
http://www.SynthWorks.com jim@SynthWorks.com © 2015 by SynthWorks Design Inc. 1506

SynthWorks
VHDL Training Experts

Scoreboard Package
Quick Reference

1. Generic Package Interface

package ScoreboardGenericPkg is
generic (
 type ExpectedType ;
 type ActualType ;
 function Match(Actual : ActualType ;
 Expected : ExpectedType)
 return boolean ;
 function expected_to_string(
 A : ExpectedType) return string ;
 function actual_to_string(
 A : ActualType) return string
) ;
ExpectedType is the input to the scoreboard.
ActualType is the value to be checked against the oldest
ExpectedType value. ExpectedType and ActualType
may be the same type. Match is a function that
compares ExpectedType with ActualType. Match is
often mapped to "=". expected_to_string converts
ExpectedType to a string value (for reports).
actual_to_string converts ActualType to a string.
2. Package Instance

library ieee ;
 use ieee.std_logic_1164.all ;
 use ieee.numeric_std.all ;

package ScoreBoardPkg_slv is new
work.ScoreboardGenericPkg
 generic map (
 ExpectedType => std_logic_vector,
 ActualType => std_logic_vector,
 Match => std_match,
 expected_to_string => to_hstring,
 actual_to_string => to_hstring
) ;
Note, that ExpectedType and ActualType do not need
to be constrained types.

3. Compatibility Package
ScoreboardPkg_slv_c.vhd contains equivalent subtypes
and aliases to work like the above package instance.

4. Basic Operations
4.1 Scoreboard = Shared Variable
A scoreboard is a shared variable.

shared variable SB : ScoreBoardPType ;

If using more than one scoreboard package instance,
disambiguate the type using a fully selected name.

shared variable SB_uart :
 work.ScoreBoardPkg_Uart.ScoreBoardPType;

4.2 Push
Add expected value (ExpectedType) to the scoreboard.

SB.Push(ExpectedVal) ;

4.3 Check
Check a received value (ActualType) with value in
scoreboard. If error, increment internal error count.

SB.Check(ReceiveVal) ;

4.4 Pop
Use scoreboard as FIFO, get oldest value. Uses an out
mode variable parameter of ExpectedType.

SB.Pop(ExpectedVal) ;

4.5 SetAlertLogID
Create an AlertLogID. Use the ID for reporting errors.

SB.SetAlertLogID(
 Name => "SB_UART",
 ParentID => OSVVM_ALERTLOG_ID) ;

4.6 GetAlertLogID
Get the AlertLogID from the scoreboard internals.

SB_ID := SB.GetAlertLogID ;

4.7 Find
Return the ItemNumber of the oldest expected value
that matches the received value. Find + Flush support
systems that drop items before they are synchronized.

ItemNum := SB.Find(ReceiveVal) ;

4.8 Flush
Quietly drop all values whose item number is less than
the specified item number. Find + Flush support
systems that drop items before they are synchronized.

SB.Flush(ItemNum) ;

4.9 Empty
Check if the Scoreboard is empty.

if not SB.Empty then …

4.10 CheckFinish
For test completion when using alerts.

SB.CheckFinish(
 FinishCheckCount => 1,
 FinishEmpty => TRUE) ;

If CheckCount < FinishCheckCount then signal an alert
and increment the internal error count. If FinishEmpty is
TRUE and Empty is FALSE then signal an alert and
increment the internal error count.

4.11 GetErrorCount
Only intended for non-alert flows. If not using separate
AlertLogIDs and ReportAlerts, GetErrorCount returns
the current error count.

ErrCnt := SB.GetErrorCount ;

4.12 GetItemCount
Get number of items put into the scoreboard.

print("…" & to_string(SB.GetItemCount));

4.13 GetCheckCount
Get number of items checked by the scoreboard.

print("…" & to_string(SB.GetCheckCount));

4.14 GetDropCount
Get number of items dropped by the scoreboard.

print("…" & to_string(SB.GetDropCount));

4.15 SetName
Gives the scoreboard a name for reporting. Use if using
a single ALertLogID for multiple items (scoreboards or
other).

SB.SetName("Uart Scoreboard") ;

4.16 GetName
Get the scoreboard name

print("…" & SB.GetName) ;

© 2013 by SynthWorks Design Inc. Reproduction of entire
document in whole permitted. All other rights reserved.

SynthWorks Design Inc.
VHDL Design and Verification Training

11898 SW 128th Ave. Tigard OR 97223 (800)-505-8435

http://www.SynthWorks.com jim@synthworks.com

http://www.SynthWorks.com jim@SynthWorks.com © 2015 by SynthWorks Design Inc. 1506

SynthWorks
VHDL Training Experts

5. Tagged Scoreboards
Tagged Scoreboards are used for systems that allow
transactions to execute out of order.

Tags are represented as string values (since most types
convert to string using to_string). A tag value is
specified as the first value in the calls to push, check,
and pop, such as shown below. In all examples,
ExpectedVal has the type ExpectedType, and
ReceiveVal has the type ActualType.

SB.Push("WriteOp", ExpectedVal) ;
SB.Check("WriteOp", ReceiveVal) ;
SB.Pop("WriteOp", ExpectedVal) ;

if SB.Empty("MyTag") then …

For Check (and Pop), the item checked (or returned) is
the oldest item with the matching tag.

ItemNum := SB.Find("ReadOp", ReceiveVal);
SB.Flush("ReadOp", ItemNum) ;

For Flush, only items matching the tag are removed. In
some systems, it may be appropriate to do the Find with
the tag and the flush without the tag.

6. Indexed Scoreboards
Indexed scoreboards emulates arrays of protected
types, since the language does not support this.

Indexed scoreboards are for systems, such as a
network switch that have multiple scoreboards that are
most conveniently represented as an array.

6.1 Setting Array Indices
Use SetArrayIndex to create the array indices. The
following creates an array with indices 1 to 5:

SB.SetArrayIndex(5) ;

To create array indices with a different range, such as 3
to 8, use the following.

SB.SetArrayIndex(3, 8) ;

Slicing and null arrays of scoreboards are not
supported. Negative indices are supported.

6.2 Getting Array Indices
Use GetArrayIndex to get the indices as an
integer_vector.

Index_IV := SB.GetArrayIndex ;

Use GetArrayLength to determine the number of
scoreboards (effectively the length of the array).

Index_int := SB.GetArrayLength ;

6.3 Arrays of Scoreboards
The following operations are appropriate for any array of
scoreboards. Procedures and functions not
documented here are from AlertLogPkg.

-- Create 3 indexed scoreboards
SB.SetArrayIndex(1, 3);

-- TB_ID via AlertLogPkg
TB_ID := GetAlertLogID("TB") ;
SB.SetAlertLogID(1, "SB1", TB_ID) ;
SB.SetAlertLogID(2, "SB2", TB_ID) ;
SB.SetAlertLogID(3, "SB3", TB_ID) ;

-- display PASSED logs via AlertLogPkg
SetLogEnable(TB_ID, PASSED, TRUE) ;

-- Turn off Error messages for SB1
SB1_ID := GetAlertLogID(1) ;
SetAlertEnable(SB1_ID, ERROR, FALSE) ;

-- Check at least 100 items and
-- Finish Empty
SB.CheckFinish(1, 100, TRUE) ;
SB.CheckFinish(2, 100, TRUE) ;
SB.CheckFinish(3, 100, TRUE) ;

-- test completion via AlertLogPkg
ReportAlerts ;

-- Getting Error Counts (non-Alert)
TotalErrorCount :=
 SB.GetErrorCount(1) +
 SB.GetErrorCount(2) +
 SB.GetErrorCount(3);

TotalErrorCountAlt := SB.GetErrorCount ;

6.4 Arrays of Simple Scoreboards
The following are operations appropriate for arrays of
simple scoreboards. In all examples, 4 is the index,
ExpectedVal has the type ExpectedType, and
ReceiveVal has the type ActualType.

SB.Push(4, ExpectedVal) ;
SB.Check(4, ReceiveVal) ;
SB.Pop(4, ExpectedVal) ;

if SB.Empty(4) then …

ItemNum := SB.Find(4, ReceiveVal);
SB.Flush(4, ItemNum) ;

6.5 Arrays of Tagged Scoreboards
The following are operations appropriate for arrays of
tagged scoreboards. In all examples, 4 is the index,
values in quotes are the tag value, ExpectedVal has the
type ExpectedType, and ReceiveVal has the type
ActualType. Operations where either using a tag or not
is appropriate are marked with "**".

SB.Push(4, "WriteOp", ExpectedVal) ;
SB.Check(4, "WriteOp", ReceiveVal) ;
SB.Pop(4, "WriteOp", ExpectedVal) ;

if SB.Empty(4, "MyTag") then … -- **
if SB.Empty(4) then … -- **

ItemNum := SB.Find(4, "Red", ReceiveVal);
-- two possible alternatives
SB.Flush(4, "Red", ItemNum) ; -- **
SB.Flush(4, ItemNum) ; -- **

© 2010 - 2015 by SynthWorks Design Inc. Reproduction of
entire document in whole permitted. All other rights reserved.

SynthWorks Design Inc.
VHDL Design and Verification Training

11898 SW 128th Ave. Tigard OR 97223 (800)-505-8435

http://www.SynthWorks.com jim@synthworks.com

