can be large.

Most methods of the Xpress Python interface allow for passing sequences (lists, dictionaries, NumPy
arrays, etc.) as parameters, and are automatically recognized as such. Hence the first loop can be
replaced by two calls to addvariable:

m.addVariable (x)
m.addVariable (y)

or, more compact and slightly more efficient:

Fair Isaac Corporation Proprietary Information 19

Chapter 2: Modeling an optimization problem

m.addVariable (x, y)

The largest gain in performance, though, comes from replacing the second loop with a single call to
addConstraint:

m.addConstraint (x[i] <= y[i] for i in S)

This line is equivalent to the second loop above, and it is much faster and more elegant.
When declaring x and y as NumPy vectors, an equally efficient and even more compact model can be
written:

import xpress as xp
import numpy as np

N = 100000

S = range (N)

X = np.array([xp.var () for i in S], dtype=xp.npvar)
y = np.array([xp.var (vartype=xp.binary) for i in S], dtype=xp.npvar)

m.addVariable (x, y)
m.addConstraint (x <= y)

m.optimize ()

See Chapter 3 for more information on how to use NumPy arrays in the Xpress Python interface.

2.17 Exceptions

The Xpress Python interface raises its own exceptions in the event of a modeling, interface, or solver
issue. There are three types of exceptions:

B xpress.ModelError: itis raised in case of an issue in modelling a problem, for instance if an
incorrect constraint sign is given or if a problem is amended an object that is neither a variable, a
constraint, or a SOS;

B xpress.InterfaceError: raised when the issue can be ascribed to the APl and the way it is
used, for instance when not passing mandatory arguments or specifying incorrect ones in an API
function;

B xpress.SolverError: raised when the Xpress Optimizer or Xpress-SLP returns an error that is
given by the solver even though the model was specified correctly and the interface functions were
used correctly.

As always with Python, one can use the try/except construct in order to analyze the raised exception
as in the following example

import xpress as xp
p = xp.problem()
x = getVariable() # assume getVariable is defined elsewhere
try:
p.addVariable (x)
except xp.ModelError as e:
print ("Modeling error:", repr(e))

Fair Isaac Corporation Proprietary Information 20

CHAPTER 3
Using Python numerical libraries

The NumPy library allows for creating and using arrays of any order and size for efficiency and
compactness purposes. This chapter shows how to take advantage of the features of NumPy in the
creation of optimization problems. The Xpress Python interface requires NumPy version 1.16 or greater,
except on Python 3.10, where it requires NumPy version 1.21 or greater.

3.1 Using NumPy in the Xpress Python interface

NumPy arrays can be used as usual when creating variables, functions (linear and quadratic) of variables,
and constraints. All functions described in this manual that take lists or tuples as arguments can take
array's, i.e., NumPy array objects, as well, as in the following example:

import numpy as np
import xpress as xp

N = 20
S = range (N)
X = np.array([xp.var () for i in S], dtype=xp.npvar)

y = np.array([xp.var (vartype=xp.binary) for i in S], dtype=xp.npvar)
constrl = x <=y

p = xp.problem()

p.addvariable (x, y)

p.addConstraint (constrl)

The above script imports both NumPy and the Xpress Python interface, then declares two arrays of
variables and creates the set of constraints x; < y; for all i in the set S.

The NumPy arrays must have the attribute dtype equal to xpress.npvar (abbreviated to xp.npvar
here) in order to use the matricial/vectorial form of the comparison (<=, =, >=), arithmetic (+, -, *, /, x*),
and logic (& [) operators.

NumPy allows for multiarrays with one or more 0-based indices. Given that declaring a NumPy multiarray
of variables can result in a long line of code, the xpress.vars function in its simplest usage returns a
NumPy array of variables with one or more indices. Consider the following three array declarations:

import numpy as np

import xpress as xp

x = np.array([xp.var (name='v ({0})'.format(i)) for i in range(20)], dtype=xp.npvar) .reshape(5,4)
y = np.array([xp.var (vartype=xp.binary) for i in range(27)], dtype=xp.npvar) .reshape (3, 3, 3)

z = np.array([xp.var (lb=-1, ub=1) for i in range(1000)], dtype=xp.npvar)

These can be written equivalently in the compact form as

import numpy as np

import xpress as xp

x = xp.vars (5, 4, name='v')

y = xp.vars (3, 3, 3, vartype=xp.binary)
z = xp.vars (1000, lb=-1, ub=1l)

Fair Isaac Corporation Proprietary Information 21

Chapter 3: Using Python numerical libraries

The only side effect is that the assigned names change. In order to preserve the naming convention of
the Xpress library, one can specify the parameter setting name="" in the call to xp.vars. This also
makes the creation of large arrays of variables much faster. We use this shorter notation in the remainder
of this chapter.

The main advantage of using NumPy operations is the ability to replicate them on each element of an
array, taking into account all broadcasting features. For example, the following script “broadcasts” the
right-hand side 1 to all elements of the array, thus creating the set of constraints x; + y; < 1for all i in the
set S.

constr2 = x +y <=1

All these operations can be carried out on arrays of any number of dimensions, and can be aggregated at
any level. The following example shows two three-dimensional array of variables involved in two systems
of constraints: the first has two variables per each of the 200 constraints, while the second has 10
constraints and 20 variables in each constraint.

xp.vars (4, 5, 10)

= xp.vars (4, 5, 10, vartype=xp.binary)

.addvVariable(z, t)

.addConstraint (z**2 <= 1 + t)

.addConstraint (xp.Sum(z[1i, j, k] for i in range(4) for j in range(5)) <= 4
for k in range(10))

'O 'O O N

Finally, a note on sums of multi-dimensional NumPy arrays: in keeping with the way NumPy arrays are
handled, the sum of a bi-dimensional array results in a one-dimensional array with the xpress. Sum
operator. The result of such a sum is exemplified by the following code:

>>> a = np.array([[1, 2, 3], [4, 5, 611)
>>> a
array([[1, 2, 3],
[4, 5, 611)
>>> sum(a)
array ([5, 7, 91)

For the casual NumPy user, suffice it to say that the sum is done on the first dimension. Similarly, when
creating a NumPy array of dimensions k of expressions, xpress. Sum returns a (k — 1)-array resulting
from the sum across the first dimension.

It is important to note the following: NumPy does not use the __iadd___ operator when computing these
sums, but rather the __add___ operator. For reasons discussed above and in the entry regarding the
xpress . Sum operator, this can have a huge impact on performance. Consider the following example:

m,n = 1000,10

a = np.random.random((m,n))
X = xp.vars(m, n)

sum_0d = xp.Sum(xp.Sum(a*x))
sum_1ld = xp.Sum(a*x)

=}

The above example has a poor performance, and it is advised to avoid using xpress. Sum as such on a
multi-dimensional array. If a scalar sum of all elements of the array is sought, such as sum (sum(a)) for
the numerical array above, we strongly advise to flatten the array first, and run instead
xpress.Sum(b.flatten()) if b is a multiarray of expressions. The multiarray has dtype equal to
xpress.npexpr in order to be used for array operations. If only one pass is required, then it is better to
explicitly create a vector whose elements are defined with a call to xpress. Sum:

prod = a*x
sum_0d = xp.Sum(prod.flatten())
sum_ld = np.array([xp.Sum(prod[i, j] for i in range(m)) for i in range(n)], dtype=xp.npexpr)

Fair Isaac Corporation Proprietary Information 22

Chapter 3: Using Python numerical libraries

3.2 Products of NumPy arrays

The dot product is a useful operator for carrying out aggregate operations on vectors, matrices, and
tensors. The dot operator in NumPy allows for reducing, along one axis of a multi-dimensional arrays,
data such as floating points or integer values.

The application of the dot product of NumPy of two multi-dimensional arrays of dimensions (iy, ia, ..., i)
and (jy,j2, .- jx), respectively, requires that iy, = ji_1, i.€., the size of the last dimension of the first array
must match the size of the penultimate dimension of the second vector. For instance, the following dot
product is valid:

import numpy as np

a np.random.random((4, 6))
b np.random.random((6,2))
c np.dot (a,b)

and the result is a 4x2 matrix. The Xpress Python interface has its own dot product operator, which can
be used for all similar operations on variables and expression. The rules for applying the Xpress dot
operator are the same as for the native Python dot product, with one extra feature: there is no limit on the
number of arguments, hence the following example is correct as per the restrictions on the dimensions,
albeit it yields a nonconvex constraint.

coeff_pre = np.random.random((6,3,7))

x = xp.vars (4, 7, 5)

y = xp.vars (2, 5, 8)

coeff_post = np.random.random((6, 8, 7))
p.addConstraint (xp.Dot (coeff_pre, x, y, coeff_ post) >= 0)

Similar to the NumPy dot product, the Xpress dot product has an out parameter for defining the output in
which to store the product.

The following script defines two constraints: the first restricts the squared norm ||z|| = z - z of the vector z
of variables to be at most one. It does so by applying the dot operator on the vector itself. The second
constraint (t - z)'Q(t — z) < 1 restricts the quadratic form on the left-hand side to be at most 1.

p.addConstraint (xp.Dot(z, z) <= 1) # restrict norm of z to 1

Q = np.random.random (N, N) # create a random 20x20 matrix
p.addConstraint (xp.Dot ((t-z), Q, (t-z)) <= 1)

As for the sum operator, when handling variables or expressions, it is advised to use the Dot operator in
the Xpress module rather than the native Python operator, for reasons of efficiency.

Fair Isaac Corporation Proprietary Information 23

CHAPTER 4
Controls and Attributes

A control is a parameter that can influence the performance and behavior of the Xpress Optimizer. For
example, the MIP gap, the feasibility tolerance, or the type of root LP algorithms are controls that can be
set. Controls can both be read from and written to an optimization problem.

An attribute is a feature of an optimization problem, such as the number of rows and columns or the
number of quadratic elements of the objective function. They are read-only parameters in that they can
only be modified, for example, by functions for adding constraints or variables, or functions for setting
and modifying the objective function.

Both controls and attributes are of three types: integer, floating point, or string. The Xpress Python
interface allows for setting and retrieving the value of all controls of an optimization problem, as well as
getting the value of all of a problem’s attributes.

This reference manual does not describe the meaning of controls and attributes in the Xpress Optimizer;
for a detailed description of each, please refer to the Optimizer's reference manual.

Following Python's philosophy, one can set and obtain multiple controls/attributes with one function call.
In other words, one can set either (i) a single control and its value; or (ii) a Python dictionary coupling a
list of control names and their respective value. Similarly, with one function call one can obtain (i) the
value of a single attribute or control by specifying it as a parameter; or (ii) a dictionary associating names
to values for each of a list of controls or attributes given as an argument. See the examples below for
more information.

4.1 Controls

Use problem.setControl to set the value of one or more controls. Its synopsis is as follows:

setControl (ctrl, value)
setControl ({ctrll: valuel, ctrl2: value2, ..., ctrlk: valuek})

The first form is for setting the value of the control ctrl to value. The second form is for setting ctri11
to valuel, ctrl2 tovalue2, ..., and ctrlk to valuek.

A list of all controls can be found on the Xpress Optimizer’s reference manual. The control parameters to
be passed in setControl are lower-case strings or upper-case strings (mixed lower- and upper-case
will return an error), although in this manual we will only use lower-case:

p.setControl ('miprelstop’', le-9)
p.setControl ({ 'miprelstop': le-3, 'feastol': le-6})
Alternatively, the control(s) to be changed can be identified by numeric id.

Use the method getControl to retrieve the value of one or more controls. Its synopsis is one of the
following:

Fair Isaac Corporation Proprietary Information 24

Chapter 4: Controls and Attributes

getControl (ctrl)

getControl ([ctrll, ctrl2, ..., ctrlk])
getControl (ctrll, ctrl2, ..., ctrlk)
getControl ()

The first form is for obtaining the value of the control ctr1. The output will be the value of the control.
The second and third forms are for retrieving ctrll, ctrl2, .., and ctrlk. Whether the controls are
declared in a list or a tuple does not matter. The result will be a dictionary coupling each control with its
value. The last form is to obtain all controls; the result is a dictionary coupling all controls with their
respective value.

Similar to problem. setControl, the control parameters to be passed in getControl are lower-case
or upper-case strings. For a problem p the call will be as follows:

mrs = p.getControl ('miprelstop’')
someattr = p.getControl ('miprelstop', 'feastol')

Alternatively, controls can be specified by their numeric id. In that case a returned dictionary will have that
id as key for the requested control.

4.2 Examples

import xpress as xp
p = xp.problem()

p.setControl ({ 'miprelstop': le-5, 'feastol': le-4})
p.setControl ('miprelstop’', le-5)

print (p.getControl ('miprelstop'))
print (p.getControl ('maxtime', 'feastol'))

print the current value of miprelstop
print a dictionary with the current
value of miprelstop and feastol

Same output

print a dictionary with ALL control

print (p.getControl (['presolve', 'miplog'l]))
print (p.getControl())

EREnE

Initialize a dictionary with two controls and their value. Then
change their value conditionally and set their new (possibly
changed) value.

myctrl = p.getControl(['miprelstop', 'feastol'])

if (myctrl['miprelstop'] <= le-4):

myctrl['miprelstop'] = le-3

myctrl['feastol'] = le-3
else:

myctrl['feastol'] = le-4

p.setControl (myctrl)

4.3 Attributes

Use the method getAttrib to retrieve the value of one or more attributes. Its synopsis is one of the
following:

getAttrib(attr)

getAttrib([attrl, attr2, ..., attrk])
getAttrib(attrl, attr2, ..., attrk)
getAttrib()

The first form is for obtaining the value of the attribute attr. The output will be the value of the attribute.
The second and third forms are for retrieving attrl,attr2, .., and attrk. Whether the attributes are

Fair Isaac Corporation Proprietary Information 25

Chapter 4: Controls and Attributes

declared in a list or a tuple does not matter. The result will be a dictionary coupling each attribute with its
value. The last form is to obtain all attributes; the result is a dictionary coupling all attributes with their
respective value.

A list of all attributes can be found on the Xpress Optimizer’s reference manual. As for controls, the
attribute parameters to be passed in getAttrib are lower-case or upper-case strings (mixed lower- and
upper-case strings are, similar to controls, forbidden). For a problem p the call will be as follows:

nrows = p.getAttrib('rows')
problemsize = p.getAttrib('rows', 'cols')

Alternatively, attributes can be specified by their numeric id. In that case a returned dictionary will have
that id as key for the requested attribute.

4.4 Examples

import xpress as xp

p = xp.problem()

p.read ("example.lp")

print ("The problem has",
p.getAttrib('rows'), "rows and",

p.getAttrib('cols'), "columns")

Obtain dictionary with two entries: the number of rows and
columns of the problem read

print (p.getAttrib(['rows', 'cols']))

produce a Python dictionary with all attributes of problem m, and
hence of LP file example.lp

attributes = p.getAttrib()

4.5 Accessing controls and attributes as object mem-
bers

An alternative, more "prompt-friendly" way to get controls and attributes is through their direct access in a
problem or, in the case of controls, the Xpress module itself.

The Xpress module has an object, called controls, containing all controls of the Optimizer. Upon
importing the Xpress module, these controls are initialized at their default value. The user can obtain their
value at any point and can also set their value; this new value will be inherited by all problems created
after the modification. They can be read and written as follows:

xpress.controls.<controlname>
xpress.controls.<controlname> = <new value>

For example, the object xpress.controls.miprelstop contains the value of the control miprelstop.
Controls can be read (and, for example, printed) and set as follows:

import xpress as xp
print (xp.controls.heuremphasis)
xp.controls.feastol = le-4 # Set new default to le-4

These "global" controls are maintained throughout while the Xpress module is loaded. Note that the

Fair Isaac Corporation Proprietary Information 26

Chapter 4: Controls and Attributes

controls object of the Xpress module does not refer to any specific problem. All controls have default
values that are determined by the Optimizer's library, except for the control xs1p_postsolve thatis set
to 1, as opposed to its default value of 0 in the Xpress Optimizer’s library.

In addition, every problem has a controls object that stores the controls related to the problem itself.
This is the object the functions getControl and setControl refer to. Similar to the Xpress module’s
controls object, all members of a problem’s object can be read and written. For a problem p, the
following shows how to read and write a problem'’s control:

p.controls.<controlname>
p.controls.<controlname> = <new value>

A problem'’s controls are independent of the global controls object of the Xpress module. However,
when a new problem is created its controls are copied from the current values in the global object. Note
that after creating a new problem, changing the members in xpress.controls does not affect the
problem’s controls. The following examples should clarify this:

import xpress as xp

create a new problem whose MIPRELSTOP is ten times smaller
than the default value

pl = xp.problem("probleml")

pl.controls.miprelstop = 0.1 * xp.controls.miprelstop
pl.controls.feastol = le-5

pl.read("examplel.lp")

xp.controls.miprelstop = le-8 # Set new default
The new problem will have a MIPRELSTOP of le-8

p2 = xp.problem("problem2")
p2.read ("example2.1lp")

The next problem has a less restrictive feasibility tolerance
(i.e. le-6) than problem 2

p2v = xp.problem("problem2 variant")
p2v.read ("example2.1lp")
p2v.controls.feastol = 100 * p2.controls.feastol

pl.optimize ()
p2.optimize ()

solve "example2.lp" with a less restrictive
feasibility tolerance
p2v.optimize ()

Attributes can be handled similar as above through a member of the class problem, called
attributes, with two exceptions: first, there is no "global" attribute object, as a set of attributes only
makes sense when associated with a problem; second, an attribute cannot be set.

Once a problem p has been created (or read from a file), its attributes are available as
p.attribute. attribute_name. The example in the previous section can be modified as follows:

import xpress as xp

p = xp.problem()

p.read ("example.lp")

print ("The problem has",
p.attributes.rows, "rows and",
p.attributes.cols, "columns")

When using the Python prompt in creating problems with the Xpress module, the name of controls and

Fair Isaac Corporation Proprietary Information 27

Chapter 4: Controls and Attributes

attributes can be auto-completed by pressing TAB (note: this only works in Python 3.4 and subsequent
versions). For instance,

>>> import xpress

>>> p = xp.problem{()

>>> p.read("example.lp")

>>> p.attributes.n<TAB>

p.attributes.namelength p.attributes.nodedepth p.attributes.nodes p.attributes.numiis
>>> p.attributes.nodedepth

0

>>> p.attributes.ma<TAB>

p.attributes.matrixname p.attributes.maxabsdualinfeas
p.attributes.maxabsprimalinfeas p.attributes.maxprobnamelength
p.attributes.maxreldualinfeas p.attributes.maxrelprimalinfeas
>>> p.attributes.matrixname

'noname’

>>> xp.controls.o<TAB>

xp.controls.oldnames xp.controls.omniformat
xp.controls.optimalitytol xp.controls.optimalitytoltarget
xp.controls.outputlog xp.controls.outputmask

Xp.controls.outputtol
>>> xp.controls.omniformat
0

Fair Isaac Corporation Proprietary Information 28

CHAPTER 5

Using Callbacks

This chapter shows how to define and use callback functions from the Xpress Python interface. The
design of this part of the interface reflects as closely as possible the design of the callback functions
defined in the C API of the Xpress Optimizer.

5.1 Introduction

Callback functions are a useful tool for adapting the Xpress Optimizer to the solution of various classes
of problems, in particular Mixed Integer Programming (MIP) problems, with linear or nonlinear
constraints. Their main purpose is to provide the user with a point of entry into the branch-and-bound,
which is the workhorse algorithm for MIPs.

Using callback functions is simple: the user first defines a function (say myfunction) that is to be run
every time the branch-and-bound reaches a well-specified point; second, the user calls a function (such
as addcbpreintsol) with myfunction as its argument. Finally, the user runs the sol1ve command
that launches the branch-and-bound, the simplex solver, or the barrier solver; it is while these are run that
myfunction is called.

A callback function, hence, is passed once as an argument and used possibly many times. It is called
while a solver is running, and it is passed the following:

m a problem object, of the same class as an object declared with p = xpress.problem();

m a data object.

The data object is user-defined and is given to the problem when adding the callback function. It can be
used to store information that the user can read and/or modify within the callback. For instance, the
following code shows how to add a callback function, preintsolcb, that is called every time a new
integer solution is found.

import xpress as xp

class foo:
"Simple class"
bar = 0
def __init__ (self):
self.bar =1
def update (self):
self.bar += 1

def preintsolcb(prob, data, isheuristic, cutoff):
Callback to be used when an integer solution is found. The

"data" parameter is of class foo
mnw

Fair Isaac Corporation Proprietary Information 29

Chapter 5: Using Callbacks

p = xp.problem()
p.read('myprob.lp') # reads in a problem, let's say a MIP

baz = foo()

p.addcbpreintsol (preintsolcb, baz, 3)
p.optimize ()

While the function argument is necessary for all addcb* functions, the data object can be specified as
None. In that case, the callback will be run with None as its data argument. The call also specifies a
priority with which the callback should be called: the larger the (positive) priority, the more urgently it is
called.

Any call to an addcb* function, as the names imply, only adds a function to a list of callback functions for
that specific point of the BB algorithm. For instance, two calls to addcbpreintsol with two functions
preintl and preint2, respectively with priority 3 and 5, puts the two functions in a list. The two
functions will be called (preintz2 first) whenever the BB algorithm finds an integer solution.

In order to remove a callback function that was added with addcb+, a corresponding removecb+*
function is provided, for instance removecbpreintsol. This function takes two arguments, i.e., the
callback function and the data object, and deletes all elements of the list of callbacks that were added
with the corresponding addcb function that match the function and the data.

The None keyword acts as a wildcard that matches any function/data object: if removecb~ is called with
None as the function, then all callbacks matching the data will be deleted. If the data is also None, all
callback functions of that type are deleted; this can be obtained by passing no argument to removecb*.

The arguments and return value of the callback functions reflect those in the C API, and this holds for
parameter names as well. As for the other API functions of the Python interface, there are a few
exceptions:

m If a function in the C API requires a parameter n to indicate the size of an array argument to follow, n
is not required in the corresponding Python function;

m If a function in the C APl uses passing by reference as a means to allow for modifying a value and
returning it as an output, the Python counterpart will have this as the return value of the function.
Where multiple output values are comprised in the list of parameters, the return value is a tuple
composed of the returned values. Elements of this tuple can be None if no change was made to
that output value.

Most callback functions refer to a problem, therefore the addcb* method is called from a problem
object. The only exception is the function xpress.addcbmsghandler (), which is called on the Xpress
module itself and allows for providing a function that is called every time any output is produced within
the Optimizer.

We refer to the Reference chapter of this manual for all information regarding callback functions and how
to add/remove them from a problem.

Fair Isaac Corporation Proprietary Information 30

CHAPTER 6
Examples of use

This chapter discusses some example Python scripts that are part of the Xpress Optimizer’s Python
interface. Most of them are well commented so the user can refer directly to the source for guidance.

Most of these scripts have an initial part in common, which we reproduce here but omit in all
explanations below for compactness. These initial lines import the Xpress module itself and the NumPy
module, which is used in some of the examples. The first line is to make the print statements, which are
in Python 3 style here, work in Python 2.7 as well.

from ___future__ import print_function
import xpress as xp
import numpy as np

6.1 Creating simple problems

Below are a few examples on how to create simple LP, MIP, MIQP, and similar problems. Note that they
make use of API functions that resemble the C API functions for creating problems, and are used
similarly here.

6.1.1 Generating a small Linear Programming problem

In this example, we create a problem and load a matrix of coefficients, a rhs, and an objective coefficient
list with the Loadproblem function. We also assign names to both rows and columns (both are
optional). These data correspond to the following problem with three variables and four constraints:

minimize: 3 Xx;+4 Xy +5X3

subject to: Xptxz3 > -24
2X-| + 3X3 > -3
2X2 + 3X3 = 4
XpgtX3 < 5
1<x <3
1< X1 < 5
1<% <8
p = xp.problem()
p.loadproblem("", # probname
('é','c','E', 'L'], # rowtype
[-2.4, -3, 4, 5], # rhs
None, # rng
[3,4,51, # objcoef
[0,2,4,8], # start

Fair Isaac Corporation Proprietary Information 31

Chapter 6: Examples of use

None, # collen
[0,1,2,3,0,1,2,3]1, # rowind

[1,2,2,1,1,3,3,11, # rowcoef

[-1,-1,-11, # 1b

[3,5,8], # ub

colnames = ['X1','X2','X3'],

rownames = ['rowl',6 'row2',6 'row3', 'constr_04'])

p.write("loadlp", "lp")
p.optimize ()

column names

We then create another variable and add it to the problem, then modify the objective function. Note that

the objective function is replaced by, not amended with, the new expression. After solving the problem, it

saves it into a file called update. 1p.

= xp.var ()

.addVariable (x)
.setObjective (x*x*2 + 2*x + 444)
.optimize ()

.write("updated", "lp")

'O 'D 'O 'O X

6.1.2 A Mixed Integer Linear Programming problem

This example uses 1oadproblem to create a Mixed Integer Quadratically Constrained Quadratic

Programming problem with two Special Ordered Sets. Note that data that is not needed is simply set as

None.

The Examples directory provides similar examples for different types of problems.

p = xp.problem()
p.loadproblem("",

['G','G','L', 'L'],
[_2-41 _37 4/ 5]/

p.optimize ()

probname
rowtype
rhs

rng
objcoef
start

collen
rowind
rowcoef
1b
ub
objgcoll
objgcol2
objgcoef
growind
nrowgcoefs
rowgcoll
rowgcol2
rowgcoef
coltype
entind
limit
settype
setstart
setind
refval

Fair Isaac Corporation Proprietary Information

32

Chapter 6: Examples of use

6.2 Modeling examples
6.2.1 A simple model

This example demonstrates how variables and constraints, or lists/arrays thereof, can be added into a
problem. The script then prints the solution and all attributes/controls of the problem.

v
m
vl

v2
vb

N =
S

4

range (N)

[xp.var (name="y{0}".format (i)) for i in S] # set name of a variable as

xp.problem/()

xp.var (name="v1", 1lb=0, ub=10, threshold=5, vartype=xp.continuous)
xXp.var (name="v2", lb=1, ub=7, threshold=3, vartype=xp.continuous)

xp.var (name="vb",

vartype=xp.binary)

Create a variable with name yi, where i is an index in S
[xp.var (name="y{0}".format (i), 1lb=0, ub=2x*N) for i in S]

v

The call below adds both v, a vector (list) of variables, and v1 and v2, two scalar variables.

m.addVariable (vb, v,

cl

vl + v2 >=

5

m.addConstraint (cl,
2xvl + 3*v2 >= 5,
v[0] + v[2] >= 1,

vl, v2)

Adds a list of constraints: three single constraints...

. and a set of constraints indexed by all {i in
S: i<N-1} (recall that ranges in Python are from 0
to n-1)

(v[i+l] >= v[i] + 1 for i in S if i < N-1))

objective overwritten at each setObjective ()
m.setObjective (xp.Sum([i*xv[i] for i in S]), sense=xp.minimize)

solvestatus,

print ("solve status:
print ("solution status: ", solstatus.name)

solstatus = m.optimize ()

", solvestatus.name)

print ("solution:", m.getSolution())

6.2.2 Using IIS to investigate an infeasible problem

The problem modeled below is infeasible,

import xpress as xp

x0
x1
x2

cl
c2
c3

c4

xp.var ()
xp.var ()
xXp.var (vartype=xp.binary)

2 x

x0
x0
x0

x0

+
+
+

+

2

*

*

x1
x1
x1

x1

>= 1
>= 1
<= .5
>= 0.1

The three constraints c1, c2, and c3 above are incompatible as can be easily verified. Adding all of them
to a problem will make it infeasible. We use the functions to retrieve the Irreducible Infeasible

Fair Isaac Corporation Proprietary Information

33

Chapter 6: Examples of use

Subsystems (lIS).

minf = xp.problem("ex-infeas")

minf.addvariable (x0, x1, x2)
minf.addConstraint (cl,c2,c3,c4)

minf.optimize ()
minf.iisall()
print ("there are ", minf.attributes.numiis, " iis's")

miisrow = []
miiscol = []
constrainttype = []
colbndtype = []
duals = []
rdcs = []
isolationrows
isolationcols

[1
[1

get data for the first IIS

minf.getiisdata(l, miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

print ("iis data:", miisrow, miiscol, constrainttype, colbndtype,
duals, rdcs, isolationrows, isolationcols)

Another way to check IIS isolations
print ("iis isolations:", minf.iisisolations (1))

rowsizes
colsizes
suminfeas =
numinfeas =

print ("iisstatus:", minf.iisstatus(rowsizes, colsizes, suminfeas, numinfeas))
print ("vectors:", rowsizes, colsizes, suminfeas, numinfeas)

6.2.3 Modeling a problem using Python lists and vectors

We create a convex QCQP problem. We use a list of N=5 variables and sets constraints and objective. We
define all constraints and the objective function using a Python aggregate type.

import xpress as xp

N =25
S = range (N)
v = [xp.var (name="y{0}".format (i)) for i in S]

m = xp.problem("problem 1")

print ("variable:", v)

m.addVariable (v)

m.addConstraint (v[i] + v[j] >= 1 for i in range(N-4) for j in range(i,i+4))
m.addConstraint (xp.Sum([v[i]**2 for 1 in range(N-1)]) <= N**2 * v[N-1]%x2)
m.setObjective (xp.Sum([i*xv[i] for i in S]) * (xp.Sum([i*v[i] for i in S])))

m.optimize ()

print ("solution: ", m.getSolution())

Fair Isaac Corporation Proprietary Information 34

Chapter 6: Examples of use

6.2.4 A knapsack problem

Here follows an example of a knapsack problem formulated using lists of numbers. All data in the

problem are lists, and so are the variables.

import xpress as xp

S = range(5) # that's the set {0,1,2,3,4}

value = [102, 512, 218, 332, 41] # or just read them from file
weight = [21, 98, 44, 59, 9]

x = [xp.var (vartype=xp.binary) for i in S]

profit = xp.Sum(value[i] * x[i] for i in S)

p = xp.problem("knapsack")

p.addVariable (x)

p.addConstraint (xp.Sum(weight[i] * x[i] for i in S) <= 130)
p.setObjective (profit, sense=xp.maximize)

p.optimize ()

Note that the same result could have been achieved using NumPy arrays and the
product as follows:

value = np.array([102, 512, 218, 332, 411])

weight = np.array([21, 98, 44, 59, 91)

X = np.array([xp.var (vartype=xp.binary) for i in S], dtype=xp.npvar)
profit = xp.Dot (value, x)

p = xp.problem("knapsack")

p.addVariable (x)

p.addConstraint (xp.Dot (weight, x) <= 130)

p.setObjective (profit, sense=xp.maximize)

p.optimize ()

6.2.5 A Min-cost-flow problem using NumPy

This example solves a min-cost-flow problem using NumPy and the incidence ma

import numpy as np
import xpress as xp

digraph definition

v=11, 2, 3, 4, 5] # vertices
E = [[1, 21, [1, 41, [2, 3], [3, 41, [4, 51, [5, 1]] # arcs

n = len (V) # number of nodes

m = len(E) # number of arcs

We then generate the incidence matrix by creating a NumPy matrix with n rows and
each column, which corresponds to an arc (ijj), has a-1atrow i and a 1 at rowj.

Generate incidence matrix:
A np.zeros((n,m))

begin with a NxM zero matrix

Then for each column i of the matrix, add a -1 in correspondence to
the tail of the arc and a 1 for the head of the arc. Because Python
uses 0-indexing, the row of A should be the node index minus one.

for i, edge in enumerate (E):
Aledge[0] - 1]1[i] = -1
Aledge[l] - 1][i] = 1

Xpress module’s dot

trix of the graph.

m columns, such that

Fair Isaac Corporation Proprietary Information

35

Chapter 6: Examples of use

We use NumPy vectors and the Xpress interface’s dot product, the xpress.Dot operator. Note that
although NumPy has a dot operator, especially for large models it is strongly advised to use the Xpress
interface’s Dot function for reasons of efficiency.

demand = np.array([3, -5, 7, -2, -31)

cost = np.array([23, 62, 90, 5, 6, 8])

flow = np.array([xp.var() for i in E], dtype=xp.npvar) # flow variables declared on arcs
p = xp.problem('network flow')

p.addVariable (flow)

p.addConstraint (xp.Dot (A, flow) == - demand)

p.setObjective (xp.Dot (cost, flow))

p.optimize ()

for i in range(m):
print('flow on', E[1], ':', p.getSolution(flow[i]))

6.2.6 A nonlinear model

Let’s solve a classical nonlinear problem: finding the minimum of the Rosenbrock function. For
parameters a and b, minimize (a — x)2 + b(y — x2)2.

import xpress as xp

a,b =1,100

X
y

xp.var (lb=-xp.infinity)
xp.var (lb=-xp.infinity)

P xp.problem/()
p.addvVariable (x,Vy)
p.setObjective ((a—x) **2 + b* (y—x**2) *x2)

p.controls.xslp_solver = 0 # solve it with SLP, not Knitro

solvestatus, solstatus = p.optimize()

print ("solve status: ", solvestatus.name)
print ("solution status: ", solstatus.name)

print ("solution:", p.getSolution())

6.2.7 Finding the maximum-area n-gon

The problem asks, given n, to find the n-sided polygon of largest area inscribed in the unit circle.

While it is natural to prove that all vertices of a global optimum reside on the unit circle, the problem is
formulated so that every vertex i is at distance rho; from the center, and at angle theta;. We would expect
that the local optimum found has all rho’s are equal to 1. The example file contains instructions for
drawing the resulting polygon using matplotlib.

The objective function is the total area of the polygon. Considering the segment S[i] joining the center to
the i-th vertex and A(i,j) the area of the triangle defined by the two segments S[i] and S[j], the objective
functionis Agq) +Aq2) + .. + A(n-1,0), Where Ay = 1/2 x rho; = tho; « sin(theta; — theta;). We first define
the set vertices as the set of integers from 0 ton - 1.

Fair Isaac Corporation Proprietary Information 36

Chapter 6: Examples of use

rho = [xp.var (lb=le-5, ub=1.0)
theta = [xp.var (lb=-math.pi,
p = xp.problem()

p.addvVariable (rho, theta)

p.setObjective (

0.5% (xp.Sum(rho[i]*rho[i-1]*xp.sin(theta[i]-theta[i-1])
+ rho[0]*rho[N-1]*xp.sin(theta[0]-theta[N-1])),

for i in Vertices]

ub=math.pi) for i in Vertices]

for i in Vertices if i != 0)

sense=xp.maximize)

We establish that the angles must be increasing in order to obtain a sensible solution:

p.addConstraint (theta[i] >= theta[i-1]

+ le-4 for i in Vertices if i != 0)

Note also that we enforce that the angles be different as otherwise they might form a local optimum

where all of them are equal.

6.2.8 Solving the n-queens problem

In chess, the queen can move in all directions (even diagonally) and travel any distance. The problem of
the n queens consists in placing n queens on an n x n chessboard so that none of them can be eaten in

one move.

We first create a dictionary of variables, mapping each cell of the chessboard to one variable so that we
canrefer to it later. All variables are clearly binary as they indicate whether a given cell has a queen or not.

= 10 # the size of the chessboard

=]
|

N = range (n)
x = {(i,]J): xp.var(vartype=xp.binary, name='qg{0}_{1}'.format (i, j))
for i in N for j in N}

vertical = [xp.Sum(x[i, j] for i in N) <= 1 for j in N]

horizontal = [xp.Sum(x[i,Jj] for j in N) <= 1 for i in N]

diagonall = [xp.Sum(x[k-3j,j] for j in range(max(0,k-n+l), min(k+l,n))) <=1
for k in range(l,2*n-2)]

diagonal2 = [xp.Sum(x[k+]j,j] for j in range (max(0,-k), min(n-k,n))) <=1
for k in range(2-n,n-1)]

p = xp.problem()

p.addvVariable (x)
p.addConstraint (vertical,

Objective, to be maximized:
p.setObjective (xp.Sum(x),

p.optimize ()

horizontal, diagonall,

diagonal2)

number of queens on the chessboard
sense=xp.maximize)

As a rudimentary form of visualization, we print the solution on the chessboard with different symbols for

variables at one or zero.

for i in N:
for j in N:
if p.getSolution(x[i, j])

print ('@', sep='"', end='")
else:
print('.', sep='', end='")
print('"')

Fair Isaac Corporation Proprietary Information

37

Chapter 6: Examples of use

6.2.9 Solving Sudoku problems

The well-known Sudoku puzzles ask one to place numbers from 1to 9 into a 9 x 9 grid such that no
number repeats in any row, in any column, and in any 3x3 sub-grid. For a more general version of the
game, replace 3 with g and 9 with g2.

We model this problem as an assignment problem where certain conditions must be met for all numbers
in the columns, rows, and sub-grids.

These subgrids are lists of tuples with the coordinates of each subgrid. In a9 x 9 sudoku, for instance,
subgrids[0,1] has the 9 elements in the middle top square.

The input is a starting grid where the unknown numbers are replaced by zero. The example file contains a
relatively hard 9 x 9 sudoku, which we show below, and also a 16 x 16 variant of the same game.

q=3

Q.
I
-

startin
[rs, o,
[0,

’

~

’

~

S OO O JODNMNOO
~

O oOyWwWwOOoOOoOOoOo
~

O O WO OO o oo

~ 0~
OU‘!OD—‘OOOG\OLQ
~ 0~
~ 0~

~

~

~
\DOOOOU‘I\]O

’

~

~

’

~

g
0
3
0
0
0
0
1
8
0

O O O OO oo

’

~

n = g**2 # the size must be the square of the size of the subgrids
N = range (n)

x = {(i,]J,k): xp.var (vartype=xp.binary, name='x{0}_{1}_{2}'.format (i, j, k))
for i in N for j in N for k in N}

define all g”2 subgrids
subgrids = {(h,1): [(i,]J) for i in range(g*h, g*h + q)
for j in range(gxl, g*l + q)]
for h in range(q) for 1 in range(q)}

vertical = [xp.Sum(x[i, j, k] for i in N) == 1 for j in N for k in N]
horizontal = [xp.Sum(x[i,j,k] for j in N) == 1 for i in N for k in N]
subgrid = [xp.Sum(x[i, j, k] for (i,3) in subgrids[h,1l]) ==

for (h,1) in subgrids.keys() for k in N]
Assign exactly one number to each cell
assign = [xp.Sum(x[i,j, k] for k in N) == 1 for i in N for j in N]

Then we fix those variables that are non-zero in the input grid. We don't need an objective function as this
is a feasibility problem. After computing the solution, we print it to the screen.

init = [x[i,Jj,k] == 1 for k in N for i in N for j in N
if starting_grid[i][]j] == k+1]

p = xp.problem()

p.addvVariable (x)
p.addConstraint (vertical, horizontal, subgrid, assign, init)

p.optimize ()
print ('Solution: ")
for i in N:

for j in N:
1l = [k for k in N if p.getSolution(x[i, j, k]) >= 0.5]

Fair Isaac Corporation Proprietary Information 38

Chapter 6: Examples of use

assert(len(l) == 1)
print ('{0:2d}"'.format(l + 1[0]), end='"', sep='")
print('")

6.3 Examples using NumPy

6.3.1 Using NumPy multidimensional arrays to create variables

Use NumPy arrays for creating a 3-dimensional array of variables, then use it to create a mode.

S1 = range(2)

S2 = range(3)

S3 = range (4)

m = xp.problem()

h = np.array([[[xp.var (vartype=xp.binary)

for i in S1]
for j in S2]
for k in S3], dtype=xp.npvar)

m.addVariable (h)

m.setObjective (h[0][0][0] * h[O][0][0] +
h[1][0][0] * h[O][O]([O] +
h[1][0][0] * h[1][O0]([O0] +
xp.Sum(h[i] [j]1[k] for i in S3 for j in S2 for k in S1))

cons00 = - h[0][0][0] *x 2 +
xp.Sum(i * j * k * h[i][j][k]lfor i in S3 for j in S2 for k in S1) >= 11

m.addConstraint (cons00)

m.optimize ()

The final part of the code retrieves the matrix representation of the quadratic part of the only constraint.

mstartl=[]

mclindl=[]

dgel=[]

m.getgrowgmatrix (cons00, mstartl, mclindl, dgel, 29, h[0][0][0], h[3]1[2][1])
print ("row 0:", mstartl, mclindl, dgel)

6.3.2 Using the dot product to create arrays of expressions

Here we use NumPy arrays to print the product of a matrix by a random vector, and the xpress.Dot
function on a matrix and a vector. Note that the NumPy dot operator works perfectly fine here, but should
be avoided for reasons of performance, especially when handling large arrays where at least one
contains optimization variables or expressions.

x = np.array([xp.var() for i in range(5)], dtype=xp.npvar)

p = xp.problem()
p.addVariable (x)
p.addConstraint (xp.Sum(x) >= 2)

p.setObjective (xp.Sum(x[1]**2 for i in range(5)))
p.optimize ()

A = np.array (range (30)) .reshape(6,5) # A is a 6x5 matrix
sol = np.array(p.getSolution()) # a vector of size 5
columns = Axsol # not a matrix-vector product!

Fair Isaac Corporation Proprietary Information 39

Chapter 6: Examples of use

<
I

= np.dot (A, sol) # an array: matrix-vector product A*sol
xp.Dot (A, x) # an array of expressions

)
I

print (v, w)

6.3.3 Using the Dot product to create constraints and quadratic
functions

This is an example of a problem formulation that uses the xpress.Dot operator to formulate
constraints in a concise fashion. Note that the NumPy dot operator is not suitable here as the result is an
expression in the Xpress variables.

A = np.random.random(30) .reshape(6,5) # A is a 6x5 matrix

Q = np.random.random(25) .reshape(5,5) # Q is a 5x5 matrix

x = np.array([xp.var() for i in range(5)], dtype=xp.npvar) # vector of variables
x0 = np.random.random(5) # random vector

Q += 4 * np.eye(5) # add 5 * the identity matrix

Lin_sys = xp.Dot (A, x) <= np.array([3,4,1,4,8,7]) # 6 constraints (rows of A)
Conv_c = xp.Dot(x,Q,x) <=1 # one quadratic constraint

p = xp.problem()
.addVariable (x)

.addConstraint (Lin_sys, Conv_c)
.setObjective (xp.Dot (x-x0, x-x0)) # minimize distance from x0

's 'O o

p.optimize ()

6.3.4 Using NumPy to create quadratic optimization problems

This example creates and solves a simple quadratic optimization problem. Given an n x n matrix Q and a
point xg, minimize the quadratic function x' (Q + n3/)x subject to the linear system (x - xo)'Q +e = 0,
where e is the vector of all ones, the inequalities Qx > 0, and nonnegativity on all variables. Report
solution if available.

n = 10

Q = np.arange(l, n**2 + 1).reshape(n, n)
np.array([xp.var() for i in range(n)], dtype=xp.npvar)
np.random.random (n)

b
[}

x0
p = xp.problem()
p.addVariable (x)

cl
c2

xp.Dot((x - x0), Q) + 1 == 0
xp.Dot (Q, x) >= 0

p.addConstraint (cl, c2)
p.setObjective (xp.Dot(x, Q + N**3 * np.eye(N), x))

p.optimize('")

print ("nrows, ncols:", p.attributes.rows, p.attributes.cols)
print ("solution:", p.getSolution())

p.write("test5-gp", "lp")

Fair Isaac Corporation Proprietary Information 40

Chapter 6: Examples of use

6.4 Advanced examples: callbacks and problem query-
ing, modifying, and analysis
6.4.1 Visualize the branch-and-bound tree of a problem

This example shows how to visualize the BB tree of a problem after (partially) solving it. It is assumed
here that all branches are binary.

We first define a message callback for running code whenever the Optimizer wants to print a message.
The callback receives four arguments: the problem and callback data and, most importantly, the message
to be printed and an information number. The callback prints the output message prefixed by a time
stamp related to the creation of the problem. As the message could be on multiple lines, it is split into
multiple substrings, one per line.

import networkx as nx
import time
from matplotlib import pyplot as plt

def message_addtime (prob, data, msg, info):
"""Message callback example: print a timestamp before the message from the optimizer"""
if msg:
for submsg in msg.split('\n'):
print ("{0:6.3f}: [{2:+4d}] {1l}".format (time.time() - start_time, submsg, info))

We then define a recursive function that computes the cardinality of a subtree rooted at a node i. This is
necessary as the visualization of the BB tree is more balanced when the subtree size is taken into
account. The card_subtree array, which is filled here, is used then for computing the width of each
visualized subtree.

def postorder_count (node) :

nnn

Recursively count nodes to compute the cardinality of a subtree for

each node
nmnmwn

card = 0

if node in left.keys(): # see if node has a left key
postorder_count (left[node])
card += card_subtree[left[node]]

if node in right.keys():
postorder_count (right[node])
card += card_subtree[right[node]]

card_subtree[node] = 1 + card

We also define a function that determines the position of each node depending on the cardinality of the
subtree rooted at the node.

def setpos (T, node, curpos, st_width, depth):

nnn

Set position depending on cardinality of each subtree
nmn

Special condition: we are at the root
if node ==
T.add_node (node, pos=(0.5, 1))

alpha = .1 # use a convex combination of subtree comparison and

Fair Isaac Corporation Proprietary Information 41

Chapter 6: Examples of use

depth to assign a width to each subtree
if node in left.keys():
X position in the graph should not Jjust depend on depth,

otherwise we'd see a long and thin subtree and it would just
look like a path

leftwidth = st_width * (alpha * .5 + (1 - alpha) * card_subtree[left[node]]

/ card_subtree[node])
leftpos = curpos - (st_width - leftwidth) / 2

T.add_node (left[node], pos=(leftpos, - depth))
T.add_edge (node, left[node])
setpos (T, left[node], leftpos, leftwidth, depth + 1)

if node in right.keys():

rightwidth = st_width * (alpha * .5 + (1 - alpha) * card_subtree[right[node]]

/ card_subtree[node])
rightpos = curpos + (st_width - rightwidth) / 2

T.add_node (right [node], pos=(rightpos, - depth))
T.add_edge (node, right[node])
setpos (T, right[node], rightpos, rightwidth, depth + 1)

This is the only operation we need to be carried out at every node: given a node number, newnode, and its
parent, parent, we store the information in the 1eft and right arrays so that at the end of the BB we

have an explicit BB tree stored in these arrays.

def storeBBnode (prob, Tree, parent, newnode, branch):
Tree is the callback data, and it's equal to T

if branch ==

left[parent] = newnode
else:

right [parent] = newnode

We now set up the BB tree data and create a problem. We read it from a local file, but any user problem

can be read and analyzed. We set the node callback with addcbnewnode so that we can collect

information at each new node. We also save the initial time for use by message_addtime, the function

that is called every time the problem prints out a message.

T = nx.Graph()

left = {}

right = {}

card_subtree = {}

pos = {}

start_time = time.time ()

p = xp.problem()
p.addcbmessage (message_addtime)

.read ('sampleprob.mps.gz"')
.addcbnewnode (storeBBnode, T, 100)

'sC's T O

.optimize ()
postorder_count (1) # assign card_subtree to each node
setpos (T, 1, 0.5, 1, 0) # determine the position of each node

depending on subtree cardinalities

pos = nx.get_node_attributes (T, 'pos')

.controls.maxnode=40000 # Limit the number of nodes inserted in the graph

Fair Isaac Corporation Proprietary Information

42

Chapter 6: Examples of use

nx.draw (T, pos) # create BB tree representation
plt.show () # display it; you can zoom indefinitely and see all subtrees

6.4.2 Query and modify a simple problem

This example shows how to change an optimization problem using the Xpress Python interface.

x = xp.var()
y = xp.var()
consl = X + >=

y 2
y <= 3

upperlim = 2*x +

p = xp.problem()

p.addvariable (x,y)
p.setObjective ((x—4) **2 + (y—-1)*x*2)
p.addConstraint (consl, upperlim)
p.write('original', 'lp')

After saving the problem to a file, we change two of its coefficients. Note that the same operations can
be carried out with a single call to p.chgmcoef ([cons1, 1], [x,0], [3,4]).

p.chgcoef (consl, x, 3) # coefficient of x in consl becomes 3
p.chgcoef (1, 0, 4) # coefficient of y in upperlim becomes 4

p.write('changed', 'lp')

6.4.3 Change a problem after solution

Construct a problem using addVariable and addConstraint, then use the Xpress API routines to amend
the problem with rows and quadratic terms.

import xpress as xp

p = xp.problem()
N

=5
S = range (N)
x = [xp.var (vartype=xp.binary) for i in S]

p.addvVariable (x)

Vectors of variables can be used whole or addressed with an index or
index range

c0 = xp.Sum(x) <= 10
cc [x[1]/1.1 <= x[i+1]*2 for i in range (N-1)]

p.addConstraint (c0, cc)
p.setObjective (3 - x[0])

mysol = [0, O, 1, 1, 1, 1.4]

add a variable with its coefficients

p.addcols([4], [0,3], [cO,4,2]1, [-3, 2.4, 1.4], [O], [2], ['¥Y"'], ['B'])
p.write("probleml", "lp")

load a MIP solution
p.loadmipsol ([0,0,1,1,1,1.4])

Fair Isaac Corporation Proprietary Information 43

Chapter 6: Examples of use

We now add a quadratic term x% - 2XgX3 + x13 to the second constraint. Note that the -2 coefficient for an
off-diagonal element must be passed divided by two.

p.addgmatrix(cc[0], [x[0],x[31,x[31], [x[0],x[0],x[31], [1,-1,11)

As constraint list cc was added after c0, it is the latter which has index 0 in the problem, while cc[0]
has index 1.

We then add the seventh and eighth constraints:

subjectto: xg +2 %7+ 3x9 >
4X0+5X1+6X2+7X3+8X4'3y < 44

Note the new column named 'Y’ is added with its index 5 (variables’ indices begin at 0). The same would
happen if 5 were substituted by Y.

p.addgmatrix (1, [x[0],x[3],x[31], [x[0]1,x[01,x[311, [1,-1,1])
p.addrows (grtype=['G', 'L'],
rhs=[4, 4.4],
mstart=[0, 3, 9],
mclind=[x[0],x[1],x[2], x[0]

dmatval=[1,2,3,4,5,6,7,8,-3]

,x[11,x[2],x[3],x[4], 5],
names=['"'newconl', 'newcon2'])

p.optimize ()
p.write ("amended", "lp")

slacks = []
p.calcslacks (solution=mysol, calculatedslacks=slacks)

print ("slacks:", slacks)

The code below first adds five columns, then solves the problem and prints the solution, if one has been

found.
p.addcols([4], [0,3], [cO0,4,2], [-3, -2, 11, [o1, 21, ['p1']l, ['TI"'])
p.addcols([4], [0,3], [cO,4,2], [-3, 2.4, 1.4], [O], [10], ['p2'], ['C'])
p.addcols ([4], [0,3], [c0,4,2], [-3, 2, 11, [o1, [11, ['p3'], ['S'])
p.addcols([4], [0,3], [cO0,4,2], [-3, 2.4, 41, [0, [2]1, ['p4']l, ['P'])
p.addcols ([4], [0,3], [c0,4,2], [-3, 2, 11, [o1, 21, ['p5']l, ['R'])
p.optimize ()
try:

print ("new solution:", p.getSolution())

except:

print ("could not get solution, perhaps problem is infeasible")

Note that the single command below has the same effect as the four addcols calls above, and is to be
preferred when adding a large number of columns for reasons of efficiency.

p.addcols([4,4,4,4,4],

0,3,6,9,12,151,

c0,4,2,c0,4,2,c0,4,2,c0,4,2,c0,4,2],

3, -2, 1, -3, 2.4, 1.4, 3, 2, 1, -3, 2.4, 4, 3, 2, 11,
0,0,0,0,01,

2,10,1,2,2],

lpll,lle,lp3l,lp4l,lp5l],

['1','c','s','P', 'R"])

[
[
[
[
[
[

Fair Isaac Corporation Proprietary Information 44

Chapter 6: Examples of use

6.4.4 Comparing the coefficients of two equally sized problems

Given two problems with the same number of variables, we read their coefficient matrices into Scipy so
as to compare each row for discrepancies in the coefficients. We begin by creating two Xpress problems
and reading them from two files, probl . 1p and prob2. 1p, though p1 and p2 might have been created
with the module’s modeling features.

import xpress as xp
import scipy.sparse

pl = xp.problem()
p2 xp.problem/()

pl.read('probl.1lp"')
p2.read('prob2.1p"')

Next we obtain the matrix representation of the coefficient matrix for both problems. Let us suppose that,
for memory reasons, we can only retrieve one million coefficients.

coefl, indl, begl = [], [1, [1]
coef2, ind2, beg2 = [], []1, []
pl.getrows (begl, indl, coefl, 1000000, O, pl.attributes.rows - 1)
p2.getrows (beg2, ind2, coef2, 1000000, 0, p2.attributes.rows - 1)

The function problem.getrows provides a richer output by filling up ind1 and ind2 with the Python
objects (i.e. Xpress variables) corresponding to the variable indices rather than the numerical indices. We
need to convert them to numerical indices using the problem.getIndex function.

indln =
ind2n =

[pl.getIndex(v) for v in indl]
[p2.getIndex(v) for v in ind2]

The next step is to create a Compressed Sparse Row (CSR) format matrix, defined in the scipy.sparse
modaule, using the data from problem.getrows plus the numerical indices.

Then we convert the CSR matrix to a NumPy array of arrays, so that each row is a (non-compressed) array
to be compared in the loop below.

indln,
ind2n,

begl))
beg2))

Al = scipy.sparse.csr_matrix((coefl,
A2 = scipy.sparse.csr_matrix((coef2,

Ml = Al.toarray ()
M2 A2.toarray ()

for i in range(min(pl.attributes.rows,
print (M1[i] != M2[1i])

p2.attributes.rows)) :

The result is a few vectors of size COLS with an element-wise comparison of the coefficient vector of
each row, with True indicating discrepancies. A more meaningful representation can be given using
other functions in NumPy.

[False
[False
[False
[True
[False

False
False
False

True
False

True
False
False
False
False

False False]
False False]
False True]
False False]
False False]

Fair Isaac Corporation Proprietary Information

45

Chapter 6: Examples of use

6.4.5 Combining modeling and API functions

This is an example where a problem is loaded from a file, solved, then modified by adding a Global Upper
Bound (GUB) constraint. Note that we do not know the structure of the problem when reading it, yet we
can simply extract the list of variables and use them to add a constraint.

import xpress
p = xpress.problem()

p.read ("example.lp")
p.optimize ()
print ("solution of the original problem: ", p.getVariable(), "==>", p.getSolution())

After solving the problem, we obtain its variables through getvariable and add a constraints so that
their sum cannot be more than 1.1.

x = p.getVariable()

p.addConstraint (xpress.Sum(x) <= 1.1)
p.optimize ()

print ("New solution: ", p.getSolution())

6.4.6 A simple Traveling Salesman Problem (TSP) solver

A classical example of use of callbacks is the development of a simple solver for the well-known TSP
problem. The aim here is not to create an efficient solver (there are far better implementations), but
rather a simple solver where the user only needs to specify two callbacks: one for checking whether a
given solution forms a Hamiltonian tour and one for separating a subtour elimination constraint from the
current node solution.

After a successful solve (or an interrupted one with a feasible solution), the best Hamiltonian tour is
displayed. Note that this section omits unnecessary details (checks of return values, exceptions, etc.) of
the actual code, which can be found in the Examples/ directory.

import networkx as nx

import xpress as xp

import re, math, sys

from matplotlib import pyplot as plt
import urllib.request as ul

filename = 'dj38.tsp’

ul.urlretrieve ('http://www.math.uwaterloo.ca/tsp/world/' + filename, filename)

instance = open(filename, 'r')
coord_section = False
points = {}

G = nx.Graph()

We have downloaded an instance of the TSP and now it must be read and interpreted as it does not have
a format that we know. We save in cx and cy the coordinates of all nodes in the graph, which is assumed
to be complete, i.e., all nodes are connected to one another.

for line in instance.readlines():

if re.match ('NODE_COORD_SECTION.*', line):
coord_section = True
continue

elif re.match('EOF.*x', line):

Fair Isaac Corporation Proprietary Information 46

Chapter 6: Examples of use

break

if coord_section:
coord = line.split(' ')
index = int (coord[0])
cx float (coord[1l])
cy = float (coord[2])
points[index] = (cx, cy)
G.add_node (index, pos=(cx, cy))

The next step is to define a callback function for checking if the solution forms a Hamiltonian tour, i.e., if
it connects all nodes of the graph. The callback will be passed with the method addcbpreintsol,
therefore it needs to return a tuple of two values: the first value is True if the solution should be rejected,
and the second is the new cutoff in case it has to be changed. This is not the case here, so None can be
safely returned.

After obtaining the integer solution to be checked, the function scans the graph from node 1 to see if the
solutions at one form a tour.

def check_tour (prob, G, isheuristic, cutoff):
s =[]
prob.getlpsol (s, None, None, None)
orignode = 1

nextnode 1
card =0

while nextnode != orignode or card ==
FS = [j for j in V if j != nextnode
and s[prob.getIndex (x[nextnode, j])] == 1] # forward star

card += 1

if len(FS) < 1:
return (True, None) # reject solution if we can't close the loop

nextnode = FS[0]
If there are n arcs in the loop, the solution is feasible
return (card < n, None) # accept the cutoff: return second element as None
The second callback to be defined is a separator for subtour elimination constraints. It must return a

nonzero value if the node is deemed infeasible by the function, zero otherwise. The function addcuts is
used to insert a subtour elimination constraint.

The function works as follows: Starting from node 1, gather all connected nodes of a loop in connset. If
this set contains all nodes, then the solution is valid if integer, otherwise the function adds a subtour
elimination constraint in the form of a clique constraint with all arcs (i,j) for all i,j in connset.

def eliminate_subtour (prob, G):
s = [] # initialize s as an empty list to provide it as an output parameter
prob.getlpsol (s, None, None, None)

orignode =1

nextnode = 1
connset = []
while nextnode != orignode or len(connset) == 0:

Fair Isaac Corporation Proprietary Information 47

Chapter 6: Examples of use

connset.append (nextnode)

FS = [j for j in V if j != nextnode
and s[prob.getIndex (x[nextnode, jl)] == 1] # forward star

if len(FS) < 1:
return 0

nextnode = FS[0]
if len(connset) < n:
Add a subtour elimination using the nodes in connset (or, if

card(connset) > n/2, its complement)

if len(connset) <= n/2:

columns = [x[i,Jj] for i in connset for j in connset
if 1 !'= j]
nArcs = len(connset)
else:
columns = [x[i,j] for i in V for j in \Y
if not i in connset and not j in connset and i != j]
nArcs = n - len(connset)
nTerms = len (columns)
prob.addcuts ([1], ['L'], [nArcs - 1], [0, nTerms], columns, [l] * nTerms)
return O

We now formulate the problem with the degree constraints on each node and the objective function (the
cost of each arc (i,j) is assumed to be the Euclidean distance between i and).

n = len(points) # number of nodes

V = range(l, n+l) # set of nodes

A = [(i,]J) for i in V for j in V if i != j] # set of arcs (i.e. all pairs)

x = {(i,]J): xp.var(name="x_{0}_{1}"'.format (i, j), vartype=xp.binary) for (i,Jj) in A}
conservation_in = [xp.Sum(x[i,j] for j in V if j != i) == 1 for i in V]
conservation_out = [xp.Sum(x[j,i] for j in V if j != i) == 1 for i in V]

p = xp.problem()

p.addVariable (x)
p.addConstraint (conservation_in, conservation_out)

xind = {(i,]J): p.getIndex(x[i,j]) for (i,3j) in x.keys()}
Objective function: total distance travelled
p.setObjective (xp.Sum(math.sgrt ((points[i] [0] - points[j][0]) **x2 +
(points[i] [1] - points[j][1])**2) *
x[4i, 3]
for (i,Jj) in A))

p.controls.maxtime = -2000 # negative for "stop even if no solution is found"

p.addcboptnode (eliminate_subtour, G, 1)
p.addcbpreintsol (check_tour, G, 1)

We now solve the problem, and if a solution is found it is displayed using the Python library matplotlib.

p.optimize ()

sol = p.getSolution()

Fair Isaac Corporation Proprietary Information 48

Chapter 6: Examples of use

Read solution and store it in the graph
for (i,3j) in A:
if sol[p.getIndex(x[i,3])] > 0.5:
G.add_edge (i, j)
Display best tour found

pos = nx.get_node_attributes (G, 'pos')

nx.draw (G, points) # create a graph with the tour
plt.show () # display it interactively

Another solver for TSP problems is available in example_tsp_numpy.py. The two main differences
consist in the problem generation, which is now random, and in the fact that most data structures are
NumPy vectors and matrices: the optimization variables, the LP solution obtained from the
Branch-and-Bound, and the data used to check feasibility of the solutions.

6.4.7 Solving a nonconvex MIQCQP

In this example we turn the Xpress Optimizer into a solver for nonconvex MIQCQPs, i.e. problems with
nonconvex quadratic objective and/or nonconvex quadratic constraints.

In order to handle nonconvex quadratic constraints, we have to reformulate the problem to a MILP so that
the simplest nonlinear terms, i.e. the products of variables, are transformed into new, so-called auxiliary
variables.

Product x;x; is assigned to a new variable w;; so that every occurrence of that product in the problem is
replaced by wj;. Assuming /; and u; are the lower and upper bound on x;, respectively, we add the linear
McCormick inequalities:

u W ZIjX,'+/in'IjI,'

B Wjj > Uj Xj + Uj Xj - Uj U;

W SIjX,'+U,'Xj-/j u;

[| WUSU]'X,'+I,'X]'-U]'I,'

The bounds on the new auxiliary variable wj; are a function of the bounds on x; and x;.

Below is the code that takes care of reformulating the problem. We first have to identify all terms x;x; and
create a dictionary linking each pair (i) to an auxiliary variable wj;. The dictionary aux is used throughout
the solver and contains this information. The function create_prob checks all bilinear terms and
creates aux and the McCormick inequalities.

def create_prob(filename) :
[...]
x = p.getVariable()
aux = {} # Dictionary containing the map (x_i,x_3j) --> y_ij
[...]

p.addConstraint (

[aux[i, j] >= 1b[jl*x[i] + 1lb[i]l*x[]J] - 1b[i] * 1lb[]]

for (i, j) in aux.keys() if max(-1b[i], -1b[j]) < xp.infinity],
[aux[i, J] >= ub[jl*x[i] + ub[i]*x[j] - ub[i] * ub[j]

for (i, j) in aux.keys() if max(ub[i], ub[j]) < xp.infinity],
[aux[i, j] <= ub[jl*x[i] + 1lb[i]*x[j] - 1lb[i] * ub[j]

Fair Isaac Corporation Proprietary Information 49

Chapter 6: Examples of use

for (i, j) in aux.keys() if max(-1b[i], ub[]j]) < xp.infinity],
[aux[i, J] <= 1b[jl*x[i] + ub[i]*x[]J] - ub[i] * 1lb[]j]
for (i, j) in aux.keys() if max(ub[i], -1b[]j]) < xp.infinity])

We also needs to tell the Optimizer that the newly created auxiliary variables and the variables that used
to appear in bilinear terms should be protected against deletion by the presolver.

securecols = list(aux.values())
secureorig = set()

for i, j in aux.keys():
secureorig.add (i)
secureorig.add (j)
securecols += list(secureorig)
p.loadsecurevecs (rowind=None, colind=securecols)

The creation of a single auxiliary variable is done in addaux, where its bounds are created and, depending
on whether it is the product of two variables or the square of one, it receives a different treatment.

def addaux(aux, p, i, j, 1lb, ub, vtype):

Find bounds of auxiliary first
if i !'= j:
bilinear term

1, u = bdprod(lb[i], ub[il, 1b[jl, ubljl)
elif 1lb[i] >= O0:

1, u = 1lb[i]l**2, ub[i]**2
elif ub[i] <= 0:

1, u = ub[i]l**2, lb[i]**2

else:
1, u =0, max([lb[i]**2, ub[i]**2])

After setting the bounds on w;;, we determine its type and create the corresponing xp . var object.

if vtype[i] == 'B' and vtype[j] == 'B':
t = xp.binary
elif (vtypel[i] == 'B' or vtype[i] == 'I') and \
(vtypel[j] == 'B' or vtypel[]j] == 'I'"):
t = xp.integer
else:

t = xp.continuous

Add auxiliaries
aux[i, j] = xp.var(lb=1l, ub=u, vartype=t,
name='aux_{0}_{1}"'.format (
p.getVariable (i) .name,
p.getVariable (j) .name))

return aux[i, j]

Quadratic constraints and the quadratic objective (if any) are converted in convQaux, where they are
replaced by a linear expression containing auxiliary variables.

def convQaux(p, aux, mstart, ind, coef, row, 1lb, ub, vtype):

rcols = [
rrows [
rcoef =

1
1

for i,__ms in enumerate (mstart[:-1]):
for j in range (mstart[i], mstart[i+1]):

Fair Isaac Corporation Proprietary Information 50

Chapter 6: Examples of use

J = p.getIndex(ind[]j])

if (i, J) not in aux.keys():
y = addaux(aux, p, i, J, 1lb, ub, vtype)
p.addvVariable (y)

else:
y = aux[i, J]

if row < 0: # objective
mult = .5
else:
mult = 1
if 1 = J:
coe = 2 x mult * coef[]j]
else:
coe = mult * coef[]]

if row < O:
p.chgobj([yl, [coel)
else:
rcols.append (y)
rrows .append (row)
rcoef .append (coe)

if row >= 0:

This is a quadratic constraint, not the objective function
Add linear coefficients for newly introduced variables
.chgmcoef (rrows, rcols, rcoef)

Remove quadratic matrix

.delgmatrix (row)

O ##='0 #* #*

else:

Objective: Remove quadratic part
indI = []
for i in range(len(mstart) - 1):
indI.extend ([i] * (mstart[i+1l] - mstart[i]))
Set all quadratic elements to zero
p.chgmgobj (indI, ind, [0] * mstart[-1])

The new problem, called a reformulation, is then solved as a MILP with a few callbacks. Given that the
problem is nonconvex, we need to branch on continuous variables, those that appear in bilinear terms,
and we also need to keep adding McCormick inequalities when the bounds change. This is because in
branch-and-bound algorithms for nonconvex problems the linear relaxation should be exact at the
extremes of the variable bound ranges.

Another callback is to decide whether to accept or not a solution that was found by the
branch-and-bound: because the constraints linking w to x are missing, we must make sure that they are
satisfied by a solution, and must refuse a solution that does not satisfy wj; = X;x;.

def solveprob(p, aux):

p.addcbpreintsol (cbchecksol, aux, 1)
p.addcboptnode (cbaddcuts, aux, 3)
p.addcbchgbranchobject (cbbranch, aux, 1)

p.mipoptimize ()

The callback functions are fundamental. The branch callback checks whether the auxiliary variables w;;
are satisfied, and if not it creates a branching object on either x; or x;. Due to the presolved nature of the
problem at this point in the branch-and-bound, care must be applied in handling the variable indices, as
they might have changed by the presolver to allow for a smaller problem.

Fair Isaac Corporation Proprietary Information 51

Chapter 6: Examples of use

def cbbranch (prob, aux, branch):
1b, ub = getCBbounds (prob, len(sol))

x = prob.getVariable() # presolved variables

rowmap
colmap

[
[

]
]
prob.getpresolvemap (rowmap, colmap)
invcolmap = [-1 for _ in 1b]

for i, m in enumerate (colmap) :
invcolmap[m] = i

Check if all auxiliaries are equal to their respective bilinear

term. If so, we have a feasible solution
sol = np.array(sol)

discr = sol[Aux_ind] - sol[Aux_i] * sol[Aux_j]

discr[Aux_i == Aux_j] = np.maximum(0, discr[Aux_i == Aux_7j])

maxdiscind = np.argmax (np.abs(discr))

if abs(discr[maxdiscind]) < eps:
return branch

i,J = Aux_i[maxdiscind], Aux_j[maxdiscind]

yind = prob.getIndex(aux[i, Jj])

For terms of the form w;; = x;2, branching might still be necessary as the curve defining it is a nonconvex

set.

if i== §:

Test of violation is done on the original

space. However, the problem variables are scrambled with invcolmap

sol

if sol[i] > 1lb[i] + eps and \
sol[i] < ub[i] - eps and \
sol[yind] > sol[i]**2 + eps and \
[

yind] - 1lb[i]#**2 <= (ub[i] + 1b[i]) =*

(sol[i]

- 1b[i])

Can't separate, must branch. Otherwise OA or secant

cut separated above should be enough

brvarind = invcolmap[i]
brpoint = sol[i]

brvar = x[brvarind]
brleft = brpoint
brright = brpoint

assert (brvarind >= 0)

if brvar.vartype in [xp.integer, xp.binary]:

brleft = math.floor (brpoint + le-5)
brright = math.ceil (brpoint - le-5)

b = xp.branchobj(prob, isoriginal=False)
b.addbranches (2)

addrowzip (prob, b, 0, 'L', brleft, [i]1,
addrowzip (prob, b, 1, 'G', brright, [1i],

New variable bounds are not enough, add new McCormick

- eps:

Fair Isaac Corporation Proprietary Information

52

Chapter 6: Examples of use

inequalities for y = x*x2: suppose x0,y0 are the current
solution values for x,y, yp = x0**2 and xu,yu = xu**2 are their
upper bound, and similar for lower bound. Then these two
rows must be added, one for each branch:

#

v - yp <= (yl-yp)/(x1-x0) * (x — x0) <===>

(yl-yp)/(x1-x0) *» x — y >= (yl-yp)/(x1-x0) * x0 - yp

#

#y - yp <= (yu-yp)/(xu-x0) * (x - x0) <===>

(yu-yp)/ (xu-x0) * x - y >= (yu-yp)/(xu-x0) * x0 - yp

#

Obviously do this only for finite bounds

ypl = brleft*x2

ypr = brrightx*2

if 1b[i] > -1le7 and sol[i] > 1lb[i] + eps:

yl = 1lb[i]**2
coeff = (yl1 - ypl) / (1lb[i] - sol[i])

if coeff != 0:
addrowzip (prob, b, 0, 'G', coeff*sol[i] - ypl,
[i, yind], [coeff, -11)

if ub[i] < le7 and sol[i] < ub[i] - eps:

yu = ub[i]**2
coeff = (yu - ypr) / (ub[i] - sol[i])

if coeff != 0:
addrowzip (prob, b, 1, 'G', coeff*sol[i] - ypr,
[i, yind], [coeff, -11)

return b

Similarly for bilinear terms, we must choose where to branch and on which variable.

else:

1bi0, ubiO = 1b[i], ub[i]
1bil, ubil = 1b[i], ub[i]

1b3j0, ubj0 = 1b[j], ubl[j]
1bjl, ubjl = 1b[3j], ub[]]

No cut violated, must branch

if min(sol[i] - 1lb[i], ub[i] - sol[i]) / (1 + ub[i] - 1b[i]) > \
min(sol[j] - 1b[3j], ub[j] - sol[3]1) / (1 + ub[j] - 1b[j]):
1bil = sol[i]
ubi0 = sol[i]
brvar = i
else:

1bjl = sol[]j]
ubj0 = soll[j]
brvar = j

alpha = 0.2

brvarind = invcolmap|[brvar]
brpoint = sol[brvar]

brleft = brpoint

brright = brpoint

if x[brvarind].vartype in [xp.integer, xp.binary]:
brleft = math.floor (brpoint + le-5)
brright = math.ceil (brpoint - le-5)

Fair Isaac Corporation Proprietary Information 53

Chapter 6: Examples of use

b xp.branchobj (prob, isoriginal=False)

b.addbranches (2)

addrowzip (prob, b,
addrowzip (prob, b,

0,
1,

L',
'G',

brleft,
brright,

[brvar],
[brvar],

[11)
[11)

As for the i==j case, the variable branch is

#
insufficient, so add updated McCormick inequaliti
There are two McCormick inequalities per changed
#
#y >= 1b[j] * x[i] + 1b[i] * x[j] - 1b[j] * 1b[i]
y >= ub[j] *» x[i] + ub[i] * x[]j] - ub[j] * ub[i]
#y <= 1b[j] » x[i] + ub[i] * x[j] - 1b[j] * ub[i]
y <= ub[j] » x[i] + 1b[i] * x[j] - ub[j] * 1lb[i]
addrowzip (prob, b, 0, 'G', - ubiO0 * ubj0, [yind, i,
addrowzip (prob, b, 1, 'G', - 1lbil * 1lbjl, [yind, i,
if brvarind == i:
addrowzip (prob, b, 0, 'L', - 1lbj0 * ubiO, [yind
addrowzip(prob, b, 1, 'L', - ubjl * 1lbil, [yind
else:
addrowzip(prob, b, 0, 'L', - ubj0 * 1biO, [yind
addrowzip(prob, b, 1, 'L', - 1lbjl * ubil, [yind

return b

If no branching rule was return none

return branch

found,

es.

bound:

——>
———>
———>
—>

il,
i1,

r 1y
r 1y

r 1y
ro 1y

add
add
add
add

to
to
to
to

-ubjo,
-1bi1,

branch 1
branch 0
branch 1 if x[brvarind]
branch 1 if x[brvarind]

-ubil])
-1bil])

—ubi0])
-1bill)

-1bj0,
-ubijl,

-1bio])
-ubil])

-ubjo,
-1bi1,

The callback for checking a solution is straightforward: for all pairs ij, check if the corresponding identity

wij = X; X; is satisfied, and if not, simply reject the solution.

def cbchecksol (prob, aux, soltype, cutoff):
global Aux_i, Aux_j, Aux_ind
if (prob.attributes.presolvestate & 128) == 0:
return (1, cutoff)
sol = []

Retrieve node solution
try:
prob.getlpsol (x=sol)
except:
return

(1, cutoff)

sol np.array (sol)

Check if all auxiliaries are equal to their respective bilinear

term. If so, we have a feasible solution

refuse 1 if np.max(np.abs(sol[Aux_i] * sol[Aux_]j]
Return with refuse
and same cutoff

return (refuse, cutoff)

!= 0 if solution is rejected,

0 otherwise;

- sol[Aux_ind]))

> eps else 0

An important part of this nonconvex solver is a function that computes a new feasible solution. The one
we attempt here is rather trivial and probably not able to find good solutions, but one could add other
algorithms, which for example might just use an alternative solver, and find a feasible solution, regardless

of how good.

def cbfindsol (prob, aux):

Fair Isaac Corporation Proprietary Information

54

=3,

= i,

Chapter 6: Examples of use

sol = []

try:

prob.getlpsol (x=sol)
except:

return 0

xnew = sol[:]

Round solution to nearest integer
for i,t in enumerate (var_type) :

if t == 'I' or t == 'B' and \
xnew[i] > math.floor (xnew[i] + prob.controls.miptol) + prob.controls.miptol:
xnew[i] = math.floor (xnew[i] + .5)

for i, j in aux.keys():
yind = prob.getIndex(aux[i, 3J])
xnew[yind] = xnew[i] * xnew[]]
prob.addmipsol (xnew)
return 0

The function for adding McCormick inequalities is perhaps the most important as it allows for the lower
bound in the branch-and-bound to get tighter at every node. All violated inequalities are added for all pairs

ij.

def cbaddmccormickcuts (prob, aux, sol):
1lb, ub = getCBbounds (prob, len(sol))

cuts = []
Check if all auxiliaries are equal to their respective bilinear
term. If so, we have a feasible solution
for i, j in aux.keys():
yind = prob.getIndex(aux[i, Jj])
if 1 == j:
Separate quadratic term

if sol[yind] < sol[i]**2 — eps and \
abs (sol[i]) < xp.infinity / 2:

xk = sol[i]

ox = xk
Oy = OxX ** 2

Add Outer Approximation cut y >= xs"2 + 2xs* (x-xs)
<===>y - 2xs*x >= -xs”2
cuts.append ((TYPE_OA, 'G', - ox**2, [yind, i],

[1, -2%0x]))

Otherwise, check if secant can be of help: y0 - xlx*2 >

(xux*2 - x1x*2) / (xu - x1) * (x0 - x1)
elif sol[yind] > sol[i]**2 + eps and \
sol[yind] - 1lb[i]**2 > (ub[i] + 1b[i]) * (sol[i] - 1b[i]) \

+ eps and abs (lb[i] + ub[i]) < xp.infinity / 2:
cuts.append ((TYPE_SECANT, 'L',

1b[i]**2 — (ub[i] + 1b[i]) * 1b[il],
[yind, i], [1, - (1b[i] + ub[i])]))
elif abs(sol[yind] - sol[i]*sol[j]) > eps:
Separate bilinear term, where i != j. There might be at

least one cut violated

Fair Isaac Corporation Proprietary Information 55

Chapter 6: Examples of use

if sol[yind] < 1lb[jl*sol[i] + 1b[i]l*sol[j] - lb[i]*1b[j] - eps:
if 1b[i] > -xp.infinity / 2 and 1b[j] > -xp.infinity / 2:
cuts.append ((TYPE_MCCORMICK, 'G', - 1lb[i] * 1lb[j],
[yind, i, 3j1, [1, -1b[3j]l, -1b[ill))
elif sol[yind] < ub[j]l*sol[i] + ub[i]*sol[j] — ub[i]*ub[j] - eps:
if ub[i] < xp.infinity / 2 and ub[j] < xp.infinity / 2:
cuts.append ((TYPE_MCCORMICK, 'G', - ub[i] * ub[]j],
[yindr i/ j]l [ll _Ub[j]l _Ub[l]]))
elif sol[yind] > 1lb[j]l*sol[i] + ub[i]*sol[j] - ub[i]*1b[j] + eps:
if ub[i] < xp.infinity / 2 and 1b[j] > —-xp.infinity / 2:
cuts.append ((TYPE_MCCORMICK, 'L', - ub[i] * 1lb[j],
lyind, i, 3], [1, -1b[3], -ub[i]]))

elif sol[yind] > ub[jl*sol[i] + 1lb[i]l*sol[j] - 1lb[i]*ub[j] + eps:
if 1b[i] > -xp.infinity / 2 and ub[j] < xp.infinity / 2:
cuts.append ((TYPE_MCCORMICK, 'L', - 1lb[i] * ub[jl,

[yind, i, 3], [1, -ub[j], -1b[i]]))
Done creating cuts. Add them to the problem

for (t, s, r, I, C) in cuts: # cuts might be the empty list
mcolsp, dvalp = [1, []
drhsp, status = prob.presolverow(s, I, C, r, prob.attributes.cols,
mcolsp, dvalp)
if status >= 0:
prob.addcuts ([t], [s], [drhsp], [0, len(mcolsp)], mcolsp, dvalp)

return 0

Another useful component of any nonconvex solver is a procedure to tighten the variable bounds based
on information that is known on other variables. For example, if new bounds are inferred on w;;, possible
tighter lower or upper bounds can be deduced on x; and/or ;.

def cbboundreduce (prob, aux, sol):
cuts = []

1lb, ub = getCBbounds (prob, len(sol))
Check if bounds on original variables can be reduced based on
bounds on auxiliary ones. The other direction is already taken
care of by McCormick and tangent/secant cuts.
feastol = prob.controls.feastol
for (i,Jj),a in aux.items():

auxind = prob.getIndex(a)

1bi = 1b[i]

ubi = ub[i]

lba = lb[auxind]

uba = ub[auxind]

if i == j: # check if upper bound is tight w.r.t. bounds on
x[1]

Forward propagation for term x[i]”2: from new bounds on x[i],
infer new bound for x[i]"2.

if uba > max(lbix*2, ubi**2) + feastol:
cuts.append ((TYPE_BOUNDREDUCE, 'L', max (lbi**2, ubi*%2), [auxind], [1]))

if 1bi > 0 and lba < lbi**2 - feastol:
cuts.append ((TYPE_BOUNDREDUCE, 'G', 1lbi**2, [auxind], [1]))

elif ubi < 0 and lba < ubi**2 - feastol:
cuts.append ((TYPE_BOUNDREDUCE, 'G', ubi**2, [auxind], [1]))

if uba < -feastol:

Fair Isaac Corporation Proprietary Information 56

Chapter 6: Examples of use

return 1 # infeasible node

else:
if uba < lbi**2 - feastol:
if 1bi > O0:
return 1 # infeasible node
else:
cuts.append ((TYPE_BOUNDREDUCE, 'G', -math.sqgrt(uba), [i], [1]1))

if uba < ubix*2 - feastol:
if ubi < - feastol:
return 1
else:
cuts.append ((TYPE_BOUNDREDUCE, 'L', math.sqrt(uba), [i], [1]))

if lba > prob.controls.feastol and lbi > 0 and lbi**2 < lba - feastol:
cuts.append ((TYPE_BOUNDREDUCE, 'G', math.sqrt(lba), [i], [1]))

else:
tlb, tub = bdprod(lb[i], ub[i], 1b[j], ub[jl)
if lba < tlb - feastol:
cuts.append ((TYPE_BOUNDREDUCE, 'G', tlb, [auxind], [11]))
if uba > tub + feastol:
cuts.append ((TYPE_BOUNDREDUCE, 'L', tub, [auxind], [11]))
For simplicity let's just assume lower bounds are nonnegative
1bj = 1b[]j]
ubj = ub[]]

if 1bj >= 0 and 1lbi >= 0:

if lbi*ubj < lba - feastol:

cuts.append ((TYPE_BOUNDREDUCE, 'G', lba / ubj, [i], [1]))
if lbj*ubi < lba - feastol:

cuts.append ((TYPE_BOUNDREDUCE, 'G', lba / ubi, [j], [1]))

if lbixubj > uba + feastol:
cuts.append ((TYPE_BOUNDREDUCE, 'L', uba / 1lbi, [j], [1]))
if 1lbj*ubi > uba + feastol:
cuts.append ((TYPE_BOUNDREDUCE, 'L', uba / 1lbj, [i], [1]))
Done creating cuts. Add them to the problem

for (t, s, r, I, C) in cuts: # cuts might be the empty list

mcolsp, dvalp [1, I[1

drhsp, status = prob.presolverow(s, I, C, r, prob.attributes.cols,
mcolsp, dvalp)

if status >= 0:

if len(mcolsp) == 0:
continue
elif len(mcolsp) == 1:
if s == 'G':
btype = 'L’
elif == 'L':
btype = 'U’
else: # don't want to add an equality bound reduction
continue

assert (dvalp[0] > 0)
prob.chgbounds (mcolsp, [btypel], [drhsp/dvalp[0]])
else:

prob.addcuts ([t], [s], [drhsp], [0, len(mcolsp)], mcolsp, dvalp)

return 0O

Fair Isaac Corporation Proprietary Information 57

Chapter 6: Examples of use

There are a few other functions not shown here that are used in the example. These are functions for
retrieving bounds withing a callback and other service functions. The example file provides commented
code that can be used to improve the solver.

6.5 Translated Mosel examples

The subdirectory modeling_examples of the Python examples directory contains a few examples from
the Mosel distribution that were adapted to the Xpress Python interface:

blend.py, blend2.py: variants of an oil blending optimization model;

B burglari.py, burglar.py, burglarl.py, burglar_rec.py: several variants of the
knapsack problem

B catenary.py: optimization model for finding the position of all elements of a hanging chain
B chess.py, chess2.py: two variants on the simple problem of production management;

B coco.py: Multiperiod production planning problem;

B complex_test.py: an example of complex numbers (a native type in Python

B fstns.py: the problem of firestation siting;

®m date_test.py: an example of dates using the datatime module;

B pplan.py: a production planning example;

B trans.py: atransportation problem.

Fair Isaac Corporation Proprietary Information 58

CHAPTER 7/
Reference Manual

7.1 Using this chapter

This chapter provides a list of functions available through the Xpress Python interface. For each function,
the synopsis and an example are given.

In keeping with the Xpress Optimizer’s C API, the name and order of the parameters used in these
functions has been retained. However, in order to make optimal use of the greater flexibility provided by
Python, the argument lists and the return value of some functions has been modified so as to obtain a
more compact notation.

For example, for functions with a list as an argument, the number of elements of the list is not part of the
arguments. Compare the call to the C function XxPRSaddrows, where the parameters newrow and
newnz must be passed, to its Python counterpart:

(C) result = XPRSaddrows (prob, n, nnz, type,
rhs, NULL, mstart, indices, values);
(Python) p.addrows (type, rhs, None, mstart, indices, values)

As of version 8.12, the names in the C API have undergone a change in order to have more expressive
names in the C API. The Python API was updated accordingly. The old names still work but are now
deprecated. This reference documentation and all error messages refer to the new names.

In the Python version, the prob pointer is not provided as obviously addrows is a method of the
problem class. The C variables n and nnz, which are assigned to arguments newrow and newnz,
respectively, of the call to XPRSaddrows, are not necessary in the Python call as the length of rhs,
mstart, etc. is inferred from the passed lists. If the lengths of all lists passed as arguments are not
consistent with one another, an error will be returned.

Because lists (or tuples, generators, iterators, sequences) can be used as parameters of all functions in
this manual, their size does not need to be passed explicitly as it is detected from the parameter itself.
The interface will check the consistency and the content if the vector is referred to the variables or
constraints, and will return an error in case of a mismatch.

When passing (lists, arrays, dictionaries of) variables, constraints, or SOSs, there are three ways of
referring to these entities: by numerical index, by Python object, and by name. For instance, consider the
problem.getSolution method, which admits both an empty argument and one or a list of variables.
If we define a variable with a name as follows

X = xpress.var (name='myvar')
P = xpress.problem()
p.addVariable (x)

then we can refer to its index (which will be 0 here as it is the first variable added to the problem), by its
object name, i.e., %, and by its given name "myvar", in the three following (equivalent) ways:

Fair Isaac Corporation Proprietary Information 59

Chapter 7: Reference Manual

print('x is ', p.getSolution(x))
print('x is ', p.getSolution(0))
print('x is ', p.getSolution('myvar'))

Another difference between the Python methods and their C API counterpart is that some output
arguments are no longer passed (by reference) as arguments to the Python functions but rather are (part
of) the value returned by the function. Where multiple scalar output parameters are returned by the C API
function, some Python functions return a tuple containing all such output values.

The non-scalar parameters can instead be specified as lists, NumPy arrays, sequences, or generators
when applicable. The output non-scalar parameters are stored as lists.

Optional parameters can be specified as None or skipped, provided the subsequent arguments are
explicitly declared with their parameter name as Python allows:

p.addrows (rowtype=type, rhs=rhs, start=mstart,
colind=indices, rowcoef=values)

Because the Python interface relies on the Xpress Optimizer C Application Program Interface, it is
advisable to complement the knowledge in this reference manual with that of the Xpress Optimizer
reference manual.

Format of the reference

The descriptions in the following pages report, for each function:

m Name;
m A short description of its purpose;

m Its synopsis, i.e., how it must be called. If it returns a value, then it will be presented as a Python
assignment statement, otherwise it will be just shown as a call without a returned value; also, if it is
a module function rather than a problem-specific function, it will be prefixed by xpress;

m A description of its arguments and whether each argument is optional;
m Error values;
m Associated controls;
m A sample usage of the function;
m Further useful information about the function;
m Related functions, parameters.
Note that all arguments defined in the remainder of this chapter as "array” or "vector" can be many other

Python non-scalar objects: lists, generators, and NumPy arrays are admissible as parameters, except
when specified (e.g. getControl). However, for simplicity we refer to non-scalar arguments as array.

Finally, some attributes and controls are referred to as uppercase words for clarity. For example, ROWS
indicates the attribute "rows" of a problem, hence it is equivalent to problem.attributes.rows.

7.2 Classes of the Xpress module

Below is a list of classes used in all operations of the xpress module. While for a few of these classes an
explicit constructor exists (for instance, xpress.problemand xpress . sos), objects of other classes,
like xpress.lintermand xpress.expression, cannot be created with a constructor methods but
are created using algebraic operators applied to constants, variables, and other expressions.

Fair Isaac Corporation Proprietary Information 60

Chapter 7: Reference Manual

Xpress.
xpress.
Xpress.
Xpress.

xpress.

attr xpress.branchobj xpress.ctrl
constraint xpress.expression xpress.linterm
nonlin xXpress.problem xXpress.poolcut
quadterm Xpress.sos Xpress.var
voidstar xpress.xprsobject

7.3 Global methods of the Xpress module

Below is a list of functions that are invoked from the Xpress module, i.e., they are not methods of the
problem or the branchobj class and can be invoked after the import statement. The invocation is
therefore as in the example that follows:

import xpress as xp
print (xp.getlasterror())

Xpress.
Xpress.
xpress
Xpress
xpress
xpress
Xpress.

xXpress.

init

getbanner

.getlasterror
. Sum
.And

.setdefaultcontrol

removecbmsghandler

examples

xXpress.

Xpress.

Xpress
Xpress
xXpress

Xpress

xpress.

xXpress.

free

getcheckedmode

.getlicerrmsg
.Dot

.Or
.setdefaults

setarchconsistency

getcomputeallowed

xXpress.

xpress.

Xpress
Xpress
xXpress
xpress

xpress

Xpress.

addcbmsghandler
getdaysleft

.getversion
.setcheckedmode
.pwl
.featurequery

.manual

setcomputeallowed

7.4 Methods of the class problem

The tables below show all methods of the class problem of the Xpress Python interface, with the
exception of callbacks, which are listed separately. Their invocation is therefore to be preceded by a
problem object (the class prefix problem. is omitted in the table for compactness), as follows:

import xpress as xp

X = xp.var ()

p = xXp.problem()

p.setObjective(x + 3 * x*x*x2 + 2)
addcols addConstraint addgencons addIndicator
addmipsol addObjective addpwlcons addgmatrix
addrows addsetnames addsos addVariable
basisstability btran calcobjective calcreducedcosts
calcslacks calcsolinfo chgbounds chgcoef
chgcoltype chgglblimit chgmcoef chgmgobj
chgobj chgobjsense chggobj chggrowcoeff
chgrhs chgrhsrange chgrowtype copy
copycontrols crossoverlpsol delConstraint delgencons
delpwlcons delgmatrix delSOS delVariable
dumpcontrols estimaterowdualranges fixmipentities ftran

Fair Isaac Corporation Proprietary Information

61

Chapter 7: Reference Manual

getAttrib getbasis getbasisval getcoef

getcols getcoltype getConstraint getControl

getdirs getDual getdualray getgencons

getmipentities getiisdata getIndex getIndexFromName
getindicators getinfeas getlastbarsol getlasterror

getlb getlpsol getlpsolval getmessagestatus

getmipsol getmipsolval getmgobj getnamelist

getobj getObjval getOutputEnabled getpivotorder

getpivots getpresolvebasis getpresolvemap getpresolvesol

getprimalray getProbStatus getProbStatusString getpwlcons

getgobj getgrowcoeff getgrowgmatrix getqrowgmatrixtriplets
getgrows getRCost getrhs getrhsrange

getrows getrowtype getscaledinfeas getSlack

getSolution getsSOS getub getunbvec

getVariable hasdualray hasprimalray

iisall iisclear iisfirst iisisolations
iisnext iisstatus iiswrite loadbasis
loadbranchdirs loaddelayedrows loaddirs loadlpsol
loadmipsol loadmodelcuts loadpresolvebasis loadpresolvedir
loadproblem loadsecurevecs lpoptimize mipoptimize
name objsa optimize postsolve
presolverow read readbasis readbinsol
readdirs readslxsol refinemipsol repairinfeas
repairweightedinfeas repairweightedinfeasbounds restore reset

rhssa save scale setControl
setdefaults setindicators setlogfile setmessagestatt
setObjective setOutputEnabled setprobname strongbranch
write writebasis writebinsol writedirs
writeprtsol writeslxsol writesol

The following table contains the problem functions to be called for nonlinear problems.

Fair Isaac Corporation Proprietary Information 62

Chapter 7: Reference Manual

addcoefs
addvars
chgcascadenlimit
chgdeltatype
chgrowwt
construct
delvars
fixpenalties
getcoefs
getrowinfo
getslpsol
loadcoefs
loadtolsets
msaddijob
presolve
reinitialize
unconstruct

validatekkt

adddfs
cascade
chgccoef
chgdf
chgtolset
delcoefs
evaluatecoef
getccoef
getcolinfo
getrowstatus
gettolset
loaddfs
loadvars
msaddpreset
printmemory
scaling
updatelinear

validaterow

ization

addtolsets
cascadeorder
chgnlcoef
chgrowstatus
chgvar
deltolsets
evaluateformula
getcoefformula
getdf

getrowwt

getvar

msaddcustompreset
msclear
printevalinfo
setcurrentiv
validate

validatevector

7.5 Methods for branching objects

The following pages present the methods of the branchobj class, i.e., the methods used when creating
and manipulating branching objects. Their invocation can be as follows:

import xpress as xp

b

xp.branchobj ()

b.addbranches (3)

branchobj.addbounds branchobj.addbranches branchobj.addcuts
branchobj.addrows branchobj.getbounds branchobj.getbranches
branchobj.getid branchobj.getlasterror branchobj.getrows
branchobj.setpreferredbranch branchobj.setpriority branchobj.store
branchobj.validate

7.6 Methods for adding/removing callbacks of a prob-
lem object

The following pages present methods that can be called from a problem before optimization has started,
to add or remove callbacks. All these methods are part of the problem class and have to be instantiated
from a problem object.

Fair Isaac Corporation Proprietary Information 63

Chapter 7: Reference Manual

addcbbariteration
addcbbarlog
addcbchgbranchobject
addcbchecktime
addcbcutlog
addcbdestroymt
addcbgapnotify
addcbmiplog
addcbinfnode
addcbintsol
addcblplog
addcbmessage
addcbmipthread
addcbnewnode
addcbnodecutoff
addcbnodelpsolved
addcboptnode
addcbpreintsol
addcbprenode

addcbusersolnotify

removecbbariteration
removecbbarlog
removecbchgbranchobject
removecbchecktime
removecbcutlog
removecbdestroymt
removecbgapnotify
removecbmiplog
removecbinfnode
removecbintsol
removecblplog
removecbmessage
removecbmipthread
removecbnewnode
removecbnodecutoff
removecbnodelpsolved
removecboptnode
removecbpreintsol
removecbprenode

removecbusersolnotify

7.7 Methods to be used within a callback of a problem

object

The following methods can be called from within a callback function that has been passed in one of the
problem.addcb* methods. Calling these functions outside of a callback may result in an error and
trigger termination of the optimization process. We provide two tables: one is for the Optimizer and
another for the nonlinear solvers.

copycallbacks delcpcuts delcuts

getcpcutlist getcpcuts getcutlist

getcutmap getcutslack interrupt

loadcuts setbranchbounds setbranchcuts

storebounds storecuts strongbranchcb

addcuts

setcbcascadeend setcbcascadestart setcbcascadevar
setcbcascadevarfail setcbcoefevalerror setcbconstruct
setcbdestroy setcbdrcol setcbintsol
setcbiterend setcbiterstart setcbitervar
setcbmessage setcbms jobend setcbmsjobstart
setcbmswinner setcboptnode setcbprenode
setcbpreupdatelinearization setcbslpend setcbslpnode

setcbslpstart

Fair Isaac Corporation Proprietary Information

64

Chapter 7: Reference Manual

7.8 Xpress base classes

Fair Isaac Corporation Proprietary Information 65

Chapter 7: Reference Manual

xpress.attr

Purpose

Internal object class used for the attributes of an xpress.problem. The user can read attributes from a

problem, but cannot create objects of this class. Also, an attribute of a problem may be read, but it
cannot be set.

Example
The following example creates a problem and then prints one of its attributes:

import xpress as xp

b
1

[xp.var () for in range(10)]

P Xp.problem (x)

print (p.attributes.cols, "variables") # will print "10 variables"

Related topics
problem.getAttrib.

Fair Isaac Corporation Proprietary Information 66

Chapter 7: Reference Manual

xpress.branchobj

Purpose
Class for branching objects. These objects are created by the user within a callback when directing a
branch-and-bound solve toward different branching decisions.

Synopsis
b = xpress.branchobj(prob, branches=None, isoriginal=True)

Arguments

prob Problem object.

branches List or tuple of branching decisions. If it is a tuple, its members are constraints of distinct
branches; if it is a list, its members must be either tuples of branching constraints, each tuple for
a single branch.

isoriginal
False Column indices should refer to the current (presolved) node problem;
True Column indices should refer to the original matrix.

Fair Isaac Corporation Proprietary Information 67

Chapter 7: Reference Manual

xpress.constraint

Purpose
Class for linear, quadratic, and nonlinear constraints.

Synopsis
c = xpress.constraint (constraint=None, body=None, lb=-xpress.infinity,
ub=xpress.infinity, sense=None, rhs=None, name='"')
Arguments
constraint The constraint, written as a ==, <=, or >= condition between two expressions. Variables
can appear on either or both sides of the sign. Example: x1+2 *x2 <=4
body An expression indicating the function to be constrained between 1b and ub or by rhs with an
assigned sense. It should not be used when constraint is defined. Example: 3 * x1+ x2
1b Lower bound on body.
ub Upper bound on body.
sense Sign of the constraint: one of xpress.leq, xpress.eq, xpress.geq, Of xpress.rng.
rhs Right-hand side of the constraint if sense is defined. It may not be specified if 1b or ub are.
name Name of the constraint (string)..
Example

Constraint declared without the explicit constructor:
myconstr = x1 + x2 * (x2 + 1) <= 4

One or more constraints (or arrays of constraints) can be added to a problem via the addConstraint
method:

m.addConstraint (myconstr)
m.addConstraint (vl + v2 <= 3)
m.addConstraint (x[i] + y[i] <= 2 for i in range (10))

In order to help formulate compact problems, the Sum operator of the xpress module can be used to
express sums of expressions. Its argument is a list of expressions (linear or quadratic):

m.addConstraint (xp.Sum ([y[i] for i in range (10)]) <= 1)
m.addConstraint (xp.Sum ([x[i]**2 for i in range (9)]) <= x[9])

Further information
1. Parameters Ib, ub, and rhs must be constant.
2. A constraint can be specified more naturally as a condition on a linear or quadratic expression:

3. When handling variables or expressions, it is advised to use the Sum operator in the Xpress module rather
than the native Python operator, for reasons of efficiency.

Related topics
problem.addConstraint.

Fair Isaac Corporation Proprietary Information 68

Chapter 7: Reference Manual

xpress.ctrl

Purpose

Internal object class used for the controls of an xpress.problem. The user can read and write controls
for a problem, but cannot create objects of this class.

Example
The following example creates a problem and then reads and sets a few of its controls:

import xpress as xp

b
1

[xp.var () for _ in range(10)]

P Xp.problem(x, xp.Sum(x) >= 1)

print ('miprelstop is currently", p.controls.miprelstop)

p.controls.miprelstop = le-7
p.controls.xslp_solver = 0

An equivalent way to do the two lines above
p.setControl ({ 'miprelstop': le-7, 'xslp_solver': 0})

Related topics
problem.setControl, problem.getControl.

Fair Isaac Corporation Proprietary Information 69

Chapter 7: Reference Manual

Xpress.expression

Purpose
Class for linear and quadratic expressions. These can be used and combined to create constraints and
objective function of an optimization problem. The user cannot explicitly create an object of this class,
but applying sum, multiplication, and squaring of variables and constants gives rise to an object of this
type. It can also be used for type hinting.

Example
An expression can be created as follows:

import xpress as xp

b
|

= xp.var ()
= xp.var ()

=
|

e = x**2 + 2xy - 5

Fair Isaac Corporation Proprietary Information 70

Chapter 7: Reference Manual

xpress.linterm

Purpose
Internal class for a first-degree monomial, i.e., the product of a constant by a variable. It can be used and
combined to create constraints and objective function of an optimization problem. The user cannot
explicitly create an object of this class.

Example
Example declaration:

import xpress as xp

b
1

xp.var ()

1 =2*x # 1 is of type xpress.linterm

Fair Isaac Corporation Proprietary Information 71

Chapter 7: Reference Manual

xpress.nonlin

Purpose

Internal class for objects representing functions which are neither quadratic nor linear nor constant. It
can be used and combined to create constraints and objective function of an optimization problem. The
user cannot explicitly create an object of this class.

Example
The following creates a nonlinear expression and sets it as the objective function of a problem:

import xpress as xp
X = xp.var ()
obj = x**4 + Xxp.exp(x)

P = xXp.problem(x, obj)

Fair Isaac Corporation Proprietary Information 72

Chapter 7: Reference Manual

xpress.poolcut

Purpose

Class for poolcut objects. These are used by callback functions when creating cuts within a
Branch-and-bound.

Synopsis
c = xpress.poolcut ()

Further information

These objects are created by the Optimizer within callbacks and can be used by Python callback
functions to store and pass pool cuts.

Fair Isaac Corporation Proprietary Information 73

Chapter 7: Reference Manual

xpress.problem

Purpose
Class for all optimization problems solved by the Xpress Optimizer.

Synopsis
p = xpress.problem(*xelements=None, name=’’', sense=xpress.minimize)

Arguments
elements Variables, constraints, SOSs, or objective function of the problem. These can be specified
as single objects or lists and arrays thereof. They can be listed in the same order as would be
added to the problem through problem.addvariable, problem.addConstraint
problem.addS0Os, problem. setObjective,i.e. by making sure that the variables appearing
in a constraint or objective function appear beforehand in the list.

name Name of the problem, displayed on solve log or saved in the . 1p or .mps file when saved with
problem.write.

sense Optimization sense. Can be xpress.minimize (default) or xpress.maximize
Example 1
An object of class xpress.problem can be created from scratch or read from a file. It contains a set of

variables and constraints, and may have an objective function. An empty optimization problem is created
as follows:

myproblem = xp.problem/()
A name can be assigned to a problem upon creation:
myproblem = xp.problem(name='My first problem')

The problem has no variables or constraint at this point.

Example 2
Simply call optimize() to solve an optimization problem that was either built or read from a file. The type
of solver is determined based on the type of problem: if at least one integer variable was declared, then
the problem will be solved as a mixed integer (linear or quadratically constrained) problem, while if all
variables are continuous the problem is solved as a linear or quadratic optimization problem.

m.optimize ()

The status of a problem after solution can be found via the solvestatus and solstatus attributes,
and also in the return value of the optimize function, as follows:

import xpress as xp

m = xp.problem/()
m.read ("example3.1lp")
solvestatus, solstatus = m.optimize ()

print ("solve status:", solvestatus)
print ("solution status:", solstatus)

print ("solution:", m.getSolution())

Example 3
It is useful, after solving a problem, to obtain the value of an optimal solution. After solving a continuous
or mixed integer problem, the two methods problem.getSolution and problem.getSlack return
the vector (of portions thereof) of an optimal solution or the slack of the constraints. If an optimal

Fair Isaac Corporation Proprietary Information 74

Chapter 7: Reference Manual

solution was not found but a feasible solution is available, these methods will return data based on this
solution. They can be used in multiple ways as shown in the following examples:

import xpress as xp

vl = xp.var ()
X [xp.var (lb=-1, ub=1, vartype=xp.integer) for i in range(10)]

=
1

Xp.problem ()

m.addVariable (vl, x)

[...] # add constraints and objective

m.optimize ()

print (m.getSolution ()) # prints a list with an optimal solution
print ("vl is", m.getSolution(vl)) # only prints the value of vl

a = m.getSolution (x) # gets the values of all variables in the v
b = m.getSolution(0:4) # gets the value of vl and x[0], x[1], x[2]

After creating an empty problem, one can read a problem from a file via the read method, which only takes
the file name as its argument. An already-built problem can be written to a file with the write method. Its
arguments are similar to those in the Xpress-Optimizer API function XPRSwriteprob, to which we refer.

Fair Isaac Corporation Proprietary Information 75

Chapter 7: Reference Manual

xpress.quadterm

Purpose
Internal class for objects representing monomials of degree two. It can be used and combined to create
constraints and objective function of an optimization problem. The user cannot explicitly create an object
of this class.

Example
Example declaration:

import xpress as xp

X = xp.var ()
y = xp.var()
gl = 2*x*y # bilinear term

g2 3xx*x*2 # quadratic term

Fair Isaac Corporation Proprietary Information 76

Chapter 7: Reference Manual

Xpress.sos

Purpose
Python object class for Special Order Sets (SOS). An SOS is a modeling tool for constraining a small

number of consecutive variables in a vector to be nonzero.

Synopsis
s = xpress.sos(indices, weights, type=1l, name=’"')

Arguments
indices List of variables composing the SOS.
weights List of weights (one per variable). These define the order for SOS2 constraints and may be
used in branching for both types.
type Type of SOS. Can be 1 (default) or 2.
name Name of the SOS.

Example
The following are example declarations of SOS:

setl = xp.sos(x, [0.5 + i%x0.1 for i in range(10)], type=2)
set2 xp.sos([y[i] for i in range(5)], [i+l for i in range(5)])
set3 = xp.sos([vl, v2], [2, 5], 2, "mysos")

One or more SOS can be added to a problem via the addSOS method:

setl = xp.sos(x, [0.5 + i*x0.1 for i in range(10)], type=2)
m.addSo0S (setl)

n =10
w = [xp.var() for i in range(n)]
m.addsSOS ([xp.sos([w[i],w[i+1]], [2,3]) for i in range(n-1)])

Related topics
problem.addSOS.

Fair Isaac Corporation Proprietary Information 77

Chapter 7: Reference Manual

Xpress.var

Purpose
Class for optimization variables.

Synopsis
X = xpress.var (name=’’', 1lb=0, ub=xpress.infinity,
threshold=-xpress.infinity, vartype=xpress.continuous)

Arguments

name a Python UTF-8 string containing the name of the variable (its ASCII version will be saved if
written onto a file); a default name is assigned if the user does not specify it.

1b Lower bound (0 by default).
ub Upper bound (+infinity by default).

threshold the threshold for semi-continuous, semi-integer, and partially integer variables; it must be
between its lower and its upper bound; it has no default, so if a variable is defined as
xpress.partiallyinteger the threshold must be specified.

vartype
xpress.continuous for continuous variables;
xpress.binary for binary variables;
xpress.integer for integer variables;
xpress.semicontinuous for semi-continuous variables;
xpress.semiinteger for semi-integer variables;
xpress.partiallyinteger for partially integer variables.

Example
One or more variables (or vectors of variables) can be added to a problem with the addVariable method:

v = xp.var (lb=-1, ub=2)
m.addVariable (v)

x = [xp.var (ub=10) for i in range (10)]
y [xp.var (ub=10, vartype=xp.integer) for i in range(10)]

m.addVariable (x,y)

Further information
Variables are not tied to a problem but may exist globally in a Python program. In order for them to be
included into a problem, they have to be explicitly added to that problem using problem.addvariable.

Related topics
problem.addVariable, xpress.vars.

Fair Isaac Corporation Proprietary Information 78

Chapter 7: Reference Manual

xpress.voidstar

Purpose
Internal class for unspecified objects in the Xpress Optimizer Library. This is an internal class and the
user cannot create an object of this class.

Fair Isaac Corporation Proprietary Information 79

Chapter 7: Reference Manual

xpress.xprsobject

Purpose
Internal class for Xpress objects used within an optimization problem solved by the Xpress Optimizer. A
user cannot declare an object of this class.

Fair Isaac Corporation Proprietary Information 80

Chapter 7: Reference Manual

7.9 Xpress object functions

Fair Isaac Corporation Proprietary Information 81

Chapter 7: Reference Manual

object.extractLinear

Purpose
Returns the variables and coefficients of the linear part of any expression.

Synopsis
vars, coef = a.extractLinear ()
Arguments
a An expression or variable.
vars A list containing the variable objects composing the linear expression in a.
coef Alist containing the corresponding coefficients in the linear expression.
Example

The following code snippets show what is the expected result of applying extractLinear:

import xpress as xp

X = xp.var ()

y = xp.var (name='myvar')

a = x + 2%y

b = 3*x

C = y**2 + X**%2 — 6%*X

d = x**5 - 7*x # nonlinear expression

print (a.extractLinear()) # will print " ([Cl, myvar], [1, 2])"
assert (a.extractLinear() == ([x, yl, [1, 2]))

=

print (b.extractLinear()) will print " ([C1l], [3])"
print (c.extractLinear()) will print " ([Cl], [-6]1)"
print (d.extractLinear()) # will print " ([C1l], [-7])"

.

Further information

1. Note that this operator returns variable objects, not indices, in the vars portion of the output tuple. To
obtain indices, use the problem.get Index function. Printing these lists will show the name of the
associated variables, as determined by the user when creating the variable with the name argument or, if
name was not provided, it will show the name as determined by the Optimizer’s library (default variable
names are "C"+index). See also the Modelling chapter.

2. This operator is most useful only for linear expressions with more than one element. For nonlinear
expressions, the function attempts to extract as much linear information it can, but will not be able to
infer linearity apart from the most obvious cases. For example, for the expression xx*4 +
xp.log (xp.exp (y)), which contains the linear term y, the function will return ([1, [1).

Fair Isaac Corporation Proprietary Information 82

Chapter 7: Reference Manual

object.extractQuadratic

Purpose
Returns the variables and coefficients of the quadratic part of any expression.

Synopsis

varsl, vars2, coef = a.extractQuadratic/()
Arguments

a An expression or variable.

varsl A list containing the first variables of each bilinear term composing the quadratic expression in
a.

vars2 A list containing the second variables of each bilinear term of the quadratic expression in a.
coef Alist containing the corresponding coefficients in the quadratic expression.

Example
The following code snippets show what is the expected result of applying extractQuadratic:

import xpress as xp

X = xp.var ()

y = xp.var()

z = xp.var()

a = x + 2xy + xxy + 8 * x**2

b = 3*xx**x2 + z + 4

C = y**2 + X**%2 — 6*X*y

d = xx*5 — T¥xxxy — 4xx*xyxz # nonlinear expression

e = x*y + y*x # note: same bilinear term added twice. This is compressed to 2

print (a.extractQuadratic()) # will print "([Cl1, C1], [C2,Cl], [1,8])"
assert (a.extractQuadratic() == ([x,x], [y,x], [1,81))

print (b.extractQuadratic())
print (c.extractQuadratic())
print (d.extractQuadratic())
print (e.extractQuadratic())

will print "([Cl], [Cl], [31)"
will print "([C2, Ccl], [c2, c1], [1, 1])"
will print "([Cl], [C2], [-7])"
will print "([Cl], [C2], [2])"

HH= FH= I I

Further information

1. Similarto object.extractLinear, this operator returns variable objects, not indices, in the vars
portion of the output tuple. To obtain indices, use the problem.getIndex function. Printing these lists
will show the name of the associated variables, as determined by the user when creating the variable with
the name argument or, if name is not provided, it will show the name as determined by the Optimizer's
library (default variable names are "C"+index). See also the Modelling chapter.

2. This operator is most useful only for quadratic expressions with more than one element. For nonlinear,
non-quadratic expressions, the function attempts to extract as much quadratic information it can, but will
not be able to detect quadratic/bilinear expressions apart from the most obvious cases. For example, for
the expression x**4 + xp.sqrt (y**4), which contains the quadratic term y %2, the function will
return ([1,[1).

Fair Isaac Corporation Proprietary Information 83

Chapter 7: Reference Manual

7.10 Xpress operators

Fair Isaac Corporation Proprietary Information

84

Chapter 7: Reference Manual

xpress.abs

Purpose
Returns the absolute value of a given expression

Synopsis
a = xpress.abs(t)
Argument
t Argument of the abs() function.

Further information
Python's native abs operator is equivalent to xpress . abs for arguments that are functions of variables.

Fair Isaac Corporation Proprietary Information 85

Chapter 7: Reference Manual

Xpress.acos

Purpose
Returns the arccosine of a given expression.

Synopsis
a = xpress.acos(t)

Argument
t Argument of the arccosine function.

Further information
Using Python's math library operator math.acos is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.asin, xpress.atan.

Fair Isaac Corporation Proprietary Information 86

Chapter 7: Reference Manual

xpress.And

Purpose
Returns a logical AND of two or more binary variables or expressions.

Synopsis

xpress.And (variables)
Argument

variables A list/array of binary variables or binary expressions
Example

The following example shows how to use and to model various logical constraints:

N = 10

bt
I

xp.vars (N, vartype=xp.binary) # Creates N binary variables

Q
1
—
'_\

~
Iy
~
~
~
w
~
(63}
~
~
~
[e0)
~
i
~

4, 9]

= xp.problem(x) # Creates a problem with x, y

o]
|

Sets a linear objective
p.setObjective (xp.Sum(c[i] * x[i] for i in range(N)))

Linear constraint
p.addConstraint (xp.Sum(x) <= 6)

Constrains the first x variable to be the conjunction of all other x's
p.addConstraint (x[0] == xp.And(x[1:]))

Forces the logical AND between some logical expressions to

be zero, i.e., at least one of them must be zero

p.addConstraint (xp.And([x[1] | x[4], x[2] | x[1], x[3] | x[6]]) == 0)
Further information

1. For AND functions, all variables and expressions must be binary; an error will be generated otherwise.

2. Afunction call xpress.And (x1, x2, ..., xk) isequivalentto x1 and (x2 and (x3 and
xk))...).

3. Note that since x1, x2, ..., xk, are binary variables, xpress.And (x1, x2, . .., xk) is equivalent to
xpress.min(x1l,x2,...,xk).

Related topics
problem.addgencons, problem.delgencons, problem.getgencons, xpress.Or

Fair Isaac Corporation Proprietary Information 87

Chapter 7: Reference Manual

xpress.asin

Purpose
Returns the arcsine of a given expression.

Synopsis
a = xpress.asin(t)
Argument
t Argument of the arcsine function.

Further information
Using Python's math library operator math.asin is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.acos, xpress.atan.

Fair Isaac Corporation Proprietary Information 88

Chapter 7: Reference Manual

xpress.atan

Purpose
Returns the arctangent of a given expression.

Synopsis
a = xpress.atan(t)

Argument
t Argument of the arctangent function.

Further information
Using Python's math library operator math.atan is only advisable when the argument is not an
expression that depends on variables.

Related topics
xpress.sin, xpress.cos, xpress.tan, xpress.asin, xpress.acos.

Fair Isaac Corporation Proprietary Information 89

Chapter 7: Reference Manual

Xpress.cos

Purpose

Returns the cosine of a given expression.

Synopsis
a = xpress.cos(t)

Argument

t Argument of the cosine function.

Further information

Using Python's math library operator math. cos is only advisable when the argument is not an

expression that depends on variables.

Related topics

xpress.sin, xpress.tan, xpress.asin, xpress.acos, xpress.atan.

Fair Isaac Corporation Proprietary Information

90

Chapter 7: Reference Manual

xpress.Dot

Purpose
Alternative dot-product operator for an arbitrary number of NumPy single- or multi-dimensional arrays.
Following the convention for dot-product, the result of