
Quad Double computation package
Copyright (C) 2003-2019
==

Revision date: 26 February 2019

Authors:
Yozo Hida U.C. Berkeley
yozo@cs.berkeley.edu
Xiaoye S. Li Lawrence Berkeley Natl Lab
xiaoye@nersc.gov
David H. Bailey Lawrence Berkeley Natl Lab
dhbailey@lbl.gov

C++ usage guide:
Alex Kaiser Lawrence Berkeley Natl Lab
adkaiser@lbl.gov

This work was supported by the Director, Office of Science, Division
of Mathematical,
Information, and Computational Sciences of the U.S. Department of
Energy under contract
number DE-AC02-05CH11231.

This work was supported by the Director, Office of Science, Division
of Mathematical,
Information, and Computational Sciences of the U.S. Department of
Energy under contract
numbers DE-AC03-76SF00098 and DE-AC02-05CH11231.

*** IMPORTANT NOTES:

See the file COPYING for modified BSD license information.
See the file INSTALL for installation instructions.
See the file NEWS for recent revisions.
See the file docs/qd.pdf for additional information.

Outline:

I. Introduction
II. Installation of package, and linking and executing user files
III. C++ Usage
IV. Fortran Usage
V. Note on x86-Based Processors (MOST systems in use today)

I. Introduction

This package provides numeric types of twice the precision of IEEE
double (106 mantissa

bits, or approximately 32 decimal digits) and four times the precision
of IEEE double (212
mantissa bits, or approximately 64 decimal digits). Due to features
such as operator and
function overloading, these facilities can be utilized with only minor
modifications to
conventional C++ and Fortran-90 programs.

In addition to the basic arithmetic operations (add, subtract,
multiply, divide, square root),
common transcendental functions such as the exponential, logarithm,
trigonometric and
hyperbolic functions are also included. A detailed description of the
algorithms used is
available in the docs subdirectory (see docs/qd.pdf). An abridged
version of this paper,
which was presented at the ARITH-15 conference, is also available at:

Yozo Hida, Xiaoye S. Li and David H. Bailey, "Algorithms for quad-
double precision
 floating point arithmetic," 15th IEEE Symposium on Computer
Arithmetic, IEEE Computer
 Society, 2001, pg. 155-162, available at
 https://www.davidhbailey.com/dhbpapers/arith15.pdf.

II. Installation of package, and linking and executing user files

A. Directories

There are six directories and several files in the main directory of
this distribution,
described below

src This contains the source code of the quad-double and double-
double
 library. This source code does not include inline
functions,
 which are found in the header files in the include
directory.

include This directory contains the header files.

fortran This directory contains Fortran-90 files.

tests This directory contains some simple (not comprehensive) tests.

docs This directory contains a technical paper describing the
algorithms.

config This directory contains various scripts used by the configure
 script and the Makefile.

Please note that all commands refer to a Unix-type environment such as
Mac OSX or Ubuntu
Linux using the bash shell.

B. Installing and building

To build the library, first run the included configure script by
typing

 ./configure

This script automatically generates makefiles for building the library
and selects compilers
and necessary flags and libraries to include. If the user wishes to
specify compilers or flags
they may use the following options.

 CXX C++ compiler to use
 CXXFLAGS C++ compiler flags to use
 CC C compiler to use (for C demo program)
 CFLAGS C compiler flags to use (for C demo program)
 FC Fortran 90 compiler
 FCFLAGS Fortran 90 compiler flags to use
 FCLIBS Fortran 90 libraries needed to link with C++
code.

For example, if one is using GNU compilers, configure with:

 ./configure CXX=g++ FC=gfortran

The Fortran and C++ compilers must produce compatible binaries. On
some systems
additional flags must be included to ensure that portions of the
library are not built with 32 and 64 bit object files. For example, on
64-Bit Mac OSX 10.6 (Snow Leopard) and 10.7 (Lion) the correct
configure line using GNU compilers is:

 ./configure CXX=g++ FC=gfortran FCFLAGS=-m64

To build the library, simply type

 make

and the automatically generated makefiles will build the library
including archive files.

To allow for easy linking to the library, the user may also wish to

install the archive files to a standard place. To do this type:

 make install

This will also build the library if it has not already been built.
Many systems, including Mac
and Ubuntu Linux systems, require administrator privileges to install
the library at such
standard places. On such systems, one may type:

 sudo make install

instead if one has sufficient access.

The directory "tests" contains programs for high precision quadrature
and integer-relation
detection. To build such programs, type:

make demo

in the "tests" directory.

C. Linking and executing user programs

C++ source files:

The simplest way to link to the library is to install it to a standard
place as described above, and use the -l option. For example

 g++ compileExample.cpp -o compileExample -l qd

One can also use this method to build with make. A file called
"compileExample.cpp" and the
associated makefile "makeCompileExample" illustrate the process.

A third alternative is to use a link script. If one types "make demo"
in the test
directory, the output produced gives guidance as to how to build the
files. By
following the structure of the compiling commands one may copy the
appropriate portions,
perhaps replacing the filename with an argument that the user can
include at link time.
An example of such a script is as follows:

g++ -DHAVE_CONFIG_H -I.. -I../include -I../include -O2 -MT $1.o -
MD -MP -MF
.deps/qd_test.Tpo -c -o $1.o $1.cpp
mv -f .deps/$1.Tpo .deps/$1.Po
g++ -O2 -o $1 $1.o ../src/libqd.a -lm

To use the link script, make it executable (by typing "chmod +x
link.scr) and then type:

./link.scr compileExample

Note that the file extension is not included because the script
handles all extensions,
expecting the source file to have the extension ".cpp".

Fortran-90 source files:

Similarly, a script for compiling fortran programs may be constructed
as follows.
In the fortran directory, type "make quadtsq". This compiles the
Fortran program
tquadts.f, links with all necessary library files, and produces the
executable
"quadts". As this is being done, all flags and linked libraries are
displayed.
For instance, on a 2019-era Apple Macintosh system, where the library
was installed
as above with g++ for C++ and gfortran for Fortran-90, the following
is output:

gfortran -m64 -ffree-form -c -o tquadtsq.o tquadtsq.f
/bin/sh ../libtool --tag=CXX --mode=link g++ -O2 -o quadtsq
tquadtsq.o second.o
libqdmod.la libqd_f_main.la ../src/libqd.la
-L/usr/local/gfortran/lib/gcc/x86_64-apple-darwin16/6.3.0
-L/usr/local/gfortran/lib/gcc/x86_64-apple-darwin16/6.3.0/../../..
-lgfortran -lquadmath -lm -lm

Thus a general compile-link script is the following:

gfortran -m64 -ffree-form -c -o $1.o $1.f90
/bin/sh ../libtool --tag=CXX --mode=link g++ -O2 -o $1 $1.o
second.o \
 libqdmod.la libqd_f_main.la ../src/libqd.la \
 -L/usr/local/gfortran/lib/gcc/x86_64-apple-darwin16/6.3.0 \
 -L/usr/local/gfortran/lib/gcc/x86_64-apple-darwin16/6.3.0/../../.. \
 -lgfortran -lquadmath -lm -lm

Note that if the .f90 suffix is used for Fortran-90 source files, the
-ffree-form flag may be omitted, but the first line above should end
with
"$1.f90" (as shown above). After forming the script, name file,
"complink.scr",
and then type "chmod +x complink.scr". To use this script compile and
link a

program named "prog.f90", type "./complink.scr prog".

III. C++ usage

As much as possible, operator overloading is included to make basic
programming as much
like using standard typed floating-point arithmetic. Changing many
codes should be as
simple as changing type statements and a few other lines.

i. Constructors

To create dd_real and qd_real variables calculated to the proper
precision, one must use
care to use the included constructors properly. Many computations in
which variables are
not explicitly typed to multiple-precision may be evaluated with
double-precision
arithmetic. The user must take care to ensure that this does not cause
errors. In particular,
an expression such as 1.0/3.0 will be evaluated to double precision
before assignment or
further arithmetic. Upon assignment to a multi-precision variable, the
value will be zero
padded. This problem is serious and potentially difficult to debug. To
avoid this, use the
included constructors to force arithmetic to be performed in the full
precision requested.

For a table with descriptions, please see the documentation file
qd.pdf in the docs directory.

ii. Included functions and Constants

Supported functions include assignment operators, comparisons,
arithmetic and
assignment operators, and increments for integer types. Standard C
math functions such as
exponentiation, trigonometric, logarithmic, hyperbolic, exponential
and rounding functions
are included. As in assignment statements, one must be careful with
implied typing of
constants when using these functions. Many codes need particular
conversion for the power
function, which is frequently used with constants that must be
explicitly typed for multi-
precision codes.

Many constants are included, which are global and calculated upon

initialization. The
following list of constants is calculated for both the dd_real and
qd_real classes separately.
Use care to select the correct value.

For a table with descriptions, please see the included file README.pdf

ii. Conversion of types

Static casts may be used to convert constants between types. One may
also use constructors
to return temporary multi-precision types within expressions, but
should be careful, as this
will waste memory if done repeatedly. For example:

 qd_real y ;
 y = sin(qd_real(4.0) / 3.0) ;

C-style casts may be used, but are not recommended. Dynamic and
reinterpret casts are
not supported and should be considered unreliable. Casting between
multi-precision and
standard precision types can be dangerous, and care must be taken to
ensure that programs
are working properly and accuracy has not degraded by use of a
misplaced type-conversion.

D. Available precision, Control of Precision Levels,

The library provides greatly extended accuracy when compared to
standard double
precision. The type dd_real provides for 106 mantissa bits, or about
32 decimal digits. The
type qd_real provides for 212 mantissa bits, or about 64 decimal
digits.

Both the dd_real and qd_real values use the exponent from the highest
double-precision
word for arithmetic, and as such do not extend the total range of
values available. That
means that the maximum absolute value for either data type is the same
as that of double-
precision, or approximately 10^308. The precision near this range,
however, is greatly
increased.

E. I/O

The standard I/O stream routines have been overloaded to be fully
compatible with all

included data types. One may need to manually reset the precision of
the stream to obtain
full output. For example, if 60 digits are desired, use:

cout.precision(60) ;

When reading values using cin, each input numerical value must start
on a separate
line. Two formats are acceptable:

1. Write the full constant
3. Mantissa e exponent

Here are three valid examples:

1.1
3.14159 26535 89793
123.123123e50

When read using cin, these constants will be converted using full
multi-precision accuracy.

IV. Fortran-90 Usage

NEW (2007-01-10): The Fortran translation modules now support the
complex datatypes
"dd_complex" and "qd_complex".

Since the quad-double library is written in C++, it must be linked in
with a C++ compiler (so
that C++ specific things such as static initializations are correctly
handled). Thus the main
program must be written in C/C++ and call the Fortran 90 subroutine.
The Fortran 90
subroutine should be called f_main.

Here is a sample Fortran-90 program, equivalent to the above C++
program:

 subroutine f_main
use qdmodule
implicit none
type (qd_real) a, b
a = 1.d0
b = cos(a)**2 + sin(a)**2 - 1.d0
call qdwrite(6, b)
stop

 end subroutine

This verifies that cos^2(1) + sin^2(1) = 1 to 64 digit accuracy.

Most operators and generic function references, including many mixed-
mode type
combinations with double-precision (ie real*8), have been overloaded
(extended) to work
with double-double and quad-double data. It is important, however,
that users keep in
mind the fact that expressions are evaluated strictly according to
conventional Fortran
operator precedence rules. Thus some subexpressions may be evaluated
only to 15-digit
accuracy. For example, with the code

 real*8 d1
 type (dd_real) t1, t2
 ...
 t1 = cos (t2) + d1/3.d0

the expression d1/3.d0 is computed to real*8 accuracy only (about 15
digits), since both d1
and 3.d0 have type real*8. This result is then converted to dd_real
by zero extension before
being added to cos(t2). So, for example, if d1 held the value 1.d0,
then the quotient d1/3.d0
would only be accurate to 15 digits. If a fully accurate double-
double quotient is required,
this should be written:

 real*8 d1
 type (dd_real) t1, t2
 ...
 t1 = cos (t2) + ddreal (d1) / 3.d0

which forces all operations to be performed with double-double
arithmetic.

Along this line, a constant such as 1.1 appearing in an expression is
evaluated only to real*4
accuracy, and a constant such as 1.1d0 is evaluated only to real*8
accuracy (this is
according to standard Fortran conventions). If full quad-double
accuracy is required, for
instance, one should write

 type (qd_real) t1
 ...
 t1 = '1.1'

The quotes enclosing 1.1 specify to the compiler that the constant is

to be converted to
binary using quad-double arithmetic, before assignment to t1. Quoted
constants may only
appear in assignment statements such as this.

To link a Fortran-90 program with the C++ qd library, it is
recommended to link with the
C++ compiler used to generate the library. The Fortran 90 interface
(along with a C-style
main function calling f_main) is found in qdmod library. The qd-
config script installed
during "make install" can be used to determine which flags to pass to
compile and link your
programs:

 "qd-config --fcflags" displays compiler flags needed to compile
your Fortran files.
 "qd-config --fclibs" displays linker flags needed by the C++
linker to link in all the
necessary libraries.

A sample Makefile that can be used as a template for compiling Fortran
programs using
quad-double library is found in fortran/Makefile.sample.

F90 functions defined with dd_real arguments:
 Arithmetic: + - * / **
 Comparison tests: == < > <= >= /=
 Others: abs, acos, aint, anint, asin, atan, atan2, cos, cosh, dble,
erf,
 erfc, exp, int, log, log10, max, min, mod, ddcsshf (cosh and sinh),
 ddcssnf (cos and sin), ddranf (random number generator in (0,1)),
 ddnrtf (n-th root), sign, sin, sinh, sqr, sqrt, tan, tanh

Similar functions are provided for qd_real arguments with function
names qdcsshf,
qdcssnf, qdranf and qdnrtf instead of the names in the list above.

Input and output of double-double and quad-double data is done using
the special
subroutines ddread, ddwrite, qdread and qdwrite. The first argument
of these subroutines
is the Fortran I/O unit number, while additional arguments (as many as
needed, up to 9
arguments) are scalar variables or array elements of the appropriate
type. Example:

 integer n
 type (qd_real) qda, qdb, qdc(n)
 ...

 call qdwrite (6, qda, qdb)
 do j = 1, n

 call qdwrite (6, qdc(j))
 enddo

Each input values must be on a separate line, and may include D or E
exponents. Double-
double and quad-double constants may also be specified in assignment
statements by
enclosing them in quotes, as in

 ...
 type (qd_real) pi
 ...
 pi =
"3.14159265358979323846264338327950288419716939937510582097494459230"
 ...

Sample Fortran-90 programs illustrating some of these features are
provided in the f90
subdirectory.

V. Note on x86-Based Processors (MOST systems in use today)

The algorithms in this library assume IEEE double precision floating
point arithmetic. Since
Intel x86 processors have extended (80-bit) floating point registers,
some compilers,
albeit a declining number, may generate commands for the 80-bit
instructions. The QD
library does NOT work correctly with 80-bit instructions, so if one's
code does not operate
correctly, this may be the reason. To avoid such problems, the round-
to-double flag must be
enabled in the control word of the FPU for this library to function
properly. The following
functions contains appropriate code to facilitate manipulation of this
flag. For non-x86
systems these functions do nothing (but still exist).

fpu_fix_start This turns on the round-to-double bit in the control
word.
fpu_fix_end This restores the control flag.

These functions must be called by the main program, as follows:

int main() {
 unsigned int old_cw;
 fpu_fix_start(&old_cw);

 ... user code using quad-double library ...

 fpu_fix_end(&old_cw);
}

A Fortran-90 example is the following:

subroutine f_main
use qdmodule
implicit none
integer*4 old_cw

call f_fpu_fix_start(old_cw)

 ... user code using quad-double library ...

call f_fpu_fix_end(old_cw)
end subroutine

