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Abstract

The S-matrix algorithm for the propagation of an electromagnetic wave through planar stratified media has
been implemented in a modern object-oriented programming language. This implementation is suitable for
the study of such applications as the Anderson localization of light and super-resolution (perfect lensing).
For our open-source code to be as useful as possible to the scientific community, we paid particular attention
to the pathological cases that arise in the limit of vanishing absorption.
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1. Introduction

Electromagnetic wave propagation through planar stratified media (multilayer stack) is a century old
problem in physics [1, 2]. It may be somewhat surprising that it is still relevant today. In fact, it has only
relatively recently been discovered that the transmission and reflection coefficients for a multilayer stack may
be written down without any computations by using a complex version of the elementary symmetric functions
[3, 4]. It has also been recently discovered that the complex reflection coefficients follow the generalized
version of the composition law used to add parallel velocities in the theory of special relativity, see [5, 6] and
Refs. within. It is possible to use the aforementioned properties to formulate a numerical wave propagation
algorithm in planar stratified media as was done in [7], yet the resulting algorithm appears to be numerically
unstable. The more traditional approach of the late 1940’s, namely, the transfer matrix algorithm [8–11],
is also numerically unstable. Both algorithms are numerically unstable because they contain exponentially
increasing and decreasing terms, see Section 5. There also exists an R-matrix algorithm [12–15], but it is
only conditionally stable (for reasons different from above) [12, 15]. We use a simple version of the S-matrix
algorithm, which is numerically stable [15–19]. Before considering the details of the S-matrix algorithm and
the need for its open-source implementation in a modern object-oriented language, we briefly mention some
of the current applications we had in mind when we wrote the code.

In 1968, Veselago [20] considered a hypothetical non-active material in which the real parts of the
permittivity and permeability are simultaneously negative; we refer to such a material as a left-handed
material (LHM), but it is also known as a negative refractive material. It was only in the early 2000’s that
such an artificial material was fabricated [21, 22], leading to an explosion of papers on the LHM, see [23]
and Refs. within. One of the intriguing properties of the LHM is the ability to image with a sub-wavelength
image resolution (super-resolution if you will), which has been proposed and studied in the context of a
multilayer stack [24, 25]. Another general area of application is the Anderson localization of light [26, 27],
which has been studied both theoretically and experimentally by Scales et al. [28], who considered wave
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propagation at normal incidence through a multilayer stack made of quartz and Teflon wafers. The effects of
total internal reflection on light localization in a random multilayer stack at oblique incidence have also been
studied under the assumption of complete phase randomization [29] along with the effects of the LHM on
localization [30]. Other applications include the study of asymmetrical properties of light in a Fabry-Pérot
interferometer [31, 32].

In all of the above applications, the S-matrix algorithm was or could have been used; however, to the best
of our knowledge, an open-source and object-oriented implementation of the S-matrix algorithm suitable
for the LHM as well as the right-handed material (RHM) (where the real parts of the permittivity and
permeability are not simultaneously negative) is currently unavailable. Almost certainly, there are many
“in-house” implementations of some version of the algorithms discussed above being passed around among
colleagues. We suspect that some users of these “in-house” algorithms may be unaware of the numerical
stability issues and of pathological cases where the numerical implementation is not clear, as discussed
in Section 3. Moreover, in the context of reproducibility of scientific work, it is important to have an
open-source and publicly available implementation.

This paper is self-contained as much as possible in order for our implementation of the S-matrix algorithm
to be useful to the widest possible scientific community. We also point out the benefits and drawbacks of
using a high-level programming language called Python for implementing our code, see Section 9.

2. Background

The source-free macroscopic Maxwell equations with assumed harmonic time dependence, exp (−iωt), in
the Système International (SI) unit system, at every ordinary point in space, are:

∇ ·D = 0, ∇ ·B = 0, (1a)

∇×E = iωB, ∇×H = −iωD, (1b)

where E is the electric field, D is the displacement field, B is the magnetic field, H is the magnetic intensity,
and ω is the angular frequency. By an ordinary point in space, we mean a point in space in whose “neigh-
borhood” the physical properties of the medium are continuous. Thus, strictly speaking, one cannot apply
Maxwell’s equations at a surface that separates two physically different media. If the medium is isotropic
and homogeneous, then D = εE and B = µH, where ε and µ are the permittivity and the permeability,
respectively. Permittivity must satisfy the Kramers-Kronig relations and is therefore a complex-valued func-
tion of angular frequency. The same is true for permeability. Thus, in general, we have ε = ε(ω) ∈ C and
µ = µ(ω) ∈ C.

The source-free macroscopic Maxwell equations are first-order linear partial differential equations (PDEs)
that must be supplemented by some boundary conditions. The conventional boundary conditions for a
source-free interface separating two media (1 and 2) are:

n ·
(
D(2) −D(1)

)
= 0, n ·

(
B(2) −B(1)

)
= 0, (2a)

n×
(
E(2) −E(1)

)
= 0, n×

(
H(2) −H(1)

)
= 0, (2b)

where n is a unit normal to the interface, and the superscript on the fields indicates from which medium
the interface is approached.

Taking the curl of (1b), then simplifying the result using the ∇ × (∇×A) = ∇ (∇ ·A) − ∇2A vector
identity and (1a), we obtain the vector Helmholtz equation within each layer

(
∇2 + k2

){E
H

}
= 0, (3)

where k is the complex wavenumber, and k2 = µεω2. In general, k2 6= kk∗, where ∗ denotes the complex
conjugate, and the computation of k from k2 must be done with extreme care. For example, the permittivity
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Figure 1: The cross-sectional view of the multilayer stack is shown. The multilayer stack consists of p + 1 regions made of
a RHM. A parallel polarized wave is incident from a semi-infinite ambient medium (region p). The origin of the coordinate
system is set on the planar interface separating regions p and p− 1. The 0th region is a semi-infinite substrate.

and permeability for an absorbing material are taken to be ε = ε′+ iε′′ and µ = µ′+ iµ′′, respectively, where
{ε′, µ′, } ∈ R, {ε′′, µ′′} ∈ R+.1 Let ε = |ε|eiθε and µ = |µ|eiθµ , where {θε, θµ} ∈ [0, π].2 Then

k2 = εµω2

k =
√
|ε||µ|ωe

i
(
θε+θµ+2πn

2

)
, n = 0, 1, (4)

where ω > 0. The choice of the root in (4) is dictated by the physical requirement that, in an absorbing
medium, the wave must decay and not exponentially grow. Let k = k′ + ik′′, {k′, k′′} ∈ R. Without
loss of generality, consider a plane wave propagating in the positive x-direction; then, we have ei(kx−ωt) =

e−k
′′xei(k

′x−ωt). Therefore, k′′ must be greater than zero in order for the wave to decay in the positive
x-direction.

2.1. Pathological cases at normal incidence

In the case of a perfect dielectric (ε′′ = 0 and µ′′ = 0), the rule for choosing a physically appropriate
root in (4) may be established by taking the limit as absorption goes to zero.

Consider an almost perfect dielectric made of the RHM. Let ε = |ε|eiθε , µ = |µ|eiθµ , where θε and θµ are

infinitesimally small positive numbers, then
θε+θµ

2 � π and
θε+θµ

2 +π > π. Thus, we must choose the n = 0

root in (4), i.e., k =
√
|ε||µ|ei

(
θε+θµ

2

)
ω. In the case of a truly perfect dielectric (at fixed frequency), we may

take the limit as θε and θµ approach zero to obtain k =
√
|ε||µ|ω.

In the case of an almost perfect dielectric made of a LHM: Let ε = |ε|eiθε , µ = |µ|eiθµ , where θε and

θµ are slightly less than π, then
θε+θµ

2 < π and
θε+θµ

2 + π > π. Thus, we must again choose the n = 0

root in (4), i.e., k =
√
|ε||µ|ei

(
θε+θµ

2

)
ω. For a truly perfect dielectric (at fixed frequency), we may take the

limit as θε and θµ approach π to obtain k =
√
|ε||µ|eiπω = −

√
|ε||µ|ω. Notice that for the LHM with zero

absorption, k < 0, and for the RHM with zero absorption, k > 0.

3. Wave propagation in stratified media

Consider the three-dimensional space divided into p+ 1 regions. The regions are infinite in the yz-plane,
see Figure 1. The interfaces separating the regions are assumed to be perfectly planar (yz-plane). The
regions ` = 0, . . . , p− 1 are assumed to be isotropic and homogeneous with a complex permittivity, ε`, and
complex permeability, µ`. The region p is assumed to be isotropic and homogeneous with real permittivity,
εp, and real permeability, µp. In other words, we have {ε`, µ`} ∈ C for ` = 0, . . . , p− 1 and {εp, µp} ∈ R.
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A monochromatic plane wave in the `th region is given by{
E`(r, t)
H`(r, t)

}
=

{
E`

H`

}
ei(k`·r−ωt), ` = 0, . . . , p, (5)

where r = x x̂ + y ŷ + z ẑ, {E`,H`} are the complex vector amplitudes, k` = kx,` x̂ + ky,` ŷ + kz,` ẑ is the
complex wavevector. It is clear that (5) satisfies (3) if

k` · k` = k2x,` + k2y,` + k2z,` = k2` = εlµlω
2. (6)

Without loss of generality, we can set kz,` = 0 because we can always rotate the coordinate system so that
the y-axis is parallel to the part of the k vector that lies in the yz-plane, see Figure 1.3 The solution given
by (5) in each region must also satisfy the boundary conditions given by (2). Substituting (5) into (2) yields,

ky,p = ky,`, ` = 0, . . . , p− 1, (7)

where ky,p ∈ R because we have assumed that the region p has real permittivity and permeability. Therefore,
from (7) we have ky,` ∈ R, but note that in general, kx,` ∈ C for ` = 0, . . . , p− 1. Using (6) and (7) yields

kx,` =
(
ε`µ`ω

2 − k2y,p
)1/2

with Im[kx,`] > 0 (8)

for ` = 0, . . . , p, where Im denotes the imaginary part, and the root choice, Im[kx,`] > 0, is dictated by the
decaying wave requirement, see Section 2.

3.1. Pathological cases at oblique incidence

It is clear from (8) that if ε′′` = 0, µ′′` = 0 and ε`µ`ω
2 > k2y,p, then the root choice is not resolved by the

Im[kx,`] > 0 requirement. In order to resolve the root choice, we proceed by taking a limit as absorption
goes to zero just as we did in Section 2.1. For the RHM, let ε` = |ε`|eiθε` , µ` = |µ`|eiθµ` and for the LHM,

let ε` = |ε`|ei(π−θε`), µ` = |µ`|ei(π−θµ`), where θε` and θµ` are infinitesimally small positive numbers. Then
k2x,` can be approximately written as k2x,` ≈ |A| e±iγ , where 0 ≤ γ � π, lim{ε′′` , µ′′

` }→0 γ = 0, and the positive

(negative) sign in the exponential corresponds to the RHM (LHM). Thus, we have

Im [kx,`] =
√
|A|
{

sin

(
±γ
2

)
, sin

(
±γ
2

+ π

)}
,

where it is clear that for the RHM (LHM) the first (second) root must be chosen in order for Im [kx,`] > 0.

Therefore, if ε′′` = 0, µ′′` = 0 and ε`µ`ω
2 > k2y,p, then for the RHM we have kx,` = +

√
|ε`| |µ`|ω2 − k2y,p, and

for the LHM we have kx,` = −
√
|ε`| |µ`|ω2 − k2y,p.

3.2. Origin and numerical treatment of the pathologies

The limiting procedure carried out in Section 2.1 and 3.1 appears to be reasonable, but unfortunately,
it is also not physically attainable, even in principle! If we view ε(ω) and µ(ω), where ω = ω′ + iω′′, in
the context of the Kramers-Kronig relations, then ε(ω) and µ(ω) are analytic functions in the upper-half
ω-plane. Furthermore, it can be shown that ε(ω) and µ(ω) are never purely real for any finite ω except for
ω′ = 0 (positive imaginary axis), e.g., see [33, Section 123] and [34, Section 82]. Therefore, the common
practice of replacing ε′ + iε′′ by ε′ and µ′ + iµ′′ by µ′ even in an infinitesimally small ω′ interval cannot be
justified. Moreover, by considering the global behavior of kx,` it can be shown that for a non-active medium
kx,` is never zero [35]. However, we see from (8) that kx,`, for any ` 6= p may be equal to zero if ε` and
µ` are purely real. Of course, this case only occurs when the angle of incidence precisely equals one of the
critical angles, and from the global properties of ε and µ we see that such angles cannot exist.

The above discussion suggests that the pathological cases only occur in an unphysical approximation,
i.e., ε ≈ ε′ and µ ≈ µ′. In our numerical code, the user may select how to deal with the pathologies from
the following two schemes:
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1. If a region contains purely real permittivity and permeability, then the real permittivity and perme-
ability are replaced by a slightly absorbing permittivity and permeability, respectively, i.e., for ` 6= p,
ε′` → ε′` + iε′′` and µ′` → µ′` + iµ′′` , where ε′′` and µ′′` are small positive numbers.

2. If a region contains purely real permittivity and permeability, then the kx,` is computed as describe in
Section 2.1 and 3.1. If this scheme is chosen, then the code may produce erroneous results at or very
near the critical angles.

4. Polarization

The most general polarization state is an elliptical polarization state. However, there is no need to
consider this general case because an elliptical polarization state can always be decomposed into a linear
combination of two linearly independent polarization states, namely, the parallel polarization state and the
perpendicular polarization state. In what follows, it is convenient to express E`(r, t) and H`(r, t) in terms
of each other by substituting (5) into (1b) (with D` = ε`E`) and using the vector identity

∇×
{

E`(r, t)
H`(r, t)

}
= ik` ×

{
E`

H`

}
ei(k`·r−ωt),

to obtain

E`(r, t) = −k` ×H`(r, t)

ε`ω
, (9a)

H`(r, t) =
k` ×E`(r, t)

µ`ω
. (9b)

4.0.1. Parallel polarization

A monochromatic plane wave is said to have parallel polarization if the electric field is parallel to the
plane of incidence. The plane of incidence is defined by the wavevector k and the normal vector to the
surface n; i.e., k and n lie in the plane of incidence. From Figure 1, we have k in the xy-plane and n = ± x̂,
thus, the plane of incidence is the xy-plane.

Consider a parallel polarized incident plane wave of angular frequency ω propagating in the positive
x-direction. Maxwell’s equations (1) are linear PDEs, thus, the total wave inside each region may be
decomposed into reflected and transmitted waves with the following wavevectors:

k±` = ±kx,` x̂ + ky,` ŷ, (10)

where kx,` is given by (8), ky,` is given by (7), + indicates a transmitted wave propagating in the +x-
direction, and − indicates a reflected wave propagating in the −x-direction; notice that there is no reflected
wave in the 0th region, see Figure 1. The magnetic intensity in each region is given by

H±` (r, t) = ε`ωE
±
` exp

[
i
(
k±` · r− ωt

)]
ẑ, (11)

where E+
` is the complex amplitude associated with the transmitted wave, E−` is the complex amplitude

associated with the reflected wave, and E−`=0 ≡ 0. Substituting (11) into (9a) yields

E±` (r, t) = E±` exp
[
i
(
k±` · r− ωt

)]
[−ky,` x̂± kx,` ŷ] . (12)

From (2b), we see that the y-component of the total electric field and the total magnetic intensity are
continuous across the interface. It is convenient to define a new symbol for the y-component of the electric
field evaluated on the interface. Let

χ±` = ±kx,`E±` exp

[
±ikx,`

p∑
s=`+1

hs

]
, (13)
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where h` is the thickness of the `th region and, for convenience, we set h`=0 = h`=p ≡ 0. In (13), χ±`=0,...,p−1,
denotes the y-component of the electric field at the interface between regions ` and ` + 1 (the interface is
approached from the `th region), and χ±`=p denotes the y-component of the electric field at the interface
between regions p and p− 1 (the interface is approached from region p), see Figure 1. Substituting (11) and
(12) into (2b), and using (13) to simplify the result, yields

e+ikx,`+1h`+1χ+
`+1 + e−ikx,`+1h`+1χ−`+1 = χ+

` + χ−` , (14a)

w`+1

(
e+ikx,`+1h`+1χ+

`+1 − e−ikx,`+1h`+1χ−`+1

)
= w`

(
χ+
` − χ

−
`

)
, (14b)

for ` = 0, . . . , p− 1, where

w` =
ε`ω

kx,`
, ` = 0, . . . , p. (15)

After we obtain a linear system for the perpendicular polarization case, we will solve the linear system given
by (14), see Section 5.

4.0.2. Perpendicular polarization

A monochromatic plane wave is said to have perpendicular polarization if the electric field is perpendic-
ular to the plane of incidence. The electric field in each region is given by

E±` (r, t) = E±` exp
[
i
(
k±` · r− ωt

)]
ẑ (16)

where k±` is given by (10), and the ± superscripts have the same meaning as in Section 4.0.1. Also as in
Section 4.0.1, we set E−`=0 ≡ 0 because there is no reflected wave in the 0th region. Substituting (16) into
(9b) yields

H±` (r, t) =
E±`
µ`ω

exp
[
i
(
k±` · r− ωt

)]
[ky,` x̂∓ kx,` ŷ] . (17)

From (2b), we see that both the total electric field and the y-component of the total magnetic intensity are
continuous across the interface. Let the electric field evaluated on the interface be denoted by

χ±` = E±` exp

[
±ikx,`

p∑
s=`+1

hs

]
, (18)

where χ±`=0,...,p−1 denotes the z-component of the electric field at the interface between regions ` and `+ 1

(the interface is approached from the `th region) and χ±`=p denotes the z-component of the electric field at
the interface between regions p and p− 1 (the interface is approached from region p). Substituting (16) and
(17) into (2b), and using (18) to simplify the result, yields (14), where

w` = −kx,`
µ`ω

, ` = 0, . . . , p. (19)

Notice that the linear system for the perpendicular polarization case is the same as the linear system for
the parallel polarization case, but the definitions of χ±` and w` are different.

5. Linear system

The traditional approach to solving the linear system given by (14) is to rewrite it as[
χ+
`+1

χ−`+1

]
= M`

[
χ+
`

χ−`

]
, ` = 0, . . . , p− 1, (20a)

where

M` =
1

2w`+1

[
(w`+1 + w`)ψ

−1
`+1 (w`+1 − w`)ψ−1`+1

(w`+1 − w`)ψ`+1 (w`+1 + w`)ψ`+1

]
, (20b)
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and ψ` = exp (ikx,`h`). To compute χ+
0 , we iterate (20a) until ` = p− 1 to obtain[
χ+
p /χ

+
0

χ−p /χ
+
0

]
= Mp−1Mp−2 · · ·M0

[
1
0

]
. (21)

After computing χ+
0 from (21), we can find χ±` from (20a). The approach outlined above is the standard

transfer matrix method, but unfortunately it is numerically unstable because the top half of M` grows
exponentially and the bottom half of M` decreases exponentially if Im [kx,`h`] 6= 0. To avoid the numerical
instability, we must reformulate the linear system given by (14) in terms of ψ` or ψ−1` alone. If Im [kx,`h`]
is large, then ψ` may cause underflow errors and ψ−1` may cause overflow errors. Generally speaking,
underflow is preferred to overflow because when underflow occurs, the (normal) number is rounded to the
nearest subnormal number or to 0.0; thus, it is desirable to reformulate the linear system in terms of ψ`
instead of ψ−1` (see Section 5.1).

5.1. S-matrix

In this section, we present a particularly simple version of the S-matrix formulation of (14) that avoids
numerical instabilities. To derive the S-matrix, we write a scattering matrix (S-matrix) for an “aggregate
layer” consisting of 0, . . . , ` layers to obtain[

χ−`
χ+
0

]
=

[
s
(1,1)
` s

(1,2)
`

s
(2,1)
` s

(2,2)
`

] [
0
χ+
`

]
. (22)

Using (20) to eliminate χ±` from (22) and comparing the result to (22) with `→ `+ 1 yields

s
(1,2)
`+1 =

w`+1 − w`
[
1− s(1,2)`

] [
1 + s

(1,2)
`

]−1
w`+1 + w`

[
1− s(1,2)`

] [
1 + s

(1,2)
`

]−1ψ2
`+1, (23a)

s
(2,2)
`+1 =

2w`+1s
(2,2)
`

w`+1

[
1 + s

(1,2)
`

]
+ w`

[
1− s(1,2)`

]ψ`+1, (23b)

for ` = 0, . . . , p−1, where s
(1,2)
0 = 0 and s

(2,2)
0 = 1. Substituting ` = p into (22) yields χ+

0 /χ
+
p = s

(2,2)
p , where

s
(2,2)
p is computed recursively from (23b). Using (20) to compute χ±` would make the algorithm numerically

unstable. To avoid introducing numerical instability in the computation of χ±` , we eliminate χ+
0 and χ−`+1

from (20) and (22) to obtain

χ+
` =

2w`+1ψ`+1

w`+1

[
1 + s

(1,2)
`

]
+ w`

[
1− s(1,2)`

]χ+
`+1, (24a)

for ` = p− 1, . . . , 0 and

χ−` = s
(1,2)
` χ+

` , ` = p, . . . , 1. (24b)

Notice that χ±` only depends on s
(1,2)
` . The S-matrix algorithm is numerically stable because (23a) and (24)

only depend on ψ`.
Originally, (23a) and (24) were derived in [16] by citing the general scattering-theory paradigm that

requires existence of a linear relationship between χ−` and χ+
` , i.e., χ−` = s

(1,2)
` χ+

` , and then substituting it
directly into (20) to obtain (23a) and (24a). Arguably our derivation is just as simple as in [16] but follows
the traditional S-matrix formulation [15, 17] more closely.

We would like to note that it is possible to formulate an S-matrix algorithm where χ±` are com-
puted directly from χ+

p [18, 19], but such a formulation requires recursive computation of three elements
of an S-matrix rather than just one element in our formulation. Moreover, it is also possible to ob-
tain formulas that directly relate χ±` to χ+

p from our formulation by simply multiplying out (24), i.e.,

χ+
` = s̃

(2,2)
`+1 s̃

(2,2)
`+2 · · · s̃

(2,2)
p χ+

p and χ−` = s
(1,2)
`

(
s̃
(2,2)
`+1 s̃

(2,2)
`+2 · · · s̃

(2,2)
p

)
χ+
p , where s̃

(2,2)
`+1 = s

(2,2)
`+1 /s

(2,2)
` .
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6. Conserved quantities

In the case of the RHM, the time-averaged complex Poynting theorem for harmonic fields is given by

∇ · S +Q(e) +Q(m) + 2iω
(
u(e) − u(m)

)
= 0, (25a)

where S = 1
2E×H∗ is the complex Poynting vector and

u(e) =
ε′

4
E ·E∗ =

ε′

4
‖E‖2 , (25b)

u(m) =
µ′

4
H ·H∗ =

µ′

4
‖H‖2 , (25c)

Q(e) =
ωε′′

2
E ·E∗ =

ωε′′

2
‖E‖2 , (25d)

Q(m) =
ωµ′′

2
H ·H∗ =

ωµ′′

2
‖H‖2 . (25e)

In (25), u(e) is the real time-averaged electric density, u(m) is the real time-averaged magnetic density,
Q(e) and Q(m) represent time-averaged electric and magnetic losses, respectively (e.g., Joule heating [36,
Sec. 2.19, Sec. 2.20]). Substituting the total electric field and the total magnetic intensity into (25b) and
(25c), respectively, yields

u
(e)
` =

ε′`
4

(∥∥E+
`

∥∥2 +
∥∥E−` ∥∥2 + 2Re

[
E+
` ·E

−
`

∗
])
, (26a)

u
(m)
` =

µ′`
4

(∥∥H+
`

∥∥2 +
∥∥H−` ∥∥2 + 2Re

[
H+
` ·H

−
`

∗
])
, (26b)

where Re denotes the real part.
In the case of the LHM, the complex Poynting theorem for harmonic fields given by (25) is mathematically

correct. However, the identification of the real electric density (25b) and the real magnetic density (25c)
is troublesome because both are negative. It was pointed out by Veselago [20] that the LHM must be
accompanied by frequency dispersion, in which case the real electric density and the real magnetic density are
not given by (25b) and (25c), respectively. Moreover, simultaneously negative permittivity and permeability
occur very near resonance and there is therefore no frequency interval for the LHM where permittivity and
permeability may be reasonably approximated by a constant. For a more detailed discussion see [23, 37, 38].

Another conserved quantity is the fundamental invariant in multilayers (FIM) [39, 40], given by

w`+1

[(
ψ`+1χ

+
`+1

)2 − (ψ−1`+1χ
−
`+1

)2]
= w`

[(
χ+
`

)2 − (χ−` )2] , (27)

for ` = 0, . . . , p − 1. The FIM is a product of the continuity conditions for the electric field (14a) and
magnetic intensity (14b). However, the FIM is not an energy conservation statement because it contains(
χ±`
)2

and
(
χ±`+1

)2
instead of

∣∣χ±` ∣∣2 and
∣∣χ±`+1

∣∣2. In our view, the FIM is particularly interesting because its
structure is similar to that of the space-time interval of special relativity, ds2 = dx2 − c2dt2, where c is the
speed of light. Moreover, it has been pointed out in [41] that many results associated with wave propagation
through planar stratified media are more easily derived through an analogy with special relativity. In this
paper, we don’t pursue the analogy between wave propagation though a multilayer stack and the theory of
special relativity any further, but we do want to stress that this analogy is not a mere coincidence.

6.1. Energy densities for parallel polarization

It is convenient to introduce a new symbol for the transverse component (the y-component) of the electric
field as a function of distance, x, into the multilayer stack. For ` = 0, . . . , p, let

Γ±` (x) = ±kx,`E±` exp [±ikx,`x] (28)
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then, ∣∣Γ±` (x)
∣∣2 = |kx,`|2

∣∣E±` ∣∣2 exp (∓2Im[kx,`]x) ,

Re
[
Γ+
` (x)Γ−`

∗
(x)
]

=− |kx,`|2 Re
[
E+
` E
−
`

∗
e+2iRe[kx,`]x

]
.

(29)

Substituting (12) into (26a) and using (29) to simplify the result yields

u
(e)
` (x) =

ε′`
4

[(
1 +

k2y,p

|kx,`|2

)(∣∣Γ+
` (x)

∣∣2 +
∣∣Γ−` (x)

∣∣2)+ 2

(
1−

k2y,p

|kx,`|2

)
Re
[
Γ+
` (x)Γ−`

∗
(x)
]]
. (30)

Substituting (11) into (26b) and using (29) to simplify the result yields

u
(m)
` (x) =

µ′` |w`|
2

4

(∣∣Γ+
` (x)

∣∣2 +
∣∣Γ−` (x)

∣∣2 − 2Re
[
Γ+
` (x)Γ−`

∗
(x)
])
, (31)

where w` is given by (15).

6.2. Energy densities for perpendicular polarization

Again, it is convenient to introduce a new symbol for the transverse component (the z-component) of
the electric field as a function of distance, x, into the multilayer stack. For ` = 0, . . . , p, let

Γ±` (x) = E±` exp [±ikx,`x] (32)

then, ∣∣Γ±` (x)
∣∣2 =

∣∣E±` ∣∣2 exp (∓2Im[kx,`]x)

Re
[
Γ+
` (x)Γ−`

∗
(x)
]

=Re
[
E+
` E
−
`

∗
e+2iRe[kx,`]x

]
.

(33)

Substituting (16) into (26a) and using (33) to simplify the result yields

u
(e)
` (x) =

ε′`
4

[∣∣Γ+
` (x)

∣∣2 +
∣∣Γ−` (x)

∣∣2 + 2Re
[
Γ+
` (x)Γ−`

∗
(x)
]]
. (34)

Substituting (17) into (26b) and using (33) to simplify the result yields

u
(m)
` (x) =

µ′` |w`|
2

4

[(
1 +

k2y,p

|kx,`|2

)(∣∣Γ+
` (x)

∣∣2 +
∣∣Γ−` (x)

∣∣2)− 2

(
1−

k2y,p

|kx,`|2

)
Re
[
Γ+
` (x)Γ−`

∗
(x)
]]
. (35)

where w` is given by (19).

7. Transmission and reflection coefficients

The transmission coefficient, T , and the reflection coefficient, R, are given by

T =
Re
[
S+
0

]
· x̂

Re
[
S+
p

]
· x̂

, (36a)

R = −
Re
[
S−p
]
· x̂

Re
[
S+
p

]
· x̂

, (36b)

with

S+
0 =

1

2
E+

0 ×H+
0

∗
and S±p =

1

2
E±p ×H±p

∗
,

where it is understood that E±p and H±p
∗

are evaluated at the interface between regions p and p − 1 (the

interface is approached from region p), and E+
0 and H+

0

∗
are evaluated at the interface between regions 1

and 0 (the interface is approached from the 0th region).
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In the case of the parallel polarization state, substituting (11) and (12) into (36), and using (13) to
simplify the result, yields

T =
kx,p
εp

Re[ε∗0kx,0]

|kx,0|2

∣∣∣∣χ+
0

χ+
p

∣∣∣∣2 , (37a)

R =

∣∣∣∣χ−pχ+
p

∣∣∣∣2 . (37b)

In the case of the perpendicular polarization state, substituting (17) and (16) into (36), and using (18)
to simplify the result, yields

T =
µp
kx,p

Re

[
k∗x,0
µ∗0

] ∣∣∣∣χ+
0

χ+
p

∣∣∣∣2 , (38a)

R =

∣∣∣∣χ−pχ+
p

∣∣∣∣2 . (38b)

The transmission and reflection coefficients, given by (37) for the parallel polarization state and by (38)
for the perpendicular polarization state, are valid for both a right- and a left-handed material.

8. Multilayer classes

Python is a multi-paradigm programming language that supports object-oriented programming, struc-
tured programming, and a subset of functional and aspect-oriented programming styles. There is a large
number of numerical libraries available for use with Python. We chose to use a numerical library called
SciPy [42] for numerical computations because, in our opinion, a reader familiar with MATLABTM and/or
Fortran 90/95 will find SciPy a very natural and easy-to-use library.

In order for our multilayer classes, namely Boundary and Layer, which are collectively called openTMM
4, to be as useful as possible to the scientific community, we paid particular attention to the readability,
usability, and maintainability of the code. Both classes are implemented in an object-oriented programming
style as described below.

The Boundary class is meant to be a base class (superclass in the Python lexicon) that will be inherited by
the derived classes (subclasses in the Python lexicon). The derived classes perform “high-level” computations
such as computing the energy density and the transmission and reflection coefficients. The derived Layer

class inherits the Boundary and computes the quantities described in Table 1. The benefit of using inheritance
in our multilayer calculations is that other developers may extend the Layer class or write their own derived
class to compute the desired quantity of interest without having to implement the low-level code, e.g., the
code for computing kx,` and the S-matrix. The Boundary superclass computes a “minimal” set of “basic”
quantities, see Table 2, that are used by the Layer subclass. Each function/method in the Boundary

and Layer class contains a documentation header (docstring in the Python lexicon), which describes the
function/method in detail and includes an example of its use. To access the docstrings, the user may use
Python’s help function or if more user friendly formatting is desired, the user may use SciPy’s info function.
For example, the docsting for Layer.energy function may be accessed via

>>> help(openTMM.Layer.energy)

>>> scipy.info(openTMM.Layer.energy)

and all docstings contained in a class may be accessed via

>>> help(openTMM.ClassName)

>>> scipy.info(openTMM.ClassName)

where ClassName is either Boundary or Layer. This interactive documentation feature of Python makes it
a very convenient language to use and largely eliminates the need to produce separate code documentation.
The help/scipy.info functions are similar to the Manual pager utils (man pages) of Unix-like operating
systems; could one imagine using a Linux shell without man python?
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Table 1: The first column contains the name (as it appears in the code) of the object attribute (method) of the class Layer,
the second column contains a description of the method, and the third column contains references to the section where a more
detailed description may be found.

Name Description Refs.

field transverse component of the electric field as a function of distance, Γ±(x) 6.1, 6.2

energy electric/magnetic energy density as a function of distance, u(e,m)(x) 6.1, 6.2

loss electric/magnetic losses as a function of distance, Q(e,m)(x) 6
divPoynting divergence of the Poynting vector as a function of distance, ∇ · S(x) 6
FIM FIM at each boundary interface 6
FIMvsDist FIM as a function of distance 6
TRvsFreq

transmission and reflection coefficients as a function of frequency f = ω/2π
and/or angle of incidence φ, i.e., {T (f), R(f)}, {T (φ), R(φ)}, {T (f, φ), R(f, φ)} 7TRvsAngle

TRvsFreqAndAngle

Table 2: The first column contains the name (as it appears in the code) of the object attribute of the class Boundary, the
second column contains a description of the attribute, and the third column contains references to a section and/or equation
where a more detailed description of the attribute may be found.

Name Description Refs.

self.h thickness of each layer, h` (13), (18)
self.epsRel relative permittivity of each region, ε`/εvacuum Section 3
self.muRel relative permeability of each region, µ`/µvacuum Section 3
self.pol polarization state Section 4
self.kx x-component of the wavevector, kx,` (8)
self.w scaled self.kx (polarization dependent), w` (15), (19)

self.chiPlus transverse component of the electric field evaluated on the interface, χ+
` /χ

+
p (13), (18)

self.chiMinus transverse component of the electric field evaluated on the interface, χ−` /χ
+
p (13), (18)

9. Python and numerical efficiency

There is some concern about the speed of computations in Python because it is byte-compiled, not a
compiled language such as Fortran 90/95 or C/C++. However, in our opinion, the code readability (less
error-prone syntax), flexibility (effortless integration with other software) and ease-of-use of Python (leading
to shorter development times) in many cases outweigh any performance benefits of compiled languages. An
interested reader may consult [43–46] for a fuller discussion of why Python is a language of choice for
scientific software development. Typically, computationally intensive routines in Python are implemented
in compiled languages and therefore, the difference in computation time between Python and complied
languages is acceptable for many applications [44–47]. In the Python lexicon, the mixing of programming
languages is called the Pythonic approach; this is the approach we use with the computationally intensive
part of the Boundary superclass.

It is relatively obvious that the computationally intensive part of the Boundary superclass is the com-
putation of χ±` , i.e., the solution of the linear system described in Section 5. Therefore, the computation
of χ±` is implemented in Fortran 90 and the Python bindings are built by F2PY [48] (F2PY is now part
of SciPy). However, implementing “workhorse functions” in a compiled language reduces the readability
and maintainability of code to some extent. Therefore, we strongly encourage developers to only implement
workhorse functions in compiled languages when they lead to severe bottlenecks. It is often the case that
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Figure 2: The ratio of total computational time required to compute T (fi, φj) and R(fi, φj), where 1 ≤ {i, j} ≤ 103, using
openTMM and a pure Fortran 90 code. Each multilayer stack is composed of the same number of pseudorandom layers of the
following types: right-handed layers with/without absorption and left-handed layers with/without absorption.

bottlenecks can only be identified after code profiling (performance analysis). For example, it is not obvious
that the square root function in the computation of kx,` is relatively time-consuming. The computation of
kx,` is relatively expensive because SciPy’s square root function, scipy.sqrt, does an element-by-element
analysis of the input array to find if it contains any real elements less than zero. If a real, less-than-zero
element is found, SciPy converts the whole input array to a complex data type and passes it to NumPy [49],
which uses an efficient C code to compute the square root. In our case, SciPy’s time-consuming element-
by-element analysis is unnecessary because of a priori knowledge about kx,`, see Section 3. We could avoid
scipy.sqrt by directly using NumPy’s square root function, but this is not the most convenient approach
because NumPy’s square root function of a complex number z = |z|eiθ returns

√
|z|eiθ/2, where −π < θ ≤ π,

but (8) requires that Im[kx,`] > 0. To avoid this inconvenience, we choose to implement our own square root
subroutine, cmplx_sqrt, which returns the square root in an appropriate quadrant as required by (8). The
cmplx_sqrt is implemented in Fortran 90 with Python binding build by F2PY and depends on Fortran’s
intrinsic square root function, SQRT.

To confirm that the run-time of the Python Boundary superclass is acceptable, we compared it to a
Boundary class implemented in pure Fortran 90. From Figure 2, we see that for a large number of layers
(& 300) the Python code is only 25 percent slower than the pure Fortran 90 code. However, for a small
number of layers (. 20) the Python code is about 10 times slower than the pure Fortran 90 code, see inset
in Figure 2, but this is not major concern because such a small number of layers has an absolute execution
time about a second or so in Python. We believe that the run-time discrepancy between a small and a large
number of layers is caused by SciPy’s overhead cost, which does not increase significantly as a function of
array size.

10. Numerical stability and accuracy

To demonstrate the numerical stability and accuracy of openTMM, we numerically checked the complex
Poynting theorem given by (25a), the fundamental invariant in multilayers given by (27), and the de Hoop
reciprocity theorem [50, Section 6]. The de Hoop reciprocity theorem states that if ε0 = εp and µ0 = µp,
then the transmitted wave is unaffected by a 180 degree rotation of the multilayer stack around the z-axis,
see Figure 1. We measure the accuracy of a computed quantity in terms of the number of significant digits
it agrees with the theoretical value and we denote this measure of accuracy by δv. Approximately, δv is
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Figure 3: δṽ is shown for a multilayer stack composed of the same number of pseudorandom layers of the following types:
right-handed layers with/without absorption and left-handed layers with/without absorption.

given by

δṽ ≈ min

{
− log

∣∣∣∣v − ṽRe

v

∣∣∣∣ ,− log

∣∣∣∣v − ṽImv

∣∣∣∣} (39)

where v is the theoretical value and {ṽRe, ṽIm} are the numerically computed value. For a numerical
check of the complex Poynting theorem ṽRe is given as −Re [∇ · S] /

[
Q(e) +Q(m)

]
and ṽIm is given as

−Im [∇ · S] /
[
2ω
(
u(e) − u(m)

)]
. For the FIM test, ṽRe (ṽIm) is the ratio of the the real (imaginary) part of

the left-hand side to the real (imaginary) part of the right-hand side of (27). For the de Hoop reciprocity
test, ṽRe = Re

[
χ+
0

]
/Re

[
χ+
p

]
and ṽIm = Im

[
χ+
0

]
/Im

[
χ+
p

]
, where χ+

0 is the transmitted wave before the
180 degree rotation of the multilayer stack and χ+

p is the transmitted wave after the rotation. For all three
numerical checks, v = 1 and all computations are performed in double-precision (≈ 16 significant digits).
From Figure 3, we see that the three numerical checks are satisfied with an accuracy of δṽ ≥ 12. Despite
the fact that some of the layers in the stack chosen for Figure 3 have very high absorption, Im [kx,`h`] ≈ 30,
we see that δṽ does not decrease as a function of distance into the stack, which confirms that our S-matrix
algorithm is indeed numerically stable.

11. Conclusions

A numerically stable S-matrix algorithm for electromagnetic wave propagation through planar stratified
media composed of a right-handed and/or left-handed material has been implemented in Python. Patho-
logical cases caused by an unphysical approximation of zero absorption have been carefully examined and
numerically circumvented (see Section 3.2). The numerical computations were implemented in an object-
oriented programming style by dividing them into two classes, Boundary and Layer. The Boundary class
performs computationally intensive calculations, namely the solution of the linear system described in Sec-
tion 5.1 and the square root of k2x,`. The workhorse functions of the Boundary class were implemented in
Fortran 90 in order to avoid computational bottlenecks. The Layer class performs high-level calculations,
such as calculation of u(e,m)(x), Q(e,m)(x), Γ±(x) and FIM. The code has been tested and is accurate to
≈ 12 significant digits (see Section 10).

We hope that our open-source and object-oriented implementation of the S-matrix algorithm, which is
suitable for modern applications such as Anderson localization of light and perfect lensing, will be adopted
by a wide scientific community. At the very least, we hope that our publicly available implementation of
the S-matrix algorithm will encourage the scientific community to use open-source software, thus increasing
the reproducibility of scientific work.
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Notes

1For the exp (+iωt) time dependence, ε = ε′ − iε′′, µ = µ′ − iµ′′, where {ε′, µ′, } ∈ R, {ε′′, µ′′} ∈ R+.
2We always mean the positive square root of x when we write

√
x, where x ∈ R+. The fundamental issue with the w = z

1
2

mapping is that the “square root” function has branch points at z = 0 and z =∞ and thus must have a branch cut connecting
the two branch points, see [51, Vol. 1, Sec. 54].

3We could have chosen to set ky,` = 0, and then rotated the coordinate system so that the z-axis is parallel to the part of
the k vector that lies in the yz-plane. The point is that k can always be made into a two-dimensional vector.

4openTMM is an open-source software distributed under the MIT license and is available from http://pypi.python.org/pypi/

openTMM.
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